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A programmable quantum device that has a large number of qubits without fault-tolerance has emerged
recently. Variational quantum eigensolver (VQE) is one of the most promising ways to utilize the computational
power of such devices to solve problems in condensed matter physics and quantum chemistry. As the size of
the current quantum devices is still not large for rivaling classical computers at solving practical problems, Fujii
et al. proposed a method called “Deep VQE”, which can provide the ground state of a given quantum system with
the smaller number of qubits by combining the VQE and the technique of coarse graining [K. Fujii, K. Mitarai,
W. Mizukami, and Y. O. Nakagawa, arXiv:2007.10917]. In this paper, we extend the original proposal of Deep
VQE to obtain the excited states and apply it to quantum chemistry calculation of a periodic material, which is
one of the most impactful applications of the VQE. We first propose a modified scheme to construct quantum
states for coarse graining in Deep VQE to obtain the excited states. We also present a method to avoid a problem
of meaningless eigenvalues in the original Deep VQE without restricting variational quantum states. Finally, we
classically simulate our modified Deep VQE for quantum chemistry calculation of a periodic hydrogen chain
as a typical periodic material. Our method reproduces the ground-state energy and the first-excited-state energy
with the errors up to O(1)% despite the decrease in the number of qubits required for the calculation by two or
four compared with the naive VQE. Our result will serve as a beacon for tackling quantum chemistry problems
with classically-intractable sizes by smaller quantum devices in the near future.
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I. INTRODUCTION

Noisy intermediate-scale quantum (NISQ) devices have a
moderate number [O(10) − O(100)] of qubits that we can
control very precisely although they are not fault tolerant
[1,2]. Variational quantum eigensolver (VQE), which com-
putes the approximate ground state of quantum systems, is
one of the most promising applications of the NISQ devices
[3]. As the size and hardware-precision of the NISQ devices
have been growing recently [4,5], extensive efforts are put into
studies of the VQE, which leads to various extension of the
VQE to its practical application to condensed matter physics
and quantum chemistry. For instance, while the original VQE
gives the approximate ground state, a bunch of methods to
calculate low-energy excited states [6–11] were proposed.
There are also VQE-based algorithms for calculating Green’s
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functions [12,13], nonequilibrium dynamics [14–16], and its
steady states [17] in dissipative systems, etc. As for appli-
cations to quantum chemistry [18,19], energies of electronic
states of molecules were already computed experimentally
by using the VQE [3,20–22]. Methods to obtain other im-
portant quantities such as the energy derivatives [23,24] and
the nonadiabatic coupling [25] were proposed. Moreover, the
possibility to explore periodic materials by the VQE was
examined in Refs. [26–28].

While the above-mentioned methods based on the VQE
will be utilized in the near future, the currently-available
NISQ devices do not reach the stage to overwhelm compu-
tations by classical computers because the number of qubits
and the precision of gate-operations on the qubits are still
limited. To relax the requirement for the hardware of the NISQ
devices, K. Fujii et al. recently proposed a method called deep
variational quantum eigensolver (Deep VQE) [29]. Deep VQE
combines the VQE and an idea of the divide-and-conquer
method that is popular in quantum chemistry [30–33]. By
performing the coarse graining of an original large problem
based on the solutions of the VQE in smaller subsystems,
Deep VQE allows us to obtain the approximate ground state
of the original problem with the smaller number of qubits
compared to the usual VQE.
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However, from both physical and technical aspects, it has
been still nontrivial and essential whether Deep VQE can deal
with low-energy properties, including excited states, which
are of great interest both in physics and chemistry. The first
problem for treating excited states is that coarse graining
in the original Deep VQE aims to capture only the ground
state by considering excitations from intersubsystem interac-
tions but neglecting those from intrasubsystem interactions.
We should carefully consider whether Deep VQE can yield
low-energy excited states from the physical point of view,
e.g., the type of excitations to be included in the algorithm.
The second problem is a technical one that imposes strong
limitations on variational quantum states employed in Deep
VQE; that is, if we choose variational quantum states freely,
wrong eigenvalues may be obtained because of the appearance
of meaningless eigenvalues in the energy spectrum. This prob-
lem occurs not only for excited states but also for the ground
state, and the use of special variational quantum states to avoid
the meaningless eigenvalues is mentioned in the original Deep
VQE proposal [29].

The first purpose of this paper is to elaborate the protocol
of Deep VQE for correctly simulating low-energy eigenstates
by solving the above-mentioned problems. Concretely, we
propose a local basis set in which both excitations from in-
trasubsystem and intersubsystem interactions are taken into
account in the procedure of the coarse graining. We show that
our modified choice of the local basis set enables us to obtain
more accurate low-energy eigenvalues than those obtained
with the original Deep VQE by employing the perturbation
theory and the quantum subspace expansion (QSE) method
[6]. We also address the technical problem by giving an
elaborate construction of a coarse grained Hamiltonian with
additional penalty terms. The penalty terms make meaning-
less eigenvalues move away from the low-energy spectrum,
enabling us to use any kind of variational quantum states. We
provide a mathematically rigorous sufficient condition for the
magnitude of the penalty terms to realize arbitrary options of
variational quantum states. Finally, we numerically confirm
those findings by classical simulations in a spin chain.

The second purpose is to examine the validity of Deep
VQE for quantum chemistry problems, which has been raised
as one of the motivations of the original Deep VQE [29].
In particular, we focus on low-energy eigenstates of periodic
materials. Performing quantum chemistry calculations for pe-
riodic materials remains one of the ultimate goals of quantum
chemistry and material science, but the huge computational
cost hinders its realization. The use of quantum computers
(possibly NISQ devices) [26–28,34] may circumvent the situ-
ation, but it still requires the large number of qubits to perform
the calculation. In this regards, the coarse graining techniques
such as Deep VQE are of great importance for periodic mate-
rials. We take a periodic hydrogen chain as the most straight-
forward example and classically simulate the performance
of our modified Deep VQE by calculating its ground-state
energy and its first-excited-state energy. We find a proper way
of the coarse graining and obtain the low-energy eigenvalues
with an error up to O(1)% despite reducing the number of
qubits by up to four. Our results will serve as a beacon for
simulating low-energy properties of a variety of materials with
smaller quantum devices in the coming NISQ era.

FIG. 1. Schematic picture of Deep VQE. The details are de-
scribed in Sec. II A.

This paper is organized as follows. In Sec. II, we review
Deep VQE and its pros and cons to describe our study’s mo-
tivation in detail. Sections III and IV provide the main results
of our research. In Sec. III, we formulate Deep VQE for low-
energy excited states and show numerical results for simple
spin systems. We discuss the validity of our proposed method
with relating to other methods such as QSE. In Sec. IV, we
apply our modified Deep VQE to a periodic hydrogen chain
and show numerical results for the ground-state energy the
first-excited-state energy. We conclude this paper in Sec. V.

II. PRELIMINARIES

In this section, we review the algorithm of the original
Deep VQE proposed in Ref. [29] and discuss its pros and cons
to motivate our study. Deep VQE combines the VQE [3] and
the divide-and-conquer method [30,31], with which we can
find the ground state with fewer qubits than those required
when using the usual VQE.

A. Protocol of Deep VQE

We consider a Ntot-qubit quantum system and split it
into Nsub subsystems, where each subsystem is composed of
Nqubit = Ntot/Nsub qubits (see Fig. 1). Then, we assume that the
Hamiltonian of the system is written in the following form:

H =
Nsub∑
i=1

Hi + Vinter, Vinter =
Nsub∑
i �= j

∑
α

να
i jV

α
i ⊗ W α

j , (1)

where Hi represents an intrasubsystem Hamiltonian of the ith
subsystem. The intersubsystem interactions are described by
Vinter, in which V α

i and W α
j are operators acting on the ith and

the jth subsystems, respectively. The index α enumerates such
interaction terms between the subsystems i and j. The above
equation only includes intersubsystem interactions over two
subsystems, but the extension to the cases where intersub-
system interactions involves more than three subsystems is
straightforward. Under this setup, Deep VQE is composed of
the following three steps.
Step 1: Perform VQE for each subsystem.

We obtain a set of local ground states {|ψ0〉i}Nsub
i=1 , where

|ψ0〉i represents the ground state of the ith subsystem Hamil-
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tonian Hi, by the ordinary VQE. This can be completed by
minimizing the cost function 〈ψ (�θ )| Hi |ψ (�θ )〉 with a varia-
tional quantum state |ψ (θ )〉 = U (�θ ) |0〉 and setting |ψ0〉i =
|ψ (�θ∗

i )〉, where �θ∗
i is the optimal parameter set for ith subsys-

tem. This step requires a Nqubit-qubit quantum computer.
Step 2: Construct an effective model in the restricted Hilbert
space (coarse graining).

We use a divide-and-conquer method here. For each sub-
system, we choose a set of local excitation operators {P(i)

k }K
k=1

with P(i)
1 = I (identity operator). Let H̃i denote the K-

dimensional local Hilbert space spanned by {P(i)
k |ψ0〉i}K

k=1.
We focus on the restricted Hilbert space H̃ = ⊗Nsub

i H̃i, and
construct the effective Hamiltonian after coarse graining by

H̃ = H |H̃ =
Nsub∑
i=1

H̃i +
Nsub∑
i �= j

∑
α

να
i jṼ

α
i ⊗ W̃ α

j , (2)

which is reminiscent of the internally contracted
multireference-configuration interaction method in quantum
chemistry [35,36]. Here, we define H̃i = Hi|H̃i

, Ṽ α
i = V α

i |H̃i
,

and W̃ α
j = W α

j |H̃ j
. We should compute K × K matrix

representations of H̃i, Ṽ α
i and W̃ α

j by using the result of
Step 1 and the Nqubit-qubit quantum computer. Recalling
that the local basis {P(i)

k |ψ0〉i}K
k=1 is not orthonormal,

we first construct an orthonormal basis {|φk〉i}K
k=1 by the

Gram-Schmidt method. Concretely, we compute a K × K
matrix G(i) representing the inner product,

G(i)
kk′ = i〈ψ0| P(i)†

k P(i)
l |ψ0〉i , k, k′ = 1, 2, . . . , K, (3)

by Nqubit-qubit quantum devices. With classical computation
using the matrix G(i), we can obtain a K × K matrix S(i) so
that the set of states, given by

|φk〉i =
K∑

k′=1

S(i)
k′k

(
P(i)

k′
∣∣ψ0

〉
i

)
, k = 1, 2, . . . , K, (4)

can provide an orthonormal basis of H̃i (see Appendix A for
detail). We then obtain the matrix elements

(Ã)kl = i〈φk| A |φl〉i

=
∑
k′,l ′

S(i)∗
k′k S(i)

l ′l i〈ψ0| P(i),†
k′ AP(i)

l ′ |ψ0〉i (5)

by using the Nqubit-qubit quantum device of to evaluate the
expectation values of P(i),†

k′ AP(i)
l ′ for A = Hi,V α

i or W α
i .

