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Abstract
We review the current status of general relativistic studies for coalescences of black

hole–neutron star binaries. First, high-precision computations of black hole–neutron

star binaries in quasiequilibrium circular orbits are summarized, focusing on the

quasiequilibrium sequences and the mass-shedding limit. Next, the current status of

numerical-relativity simulations for the merger of black hole–neutron star binaries is

described. We summarize our understanding for the merger process, tidal disruption

and its criterion, properties of the merger remnant and ejected material, gravitational

waveforms, and gravitational-wave spectra. We also discuss expected electromag-

netic counterparts to black hole–neutron star coalescences.
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1 Introduction

1.1 Why is the black hole–neutron star binary merger important?

After the first release of this review article in 2011 (Shibata and Taniguchi 2011),

the research environment for compact binary coalescences has changed completely.

The turning point was the first gravitational-wave event GW150914 from a binary-

black-hole merger detected by the LIGO and Virgo Collaboration (Abbott et al.

2016b). We obtained the strongest evidence for the existence of black holes and

mergers of their binaries within the Hubble time. We learned that some stellar-mass
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black holes are significantly more massive than those found in our Galaxy by X-ray

observations (Abbott et al. 2016a). Furthermore, we confirmed that general

relativity is consistent with observations even for this dynamical and strongly

gravitating phenomenon (Abbott et al. 2016c; Yunes et al. 2016, see also Abbott

et al. 2019b, 2021c for the update). After further observations, the number of stellar-

mass black holes detected by gravitational waves has already exceeded those by

electromagnetic radiation (see Abbott et al. 2019a, 2021a for reported detections as

of 2020). Gravitational-wave astronomy of binary black holes is rapidly becoming

an established branch of astrophysics.

Subsequently, the first binary-neutron-star merger, GW170817, was detected

with not only gravitational waves (Abbott et al. 2017d, 2019c) but also electro-

magnetic waves by multiband instruments all over the world (Abbott et al.

2017c, e). Tidal deformability of the neutron star was constrained from gravita-

tional-wave data analysis, and extremely stiff equations of state are no longer

favored (Abbott et al. 2017d; De et al. 2018; Abbott et al. 2018, 2019c; Narikawa

et al. 2020). Binary-neutron-star mergers were strongly suggested to be central

engines of short gamma-ray bursts by the detection of a weak GRB 170817A

(Abbott et al. 2017c; Goldstein et al. 2017; Savchenko et al. 2017) and by longterm

observations of its off-axis afterglow (Mooley et al. 2018a, b; Alexander et al.

2018; Lamb et al. 2019). The host galaxy NGC 4993 was identified by the

kilonova/macronova AT 2017gfo (Coulter et al. 2017; Arcavi et al. 2017; Lipunov

et al. 2017; Soares-Santos et al. 2017; Tanvir et al. 2017; Valenti et al. 2017), and

Hubble’s constant was inferred in a novel manner by combining the cosmological

redshift of NGC 4993 and the luminosity distance estimated from GW170817

(Abbott et al. 2017b). Furthermore, binary-neutron-star mergers were indicated to

be a site of r-process nucleosynthesis (Tanaka et al. 2017; Kasen et al. 2017;

Watson et al. 2019). This event heralded a new era of multimessenger astronomy

with gravitational and electromagnetic radiation.

Finally, during the review process of this article, detections of black hole–neutron

star binaries, GW200105 and GW200115, are reported (Abbott et al. 2021b).

Together with another candidate of a black hole–neutron star binary merger

GW190426_152155 (Abbott et al. 2021a), we may now safely consider that black

hole–neutron star binaries are actually merging in our Universe. The merger rate is

currently inferred to be � 12–240 Gpc�3 yr�1, which is largely consistent with

previous theoretical estimation (Dominik et al. 2015; Kruckow et al. 2018; Neijssel

et al. 2019; Zevin et al. 2020; Santoliquido et al. 2021, see also Narayan et al.

