
PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

Dual sampling neural network: Learning without explicit optimization

Jun-nosuke Teramae *

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Yasuhiro Tsubo †

College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan

(Received 17 May 2021; revised 21 March 2022; accepted 19 August 2022; published 21 October 2022)

Artificial intelligence using neural networks has achieved remarkable success. However, optimization pro-
cedures of the learning algorithms require global and synchronous operations of variables, making it difficult
to realize neuromorphic hardware, a promising candidate of low-cost and energy-efficient artificial intelligence.
The optimization of learning algorithms also fails to explain the recently observed criticality of the brain. Cortical
neurons show a critical power law implying the best balance between expressivity and robustness of the neural
code. However, the optimization gives less robust codes without the criticality. To solve these two problems
simultaneously, we propose a model neural network, dual sampling neural network, in which both neurons and
synapses are commonly represented as a probabilistic bit like in the brain. The network can learn external signals
without explicit optimization and stably retain memories while all entities are stochastic because seemingly
optimized macroscopic behavior emerges from the microscopic stochasticity. The model reproduces various
experimental results, including the critical power law. Providing a conceptual framework for computation by
microscopic stochasticity without macroscopic optimization, the model will be a fundamental tool for developing
scalable neuromorphic devices and revealing neural computation and learning.

DOI: 10.1103/PhysRevResearch.4.043051

I. INTRODUCTION

Seemingly optimized behaviors of macroscopic systems
often emerge from stochastic interactions of microscopic en-
tities in physics. Thermodynamic equilibrium specified by the
minimization of the thermodynamic free energy is an outcome
of statistics of large numbers of microscopic particles. The
least action principle of classical mechanics is derived from
the interference of the probability amplitude of microscopic
quantum paths.

In the last two decades, machine learning algorithms based
on neural networks have made substantial progress. The rep-
resentative models include deep learning [1] and Boltzmann
machine [2], consisting of deterministic and stochastic neuron
models, respectively. Regardless of the neuron models, learn-
ing of the networks has been formalized as the optimization
procedure of parameters, typically synaptic weights, of the
network. Ingenious optimization techniques being developed
have led to accelerations of the learning process using par-
allelized computation on graphical processing units (GPUs),
resulting in the unprecedented performance of the networks

*teramae@acs.i.kyoto-u.ac.jp
†tsubo@fc.ritsumei.ac.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

for various tasks. However, their massive energy consumption
raises concerns of sustainability [3].

To reduce energy requirement of machine learning, there
is a rapidly growing pursuit to realize brain-inspired neu-
romorphic computing hardware, the leading candidate for
realizing low-cost and energy-efficient artificial intelligence
[3–26]. Inspired by characteristic features of the biological
brain, such as asynchronous spike generation of neurons,
robustness against local failures of synaptic transmissions,
and highly parallelized developments of neural and synaptic
states, various architectures using highly functional materials,
including nanoelectronics, spintronics, and photonic systems,
have been proposed. Introducing these biological features,
neuromorphic computing is expected to realize ubiquitous
artificial intelligence applicable even to power critical situa-
tions, such as so-called edge devices [3,21].

A serious obstacle to realize neuromorphic computing is
the global and synchronous nature of the optimization proce-
dures of current learning algorithms. Error backpropagation
learning, for instance, requires coordinated alternation of the
forward and backward computations, synchronous updates of
neural variables, and the propagation of the error signals over
the entire network, in addition to feedforward network topol-
ogy and explicitly defined objective functions [27,28]. They,
however, have not been observed in the brain, which leads
to recent extensive studies to solve the difficulty [29–39].
Learning algorithms of the Boltzmann machine also suf-
fer biological implausibility [2,40]. These algorithms require
symmetric synaptic weights, explicit switching between dif-
ferent computations during learning, and fine scheduling of

2643-1564/2022/4(4)/043051(20) 043051-1 Published by the American Physical Society

https://orcid.org/0000-0003-3255-0253
https://orcid.org/0000-0002-7013-9409
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043051&domain=pdf&date_stamp=2022-10-21
https://doi.org/10.1103/PhysRevResearch.4.043051
https://creativecommons.org/licenses/by/4.0/

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

parameters, such as the temperature of the simulated anneal-
ing. Again, none of them have been observed in the brain.

Conventional optimization of neural networks also fails to
explain a recently observed critical power law of the brain
[41]. Experimental measurement of massive numbers of cor-
tical neurons revealed that the covariance spectrum of their
activity follows the power law with the exponent of −1,
indicating that the cortex realizes the best neural coding to
balance expressivity and robustness. However, conventional
supervised learning tends to push the network to as much ro-
bust as possible, leading the network to attain less expressive
neural code without the critical power law, unlike the brain
[42]. (A recent study reported that the covariance spectrum
of the state variables of deep neural networks could show a
power law. However, the exponents still differ from the critical
value [43].)

This paper shows that the above seemingly independent
problems of machine learning and neuroscience are solved
simultaneously by considering the coexisting stochasticity of
both the synapses and neurons in the brain. In the brain,
neurons irregularly generate spikes with largely varying fir-
ing rates even across trials in which an animal performs
a task in the same manner [41,44–48]. Besides neurons,
synapses, which intermediate communication among neu-
rons and are responsible for learning and memory in the
brain, are also stochastic [49]. The formation, elimination,
and volume change of synapses exhibit random fluctuations
[50–56]. The release of neurotransmitters from synapses is
also an inherently stochastic process [57–59]. Theoretically,
it has been pointed out that these stochastic processes can
carry out efficient computation through Bayesian inference
[60–70]. So far, however, the stochastic behaviors of neurons
and synapses have been studied separately, and it remains
unclear whether there is a functional interaction between
them.

We propose a neural network in which synapses, in addi-
tion to neurons, are modeled as binary stochastic variables like
in the brain. The stochasticity of neurons and synapses are
inseparably integrated into a simple framework of a sampling-
based Bayesian inference model, which allows the network to
learn external signals without explicit optimization and stably
retain memories while all its entities are stochastic. The model
is regarded as an extension of the Boltzmann machine in
which the Bayesian posterior distribution, instead of thermal
equilibrium of an energy function, is directly considered and
in which synapses, besides neurons, are probability variables
to be sampled. Learning is realized through local and asyn-
chronous stochastic updates of variables in the network due
to the extension. Because the algorithm is not derived as
optimization of objective functions, it rarely exhibits serious
overfitting. We call the model the “dual sampling neural net-
work”.

Besides the critical power law, the model also reproduces
various experimental results of the brain [71–77]. The derived
algorithm well describes the plasticity of cortical synapses
[71,72], the amplitude dependence of synaptic fluctuation
[73,74], the response properties of cortical neurons, including
Gabor-filter-like receptive fields [75,76], and the higher-
order statistics of the topology of local cortical circuits [77].
These results strongly suggest that the stochastic behaviors of

neurons and synapses are inseparable and both essential at-
tributes of neural computation and learning.

II. RESULTS

A. Architecture of the model

Most connections between cortical neurons are redun-
dantly realized by multiple synapses [69,78]. Introducing this
redundancy, we model a cortical network as a network of neu-
rons whose connections are all realized by multiple synapses.
Then, considering the stochastic behaviors of synapses and
neurons, we represent each synapse and neuron in the model
as a binary random variable [79–81] [Fig. 1(a), Appendix A].
We will see that the binary and stochastic representation of
neurons and synapses enables us to obtain explicit stochas-
tic evolution equations, which work as a learning algorithm
of the network. The value of a neural variable determines
whether that neuron generates a spike, whereas the value of
a synaptic variable determines whether that synapse contacts
a dendrite of the postsynaptic neuron [Fig. 1(a)]. The connec-
tion weight from the ith neuron to the jth neuron, which is
generally asymmetric, is then given as a weighted sum of the
synaptic states as wi j = ∑M

m=1 si jmai jm, where si jm ∈ {0, 1} is
the state of the mth synapse of the connection from the ith
neuron to the jth neuron. The constant ai jm represents the
contribution of the synapse to the weight, which corresponds
to the amplitude of miniature postsynaptic potential of the
synaptic contact. Note that ai jm is a constant, and it is fixed
even during learning. We set wii = 0 to avoid self-connections
and use an evenly spaced sequence from −a0 to a0 for the
values of the constants ai jm throughout the main text for sim-
plicity: ai jm = am = (2(m − 1)/(M − 1) − 1)a0 where m =
1, 2, · · · , M. We discuss other choices of the constants in
Appendix B.

Similar to the Boltzmann machine, we assume that external
inputs, including the target outputs of supervised learning, are
presented to the network by fixing variables of some neurons,
namely, visible neurons, to these input values. These input
data, thus, should be represented by binary vectors. Other
neurons in the network, which do not receive external data
directly, are referred to as “hidden neurons.”

Note that the states of the neurons, including hidden and
visible neurons, are generally different when a different datum
of a dataset is presented to the network. In contrast, the states
of synapses do not depend on each datum. They depend on
the dataset as a whole because the neural network needs to
find its connection weights, i.e., sets of synaptic states, that
consistently account for all data of the dataset [Fig. 1(b),
see Appendix A for full details]. For this reason, we write the
state of the jth neuron at the time that the network is receiving
the dth datum of the dataset as xdj , using the data index, while
the state of a synapse, si jm, does not have a data index.

Each neuron in the network receives inputs from its pre-
ceding, i.e., presynaptic, neurons. In this paper, we assume
that, if the neural variable is not conditioned on states of its
succeeding neurons, the neuron generates a spike with a prior
probability

P(xdj = 1 | {xdi}i∈p(j), {si jm}m∈M) = σ (vd j). (1)

043051-2

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

vj (t)

vi (t) xj (t)={0,1}

xi (t)={0,1}

sijm (t)={0,1}

vk (t)

(b)(a)

(c)

(d)

0.0

0 1000 2000 3000

1.0

2.0

-1.0

-2.0

sy
na

pt
ic

 w
ei

gh
t w

ij

iteration

pre xi
post xj

...

...

1 2 Dd

1 2 Dd

pre xi
post xj

in-phase

anti-phase

3d=1
x1i (t) x1j (t) x1k (t)

8d=2

7d=D

sijm (t)

x2i (t) x2j (t) x2k (t)

xDi (t) xDj (t) xDk (t)

sjkm (t)

P({xdi}, {sijm} | {external inputs})
scimanyd citpanysscimanyd lanoruen

vdj (t) xdj (t)

slow retrograde modulation

xdk (t)wjk (t) vdk (t)

k=1

k=2

xdi (t)

bdj (t)

wij (t)

preceding
neurons

target
neuron

succeeding
neurons

vdj (t)

qij (t)

xdj (t)

d=1

d=2

xdi (t) sijm (t)

presynaptic spikes postsynaptic spikes

presynaptic
neuron

postsynaptic
neuronwij (t)

FIG. 1. Learning as a sampling of synaptic and neuronal states. (a) A neural network is modeled as a population of neurons connected via
multiple synapses. (b) A neural network needs to respond consistently to all data of a given dataset while the state of the neurons is generally
different for each given datum in the dataset. Thus, we denote the neural state with data index d like xdi, while the synaptic state si jm does
not have a data index. (c) The Gibbs sampling from the Bayesian joint posterior distribution of synaptic and neuronal states conditioned on a
given dataset provides stochastic and biologically plausible update rules of neurons and synapses. Owing to the difference in data dependency
between the neural and synaptic variables illustrated in (b), the synaptic update requires summation over all data of a given dataset (right
panel), while the neural update requires summation over the state of proximal neurons of the target neuron receiving a datum of the dataset
(left panel). (d) Evolution of a synaptic weights (right panel) when presynaptic and postsynaptic neurons fire (left panel) in-phase (cyan) and
antiphase synchronously (magenta).