In this step, there are several options for the local excitation
operators {P(i)

k }, or equivalently the local basis set {|φk〉i}. In
Ref. [29], a series of local operators that occur in the intersub-
system interactions and nontrivially act on the boundary sites
of subsystems are adopted as {P(i)

k } for evaluating the ground
state of spin systems.
Step 3: Perform VQE for the effective model.

We finally compute the ground state of the effective Hamil-
tonian H̃ by using VQE, which is expected to approximately
reproduce that of the original Hamiltonian H . To perform
VQE for H̃ on quantum computers composed of qubits, we
should choose an integer Neff = 	log2 K
 to embed H̃ into a
Hilbert space of Neff qubits. We add auxiliary dimensions to

each local Hilbert space H̃i and replace the effective Hamilto-
nian by

H̃eff =
Nsub∑
i=1

H̃i,eff +
Nsub∑
i �= j

∑
α

να
i jṼ

α
i,eff ⊗ W̃ α

j,eff, (6)

H̃i,eff = H̃i ⊕ 02Neff −K , (7)

Ṽ α
i,eff = Ṽ α

i ⊕ 02Neff −K , W̃ α
j,eff = W̃ α

j ⊕ 02Neff −K , (8)

where 0M represents a M × M zero matrix. The replaced
effective Hamiltonian H̃eff is defined on Nsub × Neff qubits,
and we can perform VQE for it. By carefully choosing a
variational quantum circuit V (�θ ) so that V (�θ ) |0〉 has no com-
ponents out of the KNsub -dimensional subspace corresponding
to H̃, we obtain the ground-state energy by minimizing
the cost function 〈0|V †(�θ )H̃effV (�θ ) |0〉. This Step 3 requires
quantum computation on (Nsub × Neff ) = Nsub	log2 K
 qubits.

Steps 1,2, and 3 are crucial procedures of Deep VQE. The
number of qubits required for the whole algorithm is given by

Nreq = max(Nqubit, Nsub × Neff ). (9)

When K is not taken as so large [∼O(eNqubit )], Nreq is small
compared to the required number of qubits for simulating
the original system, Ntot = NsubNqubit. In the original proposal
[29], the repetition of Steps 1–3 are also proposed to further
reduce the number of qubits.

B. Motivation of our study

The pros of Deep VQE is that we can calculate the ground
state with the smaller number of qubits. The key to reducing
the required qubits is the choice of local excitation operators
{P(i)

k }K
k=1 in Step 2, in which we discard some information

of the whole Hilbert space. As is usual with the divide-and-
conquer methods, it is argued in Ref. [29] that the resulting
restricted Hilbert space can describe the ground state of the
original Hamiltonian well as long as it is low-entangled and
we can choose the proper local basis {P(i)

k }K
k=1.

We motivate our study by raising several points for the
original Deep VQE proposal. The first point is whether it is
possible to describe the low-energy eigenstates of the original
Hamiltonian in the restricted Hilbert space, or simply stating,
the applicability of Deep VQE to the excited states. It is non-
trivial whether the same local basis for the ground state works
also for the excited states. The second point lies in Step 3.
When we replace the effective Hamiltonian H̃ by H̃eff with in-
serting auxiliary dimensions, some meaningless (or artificial)
eigenvalues appear in the spectrum of H̃eff . As we explicitly
show in Sec. III B, this can alter both the ground-state energy
and the low-excited-state energies of H̃eff from those of H̃ .
This is the reason why we restrict the variational quantum
states in Step 3 following Ref. [29]. In practice, construction
of such variational quantum states is not so straightforward
and it is desirable to develop a way to use arbitrary variational
quantum states for searching low-energy eigenstates of H̃eff .
The third point relates to the applicability of Deep VQE
to fermionic systems such as quantum chemistry problems.
The performance of Deep VQE in fermionic systems has not
been explored so far, where quantum states mapped to qubit

043121-3



KAORU MIZUTA et al. PHYSICAL REVIEW RESEARCH 3, 043121 (2021)

systems can be more entangled in general because of the
nonlocal terms in the mapped Hamiltonian.

This paper aims to construct the modified Deep VQE
protocol for low-energy eigenstates by solving the above
problems and to examine its practical use for chemistry prob-
lems, particularly the simulation of periodic materials. The
simulation of periodic materials in ab initio level, which al-
ways lies at the center of condensed matter physics, requires
many qubits to predict accurate results in the thermodynamic
limit. Thus, periodic materials are expected to be a good target
of the modified Deep VQE, in that we would like to obtain
both their ground state and the low-energy-excited states with
the smaller number of qubits.

III. MAIN RESULT: DEEP VQE
FOR LOW-ENERGY PHYSICS

This section provides the first half of the main results. As
discussed in the previous section, the original Deep VQE has
some nontrivial problems in calculating low-energy eigen-
states. In Secs. III A and III B, we propose the modified Deep
VQE protocol for excited states that solves these problems.
In Sec. III D, we provide a numerical example to confirm the
validity of our modified Deep VQE.

A. Choice of local basis for obtaining accurate excited-states

Here, we provide the modified way of choosing the local
basis in Step 2 of Deep VQE so that low energy eigenstates
of the original Hamiltonian can be well represented in the
restricted Hilbert space.

Before proposing our modified choice of the local basis
to obtain accurate excited states, let us recall the local basis
of the original Deep VQE and argue that it may fail for the
excited states. The local basis {P(i)

k }k in the original Deep
VQE is chosen as a set of Pauli operators contained in the
intersubsystem interactions (an explicit example can be found
in Sec. III D). Assuming that Hi has a unique ground state
|ψ0〉i and that the VQE in Step 1 of Deep VQE is accurate
enough, it follows that |�0〉 = ⊗

i |ψ0〉i is the ground state of
Hintra = ∑

i Hi. Regarding Hintra and Vinter as an unperturbed
Hamiltonian and a perturbation, respectively, Deep VQE al-
ways gives the ground-state energy more accurate than that of
the first-order perturbation theory, 〈�0|H |�0〉. This is because
the restricted Hilbert space H̃ includes |�0〉 by construction.
Although neither the original Deep VQE overwhelms higher-
order perturbation theories nor vice versa, they commonly
capture local excitations from the unperturbed ground state
|�0〉 invoked by {P(i)

k } (or Vinter), which thereby validate the
accuracy of the original Deep VQE for the ground state. On
the other hand, the restricted Hilbert space of the original
Deep VQE cannot reproduce the low-energy-excited-states
eigenvalues even at the first-order perturbation level. The nth
excited states |�n〉 of the unperturbed Hamiltonian Hintra is
not generated by applying only the excitation operators stem-
ming from the intersubsystem interactions to |�0〉. Hence,
the choice of the local basis of the original Deep VQE will
fail to produce accurate excited-state energies (see also the
numerical results in Sec. III D).

We propose an operator set {P(i)
k }K

k=1 for properly repre-
senting low-energy excited states as the modified Deep VQE
protocol. The main idea is to take into account not only ex-
citations by intersubsystem interactions Vinter but also those
by intrasubsystem interactions Hintra. Namely, the simplest
choice of {P(i)

k }K
k=1 is

P(i)
k ∈ W := {I} ∪

(Nqubit⋃
j=1

{Xj,Yj, Zj}
)

, (10)

composed of the identity operator and Pauli operators on each
sites of the subsystem i. The local Hilbert space dimension
K = 3Nqubit + 1 is still much smaller than the original one
2Nqubit , meaning the decrease of qubits required for simulation.

We can show the validity of the modified local basis gen-
erated by W for Deep VQE of the excited states under certain
assumptions. Concretely, we can show that our modified Deep
VQE yields more accurate low-excited-state energies than
the first-order perturbation theory of Vinter. We assume that
the low-lying excited states of the ith subsystem, |ψn〉i (n =
1, 2, . . .), can be well described by the restricted Hilbert space
for the subsystem, {P(i)

k |ψ0〉i |P(i)
k ∈ W}K

k=1. This assumption
is justified when the excited states of the subsystem are not
so entangled and approximately generated only from the first-
order excitation of the terms included in Hi. This assumption
can also be rephrased that the QSE method [6] works well in
the ith subsystem, where a similar restricted Hilbert space is
constructed and the Hamiltonian within that space is solved
classically. To see how the assumption leads to the validity of
our choice of the local basis, let us consider the first-excited
states of the original Hamiltonian composed of Nsub identical
subsystems. The degenerated first-excited states of the unper-
turbed Hamiltonian Hintra,

∣∣� (i)
1

〉 = |ψ1〉i ⊗
(

Nsub⊗
j: j �=i

|ψ0〉 j

)
, (11)

are included in the subspace H̃ because of the assumption.
The perturbation theory for Vinter tells us that the subspace
S1 = span({|� (i)

1 〉 | i = 1, . . . , Nsub}) can reproduce the ap-
proximate first-excited-state energy as

E1(local) = min

{ 〈�|H |�〉
〈�|�〉

∣∣∣∣ |�〉 ∈ S1

}
. (12)

Because of the inclusion S1 ⊂ H̃ by construction, we can
conclude that the modified Deep VQE always provides more
accurate low-excited energies than that of the first-order
perturbation.

The higher-order perturbation theories involve an infinite
series of the unperturbed eigenstates |�k〉, thereby making
it difficult to obtain rigorous relation with the Deep VQE.
However, we can intuitively give some correspondence as well
as the ground states. For instance, in the second-order pertur-
bation theory without degeneracy, the unperturbed eigenstates
|�k〉 with the large value of | 〈�k|Vinter|�n〉 /(〈�n|Hintra|�n〉 −
〈�k|Hintra|�k〉)| have principal contributions to the nth low-
energy eigenvalues. Such states |�k〉, having the low-energy
under Hintra and the connection via local excitations from
Vinter, are approximately included in the restricted Hilbert
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space of our method. Thus, our method is expected to pro-
vide approximate low-energy eigenvalues as well as the
higher-order perturbation theories. In fact, in the later numer-
ical simulations, we will see that the modified Deep VQE
comparably outperforms the first-order perturbation result,
supporting this expectation.

