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Continuous time reversal and equality in the thermodynamic uncertainty relation
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We introduce a continuous time-reversal operation which connects the time-forward and time-reversed trajec-
tories in the steady state of an irreversible Markovian dynamics via a continuous family of stochastic dynamics.
This continuous time reversal allows us to derive a tighter version of the thermodynamic uncertainty relation
(TUR) involving observables evaluated relative to their local mean value. Moreover, the family of dynamics
realizing the continuous time reversal contains an equilibrium dynamics halfway between the time-forward and
time-reversed dynamics. We show that this equilibrium dynamics, together with an appropriate choice of the
observable, turns the inequality in the TUR into an equality. We demonstrate our findings for the example of a
particle diffusing in a tilted periodic potential.
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The behavior of a system under time reversal is one of
its fundamental physical properties. While most microscopic
laws of physics are invariant under time reversal, this is gen-
erally not true for macroscopic systems. In addition to the
energy-driven transitions between microscopic states, we also
have to account for entropy, i.e., the number of microscopic
states that are compatible with a certain macroscopic state.
Thus, even if two macroscopic states are energetically equiva-
lent, the likelihood of observing them may be vastly different,
and the transitions from less likely to more likely macroscopic
states lead to a breaking of time-reversal symmetry and an
increase in entropy.

Irreversibility is made explicit in the framework of stochas-
tic thermodynamics; there, the entropy production �Sirr

τ

during a time interval [0, τ ] is defined via the probabilities
Pτ (�) and P †

τ (�) of observing a given trajectory � of the
system forward and time-reversed process, respectively [1,2],

�Sirr
τ = DKL(Pτ‖P †

τ ) =
∫

d� Pτ (�) ln

(
Pτ (�)

P †
τ (�)

)
. (1)

DKL denotes the Kullback-Leibler (KL) divergence. The
entropy production is positive, except when the system is sym-
metric under time reversal, Pτ (�) = P †

τ (�). The definition
Eq. (1) agrees with the thermodynamic definition of entropy
for systems in contact with a heat bath, and also implies a
stochastic entropy production along a single trajectory [1,2],

�τ (�) = ln

(
Pτ (�)

P †
τ (�)

)
, (2)

such that its average is 〈�τ 〉 = �Sirr
τ .
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Intuitively, the entropy production �Sirr
τ should also

control to what degree physical observables can exhibit
irreversibility. This connection is made explicit in the thermo-
dynamic uncertainty relation (TUR) [3–7]. The TUR, which
applies to steady states of irreversible Markovian dynamics,
is an inequality between the average and fluctuations of an
observable time-integrated current Jτ [see Eq. (13)] and the
entropy production �Sirr

τ ,

(〈Jτ 〉)2

Var(Jτ )
� 1

2
�Sirr,τ . (3)

Here, 〈Jτ 〉 denotes the average accumulated current up to time
τ [see Eq. (14)] and Var(Jτ ) = 〈J2

τ 〉 − 〈Jτ 〉2 is the variance.
The TUR is a tradeoff relation between precision and dissipa-
tion [5,8,9]: For a fixed average amount of physical quantity
(particles, work, heat, etc.) being transported, the product of
fluctuations and dissipation cannot be less than the bound
Eq. (3); thus small fluctuations imply large dissipation.

The TUR relates the statistics of a current, which is odd
under time reversal, 〈Jτ 〉† = −〈Jτ 〉, to the entropy production,
which quantifies the asymmetry of the trajectories under time
reversal. This suggests that this symmetry may be responsible
for Eq. (3). A variant of the TUR, in which the right-hand side
is proportional to the exponential of the entropy production,
was derived from this symmetry in Ref. [10]. However, this
bound is generally less tight than Eq. (3) [11]. In this Letter,
we show that, indeed, the TUR is the consequence of the
symmetry under a different type of time-reversal operation.

