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Van der Waals cascade in supercritical turbulence near a critical point
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We investigate a quite strong turbulence in a supercritical fluid near a gas-liquid critical point. Specifically,
we consider a case in which the Kolmogorov scale is much smaller than the equilibrium correlation length ξ .
Although equilibrium critical fluctuations are destroyed by turbulence, ξ still provides a crossover length scale
between two types of energy cascade. At scales much larger than ξ , the Richardson cascade becomes dominant,
whereas at scales much smaller than ξ , another type of cascade, which we call the van der Waals cascade, is
induced by density fluctuations. Experimental conditions required to observe the van der Waals cascade are also
discussed.
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Introduction. Nonlinearity, which appears ubiquitously in
a broad range of phenomena, causes inevitable interference
between widely separated time and space scales. One of
the most extreme examples is found in fully developed
turbulence. In turbulence, the kinetic energy is transferred
conservatively and continuously from large to small scales
in the so-called inertial range [1]. The mechanism of this
remarkable phenomenon, the Richardson cascade, was intu-
itively explained by Richardson’s depiction of a large vortex
splitting into smaller vortices [2]. As a consequence of the
energy transfer, the kinetic energy spectrum exhibits a power-
law behavior—the Kolmogorov spectrum [3,4]. The kinetic
energy transported to small scales is dissipated at the Kol-
mogorov scale, where viscosity begins to predominate, so
that the Richardson cascade is inevitably cut off at the Kol-
mogorov scale. The important point here is that in standard
cases, the Kolmogorov scale is overwhelmingly larger than
the microscopic length scales, such as the molecular mean
free path [1]. Therefore the cascade never reaches microscopic
length scales in these cases.

Another notable instance in which nonlinearity causes
strong interference between widely separated scales is found
in critical phenomena. As an example, in the vicinity of a
gas-liquid critical point, the correlation length of equilibrium
density fluctuations ξ reaches a macroscopic order of mag-
nitude [5,6]. We here consider the strong turbulent regime
of a supercritical fluid near a critical point in which ξ is
much larger than the Kolmogorov scale. Even for such strong
turbulence, ξ still provides a length scale at which the stress
induced by density fluctuations is comparable to the mo-
mentum flux. In this case density fluctuations are driven by
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turbulence so that the equilibrium critical fluctuations are de-
stroyed. We then ask how the Richardson cascade is modified
by density fluctuations in the turbulence near a critical point.
Although turbulence in supercritical fluids has been studied
over the past few decades, previous studies have focused on
cases in which the Kolmogorov scale is larger than ξ [7–10].

We answer the above question by studying hydrodynamic
equations including density fluctuations. Specifically, we in-
clude a density gradient contribution to the entropy functional
to describe the effects of density fluctuations. Such a for-
mulation that takes into account gradient contributions was
originally proposed in the pioneering work of van der Waals
[11], who introduced a gradient term in the Helmholtz free
energy density to describe a gas-liquid interface, and the for-
mulation has been widely used in statistical mechanics since
the publication of seminal papers by Ginzburg and Landau
for type-I superconductors [12] and by Cahn and Hilliard for
binary alloys [13]. Following the van der Waals theory, Ko-
rteweg proposed hydrodynamic equations that contain the van
der Waals stress (vdW stress) arising from the density gradient
[14,15], and Onuki generalized the theory by including the
gradient contribution to both entropy and energy functionals
[16,17].

In this study we analyze the model using a phenomeno-
logical approach based on the Onsager “ideal turbulence”
theory [18–20]. The Onsager theory describes the essence of
turbulent behavior, such as the Richardson cascade and energy
dissipation in the absence of viscosity, the so-called anoma-
lous dissipation [21]. Although the Onsager theory involves
sophisticated mathematical concepts such as weak solutions,
it also provides a phenomenological perspective on the rela-
tion between cascades and the singularity of the velocity field.
This theory has been recently extended to various turbulent
phenomena, such as compressible turbulence [22–27] and
plasma turbulence [28], and has also been intensively studied
from a deep mathematical point of view related to convex
integration [29–33].

In this Letter we show that supercritical turbulence near
a critical point exhibits the Richardson cascade and another
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type of cascade—the van der Waals cascade—induced by the
van der Waals stress. First, we derive the scale independence
of the scale-to-scale kinetic energy flux in the “inertial range.”
Second, we show the possibility of the existence of the van der
Waals cascade. Furthermore, we consider the experimental
conditions required to observe such van der Waals turbulence,
which exhibits both the Richardson and van der Waals cas-
cades.