We note another choice of the local basis set to evaluate the
excited states. One possible choice is to include the states like
{P(i)

k |ψn〉i}, where |ψn〉i is the subsystem excited eigenstate.
Since the restricted Hilbert space after the coarse graining di-
rectly includes |� (i)

1 〉 [Eq. (11)], we can expect that this choice
also gives approximate excited states. The caveat of choice is
that we should employ a proper algorithms to calculate the
excited states |ψn〉i in the subsystems to construct evaluate the
matrix elements of H̃ . We discuss the details of this choice of
the local basis in Appendix B.

To summarize, in the modified Deep VQE for calculating
low-energy eigenstates, we prepare local excitation operators
in Step 2 as W [Eq. (10)]. This corresponds to taking into ac-
count excitations by both intrasubsystem and intersubsystem
terms.

B. Construction of effective qubit model with penalty

Next, we provide the modified way of constructing the
effective qubit model in Step 3 of Deep VQE so that we can
adopt any variational quantum circuit.

Let us first see the problem of meaningless eigenvalues in
the original Deep VQE by taking simple examples. In Step 3
of Deep VQE, we insert additional dimensions to the effective
Hamiltonian H̃ obtained in Step 2 and get H̃eff defined on
qubits. This introduces some meaningless eigenvalues and
even changes the ground-state energy and the low-energy
eigenvalues. For instance, we consider a two-qubit Hamilto-
nian

H̃a = Z ⊗ I + I ⊗ Pz+ + Px+ ⊗ Px+, (13)

where Px+ = (I + X )/2 [Pz+ = (I + Z )/2] is a projection to
an up-spin state in x direction [in z direction]. We add a
dimension by one in the same way as Eqs. (6)–(8):

H̃a,eff = Z̃ ⊗ Ĩ + Ĩ ⊗ P̃z+ + P̃x+ ⊗ P̃x+ (14)

with Z̃ = Z ⊕ (0), P̃α+ = Pα+ ⊕ (0), and Ĩ = I ⊕ (1) (note
that the dimension itself is not essential here). While the
energy spectrum of H̃a is E ∈ [−0.836, 0.201, 1.245, 2390],
that of H̃a,eff is [−1,−0.836, 0, 0, 0.201, 1, 1, 1.245, 2.390],
changing the ground state. As well, another example is H̃b =
0.2Z ⊗ I + 0.7I ⊗ Z + 0.3X ⊗ X . It originally has the first-
excited-state energy E1 = −0.583, but that of H̃b,eff is −0.7.

These meaningless eigenvalues come from inserting the
identity by Ĩ = I ⊕ (1), which gives meaningless energies to
states in the auxiliary dimensions. We note that inserting the
identity by Ĩ ′ = I ⊕ 0M generates no meaningless eigenvalues
other than zero. However, the operator Ĩ ′ is decomposed into
a number of terms composed of many Pauli Z operators. This
makes H̃eff have a lot of nonlocal Pauli operators among the
subsystems, so the extension by Ĩ = I ⊕ 0M is not practical for
performing the VQE for the effective Hamiltonian in Step 3.
In the original Deep VQE, to avoid the change of the ground-
state energy (and the low-energy eigenvalues), the variational

quantum circuits should be chosen so that all the components
in the additional Hilbert space become zero.

We propose an alternative way to construct the effective
qubit model so that H̃ and H̃eff have the same low-energy
spectrum, thereby enabling the use of any variational quan-
tum circuit. Concretely, we specify the terms in the auxiliary
dimensions as follows:

H̃eff =
Nsub∑
i=1

H̃i,eff +
Nsub∑
i �= j

∑
α

να
i jṼ

α
i,eff ⊗ W̃ α

j,eff, (15)

H̃i,eff = H̃i ⊕ λiI2Neff −K , (16)

Ṽ α
i,eff = Ṽ α

i ⊕ 02Neff −K , W̃ α
j,eff = W̃ α

j ⊕ 02Neff −K . (17)

The difference from Eq. (6) is the insertion of λiI2Neff −K in
H̃i,eff with λi > 0, corresponding to a penalty term to compo-
nents in auxiliary dimensions. For H̃ and H̃eff having the same
low-energy spectrum, we should choose a proper set {λi}Nsub

i=1 .
We have derived the following proposition, which gives a
mathematically rigorous sufficient condition on the choice
of λi.

Proposition. Let En(H ) denote the nth smallest eigen-
value of a Hamiltonian H with the dimension d (n =
0, 1, 2, . . . , d − 1). When we choose {λi}i in Eq. (16) to
satisfy

λi > eH̃ (i) + En(H̃ ) − E0(H̃ ), (18)

the spectrum of H̃ coincides that of H̃eff , defined by Eqs. (15)-
(17), up to the nth smallest eigenvalue:

Em(H̃ ) = Em(H̃eff ) for m = 0, 1, . . . , n. (19)

Here, eH̃ is the value called extensiveness of the ith subsystem
under the Hamiltonian H̃ , representing the maximal energy of
the ith subsystem (see Appendix C for the rigorous definition).
When the Hamiltonian H̃ is given by Eq. (2), the extensive-
ness is given by

eH̃ (i) = ||H̃i||op +
∑

j,k: { j,k}�i

∑
α

∣∣να
jk

∣∣ · ∣∣∣∣Ṽ α
j

∣∣∣∣
op · ∣∣∣∣W̃ α

k

∣∣∣∣
op.

(20)

We give a proof for this proposition in Appendix C.
We discuss the implication of this proposition. When we

calculate the ground state by our modified Deep VQE with
Eqs. (15)–(17) and choose λi larger than eH̃ (i), Eq. (19) indi-
cates that we can find the ground state of H̃ by searching that
of H̃eff in the whole Hilbert space of 2Neff dimension. In other
words, we can exploit any variational quantum circuits for
VQE on the extended Hamiltonian H̃eff . Similarly, when we
calculate the excited states of H̃eff up to nth level and choose
λi larger than eH̃ (i) + En(H̃ ) − E0(H̃ ), the spectra of H̃eff and
H̃ coincide and we can use an arbitrary variational quantum
circuit.

The value of eH̃ (i) can be calculated by classical com-
puters as a sum of O(Nsub · K3) terms since the minimal
or maximal eigenvalue of K × K matrices is required for
evaluating the operator norm. On the other hand, the energy
gap En(H̃ ) − E0(H̃ ) is not known a priori before performing
the VQE for the excited states of H̃eff . In practice, we can
obtain rough and typical energy scale 	∗

n ∼ En(H̃ ) − E0(H̃ )
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FIG. 2. Protocol of the Deep VQE modified for low-lying eigen-
states. The blue bold parts are the differences compared to the
original Deep VQE [29], which deals with the ground state. “Qubits”
gives the typical size of NISQ devices required for each step.

with other computationally-light methods such as a perturba-
tion theory and a mean-field theory. With replacing the gap
En(H̃ ) − E0(H̃ ) in Eq. (18) by a certain value larger than the
estimated gap 	∗, we can safely search the low-energy excited
states by VQE on H̃eff with any variational quantum circuit.

In short, by constructing the effective qubit model H̃eff

as Eqs. (15)–(17) and setting λi to satisfy Eq. (18), we can
employ any variational quantum state to run algorithms in
the literature [6–11] to find excited states of H̃eff , which are
ensured to be identical to those of H̃ . We also note that
introducing the energy shift λi hardly affects the number of
measurements. The energy shift terms 0K ⊕ λiI2Neff −K , com-
posed of ZZ-type Pauli operators, have at-most 2Neff Pauli
terms. This is much less than O(4Neff ), required for the effec-
tive Hamiltonian H̃i ⊕ 02Neff −K .

C. Protocol and number of measurements

Here, we summarize the protocol of the modified Deep
VQE for low-lying eigenstates and the number of measure-
ments in each step. Figure 2 shows a protocol on NISQ
devices required for each step.

Let us consider a simple Hamiltonian H involving at-most
two-body interactions. In Step 1, the VQEs on subsystems
require measurements of O(NsubN2

qubit ) terms in Hintra. In Step

2, we pick up {P(i)
k }, which reflects the local excitations from

Hintra and Vinter. For a simple choice of {P(i)
k } given by Eq. (10)

with K ∼ Nqubit , which captures linear excitations, we should
measure P(i)†

k P(i)
l and P(i)†

k AP(i)
l in |ψ0〉i [see Eqs. (3) and (5)].

They involve at-most O(N2
subN3

qubit ) Pauli terms. In Step 3,
we analyze the effective Hamiltonian H̃eff by elaborated VQE
for low-lying eigenstates, such as the subspace-search VQE
(SSVQE) [7], the multistate-contracted VQE (MCVQE) [8],
and the variational quantum deflation (VQD) [9]. Since each
of H̃i, Ṽ α

i , W̃ α
i is decomposed into at-most 4Neff ∼ K2 Pauli

terms, we should measure O(N2
subN4

qubit ) terms in H̃eff . We
note that introducing the penalty term λi by Eq. (16) does not
severely increase the cost of measurements. While the num-
ber of measurements increases compared to the conventional
VQE for the whole system, given by O(N2) = O(N2

subN2
qubit ),

the size of quantum devices decreases to O(Nsub log Nqubit ) in
the modified Deep VQE.

In the numerical simulations below, we employ SSVQE in
Step 3 due to its simplicity, and we give detailed description
of its algorithm in Appendix D.

D. Example: Spin chain

Based on the modified Deep VQE protocol in the previous
subsections, we numerically examine its validity by exempli-
fying a simple spin model. We consider a one-dimensional
antiferromagnetic (AFM) Heisenberg model of Ntot-site,

H =
Ntot−1∑

i=1

(XiXi+1 + YiYi+1 + ZiZi+1), (21)

under the open boundary condition. We split the system into
Nsub subsystems, each of which is composed of neighboring
Nqubit qubits (Ntot = Nsub × Nqubit). Then, the intersubsystem
interactions involve qubits only at the boundaries of the sub-
systems.

