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We propose a novel tensor network representation for two-dimensional Yang–Mills theo-
ries with arbitrary compact gauge groups. In this method, tensor indices are given directly
by group elements with no direct use of the character expansion. We apply the tensor renor-
malization group method to this tensor network for SU(2) and SU(3), and find that the free
energy density and the energy density are accurately evaluated. We also show that the singu-
lar value decomposition of a tensor has a group-theoretic structure and can be associated
with the character expansion.
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1. Introduction
The tensor network (TN) method [1–5] is an attractive approach for studying many-body sys-
tems, because it is free from the sign problem in the first place,1 and has the potential to precisely
investigate critical phenomena in the large-volume limit. In field theory, the tensor renormaliza-
tion group (TRG) method [3] and its variations [24–26] are widely used to study various models
such as the Schwinger model [27–30], the Gross–Neveu and NJL models [31,32], scalar field the-
ories [33–36], the Yang–Mills and gauge–Higgs models [37,38], the Wess–Zumino model [39],
and other related models [40–42].

For gauge groups U(1) [27–29,40,43] and SU(2) [37,38], character expansion was employed
to represent the partition function with a tensor network. However, since character expansion
becomes a demanding task for higher-rank gauge groups, it remains difficult to apply the TN
method to SU(N) gauge theory for N ≥ 3 including quantum chromodynamics.

In this paper we propose a novel method for creating a tensor network for two-dimensional
Yang–Mills theory with no direct use of character expansion. The Haar measure is discretized,
and the group integration is replaced by a summation over K randomly generated configura-
tions. Then, the plaquette is regarded as a rank-4 tensor whose index runs from 1 to K, and the
set of plaquettes constitutes a tensor network. We test our method for SU(2) and SU(3) gauge
groups, and find that the free energy density and the energy density agree very well with exact

1Recently, significant progress has also been made in the Monte Carlo (MC) approach to the sign prob-
lem [6–23], giving rise to the hope that MC simulations can be performed at a reasonable computational
cost. The two approaches (TN and MC) may play complementary roles in the future.
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results. We also clarify the mathematical structure behind our method. In fact, the coefficients
in the character expansion are approximately generated by our method.

The paper is organized as follows. In Sect. 2 we introduce our tensor network representation
for two-dimensional Yang–Mills theories with arbitrary compact gauge groups G, and discuss
its relation to the character expansion. In Sect. 3 we test our method for G = SU(2) and G =
SU(3). Section 4 is devoted to a summary and discussion. The appendices provide some useful
formulas in group theory.

2. Tensor network representations for two-dimensional Yang–Mills theories
In this section we introduce a new tensor network representation for two-dimensional Yang–
Mills theories, and discuss its relation to character expansion. We exclusively consider pure
Yang–Mills theory for simplicity. It is straightforward to extend our method to systems with
interacting matter fields.

2.1 Method
We consider the Yang–Mills theory with a compact gauge group G on an infinite lattice � ≡
{n = (n1, n2) | nμ ∈ Z (μ = 1, 2)}. The lattice spacing a is set to a = 1 unless otherwise noted,
and μ̂ is the unit vector in the μ direction.

Let Uμ(n) be the G-valued link field on links (n, n + μ̂). The lattice action (the Wilson action)
is given by2

S = β

N

∑
n∈�

Re tr [1 − UP(n)], (1)

where UP(n) is the plaquette field,

UP(n) = U1(n)U2(n + 1̂)U †
1 (n + 2̂)U †

2 (n). (2)

The partition function is defined as Z = ∫
DU e−S, where DU ≡ ∏

n∈� dU1(n) dU2(n) with dU
the Haar measure of G. Note that the partition function Z can be written in the form of a
tensor network with indices continuously taking values in G,

Z = Tr
∏
n∈�

Tg(n)h(n)g′(n)h′(n), (3)

where

Tg1g2g3g4 = e−(β/N ) Re tr (1−g1g2g†3g†4 ) (4)

and Tr stands for the group integrations for g(n), h(n) ∈ G(n ∈ �) under a proper identification
of indices.3

We now discretize the Haar measure dU to represent Z as a tensor network with indices in a
finite range: ∫

dU f (U ) ≈ 1
K

K∑
i=1

f (Ui), (5)

2We obtain the usual continuum action for β = 2N/(ga)2 with UP(n) � exp(ia2F12(n)) in the naive
continuum limit.

