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ABSTRACT The cornea in the human eye reflects incoming environmental light, whichmeans we can obtain
information about the surrounding environment from the corneal reflection in facial images. In recent years,
as the quality of consumer cameras increases, this has caused privacy concerns in terms of identifying the
people around the subject or where the photo is taken. This paper investigates the security risk of eye corneal
reflection images: specifically, visual place recognition from eye reflection images. First, we constructed
two datasets containing pairs of scene and corneal reflection images. The first dataset is taken in a virtual
environment. We showed pre-captured scene images in a 180-degree surrounding display system and took
corneal reflections from subjects. The second dataset is taken in an outdoor environment. We developed
several visual place recognition algorithms, including CNN-based image descriptors featuring a naive
Siamese network and AFD-Net combined with entire image feature representations including VLAD and
NetVLAD, and compared the results. We found that AFD-Net+VLAD performed the best and was able
to accurately determine the scene in 73.08% of the top-five candidate scenes. These results demonstrate
the potential to estimate the location at which a facial picture was taken, which simultaneously leads to
a) positive applications such as the localization of a robot while conversing with persons and b) negative
scenarios including the security risk of uploading facial images to the public.

INDEX TERMS Corneal reflection, computer vision, deep learning, image recognition, biometrics, privacy,
security.

I. INTRODUCTION
The cornea of the human eye acts as a mirror that
reflects light from a person’s environment, which means that
visual information about the environment can be measured
from the corneal reflections. The environmental informa-
tion can include the environmental image [1], illumination
conditions [2], and high-resolution reconstructions of the
environment [3].

Since a lot of information can be retrieved from human eye
reflections, and people are mostly unaware of the potential of
information retrieval from eye images, we need to think care-
fully about the security concerns of publishing and sharing
facial-eye images. Jenkins et al.were the first to point out the
potential of human identification from an eye reflection in a
facial image [4]. On the positive side, eye reflections have
been used for crime scene investigations. On the negative
side, they have been abused in stalker incidents [5]. Thus,
assessing the security of eye reflections is a crucial step in
the development of digital cameras and smartphones.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tomasz Trzcinski .

In this paper, we propose a method of visual place recog-
nition from eye reflection images for the purpose of alerting
users to the security risk of publically exposing facial images.
Conceptual illustration is shown in Fig.1. Our objectives are
to help evaluate whether a facial image is secure or not and
to develop methods to remove the location information from
faces shown in the image. To this end, we first develop two
facial image datasets taken from 11 subjects and 100 scenes
by using a publicly available scene image dataset and corre-
sponding eye images. Namely, we show the scene images in a
180-degree virtual display and take the eye images of the sub-
ject who is located in the display. Secondly, we developed a
dataset consisting of pairs of scene and eye reflection images
taken in actual 104 outdoor scenes involving eight subjects.

We then develop a novel method of visual recognition from
corneal reflections. While a considerable number of visual
scene recognition algorithms already exist, the problem we
examine is different from such algorithms due to a large
amount of noise in eye images, such as iris texture contami-
nation, eyelid and eyelash shadows, limited image resolution,
and image blur.

We implemented and evaluated several approaches to com-
bat this issue. Fig. 6 illustrates the general flow of the
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FIGURE 1. Conceptual illustration of the scene retrieval from a facial (selfie) image. First, the corneal reflection (eye-scene
reflection) is retrieved from a facial image. The image is then matched with the scene image dataset by using a novel
DNN-based image retrieval algorithm pretrained by our scene-eye reflection image dataset. In the final step, the scene
where the facial image was taken is recognized.

DNN-based scene retrieval algorithm. First, we train the
DNN-based image descriptors by using aligned images of
eye reflection and scene images. Here we used the idea of
DNN-based metric learning, namely, we train a DNN that is
trained to output 1) the same feature vector when the input
eye reflection or scene images captures the same scene, and
2) a different feature vector when the images capture the
different. Afterward, feature aggregation is conducted that
output the entire image feature vector. Thanks to the met-
ric learning-based feature descriptors, the algorithm robustly
performs the scene similarity regardless of image noise. As a
result, our algorithm is able to attain an accuracy of more than
73% for large numbers of scene datasets.

