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BUILDING STRUCTURES AND MATERIALS

Optimization of branching structures for free-form surfaces using force density 
method
Baoshi Jianga,b, Jingyao Zhang b and Makoto Ohsakib

aSchool of Civil Engineering and Architecture, Hainan University, Haikou, China; bDepartment of Architecture and Architectural 
Engineering, Kyoto University, Kyoto, Japan

ABSTRACT
Branching structures are mechanically efficient in supporting large-span structures, such as 
free-form roofs. To support a roof with a specified geometry, we present a novel shape and 
topology optimization method to find the optimal branching structure in this paper. In the 
proposed method, the branching structure is modelled as a cable-net, while the reaction forces 
from the roof are taken as external loads. The force densities of the members are the design 
variables. The optimal branching structure can be obtained by minimizing one of the several 
proposed objective functions. The shape of the branching structure represented by the nodal 
coordinates is determined by solving the linear equilibrium equations. The topology is opti
mized by removing the members with small axial forces and incorporating the closely spaced 
nodes. The cross-sectional areas can be easily calculated, if the allowable stress is assigned. 
Hence, it is very convenient to simultaneously optimize the cross-section, shape, and topology 
of a branching structure. Numerical examples show that this method can be easily applied to a 
2D problem. For a 3D problem, the constraints on the reaction forces should be relaxed. 
Considering the roof supports as variables is also an effective solution for 3D problems.

Optimization method for
branching structures

bracing free-form surfaces

Shape optimization by force density method 

Topology optimization by removing the members 
with small internal force (The first innovation point)

Verification by 
numerical examples

The method is effective for 2D problem

The method is effective for 3D problem 
after optimizing supports on surface
(The third innovation point)

Discussions on
objective functions

Sum of the strain energy

Sum of the absolute value of 
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member lengths (The second 
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1. Introduction

Branching structures are very useful for supporting 
architectural roofs for a large space, especially when 
combined with free-form surfaces. A branching struc
ture can provide a large space near the ground for 

human activities using a small number of columns, 
which is preferable in view of architectural design. 
One famous tree-like supporting structure is the term
inal building at Stuttgart International Airport, 
designed by German architect/engineer Frei Otto and 
built in 1960 (Cui, Zhou, and Ohsaki 2016). Recently, 
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such kind of supporting structures has been widely 
applied in many public buildings.

Nature is an inspiration source of architectural 
design. Obviously, the branching structures in archi
tecture come from branches of trees, while many dif
ferent approaches have also been undertaken by 
architects and engineers (Rian and Sassone 2014). 
The branches and nodes are the essential components 
for branching structures.

In the early 1990s, physical experiments by thread 
models have been used to explore structural forms for 
planar or spatial branching structures. One of the 
experimental techniques (Buelow 2007) uses dry 
strings connected with beads. The beads are held in 
place simply by friction against the strings. The strings 
can be fixed in a frame or tensioned with suspended 
weights. The beads allow repositioning of the nodes, 
and the lengths of the threads can also be adjusted. 
Obviously, in this model, different positions of the 
nodes result in a different tree-like structural form, 
although locations of the boundary nodes and topol
ogy of the structure are fixed. In the thread and bead 
model, the whole structure is in a tensile state.

With the development of computer technology, 
many researchers put forward many numerical meth
ods, such as dynamic relaxation method (Barnes 1977; 
Barnes, 1999), genetic algorithms (Buelow 2007), form- 
finding methods with finite elements (Haug et al. 
2009), sensitivity method (Cui, Zhou, and Ohsaki 
2016; Cui and Jiang 2014), etc., to deal with disadvan
tages of the physical modeling techniques. Barnes 
(Barnes 1977; Barnes, 1999) introduced the numerical 
procedures of form finding method based on the 
method of dynamic relaxation with kinetic damping 
for long-span cable nets and grid shells, etc. Haug et al. 
(2009) summarized the status of design and analysis of 
industrial membrane structures in architecture, auto
motive, and space industries by several types of com
putational software. One of them is the Lightweight 
Structures Analysis, based on the Ph.D. work by E.J. 
Haug, 1969–1971 at UC Berkeley, which is an effective 
finite element code for shape finding and static/ 
dynamic analyses of the flexible membranes, beams, 
and cable structures. Wu et al. (Wu, Zhang, and Cao 
2011) proposed the inverse-hanging recursive method, 
in which the primary idea is to find the load-bearing 
centers of the branch roofs at each level. The load- 
bearing centers in the adjacent level are then con
nected by lines to generate the geometric form of 
branching structures progressively. However, this 
method considered only the resultant forces of the 
loads on the specified roof areas, and it did not con
sider the interaction between the structural shape and 
the loads. Hunt et al. (Hunt, Haase, and Sobek 2009) 
proposed a design tool for two-dimensional tree struc
tures, where the inner nodes are allowed to move only 
in the vertical direction so as to stabilize the analysis 

process. The topology is specified in advance and can
not change in the optimization process. Cui et al. (Cui, 
Zhou, and Ohsaki 2016) presented an optimal design 
method for a branching structure, generated by fractal 
geometry, to support a free-form shell. Only the shape 
of the branching structure was optimized by minimiz
ing the strain energy, ie, the topology of the branching 
structure cannot change in the optimization process. 
Cui and Jiang (Cui and Jiang 2014) minimized the 
strain energy of the structure using the sensitivity 
coefficients, and presented a method for simulta
neously optimizing the shape, topology, and cross- 
sectional areas of framed structures, including branch
ing structures. However, they did not show the effec
tiveness of finding the optimal shape of the branching 
structures supporting free-form surfaces.