043051-3

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

Here, p(j) denotes the set of preceding neurons of the jth
neuron, M denotes the set of synapses for each connection,
and σ (x) is the activation function of a neuron, for which
we use the sigmoidal function σ (x) = (1 + e−x)−1 throughout
the paper. The weighted sum of the inputs vd j = ∑

i xdiwi j =∑
i xdi

∑
m ai jmsi jm corresponds to the membrane potential of

the jth neuron when the dth datum of the dataset is presented
to the network. Similarly, we assumed that each synaptic
variable takes its binary value independently each other if it
is not conditioned on neural variables. We denote the logit of
the prior probability log(P(si jm = 1)/P(si jm = 0)) as q0,i jm,
which is equivalent to

P(si jm = 1) = σ (q0,i jm). (2)

Unless the prior distribution is biased, the logit simply van-
ishes. Thus, we simply assumed q0,i jm = 0 throughout the
paper.

B. Learning as a dual sampling

With the fundamentals as described above, we hypothe-
size that the stochastic dynamics of neurons and synapses
constitute a continuing random process to generate a net-
work that suitably interprets the external world. In other
words, we define learning in the network as a contin-
uing sampling process of all free stochastic variables,
namely, variables of all synapses and hidden neurons, from
their posterior distribution conditioned on a given dataset,
P({xdj}d∈D, j∈H , {si jm}i, j∈N,m∈M | {xdj} j∈V) (see Appendix A).
Here, D denotes the dataset, H and V denote the sets of
hidden and visible neurons, N represents the set of all neurons.
This formulation is naturally regarded as an extension of the
Boltzmann machine in which synapses, as well as neurons,
are random variables to be sampled and in which we directly
use the Bayesian posterior distribution instead of a typically
used energy function that is characterized by the first and
the second-order statistics of random variables. While con-
ventional approaches consider connection weights as model
parameters to be optimized, we consider them as random
variables to be sampled, dismissing explicit optimization pro-
cedures from the algorithm.

A sampling from the posterior distribution, however, is
computationally and biologically intractable in general, due
to the high dimensionality of the system and complex de-
pendencies among its variables. To solve this problem, we
hypothesize that the brain realizes this sampling as the Gibbs
sampling [82]. The Gibbs sampling ensures that we can
replace sampling from the high-dimensional posterior dis-
tribution with iterative samplings of each variable from a
posterior distribution of only that variable conditioned on
all other variables, thus from a one-dimensional distribution,
P(xdj | · · ·) and P(si jm | · · ·) where the dots represent all
other variables than the target variable. Due to the flexibility
of Gibbs sampling, each sampling can be performed in any
order and with any frequency, which enables each neuron and
synapse to update their variables asynchronously and irregu-
larly with their own individually determined timings without
any global schedule or coordination.

Assuming that the network is directed acyclic graph (DAG)
and applying Bayes’ theorem to the posterior distributions,

we can derive the procedures of the Gibbs sampling as the
stochastic update rules for the neurons and the synapses
[Fig. 1(c), see Appendix A], that is

P(xdj = 1 | · · ·) = σ (vd j + bdj) (3)

bdj (t + 1) = (1 − rb)bdj (t) + rb

∑
k

w jk (xdk − σ (vdk)) (4)

for a neuron and

P(si jm = 1 | · · ·) = σ (ai jmqi j) (5)

qi j (t + 1) = (1 − rq)qi j (t) + rq

∑
d

xdi(xdj − σ (vd j)) (6)

for a synapse. Equations (3) and (5) give the firing probability
of the neuron xdj and the connection probability of the synapse
si jm, respectively, after considering all other variables. In
addition to the preceding neurons’ state included in the
prior distribution of the firing probability via the membrane
potential, the posterior distribution includes the succeeding
neurons’ state via the latent scalar variable bdj . The state of
each neuron’s distal neurons and the data given to the network
influence each variable as the variables of the network are
updated. The derived equations show that the probabilities
mutually interact via the latent scalar variables bdj and qi j

assigned to each neuron and the synapse, respectively. This
mutual interaction is summarized as follows [Fig. 1(c)]: Let
us first focus on the firing probability of a neuron. We refer
to the neuron as the target neuron for a while for clarity. If
a preceding neuron of the target neuron generates a spike, it
immediately changes the membrane potential v of the target
neuron and changes the firing probability of the target neuron.
If a succeeding neuron of the target neuron generates a spike,
it slowly and retrogradely modulates the excitability of the
target neuron via the latent variable b of the target neuron,
whose evolution is governed by the sum of products of synap-
tic weights and generated spikes [Eq. (4)]. Then, let us focus
on a synapse. The connection probability of the synapse s is
a function of the latent variable q [Eq. (5)]. The evolution
of the latent variable is governed by the sum of products
of spikes of presynaptic neurons and those of postsynaptic
neurons [Eq. (6)]. Constants rb and rq characterize evolution
timescales of the latent variables bdj and qi j , respectively.

Note the difference between the summation indices in
Eqs. (4) and (6). The synaptic update requires summation
over all data of a given dataset, while the neural update does
not [Fig. 1(c)]. This difference results from the difference
between the data dependencies of the variables, as discussed
above. Because of the difference, synapses need to accumulate
the neural activities for many, ideally all, data in the dataset
before updating their states, while neurons update their states
independently in a manner that depends on each datum indi-
vidually. This implies that synapses evolve much more slowly
than neurons if data are provided sequentially to the network,
as in the brain. This explains why the timescales of neurons
and synapses are greatly different in the brain. In contrast,
when we use the algorithm to train an artificial neural network,
we can perform neural updates for all data of the dataset
parallel. This greatly accelerates the learning speed. In the
following numerical simulations, we adopt the parallel update

043051-4

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

of neural variables to accelerate computational speed. (Results
of the online implementation of the algorithm are discussed in
Appendix E.)

The update rule for synapses given in Eqs. (5) and (6)
yields plasticity similar to that exhibited by cortical synapses
[71,72]. Each term in the summation in Eq. (6) vanishes unless
the presynaptic neuron xdi fires. If the presynaptic neuron
does fire, whether the summand of Eq. (6) will be positive
or negative depends on whether the postsynaptic neuron xdj

fires simultaneously. For this reason, each synaptic weight
increases if the network receives many data in which the
presynaptic and postsynaptic neurons of the connection fire
synchronously, while it decreases if the presynaptic and post-
synaptic neurons fire asynchronously [Fig. 1(d)].

Interestingly, the synaptic update rule depends on mem-
brane potential vd j , in addition to the spikes xdj , of the
postsynaptic neuron. This is consistent with a recently pro-
posed model of the spike-time-dependent plasticity that
accounts for various properties of synaptic plasticity by in-
troducing the average membrane potential of postsynaptic
neurons into the model [72]. Due to the dependency on the
membrane potential, unlike most existing models of synaptic
plasticity, the plasticity derived here does not require any ar-
tificial bound on synaptic weights. The incremental variation
of each connection weight automatically decays to zero when
the magnitude of the weight becomes large [Fig. 1(d)] because
σ (vd j) is the expectation value of xdj , and the difference be-
tween them, xdj − σ (vd j), decays to zero in such cases. Also,
note that Eq. (5) implies that the state changes more frequently
for synapses with smaller amplitude ai jm, consistent with ex-
perimental observations of negative amplitude dependence of
synaptic fluctuation [73,74].

Following the above equations, the state of each neuron and
each synapse is irregularly, asynchronously, and concurrently
updated with its own individually determined frequency. Be-
cause the equations are derived as an implementation of the
Gibbs sampling, the concurrent updates of variables without
any global scheduling enables the state of the hidden neurons
and the synapses to generate samples following the posterior
distribution conditioned on the given dataset, i.e., the network
evolves to suitably explain the training dataset and generate
the desired output with high probability. As we will see below,
the network generates the desired output even when input
data not included in the training dataset are fed to the input
neurons, and the output neurons are kept free, meaning that
the equations work as the learning algorithm of the network.
While we obtained the stochastic update equations under the
assumption that the network is DAG, which is not held by
recurrent networks, we will numerically see that the updates
work stably and effectively even for recurrent networks as a
learning algorithm.

Unlike existing learning algorithms requiring the alternat-
ing execution of different computations, e.g., forward and
backward computations or sampling and annealing proce-
dures, our algorithm realizes learning through the iteration
of a single computation for each variable. Furthermore, the
equations are local in the sense that they depend only on
neurons and synapses directly connected to the updated vari-
able. Owing to the local nature of the learning dynamics, we
can apply the algorithm to train recurrent networks, as well

as feedforward ones, with generally asymmetric connections.
These features are particularly suited to biological and hard-
ware implementations of the algorithm.

C. Feedforward networks

To see how the dual sampling enables learning of the
network, we first apply the algorithm to a simple problem,
a noisy and high-dimensional variant of the XOR problem,
learned in a supervised manner by a three-layered network
(see Appendix A for full details). We prepared training and
test datasets consisting of pairs of input and target output and
ran the algorithm on the network with feeding the training
dataset. During the learning process, we measured the training
and test accuracies by giving the input data to the input neu-
rons while output neurons were kept free. Figure 2(a) displays
the evolution of the training and test accuracies as functions
of the number of the sampling iteration of the algorithm. It is
seen that these accuracies nearly coincide, and they quickly
increase to values close to unity and remain there.

Significantly, even while the accuracies remain nearly con-
stant, the synaptic weights of the network continue to fluctuate
greatly [Fig. 2(b)], and the firing patterns of the hidden neu-
rons also continue to change, even when the same datum is
given to the network, without converging to a fixed pattern
[Fig. 2(c)]. These results are consistent with experimental
observations of continuing fluctuations of synapses and the
trial-to-trial variability of neural activity and answer why the
brain can realize reliable computation and learning despite
stochastic dynamics of neurons and synapses.

To study the robustness of the algorithm concerning its
constant parameters, we measured test accuracies of the net-
work after learning for various combinations of the number of
synapses per connection, M, and the maximum amplitude of
synapses, a0, [Fig. 2(d), see Appendix A]. Except in a narrow
range in which one of these constants is so small that the
possible maximum weight given by a0M is small, the network
almost perfectly learns to perform the task.

We then consider the influence of the parameters rb and
rq [Figs. 2(e) and 2(f)] that characterizes timescales of the
evolution of the latent scalar variables of neuron b and synapse
q, respectively. Unless rq is extremely small, and hence q
evolves extremely slowly, the training and test accuracies will
increase and reach values near unity, while their convergence
speed decreases as rb or rq decreases. (Note that the synaptic
evolution is already slower than the neuronal evolution even
when rq = 1, as discussed above. Therefore, a small value of
rq may result in unrealistically slow synaptic dynamics.)

To demonstrate the applicability of the method to practical
problems, we next study the application of the algorithm to
training multilayered feedforward networks using the MNIST
dataset (Fig. 3). We found that the accuracies quickly increase
to values near 95%, while the number of required iterations
and the asymptotically realized accuracies slightly decrease as
we increase the number of layers in the network [Figs. 3(a)–
3(c)]. Figure 3(d) displays examples of numerals that the
network fails to recognize. These are quite ambiguous and
difficult even for a human to identify with confidence.