3We make the identifications g′(n) = g(n + 2̂) and h′(n) = h(n − 1̂).
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Fig. 1. Two-dimensional square lattice. (a) A plaquette variable consisting of Ui, Uj, Uk, Ul. (b) The
corresponding tensor from Eq. (7) assigned to the center of the plaquette.

where G̊ = {U1,U2, . . . ,UK} consists of random points uniformly chosen from the group man-
ifold. Applying Eq. (5) to the Haar measures in DU leads to

Z ≈ Tr
∏
n∈�

Tin jni′n j′n, (6)

where

Ti jkl = 1
K2

e−(β/N ) Re tr
(

1−UiUjU
†
k U †

l

)
(7)

and Tr stands for the summation over in, jn = 1, 2, …, K for all n ∈ � under the same identifi-
cation of indices as above. As shown in Fig. 1, the tensor is assigned to each plaquette and has
four indices corresponding to four links of the plaquette.

Since our method is based on the discrete approximation with finite K, we check the conver-
gence of the right-hand side of Eq. (6) for large K in actual numerical computations.

In the tensor network in Eq. (6), a single set G̊ is commonly used to discretize all the Uμ(n)-
integrations. Actually, we can use a different set for each link. For example, tensors can be
decomposed in different ways for even and odd sites [3], and we can use four different sets, G̊1,
G̊2, G̊3, and G̊4, to discretize the integrations at the four links Ui, Uj, Uk, and Ul in Fig. 1. We
then have

Z ≈ Tr
∏
n∈�e

T e
in jni′n j′n

·
∏

m∈�o

T o
im jmi′m j′m

, (8)

with

T e
i jkl ≡ 1

K2
e−(β/N )Re Tr

(
1−U (1)

i U (2)
j U (3)†

k U (4)†
l

)
, (9)

T o
i jkl ≡ 1

K2
e−(β/N )Re Tr

(
1−U (3)

i U (4)
j U (1)†

k U (2)†
l

)
, (10)

where U (a)
i ∈ G̊a (a = 1, 2, 3, 4) and �e/o is the set of even or odd sites, respectively. The intro-

duction of four different sets significantly improves the precision of the results compared to a
single set, as presented in Sect. 3.

Once the tensor network is obtained, any TRG method can be applied straightforwardly.
In the Levin–Nave TRG, singular value decomposition (SVD) is employed to decompose the
tensors. In general, the SVD of an n × n matrix Mij is given by

Mi j =
n∑

a=1

σaUiaV ∗
ja, (11)

where σ a are singular values sorted as σ 1 ≥ σ 2 ≥ ··· ≥ σ n ≥ 0, and U, V are unitary matrices.
In our case, regarding T e

i jkl (resp. T o
i jkl ) as a matrix with the column ij (resp. jk) and the row kl

(resp. li), we have
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Fig. 2. The SVDs of an even tensor (a) and an odd tensor (b).

T e
i jkl =

K2∑
A=1

σ e
AU e

i j,AV e ∗
kl,A, (12)

T o
i jkl =

K2∑
A=1

σ o
AU o

jk,AV o ∗
l i,A. (13)

Figure 2 shows these decompositions. We again arrive at the tensor network of the two-
dimensional square lattice by defining the renormalized tensor T(1) with bond dimension D
as

T (1)
A1A2A3A4

=
√

σ e
A1

σ o
A2

σ e
A2

σ o
A4

D∑
i, j,k,l=1

U e
i j,A1

V o ∗
jk,A2

V e ∗
kl,A3

U o
l i,A4

. (14)

The tensor network is repeatedly renormalized in this way.
Since the bond dimension of the initial tensors [Eqs. (9) and (10)] is K, the cost of the first

SVD scales with O(K6). Once the tensors are renormalized, the bond dimension changes to D.
The cost of the subsequent iterations then scales with O(D6).

2.2 Relation to the character expansion
To understand the group-theoretic structure of the SVD in the previous subsection, we consider
the limit K → ∞, i.e. the case where the tensor indices continuously take all the values in G.
See Appendix A for the mathematical material necessary for the argument below.