In this paper, we propose a method for simulta
neous optimization of cross-section, shape, and topol
ogy of the branching structures supporting free-form 
surfaces using the force density method (FDM), which 
is primarily applied to form-finding of cable-nets and 
tensegrity structures. The nonlinear equilibrium equa
tions with respect to the unknown nodal coordinates 
are converted into a set of linear equations by introdu
cing the concept of force density (Gruendig and Singer 
2000; Zhang and Ohsaki 2006, 2015), which is defined 
as the ratio of member force to its length. The force 
density method was published for the first time in the 
article in 1971 by Linkwitz and Schek (Linkwitz and 
Schek 1971). Schek (Schek 1974) expanded the 
method in 1974 for equidistant square cable nets. 
The methods nowadays used for form finding of ten
sile structures are mostly based on his method. 
Descamps et al. (Descamps et al. 2011) developed 
a constrained FDM to enforce geometric restrictions 
by a local approach based on static equilibrium equa
tions. The geometry constraints were imposed on the 
positions of loaded nodes. Miki and Kawaguchi (Miki 
and Kawaguchi 2010) extended the FDM by minimiz
ing various objective functions for finding the forms of 
complex tension structures composed of cables, mem
branes, and compressive members. Malerba et al. 
(Malerba, Patelli, and Quagliaroli 2012) proposed an 
extended FDM by setting conditions in terms of 
nodal reactions to deal with form-finding problems of 
cable-nets. Lee et al. (Lee, Lee, and Kang 2018) pre
sented a numerical method for form-finding of ten
segrity structures with multiple states of self-stress by 
using the force density method combined with 
a genetic algorithm. The design variable can be 
uniquely defined in the case of multiple states of self- 
stress using only the constraint of member types. Xu 
et al. (Xu, Wang, and Luo 2018) proposed an optimiza
tion approach for tensegrity structures using mixed 
integer nonlinear programming. Zhao et al. (Zhao 
et al. 2020) presented a strong coupled form-finding 
and optimization algorithm for reticulated shell 
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structures. Wang et al. (Wang, Xu, and Luo 2021) intro
duced a general computational framework for the 
form-finding of tensegrity structures. These methods 
can handle tensegrity structures that have a force den
sity matrix with a rank deficiency greater than the 
required minimum value.

The optimal topology of a truss is often obtained by 
removing the members with small cross-sectional 
areas from the initial ground structure that has many 
redundant members (Hagishita and Ohsaki 2009), 
while the locations of the nodes are fixed. The optimal 
shape and topology can be simultaneously obtained 
by considering nodal locations as additional variables. 
Recently, Ohsaki and Hayashi (Ohsaki and Hayashi 
2017) explored the merits of FDM in shape and topol
ogy optimization of trusses; the objective function, 
namely, the compliance, and the constraint function, 
namely, the structural volume, are expressed explicitly 
by the force densities based on the fact that the opti
mal truss is statically determinate with the same abso
lute value of stress in existing members. Shen and 
Ohsaki (Shen and Ohsaki 2020) extended this method 
to simultaneous shape and topology optimization of 
planar frames. In their method, the nodal locations are 
expressed as functions of force densities of an auxiliary 
truss or a cable-net, and the cross-sectional areas of 
members of the primary frame are determined by sol
ving a nonlinear programming problem. The members 
with small cross-sectional areas are removed to obtain 
an optimal topology. In other words, the topology of 
the structure remains unchanged in the optimization 
process, and the inefficient components are deleted 
after optimization.

From the inspiration that the thread and bead 
model is in a tensile state, we use the FDM in this 
paper to find the optimal shape of the branching 
structure. The design variables are only the force den
sities of the members. The initial branching structure is 
not a structure like a fractal tree, but a grid connected 
by bars. Concentrated loads are applied to represent 
the reaction forces from the free-form roof. For a 2D 
problem, the locations of loaded nodes on the roof are 
fixed in the optimization process, and the members 
with small internal forces are removed directly at each 
step in the process of topology optimization. The struc
tural shape gradually changes in the direction of 
increasing the minimum internal force and improving 
the force transmission efficiency of components. This 
process is similar to the idea of evolutionary structural 
optimization (Huang and Xie 2010), fully stressed 
design, and the optimality criteria approach.

The method for 2D problems is then extended to 3D 
problems. To support a free-form surface, the branch
ing structure should be in equilibrium with the reac
tion forces in z-direction, which are transferred from 
the roof surface. We first find the optimal locations of 
supports on the roof surface, which are kept 

unchanged while applying the reaction forces to the 
branching structure to find its optimal shape. However, 
the 3D problem is more complex than the 2D problem, 
because the vectors of reaction at different surface 
supports do not always intersect with each other. To 
resolve this difficulty, locations of the surface supports 
and the branching structure are optimized at the same 
time. Numerical examples demonstrate that this turns 
out to be easier to find an optimal branching structure.