In general, time reversal is a discrete operation, replacing
the time-forward with the time-reversed process. Our main
result is that for the systems satisfying the TUR, there also
exists a continuous time-reversal operation. This operation
describes a family of processes, parametrized by θ ∈ [−1, 1],
which connects the time-forward process at θ = 1 to the time-
reversed process at θ = −1. For any value of θ , we have
�θ

τ = θ�τ and 〈Jτ 〉θ = θ〈Jτ 〉, so that the stochastic entropy
production Eq. (2) and the symmetry of currents both extend
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in a natural way to the continuous case. Further, every member
of the family has the same steady state pθ

st = pst. Intuitively,
the continuous time-reversal operation can be thought of as
adiabatically changing the direction of the irreversible flows in
the system: First, we reduce the magnitude of the flows while
keeping the steady state fixed; at θ = 0, the flows vanish and
the system is in equilibrium. Then, we increase the magnitude
of the flows in the opposite direction until at θ = −1, all the
flows have the same magnitude but opposite direction.

The continuous nature of this time-reversal operation al-
lows us to derive tighter inequalities, as compared to a discrete
operation. Instead of an exponential bound [10], we obtain the
linear inequality Eq. (3). As our second main result, we further
obtain two variants of the TUR,

(〈Jτ 〉)2

Var0(Jτ )
� 1

2
�Sirr

τ , (4)

(〈Jτ 〉)2

Var(δJτ )
� 1

2
�Sirr

τ . (5)

Compared to Eq. (3), the difference is in the denominator on
the left-hand side. In Eq. (4), the fluctuations of the current are
replaced by the fluctuations in the equilibrium process at θ =
0. In Eq. (5), on the other hand, we consider the fluctuations
δJτ = Jτ − J̄τ relative to the local mean current J̄τ , which is
the current for a particle moving with the local mean velocity
[see Eq. (24)]. We refer to Eq. (5) as the relative TUR (RTUR).
In most cases of interest, we have Var0(Jτ ) < Var(Jτ ) and
Var(δJτ ) < Var(Jτ ) and both Eqs. (4) and (5) are tighter in-
equalities than the TUR (3). In particular, both Eqs. (4) and (5)
reduce to an equality when we choose the stochastic entropy
production as the observable, Jτ = �τ . This is in contrast to
the TUR, which reduces to the Fano-factor inequality derived
in Ref. [12].

Continuous time reversal. For simplicity, we focus on
the case of an overdamped Langevin dynamics in the fol-
lowing. We consider a system of N degrees of freedom
x(t ) = [x1(t ), . . . , xN (t )] whose motion is described by the
overdamped Langevin equation during the time interval
t ∈ [0, τ ] [13],

ẋ(t ) = a(x(t )) + G · ξ(t ). (6)

Here, a(x) is the drift vector, and we assume that the matrix G
has full rank such that the diffusion matrix B = GGT/2, where
the superscript T denotes transposition, is positive definite.
ξ(t ) is a vector of uncorrelated Gaussian white noises. The
extension to a coordinate-dependent matrix G(x) is provided
in the Supplemental Material (SM) [14]. The paradigmatic ex-
ample is a system of N particles with systematic forces f (x),
which diffuse in an environment described by a mobility μ

and a temperature T . In this case, we have a(x) = μ f (x) and
B = μkBT 1. We assume that a(x) and B give rise to a time-
independent state in the long-time limit, i.e., that the solution
of the associated Fokker-Planck equation for the probability
density p(x, t ) [13],

∂t p(x, t ) = −∇ · [ν(x, t )p(x, t )] (7)

with

ν(x, t ) = a(x) − B∇ ln p(x, t ),

tends, as t → ∞, towards a steady-state solution pst(x) with
local mean velocity νst(x). Physically, the local mean velocity
νst(x) characterizes the irreversible local flows in the system
[15,16]. Since, generally, the system described by Eq. (6)
is out of equilibrium, these flows do not vanish even in the
steady state. We use the local mean velocity to write the drift
vector as

a(x) = νst(x) + B∇ ln pst(x). (8)

Equation (8) may be viewed as a decomposition of the drift
vector into an irreversible part νst(x) and a reversible part
[15–19]. We introduce a modified drift vector,

aθ (x) = θνst(x) + B∇ ln pst(x), (9)

with a parameter θ ∈ [−1, 1], and consider the corresponding
Langevin dynamics

ẋ(t ) = aθ (x(t )) + G · ξ(t ). (10)