Let R be an irreducible unitary representation of G with dimension dR, and DR(U ) =
(DR

rs(U )) (r, s = 1, 2, . . . , dR) the representation matrix of U. Denoting the character of R by
χR(U), the function e−(β/N ) Re tr (1−U ) can be expanded as

e−(β/N ) Re tr (1−U ) =
∑

R

dR λR(β )χR(U ). (15)

Here, and hereafter,
∑

R stands for the summation over the irreducible representations R. The
coefficients λR(β) are given by

λR(β ) = 1
dR

∫
dU e−(β/N ) Re tr (1−U ) χR(U −1), (16)

as can be shown by using Eq. (A8).
We again consider the infinite-dimensional rank-4 tensor Tg1g2g3g4 [see Eq. (4)]. By using

Eq. (15), this can be written as
∑

R dR λR χR(g1g2g−1
3 g−1

4 ) and decomposed in two ways:

Tg1g2g3g4 =
∑

A=(R,r,s)

U
e
(g1,g2 ),A λR V

e ∗
(g3,g4 ),A =

∑
A=(R,r,s)

U
o
(g2,g3 ),A λR V

o ∗
(g4,g1 ),A, (17)

with

U
e
(g1,g2 ),A = V

e
(g2,g1 ),A = U

o(
g1,g−1

2

)
,A

= V
o(

g2,g−1
1

)
,A

≡
√

dR DR
rs(g1g2). (18)
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The Peter–Weyl theorem (see Appendix A) states that the matrix Wg,A ≡ √
dR DR

rs(g) is unitary.
Thus, together with the inequality λR ≥ 0,4 we find that the decompositions in Eq. (17) are
actually SVDs. Then, the new tensor T

(1) [Eq. (14) with D = ∞] is calculated by following
Eqs. (12)–(14) and is found to be5

T
(1)
A1A2A3A4

= λ2
R1

dR1

δR1R2R3R4 δs1s2 δr2s3 δr3r4 δs4r1 . (19)

Once this expression is obtained, one can easily find that

Z =
∑

R

λR(β )V (20)

by taking the whole contraction of the TN for Eq. (19) exactly, or using the TRG iterations
without truncations (see Appendix C).

Recall that the TN representation [Eqs. (8)–(10)] is a discretization of Eqs. (3) and (4). Thus,
our method approximately reproduces the tensor network that is obtained by the character
expansion. Note that the singular values of the tensor Tg1g2g3g4 have a degeneracy of d2

R for each
R because both r and s in Wg,A = √

dR DR
rs(g) take dR values. This means that the singular values

σ A of our tensor Tijkl [Eqs. (12) and (13)] must have this degeneracy approximately. We actually
find this approximate degeneracy in numerical calculations presented in the next section.

3. Numerical results
In this section we apply our method to the Yang–Mills theory with gauge group G =
SU (N ) (N = 2, 3) on a periodic square lattice. We construct the tensor network with four dif-
ferent sets G̊a(a = 1, 2, 3, 4) of K random link variables [see the discussion after Eqs. (8)–(10)].
We evaluate the free energy density f(β) ≡ (1/V)ln Z(β) with the Levin–Nave TRG, and the en-
ergy density e(β) ≡ −(∂/∂β)f(β) by taking numerical derivatives. Note that the estimates have
statistical errors in addition to the systematic errors coming from the finiteness of K and bond
dimension D. The statistical errors given below are obtained from five independent trials.

3.1 SU(2)
We first make a detailed analysis for SU(2).

Figure 3 shows f(β) for various volumes V = L2 (L = 4, 8, 16, 32, 64) with β/V fixed to 0.01.
The exact values are indicated by the gray dashed line. Figure 4 shows the errors relative to the
exact values for the same calculation.

We see that the numerical results agree well with the exact values. We also see that as V (and
thus β) is increased, larger K and D are required to decrease the systematic errors. Figures 5
and 6 show the K, D dependences of the free energy density at V = 642 (β = 40.96). We confirm
that the numerical estimates approach the exact value in the limit K → ∞ and D → ∞.

4This can be proved by rewriting Eq. (16) in the form

eβ dR λR =
∫

dU e(β/(2N )) [trU+trU −1] χR(U −1) =
∞∑

m,n=0

( β

2N

)m+n C(m,n)
R

m! n!
.