1991; Phinney 1991 for pioneering rate estimation). Unfortunately, despite the

presence of neutron stars, no associated electromagnetic counterpart was detected.

This is consistent with the current theoretical understanding reviewed throughout

this article, because the most likely mass ratios of these binaries are as high as 4–5

and the spin of the black holes are likely to be zero or retrograde. Tidal disruption

do not occur for these parameters, and thus neither mass ejection nor electromag-

netic emission is expected to occur. We also note that some other gravitational-wave

events reported in LIGO-Virgo O3 are also consistent with black hole–neutron star

binaries under generous assumptions on the mass of compact objects (Abbott et al.
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2020a, c),1 partly because no electromagnetic counterpart was detected (Kyutoku

et al. 2020; Han et al. 2020; Kawaguchi et al. 2020a).

One of the remaining issues for ground-based gravitational-wave detectors is to

discover coalescences of black hole–neutron star binaries accompanied by tidal

disruption and hence electromagnetic emission. Indeed, among the mergers of black

hole–neutron star binaries, those resulting in tidal disruption of the neutron star by

the black hole are of physical and astrophysical interest and deserve detailed

investigations. Specifically, the tidal disruption is required to occur outside the

innermost stable circular orbit of the black hole for inducing astrophysically

interesting outcomes. If the neutron star is not disrupted, as is likely the case of

GW200105 and GW200115, it behaves like a point particle throughout the

coalescence, and the merger process will be indistinguishable from that of (highly

asymmetric) binary black holes (Foucart et al. 2013a) except for possible

electromagnetic emission associated with crust shattering (Tsang et al. 2012),

magnetospheric activities (Hansen and Lyutikov 2001; McWilliams and Levin

2011; Lai 2012; Paschalidis et al. 2013; D’Orazio et al. 2016; Carrasco and Shibata

2020; Wada et al. 2020; East et al. 2021; Carrasco et al. 2021, see also Ioka and

Taniguchi 2000 for earlier work on binary neutron stars), or charged black holes

(Levin et al. 2018; Zhang 2019; Dai 2019; Pan and Yang 2019; Zhong et al. 2019).

These two possibilities for the fate of merger are summarized schematically in

Fig. 1.2

Focusing on the cases in which tidal disruption occurs, many researchers have

vigorously studied the following three aspects. Accordingly, most parts of this

review will be devoted to their detailed discussions.

• Gravitational waves will enable us to study the finite-size properties and hence

the equation of state of neutron stars. First, tidal deformability, K (see also

Sect. 1.3), of neutron stars will be extracted from the phase evolution in the

inspiral phase (Flanagan and Hinderer 2008) along with the masses and the spins

of binary components (Finn and Chernoff 1993; Jaranowski and Krolak 1994;

Cutler and Flanagan 1994; Poisson and Will 1995). Although the tidal

deformability could be inferred even if tidal disruption does not occur, realistic

1 ‘‘NSBH’’ of the LIGO-Virgo classification scheme does not necessarily mean that the lighter

component is a neutron star, because this label only indicates that the mass is smaller than 3M�.

‘‘MassGap’’ means that at least one member of the binary has the mass between 3M� and 5M�. The

chirp mass, the best-determined parameter for inspiral-dominated events, of a 3M�–3M� binary is

identical to that of 7:6M�–1:35M�. A finite probability of ‘‘BNS’’ for the source classification derived in

the real-time data analysis is consistent with a black hole–neutron star binary with the black-hole mass

being .7:6M� for the case in which the neutron-star mass is 1:35M�. Similarly, the chirp mass of a

5M�–5M� binary is identical to that of 8:8M�–3M� as well as that of 25:9M�–1:35M�, and a finite

probability of ‘‘BBH’’ indicates a black hole heavier than this for a black hole–neutron star binary.
2 There may, in principle, be a third possibility that the binary initiates stable mass transfer after the onset

of mass shedding. This might seem possible from the Newtonian intuition, because the heavier

component (black hole) accretes material from the lighter component (neutron star). Although (pseudo-)-

Newtonian simulations have indeed witnessed episodic mass transfer (Janka et al. 1999; Rosswog et al.