The spatial distribution of connection weights from the
input neurons to a hidden neuron acts as the receptive field

043051-5

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

(a)

(c)

(d)

(e)

(f)

(b)

10080604020

0.2

0.4

0.6

0.8

1.0 1.0

0.5

ac
cu

ra
cy

a
0
 :

m
ax

m
um

 a
m

pl
itu

de
of

 a
 s

yn
ap

se

M : the number of synapses per weight
200010000

0.0

1.0
ac

cu
ra

cy

iteration

200010000

0.0

-3.0

3.0

w
ei

gh
t

iteration

200010000
0

20

40

ne
ur

on

iteration

200010000
0.0

1.0

ac
cu

ra
cy

iteration

200010000
0.0

1.0

ac
cu

ra
cy

iteration

FIG. 2. Supervised learning of feedforward networks using a simple artificial dataset. (a) Training (cyan) and test (magenta) accuracies of
a three-layered network as functions of the number of sampling iterations. (b) Evolution of randomly chosen synaptic weights of the network.
Different colors are used for different presynaptic neurons. (c) Evolution of the states of randomly chosen hidden neurons when the same
datum in the dataset is presented to the network. (d) Test accuracies realized by the learning algorithm with various values of the number
of synapses per connection K , and maximum amplitude of a synapse a0. (e) Evolution of training (cyan) and test (magenta) accuracies for
rb = 1.0, 0.1, 0.01, 0.001, from top to bottom. (f) The same as (e) but for rq = 1.0, 0.1, 0.01, 0.001, from top to bottom.

or the kernel of the hidden neuron, often having a localized
structure in the brain. To see whether the network after learn-
ing acquired the receptive fields similar to ones in the brain,
we illustrated their examples in Fig. 3(e). We can see that
Gabor-filter-like localized structures that resemble receptive
fields of neurons in the primary visual cortex [75] are or-
ganized through the learning. The introduction of a sparsity
constraint similar to the ones in the brain on neural activity
into the loss function of learning is known to provide Gabor-
filter-like receptive fields for an artificial neural network [76].
Interestingly, the network can acquire similar localized struc-
tures of receptive fields, even without any explicit additional
constraint on the learning algorithm derived from Gibbs sam-
pling.

The learning algorithm can avoid serious overfitting to the
training data because it is not derived as a direct optimization
of any objective functions. To see this point, we trained a
three-layered feedforward network using small numbers of
samples of the MNIST dataset and compared the resulting
training and test accuracies with those obtained from back-
propagation learning using the stochastic gradient descent
(SGD) and Adam algorithms [83] [Fig. 3(f)]. We found that
for both the SGD and Adam algorithms, as the size of the
training dataset is increased, the test accuracy decreases (in

the SGD case) or remains nearly constant (in the Adam case),
while the training accuracy increases monotonically, which
implies overfitting to the training dataset. Contrastingly, with
the proposed algorithm, as the size of the training dataset is
increased, both the training accuracy and the test accuracy
increase, maintaining a slight difference between them. This
implies that serious overfitting does not occur in the proposed
learning algorithm.

Continuing fluctuation of the dynamics of neurons and
synapses implies that the network can forget the learned
dataset after learning if we unclamp output neurons to make
them free while keeping the stochastic evolution of the
synapses. To see how long the network retains its learned
function or how quickly it forgets the learned dataset, we
measured the development of the accuracies along the learn-
ing followed by the unclamping of the output neurons from
the training dataset (Fig. 4). We used the same three-layered
network we had used in the situation of Fig. 3(a). As ex-
pected, the accuracies started to decrease after we removed
target outputs from the output neurons. However, the decay
is pretty slow as the accuracies maintain high values during
several hundred learning iterations. It is in marked contrast
with the rapid increase of the accuracies during the learning,
where they suddenly increased in about 100 steps. The slow

043051-6

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

(a)

(b)

(c)

(f)

(d)

(e)

FIG. 3. Supervised learning of feedforward networks using the MNIST dataset. (a-c) Training (cyan) and test (magenta) accuracies as
functions of the number of sampling iterations for (a) three-, (b) four-, and (c) five-layered networks. Each number in an oval indicates the
number of neurons in the corresponding layer. (d) Exceptional examples of training images (upper row) and test images (lower row) that the
three-layered network fails to recognize. (e) Examples of receptive fields of hidden neurons in the three-layered network. (f) Training (cyan)
and test (magenta) accuracies of the three-layered network as functions of the size of the training dataset. The network was trained by the
proposed algorithm (left panel), a backpropagation learning algorithm with a naïve stochastic gradient descendent (middle panel), and with the
Adam algorithm (right panel).

decay is explained by the smallness of the magnitude of the
scalar variables b after learning. The learning has made the
output neurons take their state value x with high probability,
implying that the difference between the state value and its

expectation σ (x), and thus the magnitude of the b, are small.
Therefore, the preceding neurons of the output neurons and
further preceding ones, in the same way, tend to keep their
state until the fluctuation makes them degrades passively. It is

043051-7

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

ac
cu

ra
cy

iteration

1.0

0.0
0 20001000

FIG. 4. Training (cyan) and test (magenta) accuracies as func-
tions of the sampling iterations during and after learning. We
unclamped the output neurons from the training dataset at 1000
sampling iteration (dashed line).

unlike the initial stage of the learning, where the retrograde
signals b actively modulates the state of the neurons.

Unlike most artificial neural networks in which the sign
of connection weights from a neuron can be either posi-
tive or negative, neurons in the brain follow Dale’s principle
claiming that connection weights from an excitatory and an
inhibitory neuron should exclusively be positive and negative,
respectively. Several algorithms have been proposed because
the standard learning algorithms are not viable for the sign-
constrained network [84,85]. However, the algorithm derived
here can apply to the sign-constrained networks without any
changes because the sign of each synaptic strength does not
change during learning. We prepared a feed-forward network
with excitatory and inhibitory neurons and made it learn a
task to confirm the validity of the algorithm under Dale’s
principle (Fig. 5). The training and test accuracies rapidly
increase as before while reached values are slightly lower than
those of the network without the sign constraint [Fig. 5(a)].
Figures 5(b) and 5(c) show the evolution of the connection
weights during learning and their density distribution after
learning, respectively. We can see that the weights evolve with
fluctuation as before but while keeping their signs.

D. Most efficient power-law coding

A recent biological experiment carried out by simultane-
ously recording the activity of a massive number of mouse
primary visual cortex neurons revealed that the variance spec-
trum of the principal component of neural activities obeyed
a power law with an exponent −1.04 that is slightly less
than −1 [41]. The authors of the paper [41] mathematically
proved that if the exponent is greater than −1, the population
code, i.e., representation of given stimuli by the population of
neurons, lies on a nondifferential manifold and less robust,
while if the exponent is less than −1, the population code
is restricted on a subspace with lower dimension than the
number of neurons, implying that the code cannot fully uti-
lize the neural resources. Thus, the experimentally observed
power-law coding with an exponent slightly less than −1 is
the most efficient in the sense that, in this case, the population
response of the neurons lies on a manifold of the highest
possible dimension while maintaining high generalizability.

ac
cu

ra
cy

iteration

1.0

0.0
0 3000

co
nn

ec
tio

n
w

ei
gh

t
iteration

3.0

-3.0

0 3000

0.0

de
ns

ity
 d

is
tri

bu
tio

n

connection weight

2.0

0.0-0.4 0.4
0.0

(a)

(c)

(b)

FIG. 5. Supervised learning of a feedforward network following
Dale’s principle. (a) Training (cyan) and test (magenta) accuracies
as functions of the number of sampling iterations. (b) Evolution
of randomly chosen six excitatory (magenta and orange) and six
inhibitory (cyan and green) connection weights. Different colors are
used for connections having different postsynaptic neurons. (c) Den-
sity distribution of the connection weights after learning.

To test whether a network trained by the proposed algo-
rithm realizes the most efficient power-law coding with the
exponent that is slightly less than −1, we numerically calcu-
lated the variance spectrum of the principal components of the
mean activity of the neurons in the hidden layer of a network
trained with the MNIST dataset. As shown in Fig. 6(a), the
variance spectrum exhibits clear power-law decay with an
exponent of −1.06. To check the generality of the result for
another training dataset, we trained the network to the fashion-
MNIST dataset too and obtained similar power-law decay of
the variance spectrum with the exponent slightly less than -1
(see Appendix C). This value is very close to the experimen-
tal result and is indeed slightly less than −1. We conclude

043051-8

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

(b)(a)

102

101

100

10-1

100 101 102 103

103

va
ria

nc
e

PC dimension

-1.06

-1.08

-1.10

-1.12

0 1000 2000 3000

ex
po

ne
nt

iteration

FIG. 6. Nearly optimal power-law decay of the variance spectrum for the principal component of the neural activity. (a) Variance spectrum
of the principal components of the mean population activity of the hidden neurons across the training dataset for the three-layered network after
training (cyan). The variances are arranged in descending order. The line (magenta) indicates the critical slope corresponding to an exponent
of −1. (b) Evolution of the power-law exponent of the variance spectrum as a function of the number of sampling iterations.

that the proposed learning algorithm leads the network to the
most efficient coding. This may explain the high generaliz-
ability of the trained network that yields nearly coincident
training and test accuracies, as seen in Figs. 2(a), 3(a), 3(b),
and 3(c).

We next study how the exponent of the power law de-
velops during learning. Figure 6(b) shows that the exponent
approaches a value close to −1 from below as the learning
proceeds. This result implies that the network does not start
from a nonsmooth, almost perfect representation of the train-
ing dataset. Rather, it first learns a coarse representation of
the dataset and then gradually acquires finer structures while
maintaining differentiability of the representation of the data
in coding space. This leads us to conclude that the robustness
or generalizability of the population coding takes priority over
the precision of the data representation in the learning. This
priority must particularly be beneficial for animals that must
survive in a ceaselessly changing environment.

Why the learning yields the critical power-law decay of
the spectrum remains unclear. If we trained the network by
the Adam or the SGD algorithm instead of the algorithm
derived here, we obtained exponential decay or power-law
decay with exponents significantly smaller than the critical
value, i.e., faster decays (results not shown). The faster decays
indicate that the above optimization algorithms let the network
represent the given dataset using only a few degrees of free-
dom of internal neurons, presumably due to the overfitting of
model parameters to the training dataset. We speculate that
our algorithm can avoid the steeper decays because it avoids
overfitting as it continues to generate random samples of con-
nection weights instead of making them converge to single
values. On the other hand, slower decays than the critical one
imply that the representation of the dataset by the internal
neurons is discontinuous and is highly vulnerable to random
perturbation to the activity of the internal neurons. However,
because our algorithm is intrinsically stochastic, the network
needs to evolve under random fluctuations during learning.
Thus, we infer that the algorithm can avoid the slower decays
because it forces the network to obtain internal representations
that are robust against the intrinsic fluctuation. To develop a

quantitative analysis about the evolution and resultant expo-
nent by the learning is an important future subject.

E. Recurrent networks

We next applied the algorithm to train a network with
generally asymmetric recurrent connections [Fig. 7(a), see
Appendix A] using the MNIST dataset. Figure 7(b) displays
the evolution of the training and test accuracies as functions
of the number of sampling iterations. The accuracies were
obtained from the states of the output neurons of the network
measured after recursive evolutions of the states of the hidden
neurons. We see that, as in the case of the results for the
feedforward networks, the training and test accuracies nearly
coincide and rapidly increase. This implies that the algorithm
is able to train even a recurrent network as well as feedforward
networks.