The paper is organized as follows: In Section 2, we 
introduce the method of shape and topology optimi
zation by FDM and discuss the properties of the 
method through examples of planar trusses. In 
Section 3, we solve the problem of optimizing the 
branching structure supporting a free-form surface. In 
Section 4, numerical examples are utilized to validate 
the effectiveness of the method. In Section 5, the con
clusions are given.

Throughout the paper, the ith component of 
a vector a is written as ai, and the (i, j) component of 
a matrix B is denoted by Bij . All vectors are column 
vectors.

2. Shape and topology optimization problem

Shape optimization by the FDM is introduced first to 
obtain the optimal shape of branching structures as 
shown in Figure 1. It is easy to optimize the cross- 
section after obtaining the optimal shape. However, 
the cross-section optimization is not our concern in 
this paper, and all the existing members have the 
same cross-sectional area. For topology optimization, 
the members with small internal forces will be 
removed at every step of shape optimization.

2.1. Shape optimization by force density method

In this subsection, the FDM proposed in Ref. (Ohsaki 
and Hayashi 2017) for shape and topology optimiza
tion of trusses is presented for completeness of the 
paper. Consider a pin-jointed structure, which consists 
of m members and n nodes. The axial force of the ith 
member is Fi, its length is li, and the force density qi is 
defined as 

Figure 1. An example of planar branching structure.
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qi ¼
Fi

li
(1) 

The force density vector q is given as 

q ¼ ðq1; � � � ; qi; � � � ; qmÞ
T (2) 

Let x∈<n, y∈<n and z∈<n denote the vectors of x-, 
y-, and z-coordinates, respectively, of all nodes. The 
loaded nodes and the supports in the branching struc
ture are classified as fixed nodes, and the other nodes 
are free nodes, indicated by the subscripts “fix” and 
“free”, respectively. Moreover, the nodes are labeled 
such that the free nodes precede the fixed nodes, and 
we have 

x ¼ xfree
xfis

� �

; y ¼ yfree
yfis

� �

; z ¼ zfree
zfis

� �

(3) 

Let C∈<m×n denote the connectivity matrix, or inci
dence matrix of the structure, which defines connec
tivity between the members and the nodes. If member 
i is connected to nodes j and k (j < k), then the compo
nents Cij of C is defined as follows (Zhang and Ohsaki 
2015): 

Cij ¼ � 1; Cik ¼ 1 i ¼ 1; . . . ;m; j; k ¼ 1; . . . ; nð Þ

(4) 

while the other components in the ith row of C are 0. 
C can be divided into two parts as follows: 

C ¼ Cfree;Cfixð Þ (5) 

The force density matrix Q for expressing the equili
brium in x-, y-, or z-direction is formulated as follows, 
which can be divided into four parts as Equation (6): 

Q ¼ Cfree;Cfixð Þ
TdiagðqÞ Cfree;Cfixð Þ

¼
Qfree Qlink

QT
linkQfix

� �

¼
CT

freediagðqÞCfree CT
freediagðqÞCfix

CT
fixdiagðqÞCfree CT

fixdiagðqÞCfix

 !

Let px∈<n, py∈<n and pz∈<n denote the nodal load 
vectors including the reaction forces in x-, y-, and 
z-directions, respectively. The equilibrium equation in 
x-direction, for instance, can be written in terms of 
nodal coordinates as 

x ¼
Qfree
QT

link

Qlink
Qfix

� �
xfree
xfis

� �

¼
Pfree

x
Pfix

x

� �

(7) 

where pfree
x 2 Rnfree ,pfix

x 2 Rnfix are the nodal loads 
applied at the free and fixed nodes, respectively. Note 
that the locations of loaded nodes are fixed in the 
following optimization problems; therefore, they are 
included in the fixed nodes and px

free is a zero vector.
The following equations are obtained from 

Equation (7): 

Qfree xfree ¼ px
free � Qlink xfix (8) 

Rx ¼ px
fix ¼ QT

linkxfree � Qfix xfix (9) 

where Rx is the reaction force vector. If node k is the 
surface support as specified in Figure 1, a constraint is 
given so that the reaction force Rxk is equal to the 
specified load Pk from the roof surface. If the force 
densities of all members and the locations of fixed 
nodes are assigned, then the locations of free nodes 
are obtained from the set of linear equations in 
Equation (8). Therefore, xfree is considered as 
a function of q. For the equilibrium in y- and z-direc
tions, we have similar equations.

Let R ∈<L denote the vector consisting of the 
reaction components corresponding to the specified 
load vector P, ie, the relation R = P should be satisfied. 
Here, L = 3 c for 3D problem, and L = 2 c for 2D 
problem, where c is the number of surface supports. 
Form finding based on the force density will offer the 
mechanical information to the topology optimization 
in Section 2.2 and the calculation of the objective 
function in Section 2.3. The form-finding process of 
the branching structure is summarized as follows:

(1) Formulate the connectivity matrix C by Equation 
(4).

(2) Obtain the force density matrix Q for the given 
force density vector q, and also Qfree, Qfix, Qlink 

by Equation (6).
(3) Compute the coordinates of free nodes xfree, 

yfree, and zfree by Equation (8), where px
free ¼ 0, 

py
free ¼ 0, and pz

free ¼ 0 are satisfied.
(4) Obtain the reaction forces Rx, Ry, and Rz by 

Equation (9).
(5) Find the force density vector q by solving an 

optimization problem under constraints of 
R = P. More details can be found in Section 2.3.