2004; Ruffert and Janka 2010), this process has never been identified in numerical-relativity simulations

of quasicircular inspirals as we discuss in Sect. 1.4. Readers interested in the stable mass transfer should

be referred to Appendix C.1 for detailed discussions.
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measurements will be possible only when the finite-size effect is so sizable that

the neutron star is disrupted (Lackey et al. 2012, 2014). Second, the orbital

frequency at tidal disruption depends on the compactness of the neutron star, C
(Vallisneri 2000; Shibata et al. 2009). Because the mass can be extracted or

constrained from inspiral signals along with the spin as stated above,

gravitational waveforms from tidal disruption of a neutron star may bring us

invaluable information about its radius, which is strongly but not perfectly

correlated with the tidal deformability (Hotokezaka et al. 2016a; De et al. 2018).

The measurement of these quantities with black hole–neutron star binaries could

serve as an additional tool for exploring supranuclear-density matter (Lindblom

1992; Harada 2001). For this purpose, it is crucial to understand the dependence

of gravitational waveforms, including characteristic observable features associ-

ated with tidal disruption, on possible equations of state by theoretical

calculations.

• The remnant disk formed from the disrupted neutron star is a promising central

engine of short-hard gamma-ray bursts (Paczynski 1991; Narayan et al. 1992;

Mochkovitch et al. 1993, see also Blinnikov et al. 1984 for an earlier idea and

Paczynski 1986; Goodman 1986; Eichler et al. 1989 for binary-neutron-star

scenarios). A typical beaming-corrected energy of the jet, � 1050 erg (Fong et al.

2015), can be explained if, for example, � 0:1% of the rest-mass energy is

converted from a � 0:1M� accretion disk. This could be realized via neutrino

pair annihilation (Rees and Meszaros 1992), which is effective when the disk is

sufficiently hot and dense to cool via neutrino radiation, called the neutrino-

dominated accretion flow (Popham et al. 1999; Narayan et al. 2001; Kohri and

Mineshige 2002; Di Matteo et al. 2002; Kohri et al. 2005; Chen and

Beloborodov 2007; Kawanaka and Mineshige 2007). Another possible energy

source is the rotational energy of a spinning black hole extracted by magnetic

fields, i.e., the Blandford–Znajek mechanism (Blandford and Znajek 1977;

Mészáros and Rees 1997). For this mechanism to work, magnetic-field strength

in the disk needs to be amplified by turbulent motion resulting from

Isolated BH or
BH + tiny disk

Fig. 1 Summary for the merger and postmerger evolution of black hole–neutron star binaries. The fate is
classified into two categories according to whether the neutron star is tidally disrupted (right) or not (left).
Image adapted from Shibata and Hotokezaka (2019), copyright by Annual Reviews
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magnetohydrodynamic instabilities such as the magnetorotational instability

(Balbus and Hawley 1991), and subsequently, strong magnetic fields threading

the spinning black hole need to be developed to form a surrounding

magnetosphere. One of the ultimate goals for numerical simulations of compact

binary coalescences may be to clarify how, if possible, the ultrarelativistic jet is

launched from the merger remnant. Theoretical investigations should also clarify

whether longterm activity of short-hard gamma-ray bursts, e.g., the extended and

plateau emission (Norris and Bonnell 2006; Rowlinson et al. 2013; Gompertz

et al. 2013; Kisaka et al. 2017), can really be explained by the merger remnant

of black hole–neutron star binaries. Because of the diversity associated with

stellar-mass black holes, black hole–neutron star binaries might naturally explain

the variety observed in short-hard gamma-ray bursts (see Nakar 2007; Berger

2014 for reviews).