Compared to Eq. (8), we have rescaled the irreversible part of
the drift vector, while leaving the reversible part unchanged.
It is straightforward to verify that the steady-state solution
for Eq. (10) is given by pθ

st(x) = pst(x) and νθ
st(x) = θνst(x),

i.e., we obtain the same steady-state density as Eq. (6) and
a local mean velocity scaled by a factor θ . The family of
dynamics Eq. (10) was previously studied in Ref. [20], where
it was shown to lead to generalized fluctuation theorems.
Here and in the following, we use a superscript θ to re-
fer to quantities evaluated in the dynamics with drift vector
Eq. (10); quantities without a superscript refer to Eq. (6). For
each value of θ , Eq. (10) generates a path probability density
P θ

τ [x̂], which measures the probability of observing a specific
trajectory x̂ = [x(t )]t∈[0,τ ]. For each trajectory, we can also
consider its time-reversed version x̂† = [x(τ − t )]t∈[0,τ ]. For
the dynamics Eq. (10) in the steady state, this time-reversed
trajectory defines the path probability of the reverse process,
P θ,†

τ [x̂] = P θ
τ [x̂†]. A technical but straightforward calculation

[see Eq. (S50) of the SM [14]] shows that the time-reversed
path probability satisfies

DKL
(
P−θ

τ [x̂]‖P θ,†
τ [x̂]

) = 0. (11)

If the KL divergence between two probability densities van-
ishes, then the two probability densities are equivalent: Any
average evaluated with respect to either of them yields the
same result. From this, we can conclude that the dynamics
Eq. (10) at −θ is equivalent to the time-reversed dynamics at
θ . In particular, Eq. (10) for θ = −1 yields the time-reversed
dynamics of Eq. (6) (see Ref. [19]). Thus, for a general
nonequilibrium dynamics, Eq. (10) provides a continuous in-
terpolation between the original, time-forward dynamics for
θ = 1 and the time-reversed dynamics for θ = −1. For θ = 0,
the irreversible part of the drift vanishes and Eq. (10) describes
an equilibrium system. However, this does not necessarily cor-
respond to the intuitive, “physical” equilibrium. The reason is
that, when driving a system out of equilibrium by applying
a nonconservative force, the state density pst(x) is generally
different from the equilibrium state peq(x) in the absence of
the driving. By contrast, for Eq. (10) with θ = 0, the steady
state pst(x) is the equilibrium state.

Thermodynamic uncertainty relation. While Eq. (11) pro-
vides a relation between the time-reversed dynamics at −θ
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and the time-forward dynamics at θ , we also obtain a relation
between the time-forward dynamics at two different values of
θ [see Eq. (S32) of the SM [14]],

DKL
(
P θ

τ [x̂]‖P θ ′
τ [x̂]

) = 1
4 (θ ′ − θ )2

�Sirr,τ . (12)

For θ = 1 and θ ′ = −1, this is precisely Eq. (1). Surprisingly,
the entropy production not only characterizes the difference
between the forward and reverse dynamics, but also between
any two members of the family of dynamics Eq. (10). Next,
we establish the connection between Eq. (10) and time-
integrated currents. The latter are defined as

Jτ =
∫ τ

0
dt w(x(t )) ◦ ẋ(t ), (13)

where w(x) is a weighting function and ◦ is the Stratonovich
product. If w(x) = e is a constant vector of unit length, then Jτ

is the displacement along the direction e. Another physically
relevant choice is w(x) = f (x), in which case Jτ is the heat
dissipated into the surrounding environment. The steady-state
average of Eq. (13) is given by

〈Jτ 〉 = τ

∫
dx w(x(t )) · νst(x)pst(x). (14)

Since this is proportional to the local mean velocity, the aver-
age current in the dynamics with Eq. (10) exhibits the same
scaling,

〈Jτ 〉θ = θ〈Jτ 〉, (15)

and we have 〈Jτ 〉0 = 0 and 〈Jτ 〉−1 = −〈Jτ 〉; the average cur-
rent vanishes in equilibrium and time reversal changes its sign.
Now, we return to Eq. (12) and focus on the case θ ′ = θ + dθ

with dθ 
 1. Using the fluctuation-response inequality for
linear response derived in Ref. [21], we have

(〈Jτ 〉θ+dθ − 〈Jτ 〉θ )
2

2Varθ (Jτ )
� DKL

(
P θ

τ [x̂]‖P θ+dθ
τ [x̂]

)
. (16)

Using Eqs. (12) and (15), this yields

(〈Jτ 〉)2

Varθ (Jτ )
� 1

2
�Sirr

τ . (17)

Since this is valid for any value of θ ∈ [−1, 1], we may also
maximize the left-hand side over θ , which yields

(〈Jτ 〉)2

infθ [Varθ (Jτ )]
� 1

2
Sirr

τ . (18)

This bound is tighter than Eq. (3); further, any value of θ

yields a valid bound. In particular, we may choose θ = 1 and
obtain Eq. (3) or θ = 0 and obtain Eq. (4). We remark that
Eq. (17) is conceptually different from previous formulations
of the TUR, since it relates observables evaluated in different
dynamics.