We introduce two different sets of local excitation oper-
ators to compare the modified Deep VQE with the original
Deep VQE. The first one is

W1 = {I} ∪ {Xi,Yi, Zi| i at the boundary of subsystem}.
(22)

We note that we have not written the index of the subsystem,
but we define W1 for each subsystem. An excitation operator
Pk ∈ W1 only acts on the boundaries of subsystems and is
relevant to the intersubsystem interactions, so the choice of
local basis based on W1 correspond to the original Deep
VQE. The dimension of the local Hilbert space K is 4 (for
subsystems at the edges) or 7 (for subsystems in the bulk).
The second choice of local excitation operators is

W2 = {I} ∪ {Xi,Yi, Zi| i ∈ 
′}, (23)

where 
′ is a set of qubits in a subsystem except for the
right edge. This choice also captures any single-spin excita-
tion (αXi + βYi + γ Zi ) |ψ0〉 (α, β, γ ∈ C), emerging from a
generic local extensive intrasubsystem Hamiltonian Hi as well
as those of Vinter, thereby corresponding to the choice in our
modified Deep VQE. We omit qubits at the right edge because
of the SU(2) symmetry in the AFM model; for the ground state
|ψ0〉 of each subsystems, it holds (

∑
j∈subsystem Xj ) |ψ0〉 =

(
∑

j∈subsystem Yj ) |ψ0〉 = (
∑

j∈subsystem Zj ) |ψ0〉 = 0. One of
the states in {Xj |ψ0〉 | j in subsystem} is not linearly inde-
pendent from the others, and the same relations for Y and Z
also hold. We do not include the Pauli operators (X,Y, Z) at
the right edge in W2 due to this fact. The local Hilbert space
dimension K is 3Nqubit − 2 in the case of W2.

We note on the insertion of auxiliary dimensions in
this model analyzed in Sec. III B. We can roughly esti-
mate the extensiveness eH̃ (i) for each subsystem. In the
case of Nsub = 2 and Nqubit = 4, we numerically confirm that
||H̃i||op coincides with the absolute value of the ground-
state energy for each subsystem. The operator norm of the
intersubsystem interactions is at most 2(||Xi||op||Xi+1||op +
||Yi||op||Yi+1||op + ||Zi||op||Zi+1||op) = 6, so we obtain eH̃ (i) �
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TABLE I. Numerical results for low-energy eigenvalues En (n = 0, 1) of a one-dimensional AFM Heisenberg model (21). The excitation
operator set {P(i)

k } is taken as W1 (by W2) for the original Deep VQE (for our modified Deep VQE). The values En(DeepVQE) and En(ED)
represent the results of Deep VQE simulation and those of exact diagonalization of the original Hamiltonian H . The values En(Effective) are
obtained by substituting ED for the VQE in Step 3 of Deep VQE, which give the best performance of Deep VQE in theory. The left values
and the right values of En(Effective) and En(DeepVQE) are the obtained energies and their relative errors from En(ED), respectively. The
truncation rate TR is given by Eq. (24). We also show the number of qubits required to run Deep VQE by Nreq.

{P(i)
k }k E0(Effective) E0(Deep VQE) E0(ED) E1(Effective) E1(Deep VQE) E1(ED) TR Nreq

Nsub = 2 W1 −13.445/0.4% −13.445/0.4% −13.500 −11.169/6.4% −11.169/6.4% −11.929 6.3 × 10−2 4
Nqubit = 4 W2 −13.497/0.02% −13.488/0.09% −11.882/0.4% −11.863/0.6% 3.9 × 10−1 8
Nsub = 3 W1 −20.413/0.8% −20.413/0.8% −20.568 −18.665/4.0% −18.665/4.0% −19.445 2.7 × 10−2 7
Nqubit = 4 W2 −20.513/0.3% −20.486/0.4% −19.265/0.9% −19.199/1.3% 2.4 × 10−1 12
Nsub = 2 W1 −20.480/0.4% −20.480/0.4% −20.568 −18.286/6.0% −18.286/6.0% −19.445 3.9 × 10−3 4
Nqubit = 6 W2 −20.560/0.04% −20.551/0.08% −19.343/0.5% −19.324/0.6% 6.3 × 10−2 8
Nsub = 2 W1 −27.535/0.4% −27.535/0.4% −27.647 −25.374/5.2% −25.374/5.2% −26.770 2.4 × 10−4 4
Nqubit = 8 W2 −27.634/0.05% −27.612/0.1% −26.620/0.6% −26.578/0.7% 7.4 × 10−3 10

6.464 + 6 = 12.464. Therefore, it is sufficient to insert aux-
iliary dimensions by Ji = λiI2Neff −K with λi > 12.464 (for
ground states) or λi > 12.464 + 	∗

n (for excited states) with
the estimated gap 	∗

n ∼ En(H̃ ) − E0(H̃ ). Nevertheless, we
directly confirm that both the ground-state energy and the
first-excited-state energy of H̃ are the same as those of H̃eff

by exact diagonalization in this simulation, so we simply set
λi = 0 in the following.

We run a classical simulation of Deep VQE for the AFM
Heisenberg model (21). We exploit a hardware-efficient type
ansatz [20,37] as a variational quantum circuit. We use this
ansatz in the VQE for finding the ground states of the sub-
system Hamiltonians (Step 1 of Deep VQE) and SSVQE
for finding the ground and first-excited state of the effective
Hamiltonian H̃eff (Step 3 in Deep VQE). The simulation of
quantum circuits is performed by using the libraries Qulacs
[38,39] and OpenFermion [40]. More details on numerical
simulations are described in Appendix D.

We show the numerical results for the AFM Heisenberg
chain with various partitioning of the total system in Table I.
We calculate the ground-state energy E0 and the first-excited-
state energy E1 in three ways and compare them. The first
one, “Effective” is obtained by exact diagonalization of the
effective Hamiltonian H̃ . This value tells us provides the
best performance of Deep VQE in theory. The second one,
“Deep VQE,” is obtained by simulations of Deep VQE. The
difference between “Effective” and “Deep VQE” indicates
errors originating from VQEs in Step 1 and 3 of Deep VQE.
The last one, “ED,” is the exact energy of of the original
Hamiltonian H calculated by the exact diagonalization. The
difference between “Effective” and “ED” tells the validity of
the choice of the local basis in Step 2 of Deep VQE. In the
table, we also introduce the truncation rate TR defined by

TR = dim(H̃)/dim(H) = (K/2Nqubit )Nsub, (24)

as a figure of merit of the reduction of the Hilbert space.
The accurate results for En(Effective) (n = 0, 1) with small
TR mean that the coarse graining is performed with a proper
choice of a local basis set.

As shown in Table I, in terms of the ground-state energy
E0, both the original Deep VQE (W1) and the modified Deep
VQE (W2) exhibit good performance with relative errors to

“ED” values (eigenvalues of the original Hamiltonian) up to
0.8%, as expected. On the other hand, in terms of the first-
excited-state energy E1, the modified Deep VQE (W2) shows
comparably good performance with relative errors from 0.6%
to 1.3%, compared to the original Deep VQE (W1) results
having relative errors from 4.0% to 6.4%. Considering that the
value of “Effective” in the original Deep VQE (W1) deviates
from that of “ED”, the modified choice of local basis is essen-
tial for obtaining low-energy excited states accurately, i.e., the
larger error in the original Deep VQE (W1) is not due to the
imperfection of the optimization of the VQE in Deep VQE
algorithm. We also evaluate the number of measurements.
For Nsub = 2 and Nqubit = 8 with W2, each subsystem term
H̃i ⊕ 02Neff −K is decomposed into 452 Pauli terms. While we
do not introduce the energy shift λi for the simulation, we can
complete the protocol with the same number of measurements
452 for H̃i ⊕ λiI2Neff −K .

To further understand the higher accuracy for the excited
states achieved with our local basis choice W2, we con-
firm the validity of QSE for each subsystem as discussed
in Sec. III A. QSE for each subsystem with the local exci-
tations W1 (W2) and the reference state |ψ0〉i is equivalent
to calculating the eigenvalues of H̃i obtained from W1 (W2)
and |ψ0〉i. In the case of Nqubit = 6, the exact first-excite-state
energy for each subsystem is E sub

1 = −8.008 with three-fold
degeneracy, which we calculate by the original Hi. On the
other hand, by diagonalizing H̃i, we obtain the QSE results
E sub

1 = −6.415 with nearly three-fold degeneracy (for W1)
and E sub

1 = −8.000 with three-fold degeneracy (for W2). This
means the failure of QSE with W1 and the success of QSE
with W2.

As discussed in Sec. III A, the success of QSE in ex-
pressing the local first-excited states ensures the accurate
first-excited-state energy by the consistence with the pertur-
bation theory. The above result on the invalidity and validity
of QSE for W1 and W2 explains why our modified local ex-
citations W2 gives much better approximation for the excited
states than the original one W1. This example also supports
the scenario of the modified Deep VQE in Sec. III A—
the modified local excitations reflecting the intrasubsystem
Hamiltonians result in the accurate low-lying excited states
due to the success of QSE for each subsystem. Based on
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this finding, although we simply use all the Pauli operators
X,Y, Z , we can find a better choice which efficiently describes
each subsystem by employing some methods reflecting the
type of intrasubsystem Hamiltonians Hi such as Ref. [41].

E. Discussion for improving the accuracy

We finally discuss how to improve the accuracy. The key is
to capture higher-order excitations caused by intrasubsystem
and intersubsystem interactions within each subsystem. For
example, the product of Pauli operators like AiBj (A, B =
X,Y, Z) for different qubits i, j within the same subsystem
can be included in the local operator set in Step 2 of Deep
VQE, while our simulation only considers linear excitations
of such Pauli operators. This is similar to considering higher-
order excitations in QSE. The drawback for including the
higher-order excitations is the increase of the effective system
size. When we consider up to the nth order product of Pauli
operators like Pj1 · · · Pjn , the dimension of the local Hilbert
space becomes K ∼ (Nqubit )n. Although we have (Nqubit )n �
2Nqubit (the dimension of the original local Hilbert space) for
small n, the order of excitations n has to be determined by
comparing the benefit in the accuracy with the computational
cost.

IV. MAIN RESULT: APPLICATION
TO CHEMISTRY PROBLEMS

In this section, we provide the second half of our main
results. We apply our modified VQE to the simplest example
of a quantum chemistry calculation for periodic materials:
electronic states of a periodic hydrogen chain. We show nu-
merical simulation results and examine the validity of our
modified Deep VQE on the low-energy eigenstates of periodic
materials. Our numerical results also can be seen as the first
application of Deep VQE to fermionic systems that map to
nonlocal qubit Hamiltonians.