We speculate that the algorithm derived under the assump-
tion of DAG practically works even for the recurrent network,
that is not DAG, because most of the neurons in the network
are divided into preceding and successive neurons for each
neuron without overlap as the network rarely has direct feed-
back connections if connection probability is not very high.
How the performance of the algorithm degrades as increasing
the probability of the recurrent connections will be an inter-
esting future subject.

1. Statistics of network motifs

It has been reported that local cortical circuits are highly
nonrandom, and that connectivity patterns consisting of multi-
ple neurons, known as network motifs, exhibit a characteristic
distribution in which highly clustered patterns are overrep-
resented [77]. To study whether a recurrent network trained
by the proposed algorithm acquires a similar distribution of
the connectivity patterns, we determined the connectivity of
triplets of neurons in a trained recurrent network. In the
analysis, similarly with the experimental report, we restrict
ourselves to patterns of triples of neurons consisting only of
strong positive, i.e., excitatory, connections (see Appendix A
and D). The statistics for the ratio of the actual counts of

043051-9

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

(b) (c)(a)

FIG. 7. Supervised learning of a recurrent network using the MNIST dataset. (a) A recurrent neural network. Each number in an oval
indicates the number of neurons in the corresponding layer. (b) Evolution of the training (cyan) and test accuracies (magenta) of the recurrent
network. (c) Average ratios of the actual numbers of three-neuron patterns in the trained recurrent network to those predicted by the null
hypothesis (gray bars). The error bars indicate the range of ±2σ . The magenta circles are experimental results for real cortical circuits [77].

triplet patterns to the chance level are plotted in Fig. 7(c). The
same ratios for the experimental results are also overlaid in the
figure. While there are some exceptional cases in which the
ratios obtained here are somewhat larger than those obtained
experimentally, the two distributions of triplet patterns are
surprisingly similar. As observed experimentally, highly con-
nected motifs, i.e., those numbered 10 through 16 in Fig. 7(c),
are overrepresented by a factor several times greater than the
chance level. It is also interesting for the pattern that is only
slightly higher than the chance level, as in the 4th pattern in
Fig. 7(c), the model gives a result that is quite close to the
experimental result. These results support the validity of the
derived algorithm as a model describing the formation of local
cortical circuits.

We speculate that the overrepresentation of the fully con-
nected motifs can partly be accounted for by the receptive
fields of the internal neurons, while we have not succeeded
in the analytical derivation of the motif distribution. Previ-
ous experimental observation reported that the connection
probability between neurons monotonically increases as the
similarity of their receptive fields increases [86], which seems
consistent with our result since synaptic weights between two
neurons increase if the neurons generate spikes with a high
rate for similar data sets, as shown in Fig. 1(d). Because the
receptive field of the internal neurons is a realization of the
internal representation of the dataset by the network, it must
be an interesting future subject to develop a theory to connect
the power law of the internal representation, the distribution
of the receptive fields, and the probability of the recurrent
connections to predict the motif distribution.

2. Temporal sequence learning

We next consider the application of the algorithm to train a
recurrent network with a temporal sequence (Fig. 8). We pre-
pared a temporal sequence of music notes in which the same
temporal inputs, i.e., the same music notes, appear multiple
times at different times [the top panel of Fig. 8(b)], and trained
a recurrent network to predict the following input of the cur-
rent sequence [the bottom panel of Fig. 8(b)]. In this case, the
network needs to learn to store the history of inputs over some
interval to generate the desired output, i.e., the following note.

The training procedure is the same as that used in the case con-
sidered in Figs. 2–7, except that we identify the iteration of the
updates of the variables of the network as the time develop-
ment. In contrast to the algorithm known as “backpropagation
through time,” this procedure does not require virtually un-
folding the recurrent connections of the network along the
time axis. Therefore, the procedure ensures the biological
plausibility of the algorithm, in which time proceeds naturally,
and updating the neurons and synapses requires information
regarding only their current and immediate past states.

The learning algorithm successfully trained the network to
output the desired sequence [Fig. 8(b), the 4th panel from the
top]. We find that the output produced by the hidden neurons
after learning depends not only on the current input but also on
past inputs [the 3rd panel of Fig. 8(b)]. This indicates that the
algorithm enables the network to properly store input histories
as the current activity of the hidden neurons.

III. DISCUSSION

This study proposed a model of neural networks that
is an extension of the Boltzmann machine, in which neu-
rons and synapses work together to realize efficient learning
as a sampling-based Bayesian inference. The derived algo-
rithm provided biologically plausible stochastic dynamics of
neurons and synapses and gave results consistent with experi-
mental findings of the brain, including the optimal power-law
encoding of a given dataset. The obtained biological obser-
vations are not unique to our algorithm, as various previous
studies have succeeded in explaining them. It is, however,
fascinating that the learning algorithm derived here provides
such various features even without any explicit constraints to
reproduce them.

Recently, there has been a rapid growth of interest in
developing biologically plausible learning algorithms and
implementing them to energy-efficient devices, i.e., neuro-
morphic computing [3–26]. The algorithm proposed here
seems to have various benefits as an algorithm for neu-
romorphic computing. Unlike most of the current learning
algorithms, the algorithm intrinsically works asynchronously
and locally due to the characteristics of the Gibbs sampling. It
also does not require alternative switching between different

043051-10

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

(b)

0

30

0

30

N1

N2

N0x0

x1

x2

(a)

6180
0

30

ne
ur

on
ne

ur
on

ne
ur

on

time

x0

x2

x1

* **

FIG. 8. Supervised learning of recurrent networks using temporal sequences. (a) Network structure. (b) The input sequence (the top panel)
and the target output sequence (the bottom panel) of the dataset represented as sheet music. The asterisks indicate an example of times at which
the network must output different notes while the current input to the network is the same. The second panel shows a raster plot of the activities
of the input neurons. For visibility, we plotted the states of five cells per each of the six notes from C to A and overlaid the results of randomly
chosen ten data of the dataset with a slight displacement of the time axis. The third and fourth panels show the activities of the hidden neurons
and the output neurons, respectively, after learning of 500 sampling iterations. Arrows indicate times at which the current input to the network
is the same. We plotted the states of randomly chosen 30 cells in the third panel and randomly chosen five cells for each of the six notes in the
fourth panel with the slight displacement of the time axis for the ten data results.

computations such as feedforward and backward propagations
or free and clamped phases during the learning. These features
of the event-driven computation are suitable for neuromorphic
computing as they will reduce the complexity of the circuit
and allow it to avoid the high energy cost of communication
to synchronize the entire network to a single clock.

Stochastic computation and binary communication of the
algorithm also seem highly beneficial for neuromorphic com-
puting. Communication using binary bit values rather than
analog values will simplify the hardware and largely reduce
communication costs for learning and inference. Furthermore,
the stochasticity of the algorithm will improve the robustness
of the hardware implementation of the algorithm and allow us
to omit elaborate error detection and correction mechanisms.
It will reduce the hardware’s energy consumption because
much energy is used to protect and stabilize the binary states
of devices from thermal or quantum noise. Inspired by the
stochastic spike emission of neurons in the brain, studies
of neuromorphic hardware using binary stochastic devices,
including spintronics and memristive devices, are rapidly
growing recently. Considering the above, we expect these
devices with the algorithm proposed here will be promising
candidates to realize energy-efficient neuromorphic hardware.

One of the possible drawbacks of the algorithm devel-
oped here is the requirement of extra hardware that would
be needed to implement the multiple synapses and dendritic
neurons. To evaluate the balance between the benefits and the
possible drawbacks and to improve the algorithm to reduce
the possible extra hardware requirement must be an important
future subject.

The derived evolution equation for neurons has a term
that results in the retrograde modulation of the excitability
of a neuron by its succeeding neurons. Due to this term, the
algorithm acts as a stochastic variant of algorithms with error
backpropagation through which desired outputs provided to a
part of the network can spread over the entire network. Recall
that a desired output is given to the network by fixing the states
of the corresponding visible neurons to the desired value.
Assume that the kth neuron is one of these neurons. Then xdk

gives the desired value, and the term xdk − σ (vdk) in the bias
bdj of the jth neuron gives the difference between the desired
value and the expected value of xdk when the kth neuron is
not fixed, which is identical to the error in backpropagation
learning when the squared error is used as the loss function.
(Recall that xdk and vdk are stochastic variables when the
neuron is not fixed.) The term bdj accumulates these errors

043051-11

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

of the succeeding neurons of the jth neuron and regulates
the excitability of this neuron in such a manner to reduce
the errors. Even if the kth neuron is not in the output layer,
the term xdk − σ (vdk) still represents an error of that neuron
because this represents the difference between current and
expected values of the neuron in the cases that the network
does and does not receive the desired outputs, respectively.

In contrast to backpropagation learning, the retrograde
modulation requires neither synchronous nor precisely coor-
dinated operations, which are major reasons that backprop-
agation has not been regarded as the learning principle of
the brain. Furthermore, the retrograde modulation need not
be immediately affected by postsynaptic action potentials but,
rather, can slowly integrate their effects. This assumption
seems biologically plausible, as it can be implemented in real
cortical circuits. To our knowledge, experiments to verify the
existence of such slow retrograde modulation of the excitabil-
ity of neurons have not yet been attempted. The mechanisms
regarded as likely to be responsible for this behavior include
the combination of action potential backpropagation from
soma to dendritic spines [87] and retrograde transsynaptic
transport of certain chemicals [88], glia-mediated modula-
tion [89], and disynaptic connections from postsynaptic to
presynaptic neurons. However, note that, while the slow time
constants of the modulation rb and the synaptic latent vari-
able rq work efficiently to train the network, we have not
analytically derived them as an integral part of the theory.
Instead, we have imposed them to the model to convert the
discrete time steps of the sampling algorithm onto continuous
time evolution and make the algorithm biologically plausible.
Further study is needed for the analytical treatment of the time
constants.

Here we summarize existing representative learning al-
gorithms of neural networks from the stochasticity of their
variables and discuss their relationships to ours. Regarding
stochasticity, we can categorize existing neural network mod-
els into three: deterministic neural networks whose neurons
and connection weights are deterministic, Boltzmann ma-
chines whose neurons are stochastic, but connection weights
are deterministic, and Bayesian neural networks whose con-
nections but not neurons are stochastic. One of the most
efficient learning algorithms for deterministic neural networks
is backpropagation learning, a gradient descent optimization
of connection weights to minimize a given loss function.
While the algorithm does not appear fully compatible with
experimental observations of the biological brain, various so-
lutions have been proposed to alleviate the problem [27–39].

Gradient-based optimization is also used to train Boltz-
mann machines because their connection weights are still
deterministic, whereas neurons are stochastic [2]. However,
to match the distribution of the stochastic neurons to the
desired distribution, each iteration of the gradient learning
requires the mean and the covariance of the neural activities
under the current values of the connection weights, which
makes the algorithm impractically time-consuming because
the calculation of the statistics requires many samples of vari-
ables to converge. The contrastive divergence algorithm has
been proposed to ease the difficulty [90]. However, its scope
is limited to the restricted Boltzmann machine, where neurons
form a bipartite graph.