After obtaining the force densities resulting in the 
specified reaction forces, we can easily determine 
shape of the structure, namely, the coordinates of all 
nodes, by solving Equation (8). Furthermore, the axial 
forces of the members can be obtained according to 
the definition of the force density in Equation (1).

2.2. Topology optimization of branching 
structures

The topology optimization has two kinds of opera
tions: member removal and node incorporation, 
which are implemented after shape optimization at 
each step during the optimization process.

2.2.1. Member removal
After obtaining the nodal locations using the FDM 
explained in Section 2.1, the members with small abso
lute values of axial forces will be deleted from the 
branching structure except the members between 
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the two loaded nodes (surface supports). When there 
are many members with zero internal forces, these 
members are eliminated firstly since they have little 
effect on the structural performance.

Let Fmin denote the minimum absolute value; ie, 

Fmin ¼ min F1j j; F2j j; � � � ; Fl0j jð Þ (10) 

where l’ is the number of members in the branching 
structure except those between the surface supports. 
A reference value Fc for the member elimination is 
set as 

Fc ¼ γFmin; 1:0< γ< 2:0 (11) 

to determine which members will be deleted, where γ 
is a parameter controlling the rate of convergence. 
Namely, a member is removed if its absolute axial 
force is not larger than the reference value Fc, ie, the 
condition for member removal is given as 

Fij j � Fc; i ¼ 1; . . . ; l0 (12) 

The value of γ has some influence on the optimization 
results, because it determines the number of members 
to eliminate at each step. γis effective when there are 
few zero internal force members. A large value will 
make the evolution direction uncontrollable and can
not obtain a proper structural form. For instance, if it is 
close to 1.0, the internal forces of members will not 
become smaller any more in the final stage and maybe 
only one member is deleted in one step. Hence, γ 
should be a small value to make Fc appropriately small.

The convergence condition for optimization is 
assigned as 

Fmin > λFmax (13) 

where λ is a small positive number between 0.01 and 
0.10. If λ is too large, the force transmission path of the 
structure may be destroyed, resulting in an unreason
able structural form. This threshold is difficult to deter
mine because it depends on the structural type. The 
internal forces of branching structure are generally 
non-uniform; so λ should be small enough.

2.2.2. Node incorporation
When distance among some nodes is smaller than 
a specified small value, they will be incorporated into 
one node. The new coordinates are the geometry cen
ter of these nodes. Overlapping members caused by 
node incorporation will be incorporated as one mem
ber. Unless there are a lot of redundant members 
whose internal forces are very small, the elimination 
of members will not lead to removal of too many 
members. However, the node incorporation, which is 
a simple geometry operation, may delete many mem
bers as a result. Hence, the node incorporation will 
have a great influence on the optimization result 
when the initial structure has dense members.

With the reduction in the number of members, the 
structure will approach a statically determinate struc
ture. If the stress constraints are specified, the cross- 
sectional areas of the members will be easily deter
mined by a two-level optimization approach, where 
the cross-sectional areas are modified in the lower- 
level optimization problem. However, the cross- 
section optimization is not our concern in this paper.

2.3. Objective functions

To let the branching structure efficiently support the 
surface, we are to find a branching structure with 
external forces Pk being equal to the reaction forces 
Rk as shown in Equation (14). The topology operation 
in Section 2.2 will remove inefficient members and 
maximize the minimum internal force of the compo
nents. In addition, the purpose of this paper is to 
optimize the structure for architectural design; there
fore, we must pay attention to the aesthetic effect of 
the structural form in addition to structural perfor
mance. Different objective functions and the corre
sponding optimal structural forms are investigated 
for better structural performance while maintaining 
aesthetic effect.

In the following, we use a group of specified loads P, 
for simplicity, representing the reaction forces from the 
upper roof in the planar problems. The first optimiza
tion problem is given as Equation (14). 

Opt1 : minimize
Xtc

k¼1

Rk � Pkð Þ
2

s:t: qL
i � qi � qU

i i ¼ 1; � � � ;mð Þ

(14) 

Opt2 : minimize
Xm

i¼1

Fij j

s:t: Rk¼Pk k 2 Kð Þ

qL
i � qi � qU

i i ¼ 1; � � � ;mð Þ

(15) 

Opt3 : minimize
Xm

i¼1

Ei

s:t: Rk¼Pk k 2 Kð Þ

qL
i � qi � qU

i i ¼ 1; � � � ;mð Þ

(16) 

Opt4 : minimize
Xm

i¼1

qij j

s:t: Rk¼Pk k 2 Kð Þ

qL
i � qi � qU

i i ¼ 1; � � � ;mð Þ

(17) 

where tc is the total number of the loaded nodes, and 
qL

i and qU
i are the lower and upper bounds of qi. To 

discuss their effect on the shape of the branching 
structure, we have three more objective functions as 
in Equations (15), (16) and (17). K is the set of the 
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loaded nodes, and Ei is the strain energy of the ith 
member.

Opt1 is just to confirm whether the force density 
method can find a solution that satisfies the force 
balance between the surface and the branching struc
ture. If the problem does not result in a zero objective 
function, then the solution is infeasible because the 
reaction forces are not balanced. For more sophisti
cated optimal design of branching structures, we will 
consider other metrics in Opt2 – Opt5.The problem 
Opt2 is to minimize the sum of the absolute values of 
the internal forces, which corresponds to minimization 
of the number of members with non-zero internal 
forces. The objective function of Opt3 is minimizing 
the total strain energy. For a pin-jointed structure that 
has only axial forces, the strain energy of a member is 
proportional to the squares of the internal forces and 
to the member length. The objective function of Opt4 
is the sum of absolute values of force densities, which 
is the internal force divided by the member length.