A. Model and Method

Let us describe our model and how to perform Deep VQE.
We consider a one-dimensional chain under periodic bound-
ary condition whose unit cell is composed of two hydrogen
atoms [see Fig. 3(a)]. The distance between the two atoms is
d and the length of the unit cell is 2d . After performing the
crystal Hartree-Fock calculation with STO-3G basis set [28],
we obtain the Hamiltonian in the second-quantized form as

H =
∑

k

∑
pq

t pq
k c†

kpckq

+
∑

k1k2k3k4

′ ∑
pqrs

v
pqrs
k1k2k3k4

c†
k1 pc†

k2qck3rck4s, (25)

where c†
kp (ckp) is a creation annihilation operators of elec-

trons with crystalline momentum k and the spin orbital p.
The crystalline momentum k is uniformly sampled from
the first Brillouine zone [0, 2π ], which is renormalized
by the unit-cell length 2d . The index p ∈ [1, 2, 3, 4] repre-
sents the spin-orbital within a unit cell, which comes from two
spin-orbitals in the STO-3G basis for two hydrogen atoms.
The orbitals p = 1, 2 (p = 3, 4) are occupied (unoccupied)

FIG. 3. (a) A one-dimensional hydrogen chain. A unit cell in-
cludes two hydrogen atoms, and the distance between the atoms is d .
(b) The way of splitting the hydrogen chain into subsystems in the
momentum space. Neighboring Nqubit qubits, corresponding to elec-
trons with similar momentum, belong to the same subsystem. Here,
the orbitals 1 and 2 (3 and 4) represent the occupied (unoccupied)
crystalline orbitals under the Hartree-Fock approximation.

orbitals in the Hartree-Fock state. The symbol �′ represents
the summation over the crystalline momentum under the crys-
talline momentum conservation, satisfying

k1 + k2 − k3 − k4 ∈ 2πZ. (26)

The sets of coefficients {t pq
k } and {vpqrs

k1k2k3k4
} represent one-body

and two-body electron integrals between different crystalline
Hartree-Fock orbitals (k, p), determined by classical comput-
ers.

To perform Deep VQE, we transform the fermionic Hamil-
tonian (25) into the one on qubits by the Jordan-Wigner
transformation [42]. Each qubit is still labeled by (k, p) of
a corresponding electron. Through this transformation, some
nonlocal terms appear in the Hamiltonian, e.g., a Pauli string
X1Z2X3X5Z6X7 coming from c†

3c†
7c1c5. This nonlocality poten-

tially harms the validity of Deep VQE because the eigenstates
can be entangled nonlocally among the system, so our simu-
lation also examines how the nonlocality affects the accuracy
of Deep VQE. When we sample Nk points as the crystalline
momentum, 4Nk qubits are required to represent the original
Hamiltonian (25).

Next, we depict how to perform each step of Deep VQE
for the periodic hydrogen chain including the way to di-
vide it into subsystems. We define subsystems so that each
orbital (qubit) in the subsystem has similar the crystalline
momentum k. To be precise, we label the qubits as (k, p) =
(k1, 1), (k1, 2), (k1, 3), (k1, 4), (k2, 1), (k2, 2), . . . with the or-
der 0 = k1 < k2 < . . . [see Fig. 3(b)] and group neighboring
Nqubit qubits with the smaller index step by step. We stress that
we define the subsystems in the momentum space, not the real
space.

We consider two set of local excitation operators for Step
2 of Deep VQE as

Ws = {I} ∪ {c′
j, c′†

j | j ∈ 
e}, (27)

Wd = Ws ∪ {c′†
j c′

k | j, k ∈ 
e}, (28)

where 
e is the set of (k, p) in each subsystem (we have
not explicitly written the index for the subsystem in Ws and
Wd ). The qubit operator c′

i (c′†
i ) is obtained by a fermion
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annihilation (creation) operator truncated within each subsys-
tem. Namely, we define c′

i (c′†
i ) by restricting the transformed

Pauli operators of ci (c†
i ) to act only on the target subsystem.

For instance, in the case of Nqubit = 4, we define c′
6 = Z5(X6 −

iY6)/2 while the genuine qubit-operator representation of
c6 obtained by the Jordan-Wigner transformation is c6 =
Z1Z2Z3Z4Z5(X6 − iY6)/2. Although this truncation means ne-
glecting the anticommutation relations between c′

i and c′†
i in

different subsystems, we expect that they are sufficient to
describe locally excited states in each subsystem. Under this
definition, Ws is a set of single-particle excitations giving a
local Hilbert space dimension K = |Ws| = 2Nqubit + 1. On
the other hands, Wd is a set of single- and double- parti-
cle excitations giving a local Hilbert space dimension K =
(Nqubit + 1)2.

In Step 3 of Deep VQE, we should specify the way of
inserting auxiliary dimensions following Eqs. (15)–(17). We
again employ λi = 0 because we directly confirm that the
low-energy eigenvalues of H̃eff and those of H̃ coincide by
the exact diagonalization.

B. Numerical results

In numerical simulations of Deep VQE for the periodic
hydrogen chain, three k points are sampled (the total number
of qubits is 3 × 4 = 12), and we split the system by Nsub = 2
and Nqubit = 6. Here, we employ a hardware-efficient type
ansatz [20,37] of depth 20 for VQE in Step 1 of Deep VQE,
and that of depth 80 for SSVQE in Step 3 to simply examine
the performance of our protocol. To compute larger systems
with smaller depth of quantum circuits, it will be better to
employ VQD or MCVQE instead of SSVQE (see Fig. 2)
and other ansatz avoiding the barren plateau problem [43]
instead of hardware-efficient ansatz. All circuit simulations
are performed by using the libraries Qulacs [38,39] and Open-
Fermion [40], and the crystalline Hartree-Fock calculation is
done by PySCF package [44,45] (see Appendix D for the
detail).

To assess the accuracy of Deep VQE result, we introduce
two kinds of values, dubbed “Local” and “Effective: ED.” The
former one is defined by

E0(local) = 〈�0|H |�0〉 , (29)

where |�0〉 = ⊗Nsub
i=1 |ψ0〉i is the ground states of the intrasub-

system Hamiltonian Hintra = ∑Nsub
i=1 Hi. The energy E0(local)

represents the result of the first-order perturbation theory
with the unperturbed Hamiltonian Hintra and the perturba-
tion Vinter = H − Hintra. The latter one “Effective: ED” is
calculated by substituting VQE in Step 1 of Deep VQE by
exact diagonalization and performing the exact diagonaliza-
tion again to solve H̃eff in Step 3 of Deep VQE. The value
of “Effective: ED” gives the best performance of Deep VQE
in theory since we solve all the Hamiltonians in Deep VQE
exactly. (Note that its definition is different from that of “Ef-
fective” in Sec. III in that the latter exploits VQE in Step 1 and
ED in Step 3.)

First, we choose the single-particle excitations Ws as a
local basis of Step 2 of Deep VQE and set d = 1.4 Bohr.
The results are shown in Table II. We find a nice agreement
between the “Deep VQE” and the “ED” within relative error

TABLE II. Numerical results for the ground-state and the first-
excited-state energies of the periodic hydrogen chain under d = 1.4
Bohr. The left values in the cells represent energies delivered in
Hartree. The right values are relative errors from the exact results
En(ED).

E0(Local) E0(Effective: ED) E0(Deep VQE) E0(ED)

−0.743/31% −1.067/1.4% −1.067/1.4% −1.082
E1(Effective: ED) E1(Deep VQE) E1(ED)

−0.743/4.1% −0.743/4.1% −0.775

up to a few percent, especially compared to the value of the
perturbation theory “E0(local)”. It should be noted that this
accuracy characterized by the relative errors up to 4.1% is
achieved despite truncating the vast majority of the whole
Hilbert space, TR = 0.0413, and reducing the number of
qubits by four (12 → 8). We also find that the values of “Ef-
fective: ED” and those of “Deep VQE” are almost identical,
which implies that the error of the “Deep VQE” results from
the exact ones solely comes from the truncation of the Hilbert
space in Step 2 of Deep VQE.

Next, let us investigate how the validity of Deep VQE
depends on the atom-atom distance d and the local basis.
From now on, we consider the values of En(Effective: ED)
(n = 0, 1) instead of the Deep VQE results En(Deep VQE)
due to the computational cost of classical simulations. As
discussed in the above, the values of En(Effective : ED) give
the best performance of the Deep VQE protocol. In some
cases, we observe the two-fold degeneracy for the ground
states of each subsystem, and we randomly choose the local
ground states |ψ0〉i in such situations. Figure 4 shows the low-
energy eigenvalues (upper panels) and the relative error (lower
panels) of En(Effectice: ED) from the exact results En(ED)
for (a) the ground state and (b) the first-excited states. For
the ground-state energy, Fig. 4(a) shows that the Deep VQE
results with the local operators Ws and Wd both can provide
much more accurate values than those of the first-order pertur-
bation theory, E0(local), within a wide range of the distance
d . When we only consider the single-particle excitations by
Ws, the obtained ground-state energy is accurate under small
distance d while the result approaches E0(local) with increas-
ing d . By taking into account double-particle excitations with
Wd, we can improve the accuracy, especially in the large-d
regime with making the relative error approximately half. The
results for the first-excited states have a similar tendency. We
can see that the first-excited-state energy error is suppressed
up to 10%. The improvement of the accuracy by considering
double-particle excitations becomes larger as the distance d
increases, with giving the errors approximately half as large
as those with single-particle excitations.

We remark on the required number of qubits for simulation.
For both cases with the single- and double-particle excitations,
we observe some states in {P(i)

k |ψ0〉i}K
k=1 are not linearly in-

dependent. For the former case Ws, the numerically-obtained
dimension K of the restricted Hilbert space ranges from 11
to 13, giving the Hilbert space truncation rate TR [Eq. (24)]
ranging from 0.030 to 0.035. (Note that TR obtained here
is different from that of the Deep VQE, 0.0413, due to the
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FIG. 4. Numerical results for the hydrogen chain with picking up three k-points. The values of “ED” and “Local” show the exact and
first-order-perturbation (29) results, respectively. “Effective: ED” results are obtained by substituting VQEs with ED in Steps 1 and 3 of Deep
VQE, giving the best performance of Deep VQE in theory. (a) The ground-state energy (upper panel) and the relative errors from the ED
values (lower panel). (b) The first-excited-state energy (upper panel) and the errors from the ED values (lower panel). For both the ground-
and first-excited-state energies, the relative errors from the exact results with double-particle excitations are suppressed approximately half
compared to those with single-particle excitations.

degenerate ground states in the local Hilbert space.) The Deep
VQE calculation for the original model [Eq. (25)] of 12 qubits
can be executed with a 8-qubit quantum device in this case. On
the other hand, for the latter case Wd, we find the numerically-
obtained dimension K of the restricted Hilbert space and
the truncation rate is 24 � K � 34 and 0.15 � TR � 0.22,
respectively. The number of the required qubits for the Deep
VQE protocol is 11 for the atom-atom distance d = 3.4 Bohr
and 10 for the other choices of d .