Our main contributions in this paper are as follows.
1) We developed image datasets including more than

1,000 pairs of scenes and eye reflections. As far as we
know, this is the first dataset of pairs of eye reflec-
tion and scene images. Since these image pairs are
accurately aligned, they can be used for evaluation and
training.

2) We developed and evaluated several visual place recog-
nition algorithms that use handcrafted and DNN-based
image descriptors combined with a vector of locally
aggregated descriptors (VLAD) [6] or NetVLAD [7].

3) Through comprehensive experiments on visual place
recognition and comparison to the existing algorithms,
we demonstrated that the proposed algorithm outper-
formed all others and reached an accuracy of more than
73% in the top-five scene candidates detection task.

In Section 2 of this paper, we provide an overview of
related work. We explain the datasets and the algorithms in
Sections 3 and 4. The experimental results are reported in
Section 5. We conclude in Section 6 with a brief summary.

II. RELATED WORK
This section discusses related work on eye image analysis and
image registration.

A. EYE IMAGE ANALYSIS
The iris region in an eye image is a mixture of the refracted
iris texture and the corneal surface reflection of the scene
illumination. As the iris texture is important for personal
identification [8], [9] and iris biometrics [10], several works

have investigated methods to separate iris texture and corneal
reflection. He et al. obtained a reflection map from an
iris region by using an adaptive thresholding approach and
applied a bilinear interpolation to fill out the region [10].
Tan and colleagues used a labeling-based corneal reflec-
tion removal for the purpose of iris segmentation [11], and
Wang et al. applied the color chromaticity of the iris texture
for this task [12]. To estimate the scene illumination, they
took the consensus of corneal reflections from the images
of both eyes. As these approaches rely on heuristic rules,
such as assuming bright scene reflections with sharp edges
or consistent chromaticity in iris colors, they typically have
weak performance in scenes, where the assumptions do not
hold. We believe this problem can be solved easily and
accurately when a pixel-wise correspondence between an eye
and a scene image is available. Moreover, while the above
approaches are purely image-based, we show that explicit
geometric modeling of the eye and the light reflection at the
corneal surface is beneficial for this task.

The first corneal imaging technique was developed by
Nishino and Nayar [1], and then several research groups con-
ducted extensive studies [13], [14]. In these works, a camera
capturing an image of the spherical or aspherical eye that
exhibits corneal reflections is modeled as a non-rigid cata-
dioptric imaging system [15]. Applying this model enables
the scene illumination to be reconstructed from an eye image,
such as through geometric calibration between the eye and
a computer display [16], optical see-through head-mounted
displays (OST-HMD) [17], or a fish-eye camera [18]. In [19],
an aspherical surface model was introduced for the cornea.
Using an extensive model, they demonstrated an accurate
image registration algorithm between scene and corneal
reflection images. While these works have demonstrated
application showcases of scene recognition from corneal
reflections, the number of target scene images is limited and
therefore the true applicability is unknown.

Since eye reflection captures a lot of information about
the surrounding scene at a very wide angle, several studies
have examined using eye/facial images for digital forensics,
which is tricky because there is a security risk in terms of
exposing such images. As a digital forensics application,
Johnson et al. developed a method to reveal whether a group
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photo is digitally composited or not by using the lighting
conditions reconstructed from the persons’ eye reflections
[20]. Backets et al. demonstrated the recovery of the content
presented in a computer display from the corneal reflec-
tion of a subject who was looking at [13]. More recently,
Jenkins et al. pointed out the potential of human identification
from an eye reflection in a facial image [4]. They found
that people could identify human faces with an accuracy
of about 71% and 84% for non-familiar and familiar faces,
respectively. Corneal reflections have now started being used
in actual crime scene investigations. In 2017, police analyzed
the photo of a victim on a smartphone and uncovered a
reflection of the suspect in the victim’s eyes, and used it for
trial evidence. Unfortunately, a similar technique was abused
in a stalker incident where the criminal analyzed the corneal
reflection in an uploaded facial picture to identify the place
where the victim was living [5].