• A substantial amount of neutron-rich material will be ejected and synthesize r-
process elements (Lattimer and Schramm 1974, see also Lattimer 2019 for

retrospection by an originator), i.e., about half of the elements heavier than iron

in the universe, whose origin has not yet been fully understood (Burbidge et al.

1957; Cameron 1957). Subsequently, radioactive decays of unstable nuclei will

heat up the ejecta, resulting in quasithermal emission in UV-optical-IR bands on

a time scale of O(10) days (Li and Paczyński 1998). This transient, called the

kilonova (Metzger et al. 2010b) or macronova (Kulkarni 2005), serves as the

most promising omnidirectional electromagnetic counterparts to gravitational

waves (see Metzger 2019 for reviews). The ejecta are eventually mixed with the

interstellar medium and contribute to the chemical evolution of galaxies, and this

interaction may drive another electromagnetic counterpart such as synchrotron

radiation from nonthermal electrons (Nakar and Piran 2011) and possibly inverse

Compton emission (Takami et al. 2014). To derive nucleosynthetic yields and

characteristics of electromagnetic counterparts, we need to understand properties

of the ejecta such as the mass, the velocity, and the electron fraction that

characterizes the neutron richness. In particular, the electron fraction primarily

determines the nucleosynthetic yield, which controls features of the kilo-

nova/macronova via the opacity (Kasen et al. 2013; Tanaka and Hotokezaka

2013; Tanaka et al. 2018, 2020; Banerjee et al. 2020) and the heating rate

(Hotokezaka et al. 2016b; Barnes et al. 2016; Kasen and Barnes 2019; Waxman

et al. 2019; Hotokezaka and Nakar 2020). If a significant fraction of the ejecta

keeps extreme neutron richness of the neutron star, ultraheavy elements may be

produced in abundance, and the associated fission and/or a-decay will power the

kilonova/macronova at late times (Wanajo et al. 2014; Zhu et al. 2018; Wu et al.

2019). They could also be the origin of exceptionally r-process enhanced metal-

poor stars, so-called actinide-boost stars (see, e.g., Mashonkina et al. 2014). Last

but not least, the geometrical shape of the ejecta could be important for

understanding the diversity of electromagnetic counterparts to black hole–

neutron star binaries (Kyutoku et al. 2013; Tanaka et al. 2014).
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1.2 Life of black hole–neutron star binaries

We first overview the entire evolution of black hole–neutron star binaries from their

birth. Binaries consisting of a black hole and/or a neutron star, hereafter collectively

called compact object binaries, are generally born after evolution of isolated

massive binaries (see, e.g., Postnov and Yungelson 2014 for reviews) or via

dynamical processes in dense environments (see, e.g., Benacquista and Downing

2013 for reviews). Relative contributions of these two paths to black hole–neutron

star binaries have not been understood yet, as well as for compact object binaries of

other types. We do not go into details of the formation path in this article,

commenting only that the evolution of isolated binaries is usually regarded as the

dominant channel for black hole–neutron star binaries (see, e.g., discussions in

Abbott et al. 2021b).

After the formation of black hole–neutron star binaries, their orbital separation

decreases gradually due to longterm gravitational radiation reaction. If we would

like to observe their coalescences, the binaries are required to merge within the

Hubble time of � 1:4 � 1010 yr. This condition is also a prerequisite for them to

drive short-hard gamma-ray bursts and to produce r-process elements. The lifetime

of a black hole–neutron star binary in a circular orbit for a given orbital separation r
is given by

tGW ¼ 5c5

256G3

r4

ðMBH þMNSÞMBHMNS

¼ 1:01 � 1010 yr
r

6 � 106 km

� �4 MBH

7M�

� ��1
MNS

1:4M�

� ��1
m0

8:4M�

� ��1
ð1Þ

in the adiabatic approximation, which is appropriate when the radiation reaction

time scale is much longer than the orbital period. Here, G, c, MBH, MNS, and m0 are