In fact, C(m,n)
R ≡ ∫

dU [trU ]m [trU −1]n χR(U −1) = ∫
dU [χN (U )]m [χN̄ (U )]n χR(U −1) is the multiplicity

of R in the product representation N⊗m ⊗ N̄⊗n, and thus is a nonnegative integer. (N and N̄ are the
fundamental and anti-fundamental representations, respectively.)

5We use the symbol δR1R2...Rk ≡ δR1R2δR2R3 · · · δRk−1Rk .
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Fig. 3. Volume dependence of f(β) with β/V = 0.01 for SU(2). The exact values are expressed by the gray
dashed line.

Fig. 4. Relative error of the free energy density, | f (β ) − fexact(β )| / | fexact(β )|, against volume V with
β/V = 0.01 for SU(2).

Fig. 5. K dependence of f(β) with β/V = 0.01 and V = 642 (β = 40.96) for SU(2).

Fig. 6. D dependence of f(β) with β/V = 0.01 and V = 642 (β = 40.96) for SU(2).
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Fig. 7. χ2 fit of the free energy densities f(β) for various K with β/V = 0.01, V = 642, and D = 60 for
SU(2).

Table 1. Results of the χ2 fit in Eq. (21) for SU(2).

(exact) μ α p χ2/DOF

f(β) − 5.8040 −5.8045+0.0040
−0.0029 −43+26

−60 1.88+0.27
−0.28 0.13

e(β) 0.03639 0.03655+0.00029
−0.00052 5+24

−5 2.00+0.49
−0.53 0.11

Fig. 8. Volume dependence of e(β) with β/V = 0.01 for SU(2).

Having obtained the estimates for several values of K, we can make use of extrapolation to
obtain a better estimate. Figure 7 shows the χ2 fit to the obtained data for D = 60 with the
scaling ansatz g(K) ≡ μ + αK−p. Here, the fitting parameters α, μ, and p are determined by
minimizing the cost function

χ2(μ, α, p) ≡
∑

K=20,30,...,90

[ f (β; K ) − g(K )]2

[δ f (β; K )]2
, (21)

where f(β; K) is the value obtained for each K, and δf(β; K) the statistical error. The value of
μ is then used as the final estimate of f(β).

The results of the fitting are summarized in Table 1. We obtain μ = −5.8045+0.0040
−0.0029, which

agrees well with the exact value fexact(β) = −5.8040. Since the estimate without extrapolation
is given by f(β; K = 90) ≈ −5.81365 ± 0.00032, we see that the extrapolation significantly
improves the accuracy.

We now show the results for the energy density e(β). In Fig. 8, we plot the estimates of e(β)
for various V with β/V = 0.01 fixed, and in Fig. 9 the errors relative to the exact values. We
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Fig. 9. Relative error of the energy density, |e(β ) − eexact(β )| / |eexact(β )|, with β/V = 0.01 for SU(2).

Fig. 10. K dependence of e(β) with β/V = 0.01 for SU(2).

Fig. 11. D dependence of e(β) with β/V = 0.01 for SU(2).

again see good agreements, suggesting the effectiveness of our method. In Figs. 10 and 11, the
K and D dependences are shown for V = 642 (β = 40.96), from which we again confirm that
the numerical estimates approach the exact value in the limit K → ∞ and D → ∞.

We can make use of extrapolation to improve the accuracy. Figure 12 shows the χ2 fit to the
data obtained with the cost function in Eq. (21) with f(β) replaced by e(β). The results of the
fitting are also given in Table 1.

Figure 13 shows the singular values σ A of the initial tensor for β = 2 with K = 90.
For SU(2), λR in Eq. (15) takes the following form (see Appendix B):

λR=n(β ) = 2
β

e−βIn(β ). (22)
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Fig. 12. Fitting of the energy densities e(β) for various K with β/V = 0.01, V = 642, and D = 60 for
SU(2).

Fig. 13. Singular values σ A of the initial tensors T(e) [Eq. (9)] with β = 2 and K = 90 for SU(2). The
horizontal lines indicate the exact values of λR(β = 2), and the vertical lines the points at which the exact
values change discontinuously.