The variance is the second cumulant of the current. How-
ever, if the distribution of the current is not Gaussian, the
current also possesses nonvanishing higher-order cumulants.
These can be calculated from the cumulant generating func-
tion

Kθ
Jτ

(h) = ln
∫

d x̂ ehJτ [x̂]P θ
τ [x̂], (19)

in terms of which the nth cumulant κ
(n),θ
Jτ

is defined as
∂n

h Kθ
Jτ

(h)|h=0. Since the currents are odd under time reversal,
this satisfies

K−θ
Jτ

(h) = Kθ
Jτ

(−h), (20)

that is, even cumulants are invariant under the change θ →
−θ , while odd cumulants change sign. This implies

κ
(n),0
Jτ

= 0 for n odd, (21)

and all odd cumulants vanish in the equilibrium state at θ = 0.
As demonstrated in Eq. (S84) of the SM [14], we may also
use the higher-order cumulants to obtain a generalization of
Eq. (18),

�Sirr
τ � sup

h,θ

[
h2(〈Jτ 〉)2

Kθ
Jτ

(h) − hθ〈Jτ 〉
]
. (22)

This reduces to Eq. (18) in the limit h → 0, but yields a tighter
bound if the higher-order cumulants of the current are known.
In particular, for θ = 1, we obtain a higher-order TUR,

�Sirr
τ � sup

h

[
h2(〈Jτ 〉)2

KJτ
(h) − h〈Jτ 〉

]
. (23)

Current fluctuations. We define the local mean value J̄τ of
the current Eq. (13) by replacing the velocity with its local
mean value,

J̄τ =
∫ τ

0
dt w(x(t )) · νst(x(t )), (24)

and the current relative to the local mean value δJτ = Jτ − J̄τ .
From the definition, it is clear that 〈J̄τ 〉 = 〈Jτ 〉 and 〈δJτ 〉 = 0,
i.e., only J̄τ contributes to the average current. Evaluating the
average of δJτ in the dynamics Eq. (10), we obtain

〈δJτ 〉θ = (θ − 1)〈Jτ 〉 ⇒ 〈δJτ 〉θ+dθ − 〈δJτ 〉θ = dθ〈Jτ 〉. (25)

Using this in Eq. (16), we obtain the inequality

(〈Jτ 〉)2

Varθ (δJτ )
� 1

2
Sirr

τ . (26)

For θ = 1, we find the RTUR (5) involving the current relative
to its local mean value. Generally, Var(δJτ ) may be larger or
smaller than Var(Jτ ), and thus, either the TUR or the RTUR
may be tighter. However, the relation Var(Jτ ) � Var(δJτ ) of-
ten holds in practice, where Eq. (5) thus provides a tighter
bound than Eq. (3). We provide an example for this behavior
below.

Entropy fluctuations. An important case of a time-
integrated current Eq. (13) is w(x) = B−1νst(x), for which
Jτ = �τ is equal to the stochastic entropy production Eq. (2),

�τ [x̂] = ln
Pτ [x̂]

P †
τ [x̂]

. (27)

The equivalence between Eq. (13) with w(x) as above and
Eq. (27) is established in Sec. SI B of the SM [14]. Written
in this way �τ explicitly depends on the path statistics of the
entire ensemble. For the dynamics Eq. (10) we may similarly
write

�θ
τ [x̂] = ln

P θ
τ [x̂]

P θ,†
τ [x̂]

. (28)
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Using the definition of �θ
τ in terms of w(x) = B−1νθ

st(x) to-
gether with the scaling of the local mean velocity νθ

st(x) =
θνst(x), we immediately find

�θ
τ [x̂] = θ�τ [x̂]. (29)