the gravitational constant, the speed of light, the gravitational mass of the black

hole, the gravitational mass of the neutron star, and the total mass of the binary

m0 :¼ MBH þMNS, respectively (cf., Table 1). The orbital eccentricity only reduces

the time to merger for a given value of the semimajor axis (Peters and Mathews

1963; Peters 1964). Thus, a black hole–neutron star binary merges within the

Hubble time if its initial semimajor axis is smaller than � 107 km with the precise

value depending on the masses of the objects and the initial eccentricity. Because

the spin and finite-size properties of the objects come into play only as higher-order

corrections in terms of the orbital velocity or other appropriate parameters (see, e.g.,

Blanchet 2014 for reviews of the post-Newtonian formalism), Eq. (1) with eccen-

tricity corrections is adequate for judging whether a binary merges within the

Hubble time.

Two remarks should be made regarding the longterm evolution. First, the orbital

eccentricity decreases rapidly, specifically e / a�19=12 in an asymptotically circular

regime with a being the semimajor axis, due to gravitational radiation reaction

(Peters 1964). Accordingly, black hole–neutron star binaries right before merger

(e.g., when gravitational waves are detected by ground-based detectors) may safely

be approximated as circular. Second, the neutron star is unlikely to be tidally-
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Table 1 List of symbols

Symbol Content

Geometric quantity

glm Spacetime metric

g Determinant of glm

rl Covariant derivative associated with glm

Rt Three-dimensional hypersurface of a constant time t

nl Future-directed timelike unit vector normal to Rt

a Lapse function

bi Shift vector

clm Induced metric clm :¼ glm þ nlnm on Rt

Di Covariant derivative associated with cij

c Determinant of cij;
ffiffiffiffiffiffiffi�g

p ¼ a
ffiffiffi
c

p

Kij Extrinsic curvature on Rt

K Trace of the extrinsic curvature K :¼ cijKij

Hydrodynamical quantity

Tlm Energy–momentum tensor

ul Four velocity of the fluid

vi Three velocity of the fluid ui=ut

w Lorentz factor of the fluid aut

q Baryon rest-mass density

e Specific internal energy

P Pressure

h Specific enthalpy h :¼ c2 þ eþ P=q

T Temperature

Ye Electron fraction

j Polytropic constant

C Adiabatic index

am Alpha parameter for the viscosity à la Shakura and Sunyaev (1973)

Parameter of the black hole

MBH Gravitational mass of the black hole in isolation

SBH Spin angular momentum of the black hole

v Dimensionless spin parameter of the black hole v :¼ cSBH=ðGM2
BHÞ

i Inclination angle of the black-hole spin with respect to the orbital plane

Parameter of the neutron star

MNS Gravitational mass of the neutron star in isolation

MB Baryon rest mass of the neutron star

RNS Circumferential radius of a spherical neutron star in isolation

C Compactness of the neutron star C :¼ GMNS=ðc2RNS)

Binary parameter

m0 Gravitational mass of the binary at infinite separation m0 :¼ MBH þMNS

Q Mass ratio of the binary Q :¼ MBH=MNS

X Orbital angular velocity of the binary
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locked, because the effects of viscosity are likely to be insufficient (Kochanek 1992;

Bildsten and Cutler 1992). Thus, the spin of the neutron star can affect the merger

dynamics significantly only if the rotational period is extremely short at the outset

and the spin-down is not severe. Quantitatively, the dimensionless spin parameter of

the neutron star is approximately written as

vNS ¼ cINSXrot

GM2
NS

¼ 4:9 � 10�4 INS=ðMNSR
2
NSÞ

1=3

� �
MNS

1:4M�

� ��1
RNS

12 km

� �2
Prot

1 s

� ��1

;

ð2Þ

where INS, RNS, and Prot are the moment of inertia, the radius, and the rotational

period, respectively, of the neutron star. Observationally, the shortest rotational

period of known pulsars in Galactic binary neutron stars that merge within the

Hubble time is � 17 ms, which is equivalent to only vNS � 0:03 (Stovall et al.