The bounds for qi are defined as follows: 

qU
i ¼ kcqmax; qmax ¼

1
H

Xtc

k¼1

Pz
k (18) 

Here, qmax is the maximum force density when the 
surface is supported by only one member connected 
directly to the base.Pz

kis the kth specified external force 
in positive z-direction for 3D problem and in positive 
y-direction for 2D problem. H is the height of the 
structure. kc denotes the number of layers of the 
branching structure. When an optimal force density 
q is obtained, the coordinates of the free nodes can 
be calculated by Equation (8) to obtain the optimal 
shape. The flowchart of the proposed method is illu
strated in Figure 2.

3. Optimization of 3D structures

When supporting a free-form surface, the branching 
structure bears the reaction forces from the roof sur
face. We first find the optimal locations of supports of 
the roof surface under the negative z-directional uni
form vertical load. Then the reaction forces are applied 
in the opposite direction to the branching structure to 
make it in a tensile state and find a reasonable shape 
by solving one of the optimization problems in 
Equations (14)-(17) using the FDM. However, the spa
tial (3D) problems are more complex than the planar 
(2D) problems. It will be challenging to find an optimal 

Figure 2. Flowchart of the shape and topology optimization 
based on force density method.

Figure 3. Difference of equilibrium conditions of reactions 
between 2D and 3D problems.
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solution in which the loads at the surface support 
nodes of the branching structure are equal to the 
specified reaction forces from the surface. That is to 
say, for the 3D problem, it is difficult to find an optimal 
solution which can simultaneously satisfy the con
straints on the reaction forces in x-, y- and z- directions, 
when the locations of the surface supports are fixed.

The reason for this difficulty can be explained as 
illustrated in Figure 3. For a 2D problem, the reaction 
force vectors at two adjacent surface supports will 
always intersect at a point. However, for a 3D problem, 
the reaction force vectors of two adjacent surface sup
ports are generally not co-planar, and there could be 
no intersection point. Namely, the intersection is 
a special case, and in general the reaction forces are 
not co-planar. Therefore, it is difficult to find an optimal 
force density q to realize the balance of the structure, 
especially when the locations of surface support nodes 
are fixed.

To resolve this difficulty, we investigate two types of 
optimization problems: one is to allow the surface 
supports to move on the surface by minimizing the 
strain energy, and the structural analysis includes the 
surface and the branching structure; the other is the 
alternate optimization of the locations of the surface 
supports and the shape and topology of the branching 
structure by the FDM under updated reactions from 
the surface in each optimization step. Examples show 
that the latter approach is preferable in view of con
vergence property.

3.1. Optimization of locations of surface supports

The locations of the surface supports are usually 
assigned following architectural requirements and pre
ferences of architects. If the roof surface is supported 
by only vertical columns, it may be difficult to change 
their locations due to the requirements of architectural 
planning. However, for the branching structure, it will 
be possible and mechanically meaningful to adjust 
locations of the surface supports.

The shape of a continuous shell structure supported 
by the branching structure is described by using 
B-spline surface in this paper. The x-, y-, z-coordinates 
of the surface are derived from the following 
equations: 

xðu; vÞ ¼
Pm
0

i¼0

Pn
0

j¼0
αi;jBi;s uð ÞBj;t vð Þ

yðu; vÞ ¼
Pm
0

i¼0

Pn
0

j¼0
βi;jBi;s uð ÞBj;t vð Þ

zðu; vÞ ¼
Pm
0

i¼0

Pn
0

j¼0
γi;jBi;s uð ÞBj;t vð Þ

8
>>>>>>>><

>>>>>>>>:

(19) 

In Equation (19), the parameters s and t are the orders 
of the B-spline basis functions for u and v (u, v∈ [0, Cui, 
Zhou, and Ohsaki 2016]), and m’+1 and n’+1 are the 

numbers of knots. αi;j; βi;j; γi;j denote the (i, j) combina
tion coefficients, namely, the control points, of the 
B-spline basis functions for the (x, y, z) coordinates. It 
is notable that the surface might not pass through the 
control points, making it difficult for the designer to 
intuitively describe the initial surface shape. Hence, we 
utilize the locations of key points Qi,j (x, y, z) (i = 0, 1, 
. . ., m’; j = 0, 1, . . ., n’), which are located on the surface 
shown in Figure 4, as design variables in this study. 
z-axis is defined in the right-hand system as in Figure 4.

When the orders s and t of the surface are specified, 
the knot vectors for the parameters u and v will be 
determined by the chord length method. Then, the 
B-spline functions will be determined by the coordi
nates of the key points uniquely; ie, the combination 
coefficients αi;j; βi;j; γi;j

� �
of the B-spline basis functions 

can be calculated according to the global surface inter
polation method introduced in Chapter 9 of Ref. (Piegl. 
and Tiller 1996). Hence, a set of key points on the 
surface uniquely determines the shape of B-spline 
surface.