B. VISUAL PLACE RECOGNITION
Place recognition from an image is a task to find the location
similar to the query image from a dataset of place images
[21], [22]. Traditional methods used hand-crafted features
such as SIFT or SURF [23] for scene images, and then aggre-
gated them by using such as bag-of-words [24], [25], Fischer
vector [26], and Vector of Locally Aggregated Descriptors
(VLAD) [6], [27], and constructed a scene image database.
The scene retrieval is performed by comparing an image fea-
ture of a query scene image with the database. Bag-of-words
uses a histogram representing the number of features belong-
ing to each cluster as a descriptor. Fisher vector and VLAD
extend the idea namely, the descriptors represent the resid-
uals between the local features and cluster centers. Fisher
vector is a fixed-length vector representation based on the
assumption that visual words are generated from theGaussian
mixture model (GMM), while VLAD aggregates all residuals
of local features belonging to each cluster, and produces a
k × d-dimensional descriptor where k is the number of clus-
ters and d is the dimension of the local feature. While most of
the aggregated features omit the positional information of the
local descriptors thus are potentially fair to the brute-force
matching, they are robust against misalignment and require
smaller computational power due to their compact feature
size. Torii et al. [28] proposed a place recognition algorithm
robust to changes of the conditions such as viewpoints and
day/night using panoramic images combined by viewpoint
changes. In this case, DenseVLAD is used as the descriptor.

In recent years, with the progress of CNN, consider-
able numbers of methods have been proposed to use the
pre-learned CNN as a descriptor [22], [29], [30]. One of the
early and major approaches is NetVLAD [7] which enables
end-to-end learning by incorporating the computing step of
VLAD into a DNN-layer. Local image features are directly
computed from the 2D-CNN feature map, and then they
are aggregated. Moreover, the anchors of the clusters in
computing VLAD are also determined instead of using the
predefined cluster center.

FIGURE 2. Experimental setup of virtual environment. (a) Experimental
setup. Markers are displayed on a large multi-display. (b) Experimental
setup where a scene image is displayed.

III. DATASET
We used two scene datasets and two eye reflection datasets.
The publicly available scene dataset (Tokyo24/7) was mainly
used as the training data. We set up a large multi-display for
projecting scene images and then obtained the eye reflections
of a subject who was looking at the display.

A. SCENE DATASET
1) Tokyo24/7 DATASET
The Tokyo24/7 dataset [28] consists of 1,125 scene images
taken by smartphones (Apple-iPhone5s and Sony Xperia).
Images were taken from 125 distinct locations and three
different viewing directions at three different times of the
day. Since the actual location where the images were taken
is unknown, we used this dataset to obtain the training data.
Specifically, we presented the scene images to a subject using
a 180-degree display and obtained eye reflection images (see
section III-B1).

2) KYOTO SCENE DATASET
We collected 104 scene images taken in outdoor campus
environments. The images were taken by a Nikon Z6 digital
camera with an SIGMA 24-70mm lens. The resolution of the
images was 6048× 4024 pixels. We cropped the center area
and resize to 256× 256 pixels.

B. EYE REFLECTION DATASETS
1) EYE REFLECTIONS IN A VIRTUAL ENVIRONMENT (EyeVE
DATASET)
We took 100 scenes from the Tokyo24/7 dataset and collected
1,053 eye reflection images from 11 subjects. The experimen-
tal setup is shown in Fig. 2. Scene images were shown to each
subject using a multi-display environment consisting of three
70-in monitors. The subject’s head was fixed on a chin-rest
located about 80 cm from the display center. Facial images
of the subjects were taken by a Nikon Z6 digital camera at
a distance of 25 cm. Fig. 3 shows several examples of the
scene and eye reflection images. The average diameter of the
iris was about 350 pixels.