Setup. Let ρ be the mass density, v be the fluid velocity, and
u be the internal energy density. For simplicity, we assume that
a fluid is confined in a cube � = [0,L]3 with periodic bound-
ary conditions. We further assume that there is no vacuum
region; i.e., ρ(x, t ) > 0 for all x ∈ � and t ∈ R. Following the
van der Waals theory, we include a gradient contribution to the
entropy functional to describe enhanced density fluctuations
near a critical point [11,16,17,34,35]:

S ([u], [ρ]) =
∫

�

d3x
(

s(u, ρ) + c(ρ)

2
|∇ρ|2

)
, (1)

where ([u], [ρ]) := (u(x), ρ(x))x∈�, s(u, ρ) denotes the en-
tropy density, and c(ρ) � 0 is the capillary coefficient. In
the following discussion, we consider the case in which the
capillary coefficient is a sufficiently smooth function of ρ,
e.g., c(ρ) = const [17]. Through thermodynamic relations,
the temperature T (u, ρ) and pressure tensor P are determined
from (1) [36]:

P = pI + �, (2)

where p(u, ρ) denotes the pressure defined by s(u, ρ), I is the
unit tensor, and � is the vdW stress tensor, which arises from
the gradient contribution and is defined by

� :=
(

T cρ�ρ + 1

2
T c′ρ|∇ρ|2 + 1

2
T c|∇ρ|2

)
I − T c∇ρ∇ρ.

(3)
The time evolution of the densities of mass ρ, momentum ρv,
and total energy ρ|v|2/2 + u is then governed by the Navier-
Stokes-Korteweg equations [37–39]:

∂tρ + ∇ · (ρv) = 0, (4)

∂t (ρv) + ∇ · (ρvv + P + σ ) = f, (5)

∂t

(
u + 1

2
ρ|v|2

)
+ ∇ ·

{[(
u + 1

2
ρ|v|2

)
I + P + σ

]
· v,

−λ∇T } = v · f, (6)

where f denotes an external force acting at large scales ∼L, λ

is the thermal conductivity, and σ is the viscous stress tensor
of the form

σi j = −μ

(
∂iv j + ∂ jvi − 2

3
δi j∇ · v

)
− ζ δi j∇ · v. (7)

Here μ and ζ are the shear and bulk viscosity coefficients,
respectively. We assume that the viscous effect is sufficiently
weak for the Kolmogorov scale to be sufficiently smaller than
any other length scales.

In the following, (4)–(6) are applied even to scales smaller
than the equilibrium correlation length. Strictly speaking,
dynamics at such scales should be described within the
framework of fluctuating hydrodynamics [40]. In a turbulent

regime, however, the equilibrium correlation may be cut off,
and the noise terms may be irrelevant for energy transfer.
We therefore assume that (4)–(6) are sufficient for our phe-
nomenological argument.

Characteristic length scales. Owing to the effect of the
gradient contribution, several characteristic length scales that
are not relevant in ordinary fluid turbulence become impor-
tant. Let ρ0 := 〈ρ〉, c0 := c(ρ0), and T0 := 〈T 〉 be the typical
density, capillary coefficient, and temperature, respectively,
where 〈·〉 denotes the volume average

∫
�

·d3x/L3. In addi-
tion, let v0 := (ρ0KT0 )−1/2 be a velocity characterized by the
isothermal compressibility KT0 := ρ−1

0 ∂ρ(T0, p)/∂ p, which is
zero at a critical point. One of the most crucial length scales
is the correlation length of equilibrium density fluctuations,

ξ =
√

T0|c0|ρ0

v0
, (8)

which is expressed by the capillary coefficient c(ρ) and pa-
rameters in the entropy density s(u, ρ) [41]. The important
point here is that even for strong turbulence, ξ still pro-
vides a characteristic length scale at which the vdW stress
� and momentum flux ρvv are comparable. Let �c be such
a length scale. Using an estimation that ρvv ∼ ρ0v

2
0 and � ∼

T0|c0|ρ2
0/�2

c , we obtain

�c ∼ ξ . (9)

Note that � can be appreciable at small scales because it
contains higher-order spatial derivatives. Therefore, at scales
	 �c, the effect of the vdW stress is small compared with
the momentum flux, whereas at scales 
 �c, the vdW stress
becomes relevant. This observation implies the possibility of
the van der Waals cascade, induced by the vdW stress, at
scales 
 �c.