Unlike the above two, the connection weights of Bayesian
neural networks are stochastic. Thus, the desired weights are
characterized by their posterior distribution conditioned on
given datasets rather than fixed values. However, the compu-
tation of the posterior distribution is generally intractable due
to its computationally demanding normalization factor. The
best-known way to solve the problem is variational Bayesian
inference, which approximates the posterior distribution with
a parametrized proxy distribution, called variational distribu-
tion [91]. The approximation results in optimization of the
parameters of the variational distribution to maximize the
evidence lower bound, or the negative variational free en-
ergy, of the variational distribution. Hence, again, the learning
results in gradient-based optimization of nonstochastic pa-
rameters that characterize the distribution. The typically used
efficient algorithm of this includes Bayesian backpropagation
[92,93].

The model proposed here shares the learning objective, the
posterior weight distribution, with Bayesian neural networks
as connection weights are stochastic, whereas computation of
the distribution is generally intractable, as mentioned above.
Our network provided a different solution to the difficulty by
combining the binary representation of synapses, stochastic
neurons, and Gibbs sampling. Binary synapses simplify the
posterior distribution to the Bernoulli distribution, allowing us
to analyze this via a similar procedure with the logistic regres-
sion [94]. However, the introduction of binary synapses alone
does not fully solve the problem because it still requires back-
prop optimization of parameters of the Bernoulli distribution.
Concurrent use of Gibbs sampling and stochastic neurons
is the remedy. Gibbs sampling replaces computation of the
posterior distribution by local and asynchronous updates of
variables. Then, the introduction of stochastic neurons enables
error signals to propagate stochastically to the entire network
by using the retrograde modulation of the firing probability of
the neurons. Thus, the model integrates the Bayesian neural
network and Boltzmann machine and simultaneously provides
a protocol for hierarchical Bayesian inference on stochastic
neural networks.

ACKNOWLEDGMENTS

The author thanks to T. Fukai, S. Amari, N. Hiratani, and
S. Shinomoto for valuable discussions and comments. This
work was partially supported by JSPS KAKENHI Grants No.
JP16H01719, No. JP17K00338, No. JP19K12165, and No.
JP20K11987.

APPENDIX A: METHODS

1. Learning algorithm

The learning of the network is modeled as a Gibbs sam-
pling of all free variables from their posterior joint distribution
conditioned on the fixed variables,

P({xdi}i∈H,d∈D, {si jm}i, j∈N,m∈M | {xdi}i∈V,d∈D). (A1)

The Gibbs sampling allows us to replace the sampling with
a repetition of samplings of each single variable from a

043051-12

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

posterior distribution conditioned on all other variables,

P(xdj | {xdi}i �= j, {si jm}i, j∈N,m∈M) (A2)

and

P(si jm | {xdi}i∈H,d∈D, {skln}kln �=i jm) (A3)

for a neuron and a synapse, respectively.
To derive an explicit description of the posterior distri-

bution of a neuron, let us assume the network is a directed
acyclic graph (DAG) and consider the log-likelihood ratio for
xdi. Using the Bayes rule, we obtain

log
P(xdj = 1 | · · ·)

1 − P(xdj = 1 | · · ·)
(A4)

= log
P(xdj = 1 | {xdi}i∈p(j), {xdk}k∈s(j), · · ·)

P(xdj = 0 | {xdi}i∈p(j), {xdk}k∈s(j), · · ·)
(A5)

= log
P(xdj = 1 | {xdi}i∈p(j), {si jm}m∈M)

P(xdj = 0 | {xdi}i∈p(j), {si jm}m∈M)

∏
k∈s(j)

P(xdk | xdj = 1, {s jkm}m∈M , · · ·)

P(xdk | xdj = 0, {s jkm}m∈M , · · ·)
(A6)

= log
σ (vd j)

1 − σ (vd j)
+

∑
k∈s(j)

{
log σ (vdk,− j + w jk) − log σ (vdk,− j), xdk = 1
log(1 − σ (vdk,− j + w jk)) − log (1 − σ (vdk,− j)), xdk = 0 (A7)

= vd j +
∑

k

{
(1 − σ (vdk))w jk, xdk = 1
−σ (vdk)w jk, xdk = 0 (A8)

= vd j +
∑

k

w jk (xdk − σ (vdk)), (A9)

where the dots represent all variables other than explicitly
given variables, p(j) and s(j) denote sets of the preceding and
the succeeding neurons of the jth neuron, respectively. Owing
to the assumption that the network is DAG, we can divide
neurons into the disjoint sets of the preceding and succeed-
ing neurons for the ith neuron and safely factorize posterior
distributions of (A.5) to obtain (A.6). Here, we used Bayes’
rule P(A | B,C) ∝ P(B | A,C)P(A | C) and conditional inde-
pendence of variables xdk as

P(xdj | {xdi}i∈p(j), {xdk}k∈s(j), · · ·)

∝ P({xdk}k∈s(j) | xdj, {xdi}i∈p(j), · · ·)P(xdj | {xdi}i∈p(j), · · ·)

= P(xdj | {xdi}i∈p(j), {si jm}i∈p(j),m∈M)∏
k∈s(j)

P(xdk | xdj, {xdl}l∈p(k)\ j, {slkm}l∈p(k),m∈M).

Equation (A7) follows from the fact that the firing probabil-
ity of the kth neuron conditioned on xdj = 1 is σ (vdk,− j +
1 · w jk) while it conditioned on xdj = 0 is σ (vdk,− j + 0 ·
w jk), where vdk,− j = vdk − xdjw jk . To obtain (A8), we as-
sumed that ‖vdk,− j‖ � ‖w jk‖ and linearized each term of the
summation of (A7) with respect to w jk . Solving the above
equation for P(xdj = 1 | · · ·), we obtain Eq. (3) of the result
section with

bdj =
∑

k

w jk (xdk − σ (vdk)) (A10)

as the posterior distribution (i.e., the stochastic update rule) of
the neuron.

Similarly, the log-likelihood ratio for the synapse si jm is

log
P(si jm = 1 | · · ·)

1 − P(si jm = 1 | · · ·)
(A11)

= log
P(si jm = 1 | · · ·)

P(si jm = 0 | · · ·)
(A12)

= log
P(si jm = 1)

P(si jm = 0)

∏
d

P(xdj | si jm = 1, · · ·)

P(xdj | si jm = 0, · · ·)
(A13)

= q0,i jm +
∑

d

{
log σ (vd j,−im + xdiai jm) − log σ (vd j,−im), xdj = 1
log (1 − σ (vd j,−im + xdiai jm)) − log (1 − σ (vd j,−im)), xdj = 0 (A14)

= q0,i jm +
∑

d

{
(1 − σ (vd j))xdiai jm, xdj = 1
−σ (vd j)xdiai jm, xdj = 0 (A15)

= q0,i jm + ai jm

∑
d

xdi(xdj − σ (vd j)), (A16)

043051-13

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

where the dots represent all variables other than explicitly
given variables, i.e., {xdi} and {skln}kln �=i jm, and we have
vd j,−im = vd j − xdisi jmai jm. To obtain (A15), we have as-
sumed ‖vd j,−im‖ � ‖ai jm‖, and approximated each term in the
summation as a quantity linear in ai jm. The constant q0,i jm

represents the log-likelihood ratio of the prior distribution
P(si jm), which vanishes unless the prior distribution is bi-
ased. We assumed q0,i jm = 0 throughout the work. Solving
the above equation for P(si jm = 1 | · · ·) gives Eq. (5) and

qi j =
∑

d

xdi(xdj − σ (vd j)) (A17)

which constitute the explicit description of the posterior dis-
tribution or the update rule of the synapse. While the derived
update rules of neurons and synapses are exact only when
the network is a DAG, we numerically confirmed that they
work well even on recurrent networks, as far as the connection
probability of the networks is not very high.

Equation (A10) implies that a spike of a neuron imme-
diately changes bdj and excitability of presynaptic neurons.
However, such immediate retrograde modulation has not been
experimentally reported and seems biologically implausible.
Rather, it is biologically more natural that bdj evolves slowly
while accumulating the effects of postsynaptic spikes as
Eq. (4), where rb characterizes the timescale of the evolution.
[Here, rb satisfies 0 < rb � 1, while in the case rb = 1, Eq. (4)
reproduces to Eq. (A10).] Thus, bdj is determined by the
average spike history of the postsynaptic neurons over a finite,
presumably quite long, duration. Similarly, we can also gener-
alize the evolution equation for qi j as Eq. (6). As demonstrated
in Figs. 2(e) and 2(f), these generalizations rarely decrease the
learning accuracy of the algorithm.

2. Numerical simulations

All numerical simulations are written in Python, with the
open-source matrix library CuPy. In details of the procedures
to train a feedforward network are as follows. (i) We first
prepare ND binary variables for the N neurons and W M
synapses where D is the number of data in the training dataset,
W is the number of connections in the network, and M is
the number of synapses per connection. (ii) Then we fix the
variables of the visible neurons to the values of the data in
the training dataset, and initialize the values of the hidden
neurons and synapses randomly to 0 or 1 with probability 1/2.
(iii) To avoid perfectly synchronized updates and to mimic
asynchronous updates of variables, we randomly choose the
ratio rx for the hidden neurons and update their variables
according to Eqs. (3) and (4). (iv) Similarly, we randomly
choose the ratio rs for the W M synapses to update according to
Eqs. (5) and (6). (iv) We repeat (iii) and (iv) as many times as
desired. The procedure to obtain the prediction of the network
is the same as that for the training procedure, except that we
fix only the input neurons and update the hidden and output
neurons according to Eqs. (3) and (4), keeping the synaptic
values fixed. During the prediction procedure, to accelerate
the computation, we can use the average activities of the
neurons, σ (vd j), instead of their binary variables, xdj , and omit
the biases, bdj . The training and test accuracies are defined as
the ratio of the number of inputs that enables the network to

generate the correct outputs to the total numbers of inputs of
the training and test datasets, respectively.

3. Dataset

Except in the cases described by Figs. 2 and 8, we used
the MNIST dataset, which consists of a training dataset of
60 000 examples and a test dataset of 10 000 examples in
which each image has 28 × 28 = 784 pixels. Because pixels
in the MNIST data range from 0 to 255, we replaced them with
0 or 1, depending on whether the value of the pixel is below
or above 255/2. We thus obtain 784-dimensional binary input
vectors.

In the situation considered in Fig. 2, we trained a three-
layered network consisting of 40 input, 40 hidden, and two
output neurons to learn a simple task that is a noisy and
high-dimensional variant of the XOR problem. The datasets
were artificially generated as follows. We first prepared
two-dimensional binary vectors (Xd1, Xd2), where d is the
data index of the dataset. Then, to obtain 40-dimensional
binary input vectors (Yd1, · · · ,Yd40), we set Ydi = Xd1 for
i = 1, · · · , 20 and Ydi = Xd2 for i = 21, · · · , 40, and then
flipped their values randomly with a probability of pflip =
0.1 to obtain randomized input datasets. The desired out-
puts of the two-dimensional vectors are given by Zdi = (1, 0)
if XOR(Xd1, Xd2) = 0 and (0, 1) if XOR(Xd1, Xd2) = 1.The
training dataset and test dataset each contains 400 examples.