To obtain accurately aligned images of scenes and eye
reflections, we performed the following steps when taking
images. First, we sequentially showed an image of five grid
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FIGURE 3. Examples of EyeVR dataset. Top row: Scene images. The four
images on the left and two images on the right are taken from
Tokyo24/7 and Kyoto scene datasets, respectively. Rows 2–6: Corneal
reflection images taken from different subjects.

FIGURE 4. Image alignment steps in collecting EyeVE dataset that is
mainly used for training. (a) A marker and scene image are sequentially
displayed in the multi-display environment. (b) Facial and (c) eye images.
(d) Marker positions are found from the eye image and then an image
region is obtained. (e) The image region in the eye reflection is cropped
and rectified. (f) The image region is flipped horizontally. An aligned pair
of the scene and eye reflection images is obtained in the end.

markers and a scene image ((Fig. 4(a)). An eye image was
taken for each display content ((Fig. 4(b),(c)). By choosing
images where the subject’s eye did not move while a marker
and scene image were shown, we can obtain a pair of eye
reflection and scene images that are accurately aligned by
cropping and rectifying the eye reflection image according
to the marker locations ((Fig. 4(d)–(f)).

2) EYE REFLECTION DATASET IN OUTDOOR
ENVIRONMENTS (EyeKyoto DATASET)
We collected 104 eye reflection images in real outdoor envi-
ronments. Each scene corresponds to the images in the Kyoto
scene dataset. Fig. 5 shows several examples of the scene and
eye reflection images. We used a Chin-rest to fix the subject’s
face, and the camera is located at about 25cm from the
subject’s eye. Assuming the actual application scenario that
finding a scene from an eye reflection, we did not performed
fine alignment but manually cropped the scene regions in the
eye reflection images and used them for evaluation.

IV. SCENE RECOGNITION ALGORITHMS
To recognize scenes from noisy eye reflection images,
we implemented a novel DNN-based image recognition

FIGURE 5. Examples of Eye-Kyoto dataset that is used for testing. Top
row: Scene images. Bottom row: Corneal reflection images taken from
different subjects.

algorithm that is robust to image noises. Fig. 6 shows the algo-
rithm overview. First, we train a feature descriptor network
to evaluate the similarities of image patches. From the pairs
of scene and eye images, we take the patches correspond-
ing to the ground truth and use them to train the network.
We implement and evaluate Siamese network-based [31] and
AFD-Net-based [32] descriptors. In the end, the network is
trained to output similar feature values for corresponding
patches and different values for non-corresponding ones.
Using the trained network, we take dense features from every
scene image and construct VLAD features that represent the
images. In recognition, dense features are obtained from an
eye reflection image, and then a VLAD feature vector is
computed. The VLAD feature is matched to the scene VLAD
features. In the following subsections, we introduce networks
to evaluate patch similarity and VLAD descriptors.

A. TRAINING FEATURE DESCRIPTOR NETWORKS
We use two patch-based deep image descriptors to represent
local image features: a CNN-Siamese network and AFD-Net.

1) CNN-SIAMESE NETWORK
The Siamese network is a metric learning method that is often
used in tasks such as face verification. It is a model that
learns the projection from the feature vector to the L2 space.
Fig. 7 shows the structure of our network. It uses three convo-
lutional neural networks with shared weights. The inputs of
these three networks are an anchor, a positive sample with
the same label as the anchor, and a negative sample with
a different label from the anchor, respectively. This model
needs triplet loss to make the L2 distance between the anchor
feature vector and the positive feature vector close and to
make the L2 distance between the anchor feature vector
and the negative feature vector move away. In our method,
we use a network formed by concatenating a convolutional
layer, an instance normalization layer, an activation layer by
a hyperbolic tangent (tanh), and average pooling as convo-
lutional neural networks. The inputs to this network are the
anchor, which is a patch from the eye image, the patch of
the scene image corresponding to that patch as the positive
sample, and the patch at different random positions as the
negative sample. We manually pick up these corresponding
points from both types of images.