We attempt to seek other characteristic length scales by
noting the local kinetic energy balance equation:

∂t

(
1

2
ρ|v|2

)
+ ∇ ·

[(
1

2
ρ|v|2I + P + σ

)
· v

]
= p∇ · v + � : ∇v + σ : ∇v + v · f . (10)

The first term on the right-hand side of (10), −p∇ · v, is
the pressure dilatation, which represents the conversion of
kinetic energy into internal energy and vice versa. Recent
numerical simulations [42,43] suggest that there is a char-
acteristic length scale �large such that the contribution to the
global pressure dilatation 〈−p∇ · v〉 from scales 	 �large is
dominant, whereas the contribution from scales 
 �large is
negligible. The second term on the right-hand side of (10),
−� : ∇v, which we call the vdW-stress–strain, arises because
of the gradient contribution. It also represents the conversion
between kinetic and internal energy. Because both the vdW
stress � and strain ∇v change rapidly in space, there may be
a characteristic length scale �small such that the contribution to
the global vdW-stress–strain 〈−� : ∇v〉 from scales 	 �small

is negligible, whereas the contribution from scales 
 �small is
dominant. In the following, we assume the existence of the
intermediate asymptotic limit �small 
 � 
 �large that satisfies
�small 
 �c and �c 
 �large.

Main result. Let Qflux
� be the scale-to-scale kinetic energy

flux that represents the energy transfer from scales > � to
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scales < �:

Qflux
� := �� + 

(p)
� + 

(�)
� , (11)

where �� is deformation work [44], which corresponds to the
energy flux of the Richardson cascade, 

(p)
� is baropycnal

work [25,45], which arises because of compressibility, and


(�)
� is capillary work, which arises because of the gradi-

ent contribution. (Precise definitions are given below.) These
three terms represent the energy transfer due to the momentum
flux ρvv, pressure p, and vdW stress �, respectively. The first
main claim of this paper concerns the most crucial property
of the energy cascade; i.e., in a steady state with a constant
mean kinetic energy, 〈Qflux

� 〉 becomes scale independent in the
“inertial range” �small 
 � 
 �large:〈

Qflux
�

〉 ≈ εeff , (12)

where εeff := 〈p∇ · v〉 + 〈v · f〉 denotes the effective energy
injection rate, which is scale independent. We emphasize that
because Qflux

� can be expressed in terms of field increments
v(x + r) − v(x) and ρ(x + r) − ρ(x), the relation (12) plays
the same role as Kolmogorov’s 4/5 law [4].

The second main result of this paper is the prediction of
the van der Waals cascade. In the range of �c 
 � 
 �large, the
Richardson cascade, induced by the momentum flux, becomes
dominant, whereas in the range of �small 
 � 
 �c, the van
der Waals cascade, induced by vdW stress, develops [46]:〈


(�)
�

〉 
 〈��〉 ≈ εeff for �c 
 � 
 �large,

〈��〉 
 〈


(�)
�

〉 ≈ εeff for �small 
 � 
 �c. (13)

Correspondingly, the velocity power spectrum exhibits a
power-law behavior: k−5/3 for �−1

large 
 k 
 �−1
c and k−3 for

�−1
c 
 k 
 �−1

small.
Suggested experiments. We consider the experimental con-

ditions required for observing the van der Waals cascade.
In the study of critical phenomena, CO2 has been widely
used because its critical state occurs under readily realized
experimental conditions (Tc = 304.13 K, pc = 7.3773 MPa,
ρc = 0.4678 g cm−3) [47,48]. In this case the shear viscosity
μ takes a value around 3.5 × 10−4 g cm−1 s−1 [10,47,49].
We first estimate the Kolmogorov scale �d , which can be
estimated in terms of μ, ρc, L, and vrms :=

√
〈|v|2〉 as

�d ∼ L1/4

(
μ

ρcvrms

)3/4

. (14)

If we achieve a quite strong turbulent regime, in which Re ∼
105 (e.g., vrms ∼ 100 m/s and L ∼ 0.1 m), the Kolmogorov
scale is ∼800 Å. Therefore if one can reach the vicinity of
the critical point such that the correlation length is at least
∼10 000 Å, it may be possible to verify our predictions by
measuring the velocity field using hot-wire anemometry or
laser Doppler velocimetry. To achieve a correlation length of
that magnitude, we must control the system with an accu-
racy of at least T − Tc ∼ 10−4 K because ξ ≈ ξ0ε

−ν , where
ξ0 = 1.5 Å, ε := (T − Tc)/Tc, and ν = 0.630 [47,49].