In the situation considered in Fig. 8, we used datasets
consisting of temporal sequences to train recurrent networks.
Let us write the input data and desired outputs at time t as
Xdi(t) and Zdi(t). These are fed into the network by fixing
the neurons in the input layer as x0,di(t) = Xdi(t), 0 < i � N0,
and those in the output layer as x2,di(t) = Zdi(t), 0 < i � N2,
where N0 and N2 are numbers of neurons in the input and
output layers, respectively. A dataset is prepared as follows.
We first prepare an integer sequence s(t), where 0 � s(t) �
S and 1 � t � T . We then set Xi(t) = 1 if s(t) > 0 and
(s(t) − 1)N0/S < i � s(t)N0/S and Xi(t) = 0 otherwise. The
desired output is set as Zdi(t) = Xi(t + 1) if 1 � t < T and
Zdi(T) = Xi(0) otherwise. To obtain randomized input vec-
tors Xdi(t), we replicated Xi(t) and randomly flipped them
as Xdi(t) = Xi(t) with probability 0.95 and Xdi(t) = 1 − Xi(t)
with probability 0.05. The integer sequence s(t) was “1, 1, 5,
5, 6, 6, 5, 0, 4, 4, 3, 3, 2, 2, 1, 0” (that is taken from the melody
of “Twinkle, Twinkle, Little Star”) with N0 = 300, S = 6 and
T = 16.

4. Parameters

We used rq = 1.0, rs = 0.001, M = 200, a0 = 0.1, and
D = 100 in the situation considered in Fig. 1(f), and rb = rq =
rx = 1.0, rs = 0.001, M = 50, a0 = 0.5, and D = 400 in the
situation considered in Fig. 2. In the situation considered in
the remaining figures, except Figs. 6–8, we used rb = 0.01,
rx = 0.9, rq = 0.1, rs = 0.001, M = 100, and a0 = 0.1. In the
case of Fig. 6, we use M = 200, and in the case of Fig. 7, we
used rx = 0.5, a0 = 0.1, and in the case of Fig. 8, we used
rb = 0.1, rx = 1, rq = 0.005, rs = 0.005, and D = 2000. The
numbers of hidden neurons in the three-layered network that
are not specified in the figures are 1000 for Figs. 3(f) and 6,

043051-14

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

100 for Fig. 7, and 500 for Fig. 8. Connection probability
was 1.0 and 0.5 for feedforward connections and recurrent
connections, respectively. In the case of Fig. 5, we randomly
assign a value gi = +1 or −1 to all hidden neurons with the
probability of 1/2. Then, using the assigned value, we set the
amplitude of synapses as ai jm = gia′

m where a′
m is an evenly

spaced sequence from 0 to a0.

5. Statistical analysis

a. Spectrum variance of principal components

After we trained the three-layered neural network con-
sidered in Fig. 3(a) using the MNIST dataset, we fixed the
synapses and obtained the average activities of the hidden
neurons across the training dataset {σ (vd j)}d∈D, j∈H . Note that
the quantities vd j for the hidden neurons were deterministic
in this case because both the input neurons and the synaptic
connections from them were fixed. The principal component
analysis was applied to the average activities after they were
standardized. Then we obtained the explained variance of
each principal component, which is the eigenvalue of the
covariance matrix of the standardized average activities and
ordered them in descending order. Namely, we obtained the
eigenspectrum of the covariance matrix Ci j = 1

D

∑D
d=1 σdiσd j ,

where σdi = (σ (vdi) − μi)/χi, μi = 1
D

∑
d σ (vdi), and χ2

i =
1
D

∑
d (σ (vdi) − μi)2. The exponent of the power law was es-

timated with a least-square linear fit of the variance spectrum
in log-log space.

b. Statistics of network motifs

We trained a three-layered recurrent network with 100
hidden neurons. Then, we measured the number of connection
patterns among the triplets of neurons over all possible com-
binations of 3 neurons chosen from 100, i.e., for (100 × 99 ×
98)/6 = 161 700 triples. Here, we only counted connections
whose synaptic weights were greater than or equal to 0.27, to
exclude small and negative connections. See Appendix D for
the relationship between the threshold size and the connec-
tion weight distribution and results using different threshold
values. Connection weights that are compared against the
threshold 0.27 are determined from a sample of synaptic vari-
ables of each network after training. The null hypothesis of the
counts is defined in the same way provided in the paper [77].
Namely, we determined the numbers of unidirectional and
bidirectional connections in all pairs of neurons and calculated
the predicted number of three-neuron patterns by assuming
all constituent pairs of neurons in each triplet pattern are
chosen independently, while maintaining the probabilities of
the measured unidirectional and bidirectional connections. We
performed 20 learning trials to obtain the mean and standard
deviation, σ , of the ratio of the actual number of each triplet
pattern to that obtained with the null hypothesis.

APPENDIX B: OTHER POSSIBILITIES
OF SYNAPTIC CONSTANTS

We demonstrate other possibilities of constants {ak} of
the synaptic strength instead of the equally spaced sequence
used in the main text. The first is the geometric se-

quence with powers to 2, the most efficient expression
of scalar numbers by the weighted sum of binary val-
ues. Considering sign of the representation, we have
used 10 synapses for each connection, 5 positive and
5 negative values, where {ak} = {20, 2−1, 2−2, 2−3, 2−4} ∪
{−20,−2−1,−2−2,−2−3,−2−4}. Thus, each connection
weight ranges from about −2 to 2 with the step of 1/16.
Figure 9(a) shows the development of training and test accu-
racies that corresponds with Fig. 3(a) in the main text, and
Fig. 9(b) shows the evolution of several synaptic weights.
We see that the accuracies stably increase along with the
learning iteration while the reached values are slightly lower
than those of Fig. 3(a). We speculate that the slight de-
crease in the performance is due to the lack of redundancy
of the binary expression of the connection weights. Note that
processing time and required memory capacity are largely
reduced due to the smallness of the number of synapses
here.

The second case is one synapse for each connection, the
most compact but less expressive. We randomly set the am-
plitude of the synapses to −10 or 10 with the probability
of 1/2. (Note that this does not satisfy Dale’s law because
positive and negative synapses sharing a presynaptic neuron
coexist.) Figures 9(c) and 9(d) shows the result of the learning.
The algorithm works decently even for the simplest case,
whereas achieved performance is not very high, indicating
that using multiple synapses per connection is not the essential
requirement for the algorithm while it improves the learning
performance.

APPENDIX C: POWER-LAW DECAY OF THE VARIANCE
SPECTRUM FOR ANOTHER DATASET

Figure 10 shows the variance spectrum of the princi-
pal components of the mean population activity of hidden
neurons across the training dataset of the fashion-MNIST
dataset. Again, we see that the variance spectrum follows
the power law with the exponent slightly less than −1.
The power-law exponent obtained here is −1.04, which is
just the same value reported in the visual cortex experi-
ment. The result, along with the result of Fig. 6(a) in the
main text, implies that the critical power-law spectrum ob-
tained here is not a specific outcome given by the MNIST
dataset.

APPENDIX D: CONNECTIVITY PATTERNS OF TRIPLETS
OF NEURONS FOR DIFFERENT THRESHOLD VALUES

The panel Fig. 11(a) shows the histogram of recurrent con-
nection weights and the threshold 0.27 used in the main text
to exclude weak connections when we analyzed connectivity
patterns of triplets of neurons in the recurrent network. Panels
in Figs. 11(b)–11(e) show connectivity patterns, the same with
Fig. 7(c), but for different threshold values from the value
0.27 used in the main text. We see that the ratios of the actual
counts of connected patterns, i.e., the patterns from 10 to 16,
to the chance level increase as the threshold increases, while
they decrease and approach to unity, indicating the chance
level as the threshold decreases. This result means strong
connections exist in the network more nonrandomly, whereas

043051-15

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

ac
cu

ra
cy

iteration

1.0

0.0
0 3000

co
nn

ec
tio

n
w

ei
gh

t

iteration

2.0

-2.0
0 3000

0.0

(a)

(b)

ac
cu

ra
cy

iteration

1.0

0.0
0 1000

co
nn

ec
tio

n
w

ei
gh

t

iteration

10.0

-10.0
0 1000

0.0

(c)

(d)

FIG. 9. Other possibilities of synaptic constants ak instead of the one used in the main text. [(a),(b)] Geometric sequence with powers to 2.
(a) Training (cyan) and test (magenta) accuracies as functions of sampling iteration. Their reached values are 94.72% and 93.56%, respectively.
(b) evolution of connection weights. [(c),(d)] The same as [(a),(b)] but for the case of one synapse for each connection. Reached values of
training and test accuracies are 91.82% and 91.22%, respectively.

weak connections are distributed randomly, consistent with
the experimental observation. However, please note that we
set the threshold value arbitrarily, and it does not fully agree
with a small value of the threshold used in the experiment. We
speculate that the discrepancy can be due to the limit of detec-
tion for weak synapses. While weak connections are difficult

PC dimension

va
ria

nc
e

100 101 102 103

100

101

102

103

10-1

FIG. 10. The same as Fig. 6(a) of the main text but for the
fashion-MNIST dataset.

to be detected in experiments, all connections, including weak
synapses, are detectable in numerical simulations.

APPENDIX E: AN ONLINE IMPLEMENTATION OF THE
LEARNING ALGORITHM

So far, to accelerate computational speed, we have per-
formed all numerical simulations of the algorithm using an
implementation in which neurons that receive different data
of a dataset update their variables parallelly, and synapses
sum up these values to update their variables, as is given
in the summation across data index d of equation (6) in the
main text. However, in the brain, each datum of the dataset is
given to the network serially in time rather parallelly, and the
synapses must accumulate neural states over a relatively long
time to update their state. Such online implementation of the
algorithm can also be beneficial for neuromorphic computing,
besides neuroscience, because it may allow the development
of edge devices that continuously learn from information
available over time, as animals and humans realize lifelong
learning in an ever-changing environment.

Here we provide an online implementation of the algorithm
in which a sequence of data is fed to a network, and neurons
and synapses randomly update their states over time with
designated frequencies. The algorithm is almost the same as
equations from (3) to (6) in the main text, except that neural
variables do not have the data subscript d , and the latent

043051-16

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

(a)

(b)

(c)

(d)

(e)

400

0

connection weight

fre
qu

en
cy

0.80.0-0.8
co

un
ts

 re
la

tiv
e

to
 ra

nd
om

threshold = 0.24

1 2 3 4 5 6 7 8 9 10 12 13 14 15 1611

51

1

1 2 3 4 5 6 7 8 9 10 12 13 14 15 1611

threshold = 0.21

co
un

ts
 re

la
tiv

e
to

 ra
nd

om

51

1

threshold = 0.33

1 2 3 4 5 6 7 8 9 10 12 13 14 15 1611

co
un

ts
 re

la
tiv

e
to

 ra
nd

om

51

1

threshold = 0.30

1 2 3 4 5 6 7 8 9 10 12 13 14 15 1611co
un

ts
 re

la
tiv

e
to

 ra
nd

om

51

1

FIG. 11. Connectivity patterns of triplets of neurons in the recurrent network. (a) The histogram of recurrent connection weights with the
threshold 0.27 (dashed line) used in the main text. [(b)–(e)] The same as Fig. 7(c) but for different values of the threshold from 0.27: (b) 0.21,
(c) 0.24, (d) 0.30, and (e) 0.33. Note that magenta points indicating experimental evidence are identical across thresholds, including Fig. 7(c) in
the main text.

synaptic variables q do not explicitly sum up neural variables
across data. Rather, they accumulate neural states over time.
Thus, we obtain

P(x j = 1 | · · ·) = σ (v j + b j) (E1)

b j (t + 1) = (1 − rb)b j (t) + rb

∑
k

w jk (xk − σ (vk)) (E2)

for a neuron and

P(si jm = 1 | · · ·) = σ (ai jmqi j) (E3)

qi j (t + 1) = (1 − rq)qi j (t) + xi(x j − σ (v j)) (E4)

for a synapse.
Figure 12 shows the results of a numerical simulation that

trains a feedforward network in a supervised manner using
the online algorithm. The network learns the same type of

artificial dataset we have used for Fig. 2, i.e., a noisy and
high-dimensional variant of the XOR problem in the main
text, while here, unlike Fig. 2, the data is serially given to
the network. During the learning, we randomly chose a da-
tum from the dataset every 20 timesteps and continued to
present it to the network until the next datum was randomly
chosen. Note that hidden neurons and synapses just repeat
random updates of their variables without resetting variables
or switching between different computations during learning.
Parameters used for the simulation are the same as Fig. 2(a) in
the main text, except that we use a smaller dataset with D =
200 and pflip = 0.05, and the lower, i.e., slower, rate constants
of synaptic evolutions rq = 10−3 and rs = 10−5. Similar to the
results of Fig. 2, we can see that training and test accuracies
almost monotonically increase until they reach values close
to one while connection weights continue to fluctuate during
learning, whereas the learning requires a longer time than the
parallel implementation, as expected.