The surface is discretized into shell elements. The 
roof surface is first supported by the pin supports, and 
static responses are computed using the standard 
approach of finite element analysis. The objective func
tion C, which is the total strain energy, is defined as 
Equation (20). 

C ¼
1
2

FTU (20) 

where F is the nodal force vector, which is computed 
from the uniform vertical loads on the surface, and U is 
the nodal displacement vector of the surface.

Figure 4. A 6 × 6 key points of a B-spline roof surface in plan 
view.
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The optimization problem for locations of surface 
support nodes is given as 

Opt5 :

min C Xfix� �

Xfix
i ¼ ½x ui; við Þ; y ui; við Þ; z ui; við Þ�

T

ui; vi 2 0; 1½ �

8
<

:
(21) 

where Xfix is the coordinate vector of the support 
nodes on the B-spline surface, which is provided by 
the branching structure. Xfix

i is the coordinate vector of 
ith node in Xfix, whose coordinates in (u, v) space is (ui, 
vi). The (x, y) coordinates of the supports (namely, the 
fixed nodes on the top of the branching structure) for 
the input of the optimization are given in accordance 
with the preference by the designer and converted 
into (u, v) coordinates in the optimization process by 
numerical approximation method. The optimal 

positions of the fixed nodes are found in (u, v)-space 
and converted into (x, y, z) coordinates to prepare the 
data in next optimization stage.

3.2. Successive optimization of support locations 
and shape and topology of branching structure

The initial locations of the pin supports of the free-form 
surface are uniformly distributed. The initial branching 
structure (namely, the cuboid grid) is also included in 
the initial structure. Next, the surface support nodes, 
namely, the top nodes of the branching structure, are 
taken as design variables. The strain energy is mini
mized to find the optimal support locations by solving 
Opt5. The reaction forces in z-direction at the supports 
are converted into upward nodal forces (reactions in x-, 
y- direction are converted simultaneously) and applied 
at the surface support nodes of the branching structure 
to optimize the shape and topology of the branching 
structure by FDM as described in Section 2. This process 
is repeated until the convergence condition in Equation 
(13) is satisfied. The flowchart is shown in Figure 5.

As indicated in Figure 5, Opt5 can change the loca
tions of the supports, which cannot be dealt with by 
the force density method itself. From the point of view 
of the optimization cycle, Opt5 will improve the posi
tion of fixed nodes in next optimization cycle after the 
shape and topology optimization by force density 
method. The whole optimization process is a step-by- 
step iterative approximation process. Finally, a better 
solution will be found, not the optimal structure.

The applied nodal loads, namely, reaction forces from 
the surface, are updated at every optimization step of 
the branching structure. These reaction forces may 
change due to the stiffness change of the branching 
structure, when the shape and topology are updated. 
The alternate process of analysis and optimization can 
reflect the influence of such change in the optimization 
process. The reaction forces at the surface support 
nodes will not vary too much and remain positive.

4. Numerical examples

The effects of different objective functions are first 
investigated in Example 1. Secondly, a branching struc
ture with two supports is used in Example 2 to validate 
the effectiveness of the proposed method in finding 
a reasonable structural form with multiple supports. 
Finally, a spatial branching structure is optimized in 
Example 3. In these examples, γ is 1.06, and λ is 0.1 if 
they are not specified. The self-weight is not considered 
for the branching structure. We solve the optimization 
problem using the nonlinear programming library fmin
con provided in the Optimization Toolbox of MATLAB 
R2018a using the interior-point method. Structural ana
lysis, with the truss elements for the branching Figure 5. Flowchart of optimization of spatial branching struc

ture problem supporting free-form surface.
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structure and the shell elements for the roof surface, is 
carried out using OpenSees (2020). 

Example 1: Planar structure with a single support
A 4 × 4 m rectangular grid with 1 m spacing distance 

is shown in Figure 6. The central point at the bottom is 
fixed in x- and y-directions. The concentrated y-direc
tional loads Pi = 10 N are applied at the five nodes in the 
top layer. The nodal load in x-direction is equal to 0. The 
initial force densities for all the members are 1.0 N/m, 
and the bounds for the force densities are specified as 
0:01 � qi � 5qmax for the branching structure, and �

Figure 6. 4 m × 4 m rectangular grid with 1 m spacing.

Figure 7. Result of the optimization problem Opt1. The color 
bar is the force densities of the members (N/m).

Figure 8. Optimal solution for Opt2. The color bar is the force 
densities of the members (N/m).

Figure 9. Optimal solution for Opt3. The color bar is the force 
densities of the members (N/m).
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5qmax � qi � 5qmax for the members in the top layer. 
Here, qmax is determined by Equation (18). Optimal 
shapes for the problems Opt1-4 are shown below.

Opt1: Even if Px = 0 and Py = 10 N are specified 
simultaneously, a branching structure as shown in 
Figure 7 can be obtained. This optimization problem 
directly finds a solution satisfying the constraints by 
minimizing the sum of the errors. There are many 
members in this result, and the force densities and 
the lengths of the members are not uniform.

Opt2: Using the sum of absolute values of the 
member forces as the objective function, we can 
obtain the optimal shape as shown in Figure 8, for 
which the member lengths are not uniform. The num
ber of members is smaller than the optimal solution for 
Opt1, because fewer members directly lead to 
a smaller objective function value. This objective func
tion does not consider the length of members, and the 
structure often has long and short members, which is 
considered to be an unreasonable form for practical 
applications.