This means that the parameter θ determines the relative
likelihood of observing a trajectory as a forward or reverse
trajectory in the dynamics with Eq. (10), with both possibili-
ties being equally likely at θ = 0. Evaluating the variance of
�τ [see Ref. [12] and Eq. (S72) of the SM [14]], we find

Var(�τ ) = Var(�̄τ ) + Var(δ�τ ). (30)

Formally, Eq. (30) is equivalent to the introduction of an
entropic time in Ref. [12]: The quantity �̄τ can be interpreted
as a dimensionless, stochastic time coordinate. Then, δ�τ

is equal to the entropy production measured in units of the
stochastic time. As was shown in Ref. [12], this implies that
the distribution of δ�τ is Gaussian. Further, we have the
identities

Var(δ�τ ) = 2�Sirr
τ = Var0(�τ ). (31)

Comparing the first identity to the RTUR (5), we see that the
latter turns into an equality. The second identity turns Eq. (4)
into an equality. Using this, we may write the variational
expression

sup
J,θ

[
(〈Jτ 〉)2

Varθ (Jτ )

]
= sup

J

[
(〈Jτ 〉)2

Var(δJτ )

]
= 1

2
�Sirr

τ , (32)

which characterizes the equality condition for the TUR
(3) and the RTUR (5). Close to equilibrium, we have
Var(�τ ) � Var(δ�τ ) and the TUR turns into an equality by
choosing the stochastic entropy production as an observable
[22,23]. Indeed, the relation Var(�τ ) � 2Sirr

τ follows from the
fluctuation-dissipation theorem [24,25]. Far from equilibrium,
this breaks down, and there is generally no observable that
turns the TUR into an equality; to realize the equality, we have
to replace the current fluctuations with their equilibrium value
at θ = 0. This suggests that the presence of excess fluctuations
out of equilibrium prohibits equality in the TUR. On the other
hand, equality in the RTUR (5) may always be realized by
choosing the stochastic entropy production as an observable.
Just as the velocity relative to the local mean velocity recovers
the equilibrium fluctuation-dissipation theorem [16], the cur-
rent relative to the local mean value recovers the equilibrium
equality condition for the TUR.

Demonstration: Tilted periodic potential. We illustrate our
results using a paradigmatic example of a nonequilibrium
steady state. We consider a Brownian particle in one dimen-
sion with mobility μ and at temperature T , which moves
in a periodic potential U (x + L) = U (x). This situation is
described by the Langevin equation

ẋ(t ) = μ[−U ′(x(t )) + F ] +
√

2μkBT ξ (t ). (33)

The system is driven out of equilibrium by the constant bias
force F . The (periodic) steady-state probability density and
local mean velocity for this system may be computed explic-
itly (see Ref. [26] and Sec. S IV of the SM [14]). Since the
steady-state probability density differs from the Boltzmann-
Gibbs density peq(x) ∝ e−U (x)/(kBT ), the equilibrium state for

FIG. 1. The diffusion coefficient (top) and the transport effi-
ciency (bottom) as a function of the bias force (main panel) and
the parameter θ for F = 4 (inset). Black dots show the respective
quantity for the displacement, while the orange squares correspond to
the fluctuations of the displacement around its local mean value. The
data were obtained using Langevin simulations in a sine potential
U (x) = U0 sin(2πx/L) with U0 = 1, L = 1. The temperature and
mobility were set to T = 0.2 and μ = 1.

θ = 0 does not coincide with the physical equilibrium at
F = 0. In the following, we focus on the displacement zτ

of the particle with w(x) = 1 in Eq. (13). In the long-time
limit, displacement behaves diffusively Var(zτ ) � 2Dzτ ; an
explicit expression for the diffusion coefficient Dz was derived
in Ref. [26]. One remarkable feature appears for low temper-
atures and a bias force close to the critical value Fcrit, at which
the minima of the tilted potential disappear. Under these con-
ditions, the diffusion coefficient can be orders of magnitude
larger than the free-diffusion coefficient in the absence of the
periodic potential Dz,free = μkBT [26]. As a function of the
bias, the diffusion coefficient is small for small bias, reaches
a maximum near critical tilt, and then decreases towards the
free value (see Fig. 1). However, this enhancement of diffu-
sion is absent in the displacement relative to the local mean
value: The corresponding diffusion coefficient Dδz increases
monotonously towards the free value and is always smaller
than Dz (see Fig. 1). As a consequence, we have