Finally, we discuss two possible directions to improve
the accuracy. The first way is to increase the number of
the reference states for the local basis, e.g., taking the local
basis like {P(i)

k |ψ0〉i} ∪ {P(i)
k |ψ1〉i} ∪ · · · . It is reasonable to

include low-energy eigenstates of the subsystems other than
the ground state for constructing the local basis to capture
the low-energy physics in the original system. We discuss
such a protocol in Appendix B. The second possible way
is to consider higher-order excitations for the construction
of local basis set. We can show that the Deep VQE with
higher-order local excitations gives the better result than the
combination of QSE and Deep VQE for the whole system
with lower-order excitations (see Appendix E for the detail).
As well as Sec. III E, the number of qubits for simulation is
given by

Nreq ∼ min(Nqubit, nNsub	log2 Nqubit
) � Nqubit × Nsub (30)

when we consider up to the nth order excitation. Therefore, as
the excitations up to double-particle Wd overwhelms those up
to single-particle Ws in terms of accuracy, the local basis with
higher order excitations will give more accurate low-lying
excited states with keeping the reduction of qubits.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed the improved way for
performing Deep VQE, in which we can properly obtain
low-energy eigenstates with arbitrary preferable variational
quantum circuits on a smaller number of qubits. We have
composed a set of local excitation operators used for the
coarse graining in Deep VQE by focusing on the excitations
caused by intrasubsystem interactions. The perturbation the-
ory and QSE ensure the validity for low-energy eigenstates
obtained by such Deep VQE protocols. We have also provided
an alternative way of constructing the effective Hamiltonian
defined on qubits, in which we introduce penalty terms to the
auxiliary dimensions. We have derived a rigorous bound on
the penalty that makes arbitrary variational quantum states
available. After reformulating Deep VQE for excited states,
we have applied it to periodic materials, namely, a periodic
hydrogen chain. We have shown that the low-energy eigenval-
ues are well reproduced with relative errors up to O(1)% in a
small atom-atom distance regime by splitting the system into
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subsystems based on crystalline momentum and considering
the local basis introduced by single-particle and double-
particle excitations. Our results enlarge the possibility of
simulating large systems by a small-sized quantum computers
even for excited states of quantum systems including, quan-
tum chemistry.

We provide some comments on how our method outper-
forms conventional classical methods. Our method searches
low-energy eigenstates from the restricted Hilbert space
spanned by

Nsub⊗
i=1

(
P(i)

ki
|ψ0〉i

)
, ki = 1, 2, . . . , K. (31)

Due to the coarse graining, this can accurately capture strong
intrasubsystem correlations and weak intersubsystem corre-
lations. In Eq. (31), each pair of subsystems is equivalent to
one another. Thus, our method can deal with 1D systems with
long-range interactions, which is usually difficult for classical
methods based on matrix product states (MPS) [46–48]. This
will benefit chemistry problems where the Coulomb inter-
actions play a central role. In addition, the applicability of
long-ranged models indicates the validity of our method for
higher dimensional systems unlike MPS-based methods. Our
method will overwhelm the cluster mean-field theory (MFT),
which is a classical method for high-dimensional systems
combined with the coarse graining, since it can deal with
entanglement between subsystems.

We leave some future directions for this study. First,
while our results provide approximate ground-state and first-
excited-state energies for periodic materials with relative
errors up to a few percents, the ultimate goal is to predict them
with the chemical accuracy (1.6 × 10−3 Hartree) by Deep
VQE. As discussed in Secs. III E and IV B, the way to improve
the accuracy would be to take higher-order excitations into
account for the local basis. Although the models examined
in this paper are too small to get benefit from considering
higher-order excitations because those excitations exhaust the
original (unrestricted) Hilbert space and there is no decrease
in the number of qubits, large systems targeted by the NISQ
devices with hundreds or thousands of qubits can gain the
improvement of the accuracy and the decrease of the number
of qubits by considering higher-order excitations. Second, it
is intriguing to study the performance of our modified VQE
when we repeat the coarse graining of Deep VQE many times,
as proposed in Ref. [29]. The Deep VQE discussed in this
paper performs the coarse graining once in Step 2. As the
number of repetition of the coarse graining increases, the
Deep VQE can simulate much larger systems, but instead,
its effective Hamiltonian gradually becomes nonlocal and
discards the information of the original systems. It should
be an important problem whether the modified Deep VQE
with repeating the coarse graining many times well repro-
duces low-energy eigenstates of huge systems. Third, from the
practical point of view, the feasibility of our modified VQE
in the real NISQ hardware can be further investigated. For
example, analyzing the effect of noise in the NISQ devices
on the coarse graining of Deep VQE is helpful to find how
much we alleviate the noise by error mitigation techniques
[49–51]. Another possible obstacle is the problem so-called

barren plateau [43], in which the optimization of variational
quantum circuits gets difficult for large and deep quantum
circuits. Our results in this paper nevertheless provides the
solid support that our modified VQE works in noiseless
situations.
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APPENDIX A: GRAM-SCHMIDT METHOD

We describe the classical algorithm for obtaining the or-
thonormal basis {|φk〉i}K

k=1 in Step 2 of the original and
modified Deep VQE based on the Gram-Schmidt method
[29]. To be precise, we derive the matrix elements S(i)

kk′ sat-
isfying |φk〉i = ∑K

k′=1 S(i)
k′k (P(i)

k′ |ψ0〉i ) from the overlap G(i)
kk′ =

〈ψ0|P(i)†
k P(i)

k′ |ψ0〉i. By the standard formulation of the Gram-
Schmidt method, one can choose the first normalized basis by
|φ1〉i = P(i)

1 |ψ0〉i /(G(i)
11 )1/2, giving the matrix elements

S(i)
11 = (

G(i)
11

)−1/2
, S(i)

1l ′ = 0, (l ′ = 2, 3, . . . , K ). (A1)

The second basis is given by

|φ2〉i = P(i)
2 |ψ0〉i − 〈φ1|P(i)

2 |ψ0〉i |φ1〉i∣∣∣∣P(i)
2 |ψ0〉i − 〈φ1|P(i)

2 |ψ0〉i |φ1〉i

∣∣∣∣ , (A2)

which becomes a linear combination of P(i)
1 |ψ0〉i and

P(i)
2 |ψ0〉i by Eq. (A1). The denominator D > 0 is expressed

in S(i) and G(i) as

D2 = ∣∣∣∣P(i)
2 |ψ0〉i − 〈φ1|P(i)

2 |ψ0〉i |φ1〉i

∣∣∣∣2

= G(i)
22 − 2

∣∣S(i)
11 G(i)

12

∣∣2 + ∣∣S(i)
11

∣∣4∣∣G(i)
12

∣∣2
G(i)

11, (A3)

which results in the elements S(i)
21 = −|S(i)

11 |2G(i)
12/D, S(i)

22 =
1/D, and S(i)

2l ′ = 0 for l ′ = 3, 4, . . . , K .
In a similar way, when considering the kth basis given by

|φk〉i = P(i)
k |ψ0〉i − ∑k−1

k′=1 〈φk′ |P(i)
k |ψ0〉i |φk′ 〉i∣∣∣∣P(i)

k |ψ0〉i − ∑k−1
k′=1 〈φk′ |P(i)

k |ψ0〉i |φk′ 〉i

∣∣∣∣ , (A4)

we already have the matrix elements S(i)
ll ′ for l =

1, 2, . . . , k − 1 and l ′ = 1, 2, . . . , K . By expanding |φ′
k〉i by

{P(i)
1 |ψ0〉i , . . . , P(i)

k−1 |ψ0〉i} and expressing the denominator
in S(i) and G(i), we can obtain Skl ′ for l ′ = 1, 2, . . . , K . By
repeating this up to k = K , we obtain all the matrix elements
of S(i).

Since the above protocol repeats processing matrices with
O(K2) size K times, this step requires O(NsubK3) time in
classical computation. We do not apply any approximation
here, and no errors other than computational errors arise.
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These classical errors εcl deviate the low-energy eigenvalues
by at-most O(NsubεclK2) from Eqs. (5) and (6). The errors εcl

usually have sufficiently small values, and their effects on the
low-energy eigenvalues are negligible. However, if we have
vanishing or nearly-vanishing denominators in Eq. (A4), the
classical errors εcl can become non-negligible. In that case,
some of {P(i)

k |ψ0〉i} are linearly dependent, and we should
exclude the corresponding states. In our simulation, we ob-
serve such linear dependence for the periodic hydrogen chain
in Sec. IV. For simplicity, we set S(i)

kl ′ = 0 instead of excluding
the state P(i)

k |ψ0〉i.

APPENDIX B: MULTISTATE DEEP
VQE FOR EXCITED STATES

In this section, we discuss another choice of the local basis
in Step 2 of Deep VQE for calculating low energy excited
states. As discussed in Sec. III A of the main text, it is im-
portant to choose local excitation operators {P(i)

k } so that they
reproduce excitations by intrasubsystem terms in addition to
those by intersubsystem terms. While we choose Pauli oper-
ators on the whole subsystem as such excitation operators in
the main text, we can also pick up the following local basis set
instead:

M⋃
m=1

{
P(i)

k

∣∣ψm
〉
i

}K

k=1, (B1)

with the original choice of {P(i)
k } (local operators relevant

to the intersubsystem interactions). The low-energy excited
states of each subsystem |ψm〉i can be obtained by using
VQE-based algorithms for excited states such as SSVQE [7]
instead of the usual VQE in Step 1, with a Nqubit-qubit device.
The dimension of the local Hilbert space is M × K , typically
smaller than 2Nqubit .

Reference [29] reported that the Deep VQE based on this
choice with M > 1, K = 1 fails to capture the ground state
of the whole system, since it neglects the local excitations
coming from intersubsystem interactions. However, if we con-
sider Deep VQE with M > 1 and K > 1, it is expected to well
describe both the ground state and the low-energy eigenstates
since it captures excitations from both intersubsystem and
intrasubsystem terms, just as the modified Deep VQE in the
main text. One of the possible problems of this version of
Deep VQE compared to the one in the main text lies in calcu-
lating matrix elements of the effective Hamiltonian in Step 2:
we should compute off-diagonal elements i〈ψm|P(i),†

k P(i)
l |ψn〉i

and i〈ψm|P(i),†
k AP(i)

l |ψn〉i (A = Hi,V α
i ,W α

i ) for m �= n. We
should choose a proper method for calculating the excited
states of the subsystem in Step 1 of Deep VQE that enables us
to evaluate those off-diagonal elements easily. The algorithms
SSVQE and MCVQE satisfy this requirement while VQD
dose not, demanding auxiliary qubits and/or the increase of
the circuit depth to evaluate the matrix elements.