Opt3: All of the members have the same cross- 
sectional area A = 0.02 m2 and elastic modulus 
E = 2.1 × 104 N/m2. Note that this elastic modulus is 
not related to a practical material. The optimization 
result is shown in Figure 9. The objective function, 
which is the sum of strain energy in members, has 
a similar role as the objective function of Opt2, where 
the member forces have a significant influence. On the 
other hand, minimizing the objective function reduced 
the total lengths of members, and consequently, leads 
to a structure with fewer members. By observing the 

optimization results in Figures 8 and 9, we can see that 
the optimal structure of Opt3 does not have the short 
members in the middle, which exist in the optimal 
structure of Opt2.

Opt4: By minimizing the sum of absolute values of 
the force densities, the optimal solution has a nearly 
uniform force density distribution compared to the 
previous three cases. We notice that the maximum 
value of the force densities is smaller than those in 
other cases. The reason is that there are three mem
bers connected to the fixed node at the bottom of the 
structure. If the force density vector q in the objective 
function does not include the top horizontal members, 
the solution will not be unique because the force 
densities in the top members are the important for 
the whole structure’s balance and affected by those 
in the branching structure. Moreover, the member 
lengths are neither too long nor too short, and the 
loaded nodes tend to connect the fixed node at the 
bottom directly as shown in Figure 10. The short mem
bers appear in Figure 8 for Opt2, but disappear in the 
optimization result of Opt4 in Figure 10. However, it 
has longer members than those in Figure 9. Hence, it 
will be used in the spatial problem.

The parameters γ and λ have great impact on the 
optimization results. The reference value γ for member 
removal should be small to reduce the number of 
removed members at each step. The elimination pro
cess sometimes removes only one member, and this 
will result in an asymmetric structure. The horizontal 
member on the top of the branching structure is 
important to ensure existence of the optimal solution. 
If the horizontal member is removed, it will be difficult 
to find a solution which satisfies the reaction con
straints. Only the solution satisfying the constraint 
Py = 10 N can be found without satisfying the x-direc
tional reaction constraint Px = 0. 

Example 2: Planar (2D) structure with multiple sup
ports and curved roof

Figure 10. Optimal solution for Opt4. The color bar is the force 
density of the members (N/m).

Figure 11. 10 m × 3 m rectangular grid with 1 m spacing 
under the curve line.
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The loaded curved line is generated by the parabola 
y = 0.25(x-5)2 + 3.5, which has a span of 10 m. The 
concentrated load Pk = 10 N is applied at each node in 
y-direction. There are two pinned supports at the bot
tom, whose distance is 6.0 m. The initial structure is 
shown in Figure 11. The initial force densities for all the 
members are 1.0 N/m, the lower and upper bounds of 

the force density are the same as Example 1. The Opt1 
is just to verify to find a solution that meets the bal
ance, so we did not apply Opt1 to example 2. The 
optimal shapes for Op2-Opt4 are shown in Figure 12. 
The shapes of the optimal structures Opt2 and Opt3 
are similar. The force densities in Opt4 are smaller and 
more uniform than those in Opt2 and Op3. This 
demonstrates that the method effectively finds the 
optimal branching structure with multiple supports 
by solving Opt4.

Example 3: Spatial (3D) structure
In the 3D example as shown in Figure 13, the orders 

s and t of the surface are specified as s = t = 3. The key 
points on the roof are composed of 6 curved lines with 
the same shape; only the z-coordinates of the key 
points are different. Table 1 lists the coordinates of 
the key points of the first curve line. The second 
curve line is 0.2 m higher than the first. The third 
curve line is 0.1 m higher than the first. The fourth 
and sixth curve line is the same as the first. The fifth 
curve line is 0.1 m lower than the first. The spacing of 
key points on the top surface are 1.0 m in x-direction 
and 1.2 m in y-direction. The spacing of the grid under 
the surface is 2.0 m in both x- and y-directions. The 
coordinates (m) of the four supports at bottom are (2, 
2, 0), (8, 2, 0), (2, 4, 0) and (8, 4, 0). The surface shape is 
shown in Figure 13(a).

A spatial grid is taken as the ground structure. 
Cuboids are added under the surface. The surface 
supports shown in Figure 13(b) are connected to the 

Figure 12. Optimization result of the structure with a loaded 
curve line. The color bar is the force density of the members 
(N/m).

Figure 13. Ground structure for example 3.

Table 1. Coordinates of the key points of the first curved line 
on the surface.

No. x y z

1 0 0 4.2
2 1 0 4.4
3 2 0 4.6
4 3 0 4.8
5 4 0 4.9
6 5 0 5.0
7 6 0 4.9
8 7 0 4.8
9 8 0 4.6
10 9 0 4.4
11 10 0 4.2
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top nodes in the cuboid grid, which is determined by 
the distance between the supports and the top nodes 
of the cuboid grid. The distance is equal to twice of the 
shortest distance between one surface support node 
and the nodes in the grid. The surface supports are also 
connected to each other by the members generated 
by the Delaunay triangles.