ηz = 2(〈zτ 〉)2

Var(zτ )Sirr
τ

� ηδz = 2(〈zτ 〉)2

Var(δzτ )Sirr
τ

� 1, (34)

i.e., the RTUR (5) is tighter than the TUR (3). For small
bias (near equilibrium), ηz approaches unity. For large bias,
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the potential becomes negligible and the system behaves as
a biased diffusion, where ηz likewise approaches unity. For
intermediate bias, on the other hand, ηz is significantly smaller
than unity. In this regime, the bound involving δzτ is con-
siderably tighter, indicating that the decrease in ηz is partly
due to the enhancement of the diffusion coefficient. Note that,
in general, the definition of the local mean current Eq. (24)
involves the local mean velocity and may thus be difficult
to compute in cases where the latter is not explicitly known.
However, for one-dimensional systems, we have the relation

νst(x) = 〈ż〉
Lpst(x)

, (35)

and thus νst(x) and δz can be evaluated by measuring the
steady-state probability density. Finally, we remark that, while
both F = 0 and θ = 0 (for finite F ) correspond to an equi-
librium dynamics, the nonmonotonic behavior in Dz and ηz

only appears as a function of F . By contrast, Dz (ηz) increases
(decreases) monotonically when changing θ from 0 to 1 (see
the insets of Fig. 1).

Discussion. The dynamics Eq. (10) provide a natural way
to interpolate between the time-forward and the time-reversed
dynamics, replacing a discrete operation with a continuous
one. A continuous operation can be represented by a series of
infinitesimal steps, which can then be analyzed individually,
reconstructing the entire operation from the individual steps.
In the present context, this allows us to apply the linear-
response fluctuation-response inequality Eq. (16), providing a
tighter inequality than can be obtained by directly comparing
the time-forward and time-reversed process (see also Sec. S
III of the SM [14]).

In many applications, nonequilibrium states are obtained
by driving an equilibrium system, for example, by applying
nonconservative force. In this case, the nonequilibrium sys-
tem has a natural equilibrium counterpart. However, for a
given nonequilibrium state, this equilibrium is not unique; the
same nonequilibrium state may be obtained by driving two
different systems in different ways. Thus, knowledge about
the equilibrium system may not necessarily tell us anything

about the nonequilibrium state. By contrast, the continuous
time-reversal operation continuously connects a nonequilib-
rium steady state to a unique equilibrium system with the
same steady state. As demonstrated in the insets of Fig. 1,
the physical properties of the system change in a much more
controlled fashion between this unique equilibrium and the
nonequilibrium state, when compared with the physical equi-
librium state. If this type of behavior can be shown to be
generic, this may provide an alternate approach of character-
izing nonequilibrium states in terms of equilibrium states and
their well-understood properties.

A practical application of the TUR Eq. (3) is to estimate
the entropy production and thus dissipation by measuring a
current in the system [27–30]. Since the dissipation is often
not directly accessible in experiments, relating it to measur-
able quantities is crucial. Then, an obvious question is how
good the lower estimate Eq. (3) on the entropy production
can be. The generally tighter bounds Eqs. (4) and (5) restrict
the quality of this estimate in terms of the fluctuations of the
current. If we have Var(Jτ ) � Var0(Jτ ), Var(δJτ ), then this
immediately implies that the estimate from the TUR will be
too small by at least this amount.

While in this work we focused on overdamped Langevin
dynamics, the notion of continuous time reversal and the
results of this Letter also apply to Markov jump dynamics,
as we will discuss in an upcoming publication [31]. Since the
TUR follows explicitly as a consequence of the continuity, we
speculate that finding a continuous time-reversal symmetry
may serve as a way to extend the TUR to other classes of
dynamics. Whether such an operation exists depends on the
dynamics; for example, it is known that the TUR can be
violated in the presence of magnetic fields which transform in
a discrete manner under time reversal [32]. Similarly, it would
be interesting to explore whether recent extensions of the
TUR to nonsteady initial states [33], time-periodic [34–36],
or arbitrary time-dependent driving [37] can be connected
to the existence of a generalized continuous time-reversal
operation.
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