Thus, the choice of the local basis described in the main
text is more preferable for calculating low-energy eigenstates
in that we can use any kind of VQE-based algorithms in Step
1 of Deep VQE. On the other hand, the multistate local basis
like Eq. (B1) can be suitable compared to the one in the main
text when the intrasubsystem Hamiltonian is nonlocal enough

to break the validity of QSE in each subsystem (see discussion
in Sec. III A). We also note that, when the gap above the
subsystem ground state |ψ0〉i is small enough, we may have to
consider the multistate local basis to capture the low-energy
states for the whole system.

APPENDIX C: PROOF OF PROPOSITION IN SEC. III B

We derive the proposition in Sec. III B. First, we clarify the
setup for the construction of the effective qubit model and the
notation. We consider an effective Hamiltonian

H̃ = H |H̃ =
Nsub∑
i=1

H̃i +
Nsub∑
i �= j

∑
α

να
i jṼ

α
i ⊗ W̃ α

j , (C1)

which is defined on the KNsub -dimensional Hilbert space H̃ as
a result of choosing the local basis (see Step 2 in Sec. II).
We can regard the Hamiltonian H̃ as that on a lattice 
 =
{1, . . . , i, . . . , Nsub} where each subsystem i ∈ 
 has K levels.
We define Neff by the smallest integer that exceeds log2 K , and
we introduce auxiliary dimensions by

H̃eff =
Nsub∑
i=1

H̃i,eff +
Nsub∑
i �= j

∑
α

να
i jṼ

α
i,eff ⊗ W̃ α

j,eff, (C2)

H̃i,eff = H̃i ⊕ Ji, (C3)

Ṽ α
i,eff = Ṽ α

i ⊕ 0M, W̃ α
j,eff = W̃ α

j ⊕ 0M , (C4)

with M = 2Neff − K . As discussed in Sec. II, this inser-
tion of auxiliary dimension generates additional meaningless
eigenvalues giving strong limitation on variational quantum
circuits. We derive the way to construct M × M matrices
{Ji}Nsub

i=1 so that the Hamiltonians H̃ and H̃eff can have the same
low-energy spectrum.

We introduce some notations for matrices. For a finite-
dimensional hermitian matrix A, we describe its eigenvalues
by E0(A), E1(A), . . . , with En(A) � En+1(A) and the set
of the eigenvalues by Spec(A) = {En(A)}dim(A)−1

n=0 . When H
is a Hamiltonian defined on a lattice of subsystems 
 =
{1, . . . , i, . . . , Nsub}, we can always decompose it as

H =
∑
X⊂


hX,	, (C5)

where hX,	 is a Hermitian operator nontrivially acting just
on a domain X ⊂ 
. For instance, two-body interactions are
represented by a series of hX,	 with |X | = 2. We note that
the way of the decomposition is not unique, and hence we
designate its choice by the subscript 	. Then, we define H (D)
for a certain domain D ⊂ 
 by

H	(D) =
∑

X : X∩D �=φ

hX,	, (C6)

which represents the part of H nontrivially acting on some
sites in D. When we choose a domain D as the ith subsystem,
it becomes

H	(D = {i}) =
∑

X : X�i

hX,	. (C7)
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Then, we define the extensiveness of Hamiltonian H for the
ith subsystem by

eH,	(i) ≡
∑

X : X�i

||hX,	||op, (C8)

in which || ||op denotes the operator norm. The exten-
siveness eH,	(i) represents the maximal energy on the ith
subsystem under the Hamiltonian H . Note that eH,	(i) de-
pends on the decomposition of the Hamiltonian 	. When we
designate the decomposition by Eq. (C1), the extensiveness
becomes

eH̃ (i) = ||H̃i||op +
∑

α

∑
j,k: { j,k}�i

∣∣να
jk

∣∣ · ∣∣∣∣Ṽ α
j

∣∣∣∣
op · ∣∣∣∣W̃ α

k

∣∣∣∣
op

(C9)

However, the choice is not essential in the discussion below,
and hence we omit the subscript 	 like hX , H (D), and eH (i)
in the following.

Before proving the proposition in the main text, we show
the relation between eigenvalues of H̃ and those of H̃eff. The
result is summarized as follows.

Proposition 1. We introduce auxiliary dimension by
Eqs. (C2)–(C4). For a domain D ⊂ 
, we define a
(KNsub−|D| × M |D|)-dimensional Hilbert space H̃D, where sub-
systems out of D and those in D have K and M degrees of
freedom, respectively. Then, the set of eigenvalues of H̃eff is
decomposed as follows:

Spec(H̃eff ) =
⋃

D⊂


Spec

(
[H̃ − H̃ (D)]H̃D

+
∑
i∈D

Ji

)
, (C10)

in which we count the eigenvalues with including their degen-
eracy. Here, [H̃ − H̃ (D)]H̃D

, described by

[H̃ − H̃ (D)]H̃D
=

∑
i/∈D

H̃i +
∑

α

∑
i �= j: i, j /∈D

να
i jṼ

α
i ⊗ W̃ α

j ,

(C11)

and
∑

i∈D Ji are considered as (KNsub−|D| × M |D|)-dimensional
matrices defined on H̃D.

Proof. Let Qi denote a projection operator to the auxiliary
M-dimensional subspace on the ith subsystem:

Qi ≡ (0K ⊕ IM )i. (C12)

Since [Qi, H̃eff ] = 0 and [Qi, Qj] = 0 are satisfied for any
i, j ∈ 
, the Hamiltonian H̃eff can be block-diagonalized by
adopting the eigenstates of Qi as the basis. Then, each block
becomes the (K |D| × MNsub−|D|)-dimensional Hilbert space
H̃D since the projection to H̃D is

PHD =
∏
i/∈D

(1 − Qi ) ·
∏
i∈D

Qi. (C13)

As a result, the Hamiltonian H̃eff on the extended (K + M )Nsub -
dimensional Hilbert space H̃eff is decomposed as

H̃eff =
⊕
D⊂


H̃eff |H̃D
, (C14)

where H̃eff |H̃D
is obtained by projecting H̃eff to H̃D. When we

consider the simplest case D = {i}, the restricted Hamiltonian

is given by

H̃eff |H̃D
=

∑
j: j �=i

H̃ j + Ji +
∑

α

∑
j,k: j,k �=i

να
jkṼ

α
j ⊗ W̃ α

k . (C15)

since H̃i, Ṽ α
i , and W̃ α

i are respectively replaced to Ji, 0M ,
and 0M by the projection PH̃D

. We note that omitted identity
operators in Eq. (C15) are properly chosen from IK or IM to
give a matrix on H̃D here. In a similar way, we can obtain
those for a generic domain D ⊂ 
 as

H̃eff |H̃D
=

∑
i/∈D

H̃i +
∑

α

∑
i �= j: i, j /∈D

να
i jṼ

α
i ⊗ W̃ α

j +
∑
i∈D

Ji

≡ [H̃ − H̃ (D)]H̃D
+

∑
i∈D

Ji. (C16)

This immediately results in Eq. (C10).
When we choose D = φ in Prop. 1, [H̃ − H̃ (D)]H̃D

+∑
i∈D Ji in Eq. (C10) is equivalent to the effective Hamiltonian

H̃ . Thus, all the eigenvalues of H̃ are embedded in those of
H̃eff , though meaningless eigenvalues corresponding to D �= φ

appear.
Proposition 2. Let H̃eff be obtained from H̃ by means

of the insertion of auxiliary dimensions described in
Eqs. (C2)–(C4). When we choose the M × M matrices
{Ji}Nsub

i=1 by

Ji = λiIM, λi > eH̃ (i) : extensiveness (C17)

for each subsystem i ∈ 
, the ground-state energy of H̃ is
equal to that of H̃eff , that is,

E0(H̃ ) = E0(H̃eff ) (C18)

is satisfied.
Proof. From the result of Prop. 1, it is sufficient to show

that

E0(H̃ ) < E0

([
H̃ − H̃ (D)

]
H̃D

+
∑
i∈D

Ji

)
(C19)

is satisfied for any domain D �= φ when Ji is designated by
Eq. (C17). With the usage of Eq. (C17), we obtain

[r.h.s of Eq. (C19)] = E0([H̃ − H̃ (D)]H̃D
) +

∑
i∈D

λi

> E0([H̃ − H̃ (D)]H̃D
) +

∑
i∈D

eH̃ (i).

When we explicitly write the omitted identity operators in
Eq. (C11), [H̃ − H̃ (D)]H̃D

becomes[∑
i/∈D

H̃i +
∑

α

∑
i �= j: i, j /∈D

να
i jṼ

α
i ⊗ W̃ α

j

]
⊗

[⊗
i∈D

(IM )i

]
. (C20)

If we replace
⊗

i∈D(IM )i by
⊗

i∈D(IK )i, we obtain H̃ − H̃ (D),
represented by a KNsub -dimensional matrix. This results in the
same ground-state energy,

E0([H̃ − H̃ (D)]H̃D
) = E0(H̃ − H̃ (D)), (C21)

although their ground states have different degeneracy. Next,
we exploit the following theorem for any Hermitian operators
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H and H ′ with the same finite dimension (see Sec. III. 2 in
Ref. [52]):

|Em(H ) − Em(H ′)| � ||H − H ′||op (C22)

for any integer m � 0. Then we obtain

E0(H̃ − H̃ (D)) � E0(H̃ ) − ||H̃ (D)||op. (C23)

From the definition of H̃ (D) [see Eq. (C6)] and the ex-
tensiveness [see Eq. (C8)], we arrive at the following
inequality:

||H (D)||op �
∑

X : X∩D �=φ

||hX ||op

�
∑
i∈D

∑
X : X�i

||hX ||op =
∑
i∈D

eH (i) (C24)

for any Hamiltonian H on the lattice 
. As a result, we
obtain

[r.h.s of Eq. (C19)] > E0(H̃ ) − ||H̃ (D)||op +
∑
i∈D

eH̃ (i)

� E0(H̃ ) (C25)

for D �= φ. Under this inequality, min{Spec(H̃eff )} is given by
E0(H̃ ), indicating Eq. (C18).