Fig. 14. Relative errors of f(β) for varying β with fixed volumes V = 42 (left) and V = 642 (right) for SU(2).
We set K = 90 and D = 60. The relative error increases for large β in a manner almost independent of
the volume.

Here, n is the n-dimensional irreducible representation of SU(2), and In(z) is the modified Bessel
function of the first kind. According to the discussion in Sect. 2.2, there will be d2

R = n2 degen-
erate singular values in the limit K → ∞ for each representation R = n. In the figure, we clearly
observe this degeneracy even for finite K (K = 90 here).

The accuracy of our method reduces at weak couplings (at large β). Figure 14 shows that
the reduction mainly depends on β and is almost independent of the volume. The increasing
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Fig. 15. Dependence of the estimate of f(β) on the number of G̊a (β/V = 0.04, V = 162, K = 20, D = 20)
for SU(2). The statistical errors decrease as the number increases.

inaccuracy at large β can be attributed to two facts. One is that the singular values σ A(β) [ap-
proximating the character expansion coefficients λR(β)] become degenerate at large β, which
requires a larger bond dimension D. This behavior should appear commonly in any methods
that have a similarity to the character expansion. The second is that the integrand of the par-
tition function has a sharp peak in the configuration space at large β, for which our uniform
sampling becomes less effective. The appearance of this issue is unavoidable at this stage for
tensor networks constructed with a sampling method such as the Gaussian quadrature or the
random sampling we employed. The improvement in this direction is beyond the scope of the
present paper and will be left for future work. The volume independence may be simply under-
stood by the fact that the free energies at different volumes are estimated with the same initial
tensor if other parameters are the same.

Finally, Fig. 15 shows the dependence of the estimate of f(β) on the number of G̊a with β/V =
0.04, V = 162, D = 20, from which we see that the statistical errors decrease as the number
increases. This behavior can be understood as follows. We first note that group elements enter
the tensor only in the form of the product of two elements, Ui Uj , as can be seen from Eq. (17).
We also note that a better approximation is achieved when the set of K2 elements {Ui Uj} (i, j =
1, . . . , K ) is closer to the uniform distribution on G. As the number of G̊a increases, the set
{Ui Uj} gets more randomly distributed on G, which leads to a better estimate of observables
with smaller statistical errors.

3.2 SU(3)
We make a similar analysis for SU(3) with β/V = 0.005, V = 642, and D = 90. The irre-
ducible representations R of SU(3) are labeled by two nonnegative integers, R = [q1, q2] (see
Appendix B), for which the dimension is given by dR = (q1 + 1)(q2 + 1)(q1 + q2 + 2)/2. The
coefficients λR(β) are given by the formula in Eq. (B2). One can show that they are ordered as6

λ1 > λ3 = λ3 > λ8 > λ6 = λ6 > λ15 = λ15 > λ10 = λ10 > · · · . (23)

6We write the irreducible representations R = [q1, q2] (see Appendix B) as

[0, 0] = 1, [1, 0] = 3, [0, 1] = 3, [1, 1] = 8, [2, 0] = 6, [0, 2] = 6,

[2, 1] = 15, [1, 2] = 15, [3, 0] = 10, [0, 3] = 10, . . .
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Fig. 16. K dependences of f(β) (left panel) and e(β) (right panel) with β/V = 0.005, V = 642, and D = 90
for SU(3).

Table 2. Results of the χ2 fit for SU(3).

(exact) μ α p χ2/DOF

f(β) −9.4323 −9.4400+0.0019
−0.0043 −0.3+0.2

−1.7 × 1010 5.31+0.44
−0.01 0.21

e(β) 0.1923 0.1941+0.0017
−0.0008 2.2+5.6

−1.6 × 1010 5.88+0.29
−0.01 1.18

Fig. 17. Singular values σ A of the initial tensors T(e) [Eq. (9)] with β = 2 and K = 120 for SU(3). The
horizontal lines indicate the exact values of λR(β = 2), and the vertical lines the points at which the exact
values change discontinuously.

In Fig. 16 we plot the free energy densities f(β) and the energy densities e(β) against various
values of K. We make the χ2 fit to the data obtained at K = 70, 80, …, 120, again with the
scaling ansatz g(K) ≡ μ + αK−p. A similar analysis is performed for e(β). The results of the
fitting are summarized in Table 2.