Derivation of the main result. We study the properties of
kinetic energy transfer across scales using a coarse-graining
approach that can resolve turbulent fields both in scale and in
space. For any field a(x), we define a coarse-grained field at

length scale � as

ā�(x) :=
∫

�

d3rG�(r)a(x + r), (15)

where G : � → [0,∞) is a smooth symmetric function sup-
ported in the open unit ball with

∫
�

G = 1, and G�(r) :=
�−3G(r/�) is the rescaling defined for each � > 0. By coarse
graining (4) and (5), we can write the coarse-grained kinetic
energy balance equation

∂t

(
1

2
ρ̄�|ṽ�|2

)
+ ∇ · J� = p̄�∇ · v̄� + �̄� : ∇v̄�

− Qflux
� − D� + εin

� , (16)

where we introduce the density-weighted coarse-grained ve-
locity ṽ� := (ρv)�/ρ̄� to reduce the number of additional
cumulant terms and to obtain a simple physical interpreta-
tion. Here, εin

� := ṽ� · f̄� denotes the energy injection rate due
to external stirring at scale �, D� := −∇ṽ� : σ̄� denotes the
viscous dissipation acting at scale �, and J� represents the
spatial transport of large-scale kinetic energy, which does
not contribute to the energy transfer across scales. The first
two terms on the right-hand side of (16), −p̄�∇ · v̄� and
−�̄� : ∇v̄�, are the large-scale pressure dilatation and vdW-
stress–strain, respectively. Note that these two terms contain
no modes at small scales < �. Therefore they contribute only
to the conversion of the large-scale kinetic energy into internal
energy and vice versa. The third term on the right-hand side
of (16) denotes the scale-to-scale kinetic energy flux (11). The
definitions and physical meanings of each term comprising
Qflux

� are given as follows. Deformation work is defined by

�� := −ρ̄�∇ṽ� : τ̃�(v, v), (17)

where τ̃�(v, v) := (̃vv)� − ṽ�ṽ�, and it represents the work
done by the large-scale (> �) strain ∇ṽ� against the small-
scale (< �) stress ρ̄�τ̃�(v, v). Baropycnal work is defined by


(p)
� := 1

ρ̄�

∇ p̄� · τ̄�(ρ, v), (18)

where τ̄�(ρ, v) := (ρv)� − ρ̄�v̄�, and it represents the work
done by the large-scale pressure gradient force −∇ p̄�/ρ̄�

against the small-scale mass flux τ̄�(ρ, v). Capillary work,
which has a form similar to that of baropycnal work,


(�)
� := 1

ρ̄�

∇ · �̄� · τ̄�(ρ, v), (19)

represents the work done by the large-scale force ∇ · �̄�/ρ̄�

against the small-scale mass flux τ̄�(ρ, v). Note that in (16),
only these three terms are capable of the direct transfer of
kinetic energy across scales, because each of the three terms
has a form “large-scale (> �) quantity × small-scale (< �)
quantity,” whereas the other terms on the right-hand side of
(16) do not.

In the steady state, the spatial averaging of (16) gives〈
Qflux

�

〉 = 〈p̄�∇ · v̄�〉 + 〈�̄� : ∇v̄�〉 − 〈D�〉 + 〈
εin
�

〉
. (20)

For the first term on the right-hand side, because 〈p∇ · v〉
receives most of its contribution from scales 	 �large, it can
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be approximated as 〈p̄�∇ · v̄�〉 ≈ 〈p∇ · v〉 for � 
 �large. Sim-
ilarly, because the contribution to 〈� : ∇v〉 from scales 	
�small is negligible, the second term becomes 〈�̄� : ∇v̄�〉 ≈ 0
for � 	 �small. In addition, because the Kolmogorov scale
is sufficiently smaller than other length scales and f acts at
the large scale L, the viscous dissipation 〈D̄�〉 and energy
injection 〈εin

� 〉 can be approximated as 〈D̄�〉 ≈ 0 and 〈εin
� 〉 ≈

〈v · f〉 for �small 
 � 
 �large, respectively [27]. Thus, in the
intermediate-scale range �small 
 � 
 �large, (20) becomes
[50] 〈

Qflux
�

〉 ≈ 〈p∇ · v〉 + 〈v · f〉
= εeff . (21)

Note that although the mean total scale-to-scale kinetic energy
flux 〈Qflux

� 〉 is scale independent in the inertial range, the
three terms 〈��〉, 〈(p)

� 〉, and 〈(�)
� 〉 are not necessarily scale

independent individually. In fact, because � is appreciable at
scales 
 �c, 〈��〉 and 〈(p)

� 〉 are dominant at scales 	 �c,
whereas 〈(�)

� 〉 develops at scales 
 �c. Therefore, (21) can
be further rewritten as

εeff ≈ 〈
Qflux

�

〉 ≈
{〈��〉 + 〈


(p)
�

〉
for �c 
 � 
 �large,〈


(�)
�

〉
for �small 
 � 
 �c.