2018). Moreover, black hole–neutron star binaries are unlikely to harbor recycled

pulsars, because the neutron star is expected to be formed after the black hole,

having no chance for mass accretion. Hence, it is reasonable to approximate neutron

stars as nonspinning in the merger of black hole–neutron star binaries. Exceptions to

these remarks might arise from dynamical formation in dense environments such as

galactic centers and globular clusters, e.g., exchange interactions involving recycled

pulsars (see, e.g., Fragione et al. 2019; Ye et al. 2020), and/or black-hole formation

from the secondary caused by mass transfer in isolated massive binaries (see, e.g.,

Kruckow et al. 2018).

The late inspiral and merger phases of black hole–neutron star binaries are

promising targets of gravitational waves for ground-based detectors irrespective of

the degree of tidal disruption. The frequency f and the amplitude h of gravitational

waves from black hole–neutron star binaries with the orbital separation r at the

luminosity distance D are estimated in the quadrupole approximation for two point

particles as

f � X
p
¼ 523 Hz

r

6Gm0=c2

� ��3=2 m0

8:4M�

� ��1

; ð3Þ

h � 4G2MBHMNS

c4rD
¼ 3:7 � 10�22 l

1:17M�

� �
r

6Gm0=c2

� ��1
D

100 Mpc

� ��1

; ð4Þ

where l :¼ MBHMNS=m0 is the reduced mass. Here, the most favorable direction

Table 1 continued

Symbol Content

f Gravitational-wave frequency
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and orientation are assumed for evaluating h. These values indicate that black hole–

neutron star binaries near the end of their lives fall within the observable window of

ground-based gravitational-wave detectors as far as the distance is sufficiently close.

However, the quadrupole approximation for point particles is not sufficiently

accurate for describing the evolution of black hole–neutron star binaries in the late

inspiral, merger, and postmerger phases. As the orbital separation gradually

approaches the radius of the object, spins and finite-size effects such as tidal

deformation begin to modify the gravitational interaction between the binary in a

noticeable manner. The adiabatic approximation also breaks down for the very close

orbit, because the radiation reaction time scale and the orbital period become

comparable near an approximate innermost stable orbit3 as

tGW

Porb

¼ 2:0
r

6Gm0=c2

� �5=2
MBH

7M�

� ��1
MNS

1:4M�

� ��1
m0

8:4M�

� �2

: ð5Þ

Thus, dynamics in the late inspiral and merger phases depends crucially on com-

plicated hydrodynamics associated with neutron stars, whose properties are con-

trolled by the equation of state, and on nonlinear gravity of general relativity.

Furthermore, the evolution of the remnant disk in the postmerger phase is governed

by neutrino emission triggered by shock-induced heating and turbulence associated

with magnetohydrodynamic instabilities (Lee et al. 2004; Setiawan et al. 2004; Lee

et al. 2005; Setiawan et al. 2006; Shibata et al. 2007). All these facts make fully

general-relativistic numerical studies the unique tool to clarify the final evolution of

black hole–neutron star coalescences in a quantitative manner.

1.3 Tidal problem around a black hole

As we stated in Sect. 1.1, this review will focus primarily on numerical studies of

black hole–neutron star binaries for which finite-size effects play a significant role.

To set the stage for understanding numerical results, in this Sect. 1.3, we will

discuss requirement for the binary to cause significant tidal disruption, which starts

with the mass shedding from the inner edge of the neutron star.