For the free energy density f(β), we obtain the estimate μ = −9.4400+0.0019
−0.0043, which agrees well

with the exact value fexact(β) = −9.4323. For the energy density e(β), we obtain the estimate
μ = 0.1941+0.0017

−0.0008, which also agrees well with the exact value eexact(β) = 0.1923. These good
agreements show that our method also works for SU(3).

The singular values of the initial tensor also agree with the character expansion coefficients
λR(β) for SU(3). Figure 17 shows the singular values σ A for β = 2 with K = 120.

We see that the coefficients are reproduced well with the correct degeneracies, reconfirming
the group-theoretical structure discussed in Sect. 2.2.

11/17

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/12/123B03/6415218 by Kyoto D

aigaku Johogakukenkyuka Tosho user on 19 O
ctober 2022



PTEP 2021, 123B03 M. Fukuma et al.

4. Summary and discussion
We have proposed a novel tensor network representation for two-dimensional Yang–Mills the-
ories with arbitrary compact gauge groups, which makes no direct use of the character expan-
sion. The numerical results for SU(2) and SU(3) gauge groups show that our method works
properly. Although this paper focuses on pure Yang–Mills theories, it is straightforward to in-
clude the dynamical degrees of freedom of fermions and scalar fields into the tensor.

As a future project, it will be important to investigate whether the precision is improved by
applying other renormalization algorithms to our tensor network, such as the higher-order ten-
sor renormalization group. It will also be interesting to develop a method to optimally choose
group elements from the group manifold as the Gauss–Hermite quadrature for a field space
with flat geometry. The extension of the framework to higher-dimensional Yang–Mills theo-
ries should also be one of the next steps to be considered. A study in this direction is now in
progress and will be reported elsewhere.
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Appendix A. Mathematical formulas
In this appendix we summarize useful formulas for integration over a compact group G.

For a unitary representation R (not necessarily irreducible) with dimension dR, we denote
the representation matrix of U ∈ G by DR(U ) = (DR

rs(U )) (r, s = 1, . . . , dR) and the character
by χR(U ) = tr DR(U ). Note that χR(1) = dR. Hereafter we use the term “representation” as
meaning “representation class,” and fix a representative R for each representation class. Note
that for a unitary representation, we have DR

rs(U
−1) = [DR

sr(U )]∗ and χR(U−1) = [χR(U)]∗.
We introduce the Haar measure dU, which is two-side invariant and normalized:∫

dU f (g1U g2) =
∫

dU f (U ) (∀g1, g2 ∈ G), (A1)∫
dU f (U −1) =

∫
dU f (U ), (A2)∫

dU 1 = 1. (A3)

We also introduce the invariant delta function δ(U, V) associated with the Haar measure:∫
dU δ(U,V ) f (U ) = f (V ), (A4)

δ(g1U g2, g1V g2) = δ(U,V ) (∀g1, g2 ∈ G), (A5)

δ(U −1,V −1) = δ(U,V ). (A6)
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We write the set of irreducible unitary representations by Irrep = {R : irreducible}. Then, we
have the following formula for R1, R2 ∈ Irrep:7∫

dU DR1
r1s1

(U )DR2
r2s2

(U −1) = δR1R2

dR1

δr1s2 δs1r2, (A7)

from which we readily obtain the formulas for the integration of characters,∫
dU χR1 (g1U ) χR2 (U −1g2) = δR1R2

dR1

χR1 (g1g2), (A8)∫
dU χR(g1U g2 U −1) = 1

dR
χR(g1) χR(g2). (A9)

The characters of irreducible representations {χR(U )} (R ∈ Irrep) form a linear basis of the
set of class functions {f(U)} that satisfy f (gU g−1) = f (U ) (∀g ∈ G). In particular, as can be
easily proved, δ(U, 1) is expanded as

∑
R ∈ IrrepdRχR(U), and thus we have

δ(U,V ) =
∑

R∈Irrep

dRχR(UV −1) =
∑

R∈Irrep

dRχR(VU −1). (A10)

From this equation readily follows the Peter–Weyl theorem, which states that the infinite-
dimensional matrix

WU,A ≡
√

dR DR
rs(U ) [A = (R, r, s)] (A11)

is unitary: ∫
dU W ∗

U,A WU,A′ = δAA′,
∑

A

WU,A W ∗
U ′,A = δ(U,U ′), (A12)

with δAA′ ≡ δRR′ δrr′ δss′ and
∑

A ≡ ∑
R∈Irrep

∑dR
r=1

∑dR
s=1.