2) AFD-NET
Another local image descriptor is the AFD-Net which
is another metric learning algorithm for extracting more

VOLUME 9, 2021 57367



Y. Ohshima et al.: Visual Place Recognition From Eye Reflection

FIGURE 6. Overview of the proposed AFD-VLAD-based image retrieval algorithm. (a) First, a feature descriptor network (Siamese network
or AFD-Net) is trained by using the corresponding image patches between scene and eye reflection images. The feature descriptor network
then outputs the same feature vectors for the corresponding patches. (b) In recognition, scene VLAD features is generated from the scene
images and the trained feature descriptor network. Similarly, local features are obtained from image patches of an eye reflection image,
and then a VLAD feature vector is computed. The VLAD feature vector is matched to the scene VLAD features and the corresponding scene
is retrieved.

FIGURE 7. The structure of CNN-Siamese network.

effective features for scene identification [32]. The structure
of AFD-Net is illustrated in Fig. 8. First, we respectively input
the patch from the eye image and the patch from the scene
image to the two weight-sharing CNNs, similar to the method
using triplet loss. Our CNN is a network consisting of five
convolution layers. After all the convolutional layers, a batch
regularization layer, an activation layer by the tanh function,
and a pooling layer using average pooling are connected.
In addition, instance normalization layers are added after
the second and third batch normalization layers. The differ-
ence of L1 norm between the two 512-dimensional feature
vectors, which are the outputs of the final layer, becomes
the input of the global feature network and the input of the
large margin cosine loss (LMCL) of Cosface [33] via a fully
connected layer. In addition, in order to use the local features
that appear in the shallow layers of the convolutional network,
we construct a local feature network using the differences
between the convolutional layer’s output tensors and perform
learning with multitasking loss. Specifically, the difference
is taken for the output from the 1st layer to the 3rd layer
in the same way as the global feature, and the difference
between the previous layer with average pooling applied and

FIGURE 8. The structure of AFD-Net.

the difference between the next layers are concatenated and
calculated. Then, the process of average pooling to reduce
the image size is repeated, and finally, a 512-dimensional
feature vector is obtained and input to Cosface. We set the
scale parameter s of Cosface as 20 and the margin parameter
m as 0.05.

B. FEATURE AGGREGATION USING VLAD/NetVLAD
We then compute aggregated features to represent the entire
scene or eye reflection images. Given trained local feature
descriptor networks, dense local features are taken from
images. Namely, we uniformly sample patches from an
entire image and obtain multiple feature descriptors, and then
VLAD or NetVLAD image features are computed. In the
recognition step, a VLAD or NetVLAD feature vector is
obtained from a query eye reflection image and matched to
stored scene features obtained from a scene image dataset.

V. EXPERIMENTS
We evaluated the proposed and existing algorithms using the
datasets. We used the Tokyo24/7 and EyeVE datasets for
training and the Kyoto and EyeKyoto datasets for testing. The
input image size was 256× 256 pixels.
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TABLE 1. Experimental result.

FIGURE 9. Patch-size v.s accuracy in AFD-Net(Patch)+VLAD. It performed
best when patch size = 64.

A. METHODS
We implemented the following algorithms and compared
the results. The baseline algorithm was the combination
of a handcrafted feature (SIFT) and VLAD. For the naive
DNN-based image retrieval, we used NetVLAD and the
CNN-Siamese network, both of which use the enter image as
their inputs. The others are combinations of two DNN-based
local image descriptors (CNN-Siamese and AFD-Net) and
two entire image descriptors (VLAD and NetVLAD). For the
DNN-based local descriptors, the size of the input patch was
64×64 pixels and the output feature dimension was 512. For
the entire image descriptors, the number of clusters was set
to 64, so the output feature dimension was 512× 64.
Experiments were performed on a PC environment

(Ubuntu 16.04, Intel(R) Core(TM) i7-8700 CPU @
3.20GHz, 64GB Memory, Nvidia GeForce1080Ti-11GB).
Matlab 2019a + VLFeat 0.9.21 [34] were used for the
SIFT-VLAD-based algorithms, and pytorch-1.4.0 +

tensorflow were used for the DNN-based algorithms.