The surface bears uniform vertical loads. Some key 
works need to be done as follows: Firstly, the (u, v)- 
coordinates corresponding to the (x, y)-coordinates of 
the supports are calculated by the distance approxima
tion solved by the golden section method. Secondly, 
the mesh in (u, v)-space are generated by the Delaunay 
triangulation, the (x, y, z)-coordinates of the nodes in 
the mesh are calculated by Equation (19), and the 
nodal loads are obtained by covering the area at 
each node. Thirdly, the objective function is calculated 
by Equation (21).

The members of the branching structure are steel 
pipes with diameter D = 100 mm and thickness t 
= 10 mm. All cross-sectional areas of the members 
are 28.274 cm2. The second moment of area is Iy = Iz 

= 289.912 cm4, the polar moment of area is Ip 

= 579.624 cm4, Poisson’s ratio is 0.3, and the mass 
density is 7.9 × 103 kg/m3. For the shell roof, its thick
ness is 0.1 m, the elastic modulus is 3.0 × 1010 N/m2, 
Poisson’s ratio is 0.2. The initial force density is 1000.0 
N/m for all members. The bounds for the force densi
ties are the same as Example 1.

The vertical uniform load is equal to 1500 N/m2, 
which is the value per unit horizontal area in the 
negative z-direction. We find a feasible solution for 
the 3D structure satisfying R = P (for all x-, y- and 
z-directions) following the flowchart in Figure 5. The 
convergence condition is set as Fmin = 0.1Fmax.

To ensure convergence of the optimization process, 
the constraint tolerance value ε is set according to the 
average reaction force at the surface support nodes as 

ε ¼
FT

ntop � 10� 6; FT ¼ qzA (22) 

where FT is the total load of the surface. A is the 
horizontal projected area of the surface. ntop is the 

number of supports on the surface. The final result is 
shown in Figure 14.

This example demonstrates that the optimization 
for finding a branching structure is a highly nonlinear 
problem. We used beam element or truss element to 
simulate the top member. The results showed that the 
bending moment in the top members using the beam 
elements will be transferred to the branching structure 
and cannot be ignored. When truss elements are used, 
instead, in the optimization process, the bending 
moment in the final confirmation analysis can be 
ignored, as shown in Table 2. In this table, N is the 
absolute value of the axial force; M is the maximum 
bending moment at the two ends of one member in 
the same direction with respect to its local coordinate 
system; Mymax and Mzmax are the maximum bending 
moments for the two ends in its local y- and z-direc
tions, respectively; e is the eccentricity of the axial 
force. This result shows that a mechanically efficient 
branching structure supporting the free-form surface 
with mainly axial forces has been generated through 
optimization.

5. Conclusion

For the purpose of supporting a free-form surface ele
gantly, a novel method for form-finding of the branching 
structure has been proposed in this study. In this method, 

Table 2. Larger eccentricity e caused by bending moment for 
the top members. In this table, N is the absolute value of the 
axial force; M is the maximum bending moment at the two 
ends of each member in local y- or z-direction.

N (N) M= Max(Mymax,Mzmax) (Nm) e = M/N (m)

7288.87 4.314 0.000592
3728.14 4.026 0.00108
3091.45 2.480 0.000802
1283.24 7.894 0.00615
7856.06 22.343 0.00284
3556.51 2.841 0.000799
5099.61 8.793 0.00172
5003.49 21.510 0.00430

Figure 14. Optimization result of the 3D structure with four 
supports at the bottom.
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the shape and topology of the branching structure are 
simultaneously optimized by using force densities as 
design variables. If we impose stress constraints on the 
members, their cross-sectional areas can be determined 
from the force densities. Subsequently, the proposed 
method is a powerful tool for design of a branching 
structure with optimized cross-section, shape, and topol
ogy. At every step of the shape and topology optimiza
tion, the reaction forces in z-direction transmitted from 
the upper surface are converted into upward loads and 
applied as the external loads to the branching structure. 
The balanced shape of the branching structure is deter
mined using the force density method (FDM), originally 
developed for tensile structures.

The novelty of the paper is summarized as follows. 
First, the topology optimization is realized by directly 
removing the members with small absolute values of 
axial forces and merging the closely spaced nodes to 
a single node. This approach is useful when dealing with 
complex topology optimization problems, in which the 
initial structure has many nodes and members. Second, 
three kinds of objective functions are discussed by pla
nar examples. The sum of the absolute value of force 
densities of all members is the most effective. Third, for 
the 3D problem, it might be difficult to obtain a shape of 
the branching structure that can be in equilibrium sub
jected to the specified reaction forces from the roof 
surface. To resolve this difficulty, we proposed 
a strategy of optimizing the locations of surface sup
ports, in the shape and topology optimization of the 
branching structure. This method has been demon
strated to be an effective way in the 3D example.

There are two points of concern. First, the termina
tion tolerance was relaxed. If we use a fixed value as 
the termination tolerance, it could lead to difficulty in 
convergence, especially when the objective function 
value is very large. To solve this convergence problem, 
the tolerance value of the constraint was relaxed 
according to the average nodal loads applied at the 
surface supports. Second, the top (auxiliary) members 
of the branching structure are beneficial to find an 
optimal solution in the 3D examples. The reason is 
that they can adjust the directions of reaction forces 
at the surface supports of the surface and make it 
easier to find the optimal shape satisfying the con
straints on the reaction forces. The top members can 
be deleted after obtaining the optimal branching 
structure for practical purposes, because the axial 
forces of the top members will be undertaken by the 
in-plane forces of the free-form shell.
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