Appendix B. λR(β) for G = SU(N)
For G = SU(N), the irreducible representation R = [q1, …, qN − 1] (qi ∈ Z≥0: Dynkin labels) can
be labeled by a Young diagram Y = (f1, f2, …, fN − 1) (f1 ≥ f2 ≥ fN − 1 ≥ 0) with the relations
fi ≡ ∑N−1

j=i q j (see Fig. B1). The dimension dR is given by

dR = �(�1, �2, . . . , �N−1, �N )/�(N − 1, N − 2, . . . , 1, 0), (B1)

where �i ≡ fi + N − i with fN ≡ 0 and �(x1, …, xN) ≡ ∏
i < j(xi − xj). One can show that the

coefficients λR(β) can be expressed as (see, e.g., Ref. [44])

λR(β ) = e−β

dR

∑
Q∈Z

det
[
If j+i− j+Q(β/N )

]
[G = SU (N )], (B2)

where In(z) are the modified Bessel functions of the first kind.
For G = SU(2), the irreducible representation R = [q] corresponds to the spin j = q/2 repre-

sentation with dR = q + 1 = 2j + 1, for which the infinite series in Eq. (B2) can be summed to
a simple form,

λR(β ) = (2/β ) e−β I2 j+1(β ) [G = SU (2)]. (B3)

Thus, the free energy density and the energy density can be expressed as

f (β ) = 1
V

log

[ ∞∑
n=1

(
2
β

e−β In(β )
)V

]
, (B4)

7From this equation, one can show the formula∫
dU DR1

r1s1
(g1U )DR2

r2s2
(U −1g2) =

∫
dU DR1

r1s1
(g1U −1)DR2

r2s2
(U g2) = δR1R2

dR1

δs1r2 DR1
r1s2

(g1g2).
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Fig. B1. Young diagram for R = [q1, …, qN − 1].

Fig. C1. Graphical representation of T(1)
A1A2A3A4

.

e(β ) = −
∑∞

n=1 IV −1
n (β )

[(
In+1(β ) + In−1(β )

)
/2 − In(β )/β

]
∑∞

n=1 IV
n (β )

+ 1. (B5)

Appendix C. Tensor network derivation of the exact partition function
The well-known formula in Eq. (20) can be easily derived from the TN representation of the
partition function with the infinite-dimensional tensor, Eq. (19):

T
(1)
A1A2A3A4

= α1 δR1R2R3R4 δs1s2 δr2s3 δr3r4 δs4r1 . (C1)

Here, Ai = (Ri, ri, si), δR1R2···Rm = δR1R2δR2R3 · · · δRm−1Rm , and αn ≡ λ2n

R /dR (n = 1, 2, . . .) are fac-
tors located at vertices. Figure C1 shows a graphical representation of T(1).

It is straightforward to evaluate the value of Z as shown in Fig. C2. Figure C2(b) is obtained
from Fig. C2(a) where α1 is replaced by α1dR = λ2

R because dR is provided from the inner loop.
The final expression is immediately obtained because the remaining tensors in Fig. C2(b) are
diagonal with respect to the R indices [38].

Instead, we can use the TRG iterations to evaluate Z. Omitting the tensor indices, we write

(C2)

Then, we decompose T
(1) in two ways as

(C3)

14/17

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/12/123B03/6415218 by Kyoto D

aigaku Johogakukenkyuka Tosho user on 19 O
ctober 2022



PTEP 2021, 123B03 M. Fukuma et al.

Fig. C2. The TN representation of the partition function with the infinite-dimensional tensor.

where rank-3 tensors are defined in a manner similar to Eq. (C1). These decompositions corre-
spond to the SVDs given in Fig. 2. With these rank-3 tensors, we construct the second tensor
as

(C4)

Note that we have not made any truncation. Repeating this procedure, we have the nth tensor

(C5)

from which the partition function Z with volume V = 2n is calculated as

(C6)
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