As discussed in the main text, this proposition is used
for the modified way to construct the effective Hamiltonian
H̃eff , which properly gives the ground state with arbitrary
variational quantum states. In order to evaluate low-energy
eigenstates, Prop. 2 is extended to the following proposition,
which is referred to as Proposition in Sec. III B of the main
text.

Proposition 3. We consider the same setup as the one in
Prop. 2. For a certain integer n � 0, let us choose the M × M
matrices {Ji}Nsub

i=1 by

Ji = λiIM, λi > eH̃ (i) + En(H̃ ) − E0(H̃ ), ∀i ∈ 
.

(C26)

Then, the low-energy eigenvalues of H̃ are equal to those of
H̃eff respectively up to the nth level, that is,

Em(H̃ ) = Em(H̃eff ), m = 0, 1, . . . , n (C27)

is satisfied.
Proof. We prove this in the same way for Prop. 2. From the

result of Prop. 2, we show that

En(H̃ ) < E0

(
[H̃ − H̃ (D)]H̃D

+
∑
i∈D

Ji

)
(C28)

is satisfied for any domain D �= φ when Ji is designated by
Eq. (C26). By the same calculation as Eq. (C25), we obtain

[r.h.s of Eq. (C28)] > E0(H̃ ) − ||H̃ (D)||op +
∑
i∈D

λi

> E0(H̃ ) + |D|{En(H̃ ) − E0(H̃ )}
� En(H̃ ) (C29)

for D �= φ. We use |D| � 1 under D �= φ. Under this inequal-
ity and Eq. (C10), Eq. (C27) is satisfied.

Note that we should know the gap En(H̃ ) − E0(H̃ ) in ad-
vance when we construct H̃eff following Eq. (C26) different
from the case when evaluating the ground state. In practice,

we know typical energy scale of the gap by some other meth-
ods in advance, and can properly choose Ji as discussed in the
main text. From the mathematical point of view, we can con-
struct H̃eff without the knowledge of the gap En(H̃ ) − E0(H̃ )
in advance even when we evaluate excited states of H̃ , by the
following proposition.

Proposition 4. We consider the same setup as the one in
Prop. 2. Let us choose the M × M matrices {Ji}Nsub

i=1 by

Ji = λiIM, λi > eH̃ (i) + 2
∑
j∈


eH̃ ( j), ∀i ∈ 
. (C30)

Then, all of the eigenvalues of H̃ appear in the beginning of
Spec(H̃eff ), that is,

Em(H̃ ) = Em(H̃eff ), m = 0, 1, . . . , KNsub − 1 (C31)

is satisfied.
Proof. Under the choice of Eq. (C30),

λi > eH̃ (i) + 2||H̃ ||op

� eH̃ (i) + EKNsub −1(H̃ ) − E0(H̃ ) (C32)

is satisfied. We use the result of Prop. 3 with n = KNsub − 1,
and then we obtain Eq. (C31). �

We note that, although Prop. 4 provides a mathematically
right way to evaluate excited states without the knowledge
of the gap in advance, it is not practical compared to the
one exploiting Prop. 3. When we choose Ji by Eq. (C30), its
energy scale becomes linear in the system size Nsub × Nqubit .
When considering a large system, Ji becomes dominant in the
effective Hamiltonian H̃i,eff [see Eqs. (C2)–(C4)] compared to
the original one H̃i. Then, errors originating from Ji buries the
information of H̃i, which is genuinely of interest, and hence
the insertion of auxiliary dimensions based on Prop. 4 is not
practical, though it is mathematically correct.

We finally discuss the generalization of our results. In
the above discussion, we designate the decomposition of
the Hamiltonian H̃ by Eq. (C1). When we choose another
decomposition, we obtain a different extended Hamiltonian
H̃eff [Eqs. (C2)–(C4)] and a different extensiveness eH̃ (i)
[Eq. (C9)]. However, the same results, Props. 1–4, are valid
due to the relations Eqs. (C21) and (C24). Thus, the decompo-
sition is not essential. As well, we can consider intersubsystem
interactions which simultaneously involve more than three
subsystems. In such cases, we introduce auxiliary dimen-
sions for intrasubsystem terms by a nonzero matrix Ji and
for intersubsystem terms by a zero matrix 02Neff −K as well
as Eqs. (C2)–(C4). The extensiveness eH (i) is given by the
same definition Eq. (C8). Then, using the relations Eqs. (C21)
and (C24), Props. 1–4 are valid in the cases with interactions
involving more than three subsystems.

APPENDIX D: DETAILS OF NUMERICAL SIMULATIONS

Here, we describe the details of numerical simulations in
the main text, especially focusing on the variational quantum
circuits and the cost function. First, we identify the vari-
ational quantum circuits in VQE in Step 1 and Step 3 of
Deep VQE. We employ the hardware-efficient-type ansatz
[20,37], where the parametric circuit with the depth D is
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FIG. 5. Variational quantum circuit based on Hardware-efficient
ansatz. We prepare the reference states by |0 . . . 00〉 for the VQE and
|0 . . . 00〉 , |0 . . . 01〉 for the SSVQE.

described by

U (�θ ) = U1(�θD+1, �θ ′
D+1)

D∏
d=1

[U2 · U1(�θd , �θ ′
d )], (D1)

U1(�θd , �θ ′
d ) =

N∏
n=1

[RZ,n(θ ′
d,n) · RY,n(θd,n)], (D2)

U2 =
N−1∏
n=1

CZn,n+1, (D3)

for a N-qubit system (see Fig. 5). Here, RY,n(θ ) [RZ,n(θ )]
represents rotation around Y -axis [Z-axis] with an angle
θ on the nth qubit, and CZn,m is a controlled-Z gate on
the nth and mth qubits. The parameter set �θ is com-
posed of {�θd}D+1

d=1 and {�θ ′
d}D+1

d=1 , whose initial values are
chosen uniformly from [0, 2π )2N (D+1) at random. When we
evaluate the ground state in Step 1, we employ the cost
function 〈0 . . . 0|U (�θ )†HiU (�θ )|0 . . . 0〉 for each subsystem-
Hamiltonian Hi. For evaluating the first-excited states in Step
3 of Deep VQE, we employ SSVQE [7], in which the cost
function is given by

w0 〈0 . . . 00|U (�θ )†H̃effU (�θ )|0 . . . 00〉
+w1 〈0 . . . 01|U (�θ )†H̃effU (�θ )|0 . . . 01〉

with w0 > w1 > 0. After the optimization, we can obtain the
approximate ground (first-excited) state by U (�θ∗) |0 . . . 00〉
(U (�θ∗) |0 . . . 01〉). We employ the BFGS optimizer for opti-
mizing the circuit parameters with numerical differentiation.

For the spin chain in Sec. III D, we set the depth D by
10,15,20 for 4,6,8-qubit systems in Step 1, and by 15,20,25
for 4,6,8-qubit systems in Step 3, respectively. The set of
weights for SSVQE is (w0,w1) = (2, 1). For the periodic
hydrogen chain in Sec. IV, we employ the depth D = 20 in
Step 1 and D = 80 in Step 3, and choose the weights by
(w0,w1) = (7, 2).

APPENDIX E: RELATION BETWEEN DEEP VQE WITH
HIGHER-ORDER EXCITATION AND QSE RESULTS

In Sec. IV B, the local basis by the double-particle exci-
tation Wd gives better low-energy eigenstates than the one
by single-particle excitation Ws. Here, we discuss the role of
higher-order excitations in Deep VQE. Concretely, we show
that Deep VQE with higher-order excitations overwhelms
the combination of QSE and Deep VQE with lower-order

excitations—calculating the ground state by Deep VQE with
lower-order excitations and performing QSE on the obtained
ground state with lower-order excitations. This gives the ad-
vantage of considering higher-order excitations in Deep VQE.

Let us compare the above two methods by the active sub-
spaces in them. For simplicity, we consider single-particle (the
first-order) and double-particle (the second-order) excitations.
First, we focus on the combination of QSE and Deep VQE
with single-particle excitation Ws [see Eq. (27)]. The Deep
VQE with Ws searches low-lying states from the subspace H̃s,
spanned by

|�0〉 , Ri |�0〉 , RiRj |�0〉 , RiRjRk |�0〉 , . . . . (E1)

Here, Ri is given by c′
i or c′†

i and the indices i, j, k, . . . repre-
sent certain sites of the whole system belonging to different
subsystems each other. Let |�s

0(Deep VQE)〉 ∈ H̃s denote the
approximate ground state by the Deep VQE with Ws. The
QSE with the reference state |�s

0(Deep VQE)〉 and the single-
particle excitations in the whole-system Ri = c′

i or c′†
i searches

low-energy eigenstates from the subspace

H̃QSE
s = span

({ ∣∣�s
0(Deep VQE)

〉
, Ri

∣∣�s
0(Deep VQE)

〉 })
.

(E2)

On the other hand, we next focus on the Deep VQE result
with the complete double-particle excitations,

W ′
d = Ws ∪ {c′†

i c′
j, c′

ic
′
j, c′†

i c′†
j | i, j ∈ 
e}, (E3)

By construction, the restricted subspace H̃′
d, which is active

in the Deep VQE with W ′
d, includes not only states in H̃s but

also

Ri |�〉 for any state |�〉 ∈ H̃s, (E4)

with single-particle excitations Ri = c′
i or c′†

i . Considering the
fact |�s

0(Deep VQE)〉 ∈ H̃s, we obtain

H̃QSE
s ⊂ H̃′

d. (E5)

This means that the Deep VQE results with double-particle
excitations are more accurate than the QSE results on the
Deep VQE with single-particle excitations. We stress that this
statement on the difference of the accuracy between single-
and double-particle excitations is more strict than the one by
simply comparing the Deep VQE results with Ws and W ′

d
from the relation H̃s ⊂ H̃′

d.
In general, the Deep VQE results with local excitations up

to nth order always give better low-lying energy eigenvalues
than the results obtained by the QSE with up to (n − m)th
order excitations after performing the Deep VQE with up to
mth order excitations (0 � m � n). Although our calculation
with Wd in the main text [Eq. (28)] does not strictly satisfy
the above discussion due to the absence of c′

ic
′
j and c′†

i c′†
j , we

expect that the restricted space by Wd, similar to H̃′
d, explains

the improved accuracy compared to the single-particle excita-
tions Ws. For larger systems, we can exploit a complete set of
higher-order excitations for constructing the local basis with
keeping the reduction of qubits. In that case, we expect much
improved accuracy of the Deep VQE results by higher-order
excitations from their superiority to the combination of QSE
and Deep VQE with lower-order excitations.
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