B. RESULTS
Table 1 and Fig.10 show the experimental results and Fig. 11
shows several examples of the Top-1 retrieval results of
each method. The best performance in the retrieval of the
top five candidates was by AFD-Net(Patch)+VLAD, which
accurately determined the scene in 73.08% of the top-five
candidate scenes. We also evaluated the effect of the patch
size of the local descriptor on the performance. Fig. 9 shows
the results of AFD-Net(Patch)+VLAD. As the result, it
performed best when the patch size is 64.

Overall, methods using patches (local descriptors) per-
formed better than those using entire images. This is
because the methods using the entire image suffer from

FIGURE 10. Experimental result (Accuracy comparison).

1) the misalignment of the query and target images and
2) partial occlusions and noise in the eye images, while
patch-based ones could avoid the issues. A method using a
hand-crafted feature (SIFT) could retrieve the images that
have high-contrast structures e.g. buildings (Fig.11(l)), how-
ever, performed poorer for the scenes with natural objects.
A method using CNN-Siamese (Entire image) could retrieve
images having similar color distributions, therefore, it worked
when the eye reflection had a similar color and texture
features to that of scene images (Fig.11(c)).

Another advantage of patch-based features over entire-
image features is the ability to utilize local structures for the
decision. As seen in the results of Fig.11(c), CNN-Siamese
(Entire Image) retrieved the images whose whole structure
in an image – such as the perspective of the buildings or
boundaries between roads and other objects – were simi-
lar to the ground-truths. However, they failed to use local
structures such as colors or textures. Specially in NetVLAD
(Entire image) retrieved particular images very frequently
because the method confused with the ground surface (in
scene images) and iris (in eye reflection images) since they
had similar colors.

Regarding the comparison of AFD-Net and CNN-Siamese
local features, AFD-Net seems to be much robust to image
noises (Fig.11(d)-(g)). Since AFD-Net is trained to minimize
the outputs of intermediate layers between scene and eye
reflections, it becomes robust tomulti-level eye-related image
noises such as eyelash or iris textures. Inversely, when the
scene and eye reflection images are quite similar, the local
feature network does not contribute to increasing perfor-
mances since the differences of intermediate layers’ outputs
are very close (Fig.11(h)-(l)).

Fig.11(m) shows the hardest case. In the image, the upper
half is covered by eyelash shadows and the lower half is iris
texture, therefore, scene reflections cannot be observed from
the eye reflection, therefore, all methods failed to recognize.
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FIGURE 11. Experimental results (Top-1 retrievals). Thumbnails with green squares indicate correct retrievals.

VI. CONCLUSION
In this paper, we have presented our method of visual place
recognition from eye reflection images. This task is much
more difficult than naive image-based scene recognition tasks
since eye reflections include a lot of image noise (e.g., iris
textures, eyelid and eyelash shadows, and occlusions). How-
ever, it is a very socially important task due to inherent secu-
rity concerns. We developed and evaluated algorithms that
use handcrafted and DNN-based image descriptors combined
with aggregated image descriptors (VLAD and NetVLAD)
and found that the combination of AFD-Net+VLAD had an
accuracy of more than 73% in the top-five scene recognition
tasks. As far as we know, this is the first work to tackle this
task by using a large image dataset.

Our findings also revealed the impact and limitations
of eye reflection-based scene recognition. First, it becomes
clear there is a considerable level of security risk in tak-
ing/sharing facial images due to a leakage of information
where the image was taken. Considerable care must be
taken to address the potential privacy issues with these kinds
of images. The images in this study were taken with a

high-end consumer camera under a controlled setup in which
both the camera and face were fixed by mounts. There-
fore, the accuracy reported here would not realistically be
achieved in everyday photo-shooting conditions. However,
considering the future performance improvements expected
of consumer/smartphone cameras, we should keep an eye on
the potential security risks.
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