(22)

We can also derive the result (22) more rigorously by evaluat-
ing the scale dependence of the energy fluxes using functional
analysis [51].

We now consider the singularity of the velocity field that is
necessary to satisfy (22). To this end, we investigate δa(�) :=
|a(x + �) − a(x)| for a field a(x) using the assumption of ho-
mogeneity and isotropy. The following pointwise estimation
is based on a more sophisticated analysis using Besov spaces
[51]. In the range of �c 
 � 
 �large, the baropycnal work
and deformation work are the main sources of the energy
cascade. These two energy fluxes can be expressed in terms
of increments:


(p)
� = 1

ρ̄�

∇ p̄� · τ̄�(ρ, v) ∼ δp(�)δρ(�)δv(�)

ρ0�
, (23)

�� = −ρ̄�∇ṽ� : τ̃�(v, v) ∼ −ρ0(δv(�))3

�
, (24)

where we have used ρ̄� ∼ ρ0 assuming homogeneity. We have
also used an estimation that ∇ f̄� ∼ δ f (�)/� and τ̄�( f , g) ∼
δ f (�)δg(�), which can be made more rigorous using the Lp

norm [51]. From this expression it follows that 〈(p)
� 〉 → 0

as � → 0 because the density increment is bounded from
above as δρ(�) = O(�), which holds for all � > 0 because

the entropy functional contains the density gradient term ∝
|∇ρ|2 < ∞. We therefore conclude that 〈��〉 ≈ εeff for �c 

� 
 �large. Then, from the expression (24) we obtain δv(�) ∼
ρ

−1/3
0 ε

1/3
eff �1/3 in this scale range. This result implies that the

velocity power spectrum E v (k) follows the Kolmogorov spec-
trum: E v (k) ∼ ρ

−2/3
0 ε

2/3
eff k−5/3 for �−1

large 
 k 
 �−1
c .

In the range of �small 
 � 
 �c, the energy transfer is dom-
inated by capillary work. The capillary work can be expressed
in terms of increments:


(�)
� = 1

ρ̄�

∇ · �̄� · τ̄�(ρ, v) ∼ �̄�δρ(�)δv(�)

ρ0�
. (25)

Here, note that we cannot naively estimate as in ∇ · �̄� ∼
δ�(�)/� because � already contains higher-order derivatives
of ρ. In this scale range, we must consider the density incre-
ment δρ(�) because density fluctuations are appreciable. The
scale dependence of δρ(�) can be complicated because of the
strong turbulent effect [52], although it may be bounded from
above as δρ(�) = O(�). Here, as a first step to estimate the
spectral exponent, we consider the consequence of imposing
only the loose condition that δρ(�) = O(�). Then, by integrat-
ing by parts, we can estimate that �̄�δρ(�) ∼ Z , where Z is
a scale-independent quantity [51]. Hence, we conclude that
δv(�) ∼ Z−1ρ0εeff� and E v (k) ∼ Z−2ρ2

0ε2
effk

−3 in this scale
range.

Concluding remarks. In summary, we have shown that
supercritical turbulence near a critical point can exhibit the
van der Waals cascade. The interesting point here is that the
results are similar to those reported for pure quantum turbu-
lence [53]. This implies that pure quantum turbulence and
van der Waals turbulence belong to the same “universality
class.” Therefore our results may also provide an interesting
perspective from which to understand quantum turbulence,
which will help illuminate the role of quantized vortices and
Kelvin waves. Finally, we remark that there is a possibility that
the spectrum k−3 becomes shallower because of the depletion
of nonlinearity [28,53–55] or the regularity of the temperature
and density gradient fields [51].

The problem addressed in this Letter could lead to an
understanding not only of turbulence but also of the relation
between the macroscopic and microscopic descriptions of na-
ture. We therefore hope that experiments will be conducted to
verify our predictions.
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