(b)(a)

000060

0.5

1.0

0.0

-1.0

1.0

000060

-2.0

FIG. 12. Supervised learning of a feedforward network using an online implementation of the learning algorithm. (a) Training (cyan) and
test (magenta) of a three-layered network as functions of time. (b) Evolution of randomly chosen synaptic weights of the network. Similar to
Fig. 2 in the main text, different colors are used for different presynaptic neurons.

043051-17

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

[1] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature
(London) 521, 436 (2015).

[2] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learn-
ing algorithm for Boltzmann machines, Cognit. Sci. 9, 147
(1985).

[3] D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, Physics
for neuromorphic computing, Nat. Rev. Phys. 2, 499 (2020).

[4] T. Pfeil, J. Jordan, T. Tetzlaff, A. Grübl, J. Schemmel,
M. Diesmann, and K. Meier, Effect of Heterogeneity on
Decorrelation Mechanisms in Spiking Neural Networks: A
Neuromorphic-Hardware Study, Phys. Rev. X 6, 021023
(2016).

[5] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D.
Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima et
al., Neuromorphic computing with nanoscale spintronic oscil-
lators, Nature (London) 547, 428 (2017).

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[7] A. Z. Pervaiz, L. A. Ghantasala, K. Y. Camsari, and S. Datta,
Hardware emulation of stochastic p-bits for invertible logic, Sci.
Rep. 7, 10994 (2017).

[8] Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M.
Hu, N. Ge, J. P. Strachan, Z. Li et al., Memristors with diffusive
dynamics as synaptic emulators for neuromorphic computing,
Nat. Mater. 16, 101 (2017).

[9] N. Gong, T. Idé, S. Kim, I. Boybat, A. Sebastian, V. Narayanan,
and T. Ando, Signal and noise extraction from analog memory
elements for neuromorphic computing, Nat. Commun. 9, 2102
(2018).

[10] I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Parnell,
T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and E.
Eleftheriou, Neuromorphic computing with multi-memristive
synapses, Nat. Commun. 9, 2514 (2018).

[11] A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S. Yuasa, J.
Grollier, and D. Querlioz, Neural-like computing with popula-
tions of superparamagnetic basis functions, Nat. Commun. 9,
1533 (2018).

[12] Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, and A.
Salleo, Organic electronics for neuromorphic computing, Nat.
Electron. 1, 386 (2018).

[13] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran,
and W. H. Pernice, All-optical spiking neurosynaptic net-
works with self-learning capabilities, Nature (London) 569, 208
(2019).

[14] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H.
Ohno, and S. Datta, Integer factorization using stochastic mag-
netic tunnel junctions, Nature (London) 573, 390 (2019).

[15] K. Roy, A. Jaiswal, and P. Panda, Towards spike-based machine
intelligence with neuromorphic computing, Nature (London)
575, 607 (2019).

[16] M. Mahmoodi, M. Prezioso, and D. Strukov, Versatile stochas-
tic dot product circuits based on nonvolatile memories for
high performance neurocomputing and neurooptimization, Nat.
Commun. 10, 5113 (2019).

[17] E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal,
Y. Li, Y. Tuchman, C. D. James, M. J. Marinella, J. J. Yang
et al., Parallel programming of an ionic floating-gate memory
array for scalable neuromorphic computing, Science 364, 570
(2019).

[18] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D.
Englund, Large-Scale Optical Neural Networks Based on Pho-
toelectric Multiplication, Phys. Rev. X 9, 021032 (2019).

[19] S. Zhang and Y. Tserkovnyak, Antiferromagnet-Based Neuro-
morphics Using Dynamics of Topological Charges, Phys. Rev.
Lett. 125, 207202 (2020).

[20] J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte, S.
Fukami, and M. D. Stiles, Neuromorphic spintronics, Nat.
Electron. 3, 360 (2020).

[21] W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu, M.-F. Chang, H.-J.
Yoo, H. Qian, and H. Wu, Neuro-inspired computing chips, Nat.
Electron. 3, 371 (2020).

[22] V. K. Sangwan and M. C. Hersam, Neuromorphic nanoelec-
tronic materials, Nat. Nanotechnol. 15, 517 (2020).

[23] P. Debashis, V. Ostwal, R. Faria, S. Datta, J. Appenzeller, and Z.
Chen, Hardware implementation of Bayesian network building
blocks with stochastic spintronic devices, Sci. Rep. 10, 16002
(2020).

[24] K. Y. Camsari, M. M. Torunbalci, W. A. Borders, H. Ohno,
and S. Fukami, Double-Free-Layer Magnetic Tunnel Junc-
tions for Probabilistic Bits, Phys. Rev. Appl. 15, 044049
(2021).

[25] B. J. Shastri, A. N. Tait, T. F. de Lima, W. H. Pernice, H.
Bhaskaran, C. D. Wright, and P. R. Prucnal, Photonics for arti-
ficial intelligence and neuromorphic computing, Nat. Photonics
15, 102 (2021).

[26] B. Kiraly, E. J. Knol, W. M. van Weerdenburg, H. J. Kappen,
and A. A. Khajetoorians, An atomic Boltzmann machine capa-
ble of self-adaption, Nat. Nanotechnol. 16, 414 (2021).

[27] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, and
Z. Lin, Towards biologically plausible deep learning,
arXiv:1502.04156.

[28] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman,
Random synaptic feedback weights support error backpropaga-
tion for deep learning, Nat. Commun. 7, 13276 (2016).

[29] J. H. Lee, T. Delbruck, and M. Pfeiffer, Training deep spiking
neural networks using backpropagation, Front. Neurosci. 10,
508 (2016).

[30] M. Pfeiffer and T. Pfeil, Deep learning with spiking neurons:
Opportunities and challenges, Front. Neurosci. 12, 774 (2018).

[31] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, Spatio-temporal
backpropagation for training high-performance spiking neural
networks, Front. Neurosci. 12, 331 (2018).

[32] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier,
and A. Maida, Deep learning in spiking neural networks, Neural
Networks 111, 47 (2019).

[33] E. O. Neftci, H. Mostafa, and F. Zenke, Surrogate gradient
learning in spiking neural networks: Bringing the power of
gradient-based optimization to spiking neural networks, IEEE
Signal Process. Mag. 36, 51 (2019).

[34] R. Kim, Y. Li, and T. J. Sejnowski, Simple framework for
constructing functional spiking recurrent neural networks, Proc.
Natl. Acad. Sci. U.S.A. 116, 22811 (2019).

[35] D. Rotermund and K. R. Pawelzik, Back-propagation learning
in deep spike-by-spike networks, Front. Comput. Neurosci. 13,
55 (2019).

[36] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R.
Legenstein, and W. Maass, A solution to the learning dilemma
for recurrent networks of spiking neurons, Nat. Commun. 11,
3625 (2020).

043051-18

https://doi.org/10.1038/nature14539
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1103/PhysRevX.6.021023
https://doi.org/10.1038/nature23011
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/s41598-017-11011-8
https://doi.org/10.1038/nmat4756
https://doi.org/10.1038/s41467-018-04485-1
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1038/s41467-018-03963-w
https://doi.org/10.1038/s41928-018-0103-3
https://doi.org/10.1038/s41586-019-1157-8
https://doi.org/10.1038/s41586-019-1557-9
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41467-019-13103-7
https://doi.org/10.1126/science.aaw5581
https://doi.org/10.1103/PhysRevX.9.021032
https://doi.org/10.1103/PhysRevLett.125.207202
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1038/s41928-020-0435-7
https://doi.org/10.1038/s41565-020-0647-z
https://doi.org/10.1038/s41598-020-72842-6
https://doi.org/10.1103/PhysRevApplied.15.044049
https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1038/s41565-020-00838-4
http://arxiv.org/abs/arXiv:1502.04156
https://doi.org/10.1038/ncomms13276
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1073/pnas.1905926116
https://doi.org/10.3389/fncom.2019.00055
https://doi.org/10.1038/s41467-020-17236-y

DUAL SAMPLING NEURAL NETWORK: LEARNING … PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

[37] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy,
Enabling spike-based backpropagation for training deep neural
network architectures, Front. Neurosci. 14, 119 (2020).

[38] S. Woźniak, A. Pantazi, T. Bohnstingl, and E. Eleftheriou,
Deep learning incorporating biologically inspired neural dy-
namics and in-memory computing, Nat. Mach. Intell. 2, 325
(2020).

[39] T. C. Wunderlich and C. Pehle, Event-based backpropagation
can compute exact gradients for spiking neural networks, Sci.
Rep. 11, 12829 (2021).

[40] G. E. Hinton and R. R. Salakhutdinov, Reducing the di-
mensionality of data with neural networks, Science 313, 504
(2006).

[41] C. Stringer, M. Pachitariu, N. Steinmetz, M. Carandini, and
K. D. Harris, High-dimensional geometry of population re-
sponses in visual cortex, Nature (London) 571, 361 (2019).

[42] J. Nassar, P. A. Sokol, S. Chung, K. D. Harris, and I. M. Park,
On 1/n neural representation and robustness, Adv. Neural Inf.
Process. Syst., 33, 6211 (2020).

[43] N. C. Kong, E. Margalit, J. L. Gardner, and A. M. Norcia, In-
creasing neural network robustness improves match to macaque
v1 eigenspectrum, spatial frequency preference and predictivity,
PLoS Comput. Biol. 18, e1009739 (2022).

[44] M. N. Shadlen and W. T. Newsome, Noise, neural codes and
cortical organization, Curr. Opin. Neurobiol. 4, 569 (1994).

[45] A. Arieli, A. Sterkin, A. Grinvald, and A. Aertsen, Dynamics of
ongoing activity: explanation of the large variability in evoked
cortical responses, Science 273, 1868 (1996).

[46] T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A.
Arieli, Spontaneously emerging cortical representations of vi-
sual attributes, Nature (London) 425, 954 (2003).

[47] P. Berkes, G. Orbán, M. Lengyel, and J. Fiser, Spontaneous
cortical activity reveals hallmarks of an optimal internal model
of the environment, Science 331, 83 (2011).

[48] A. Pouget, J. M. Beck, W. J. Ma, and P. E. Latham, Proba-
bilistic brains: Knowns and unknowns, Nat. Neurosci. 16, 1170
(2013).

[49] M. Llera-Montero, J. Sacramento, and R. P. Costa, Compu-
tational roles of plastic probabilistic synapses, Curr. Opin.
Neurobiol. 54, 90 (2019).

[50] D. D. Stettler, H. Yamahachi, W. Li, W. Denk, and C. D. Gilbert,
Axons and synaptic boutons are highly dynamic in adult visual
cortex, Neuron 49, 877 (2006).

[51] N. Yasumatsu, M. Matsuzaki, T. Miyazaki, J. Noguchi, and H.
Kasai, Principles of long-term dynamics of dendritic spines, J.
Neurosci. 28, 13592 (2008).

[52] A. Holtmaat and K. Svoboda, Experience-dependent structural
synaptic plasticity in the mammalian brain, Nat. Rev. Neurosci.
10, 647 (2009).

[53] X. Chen, U. Leischner, N. L. Rochefort, I. Nelken, and A.
Konnerth, Functional mapping of single spines in cortical neu-
rons in vivo, Nature (London) 475, 501 (2011).

[54] A. Attardo, J. E. Fitzgerald, and M. J. Schnitzer, Imperma-
nence of dendritic spines in live adult ca1 hippocampus, Nature
(London) 523, 592 (2015).

[55] G. Mongillo, S. Rumpel, and Y. Loewenstein, Intrinsic volatility
of synaptic connections’a challenge to the synaptic trace theory
of memory, Curr. Opin. Neurobiol. 46, 7 (2017).

[56] V. Pascoli, A. Hiver, R. Van Zessen, M. Loureiro, R. Achargui,
M. Harada, J. Flakowski, and C. Lüscher, Stochastic synap-

tic plasticity underlying compulsion in a model of addiction,
Nature (London) 564, 366 (2018).

[57] C. Allen and C. F. Stevens, An evaluation of causes for unreli-
ability of synaptic transmission, Proc. Natl. Acad. Sci. U.S.A.
91, 10380 (1994).

[58] L. C. Katz and C. J. Shatz, Synaptic activity and the construc-
tion of cortical circuits, Science 274, 1133 (1996).

[59] T. Branco and K. Staras, The probability of neurotransmitter
release: variability and feedback control at single synapses, Nat.
Rev. Neurosci. 10, 373 (2009).

[60] S. Deneve, P. E. Latham, and A. Pouget, Efficient computation
and cue integration with noisy population codes, Nat. Neurosci.
4, 826 (2001).

[61] W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget, Bayesian
inference with probabilistic population codes, Nat. Neurosci. 9,
1432 (2006).

[62] K. Doya, S. Ishii, A. Pouget, and R. P. Rao, Bayesian Brain:
Probabilistic Approaches to Neural Coding (MIT Press, Cam-
bridge, 2007).

[63] A. Soltani and X.-J. Wang, Synaptic computation underlying
probabilistic inference, Nat. Neurosci. 13, 112 (2010).

[64] L. Buesing, J. Bill, B. Nessler, and W. Maass, Neural dynamics
as sampling: A model for stochastic computation in recurrent
networks of spiking neurons, PLoS Comput. Biol. 7, e1002211
(2011).

[65] D. Kappel, S. Habenschuss, R. Legenstein, and W. Maass, Net-
work plasticity as Bayesian inference, PLoS Comput. Biol. 11,
e1004485 (2015).

[66] L. Aitchison and P. E. Latham, Synaptic sampling: A con-
nection between psp variability and uncertainty explains
neurophysiological observations,arXiv:1505.04544.

[67] G. Orbán, P. Berkes, J. Fiser, and M. Lengyel, Neural variability
and sampling-based probabilistic representations in the visual
cortex, Neuron 92, 530 (2016).

[68] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat,
and G. Cauwenberghs, Stochastic synapses enable efficient
brain-inspired learning machines, Front. Neurosci. 10, 241
(2016).

[69] N. Hiratani and T. Fukai, Redundancy in synaptic connec-
tions enables neurons to learn optimally, Proc. Natl. Acad. Sci.
U.S.A. 115, E6871 (2018).

[70] C. Baldassi, F. Gerace, H. J. Kappen, C. Lucibello, L. Saglietti,
E. Tartaglione, and R. Zecchina, Role of Synaptic Stochasticity
in Training Low-Precision Neural Networks, Phys. Rev. Lett.
120, 268103 (2018).

[71] G.-q. Bi and M.-m. Poo, Synaptic modifications in cultured
hippocampal neurons: Dependence on spike timing, synaptic
strength, and postsynaptic cell type, J. Neurosci. 18, 10464
(1998).

[72] C. Clopath, L. Büsing, E. Vasilaki, and W. Gerstner, Connec-
tivity reflects coding: A model of voltage-based STDP with
homeostasis, Nat. Neurosci. 13, 344 (2010).

[73] D. Feldmeyer and B. Sakmann, Synaptic efficacy and reliability
of excitatory connections between the principal neurones of the
input (layer 4) and output layer (layer 5) of the neocortex, J.
Physiol. 525, 31 (2000).

[74] S. Lefort, C. Tomm, J.-C. F. Sarria, and C. C. Petersen,
The excitatory neuronal network of the C2 barrel column
in mouse primary somatosensory cortex, Neuron 61, 301
(2009).

043051-19

https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1038/s42256-020-0187-0
https://doi.org/10.1038/s41598-021-91786-z
https://doi.org/10.1126/science.1127647
https://doi.org/10.1038/s41586-019-1346-5
https://doi.org/10.1371/journal.pcbi.1009739
https://doi.org/10.1016/0959-4388(94)90059-0
https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1038/nature02078
https://doi.org/10.1126/science.1195870
https://doi.org/10.1038/nn.3495
https://doi.org/10.1016/j.conb.2018.09.002
https://doi.org/10.1016/j.neuron.2006.02.018
https://doi.org/10.1523/JNEUROSCI.0603-08.2008
https://doi.org/10.1038/nrn2699
https://doi.org/10.1038/nature10193
https://doi.org/10.1038/nature14467
https://doi.org/10.1016/j.conb.2017.06.006
https://doi.org/10.1038/s41586-018-0789-4
https://doi.org/10.1073/pnas.91.22.10380
https://doi.org/10.1126/science.274.5290.1133
https://doi.org/10.1038/nrn2634
https://doi.org/10.1038/90541
https://doi.org/10.1038/nn1790
https://doi.org/10.1038/nn.2450
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.1371/journal.pcbi.1004485
http://arxiv.org/abs/arXiv:1505.04544
https://doi.org/10.1016/j.neuron.2016.09.038
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.1073/pnas.1803274115
https://doi.org/10.1103/PhysRevLett.120.268103
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1038/nn.2479
https://doi.org/10.1111/j.1469-7793.2000.00031.x
https://doi.org/10.1016/j.neuron.2008.12.020

JUN-NOSUKE TERAMAE AND YASUHIRO TSUBO PHYSICAL REVIEW RESEARCH 4, 043051 (2022)

[75] J. P. Jones and L. A. Palmer, An evaluation of the two-
dimensional Gabor filter model of simple receptive fields in cat
striate cortex, J. Neurophysiol. 58, 1233 (1987).

[76] B. A. Olshausen and D. J. Field, Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images, Nature (London) 381, 607 (1996).

[77] S. Song, P. J. Sjöström, M. Reigl, S. Nelson, and D. B.
Chklovskii, Highly nonrandom features of synaptic connectiv-
ity in local cortical circuits, PLoS Biol. 3, e68 (2005).

[78] D. Feldmeyer, V. Egger, J. Lübke, and B. Sakmann, Reliable
synaptic connections between pairs of excitatory layer 4 neu-
rones within a single ‘barrel’ of developing rat somatosensory
cortex, J. Physiol. 521, 169 (1999).

[79] S. Dorkenwald, N. L. Turner, T. Macrina, K. Lee, R. Lu, J.
Wu, A. L. Bodor, A. A. Bleckert, D. Brittain, N. Kemnitz et
al., Binary and analog variation of synapses between cortical
pyramidal neurons, bioRxiv, https://doi.org/10.1101/2019.12.
29.890319v2.

[80] A. Braunstein and R. Zecchina, Learning by Message Passing
in Networks of Discrete Synapses, Phys. Rev. Lett. 96, 030201
(2006).

[81] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R.
Zecchina, Subdominant Dense Clusters Allow for Simple
Learning and High Computational Performance in Neural Net-
works with Discrete Synapses, Phys. Rev. Lett. 115, 128101
(2015).

[82] S. Geman and D. Geman, Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images, IEEE Trans.
Pattern Anal. Mach. Intell., PAMI-6, 721 (1984).

[83] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-
mization, arXiv:1412.6980.

[84] H. F. Song, G. R. Yang, and X.-J. Wang, Training excitatory-
inhibitory recurrent neural networks for cognitive tasks: A
simple and flexible framework, PLoS Comput. Biol. 12,
e1004792 (2016).

[85] A. Ingrosso and L. Abbott, Training dynamically bal-
anced excitatory-inhibitory networks, PLoS One 14, e0220547
(2019).

[86] L. Cossell, M. F. Iacaruso, D. R. Muir, R. Houlton, E. N.
Sader, H. Ko, S. B. Hofer, and T. D. Mrsic-Flogel, Functional
organization of excitatory synaptic strength in primary visual
cortex, Nature (London) 518, 399 (2015).

[87] G. Stuart, N. Spruston, B. Sakmann, and M. Häusser, Action
potential initiation and backpropagation in neurons of the mam-
malian CNS, Trends Neurosci. 20, 125 (1997).

[88] W. G. Regehr, M. R. Carey, and A. R. Best, Activity-dependent
regulation of synapses by retrograde messengers, Neuron 63,
154 (2009).

[89] R. D. Fields and B. Stevens-Graham, New insights into neuron-
glia communication, Science 298, 556 (2002).

[90] G. E. Hinton, Training products of experts by minimizing con-
trastive divergence, Neural Comput. 14, 1771 (2002).

[91] A. Graves, Practical variational inference for neural networks,
Adv. Neural Inf. Process. Syst. 24, 2348 (2011).

[92] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra,
Weight uncertainty in neural networks, Proc. Mach. Learn. Res.
37, 1613 (2015).

[93] D. P. Kingma, T. Salimans, and M. Welling, Variational dropout
and the local reparameterization trick, Adv. Neural Inf. Process.
Syst. 28, 2575 (2015).

[94] D. R. Cox, The regression analysis of binary sequences, J. R.
Stat. Soc.: Series B Stat. Method. 20, 215 (1958).

043051-20

https://doi.org/10.1152/jn.1987.58.6.1233
https://doi.org/10.1038/381607a0
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1111/j.1469-7793.1999.00169.x
https://doi.org/10.1101/2019.12.29.890319
https://doi.org/10.1103/PhysRevLett.96.030201
https://doi.org/10.1103/PhysRevLett.115.128101
https://doi.org/10.1109/TPAMI.1984.4767596
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.1371/journal.pone.0220547
https://doi.org/10.1038/nature14182
https://doi.org/10.1016/S0166-2236(96)10075-8
https://doi.org/10.1016/j.neuron.2009.06.021
https://doi.org/10.1126/science.298.5593.556
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1111/j.2517-6161.1958.tb00292.x