1.3.1 Mass-shedding condition

The orbital separation at which the mass shedding sets in is determined primarily by

the mass ratio of the binary and the radius of the neutron star. The orbit at which the

mass shedding sets in, the so-called mass-shedding limit, can be estimated

semiquantitatively by Newtonian calculations as follows. Mass shedding from the

neutron star occurs when the tidal force exerted by the black hole overcomes the

self-gravity of the neutron star at the inner edge of the stellar surface. This condition

is approximately given by

3 Definition of the innermost stable circular orbit is subtle for comparable mass binaries (see, e.g.,

Blanchet and Iyer 2003). In this article, we basically refer to the minimum energy circular orbit as the

innermost stable circular orbit.
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2GMBHðcRRNSÞ
r3

J GMNS

ðcRRNSÞ2
; ð6Þ

where the factor cR � 1 represents the degree of tidal (and rotational if the neutron

star is rapidly spinning) elongation of the stellar radius. The precise value of this

factor depends on the neutron-star properties and the orbital separation. The mass-

shedding limit may be defined as the orbit at which this inequality is approximately

saturated,

rms :¼ 21=3cR

MBH

MNS

� �1=3

RNS: ð7Þ

We emphasize here that Eq. (6) is a necessary condition for the onset of mass

shedding. Tidal disruption occurs only after substantial mass is stripped from the

surface of the neutron star, while the orbital separation decreases continuously due

to gravitational radiation reaction during this process. Thus, the tidal disruption

should occur at a smaller orbital separation than Eq. (7). We also note that the

neutron star will be disrupted immediately after the onset of mass shedding if its

radius increases rapidly in response to the mass loss, although typical equations of

state predict that the radius in equilibrium depends only weakly on the mass (see,

e.g., Lattimer and Prakash 2016; Özel and Freire 2016; Oertel et al. 2017 for

reviews).

Tidal disruption induces observable astrophysical consequences only if it occurs

outside the innermost stable circular orbit of the black hole, inside which

stable circular motion is prohibited by strong gravity of general relativity; If the

tidal disruption fails to occur outside this orbit, the material is rapidly swallowed by

the black hole and does not leave a remnant disk or unbound ejecta in an appreciable

manner. This implies that observable tidal disruption requires, at least, the mass-

shedding limit to be located outside the innermost stable circular orbit. The radius of

the innermost stable circular orbit depends sensitively on the dimensionless spin

parameter of the black hole, v. Specifically, it is given in terms of a dimensionless

decreasing function r̂ISCOðvÞ of v for an orbit on the equatorial plane of the black

hole by (Bardeen et al. 1972)

rISCO ¼ r̂ISCOðvÞ
GMBH

c2
: ð8Þ

Here, we adopt the convention that the positive and negative values of v indicate the

prograde and retrograde orbits, i.e., the orbits with their angular momenta aligned

and anti-aligned with the black-hole spin, respectively. Specifically, the value of

r̂ISCO is 9 for a retrograde orbit around an extremally-spinning black hole (v ¼ �1),

6 for an orbit around a nonspinning black hole (v ¼ 0), and 1 for a prograde orbit

around an extremally-spinning black hole (v ¼ 1). If the spin of the black hole is

inclined with respect to the orbital angular momentum, the spin effect described

here is not determined by the magnitude of the spin angular momentum but by that

of the component parallel to the orbital angular momentum. Thus, even if the black-

hole spin is high, its effect can be minor in the presence of spin misalignment.
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To sum up, the final fate of a black hole–neutron star binary is determined

primarily by the mass ratio of the binary, the compactness of the neutron star, and

the dimensionless spin parameter of the black hole. The ratio of the radius of the

mass-shedding limit and that of the innermost stable circular orbit is given by

rms

rISCO

¼ 21=3cR

r̂ISCOðvÞ
MBH

MNS

� ��2=3
GMNS

c2RNS

� ��1

: ð9Þ

This semiquantitative estimate suggests that tidal disruption of a neutron star could

occur if one or more of the following conditions are satisfied:

1. the mass ratio of the binary, Q :¼ MBH=MNS, is low,

2. the compactness of the neutron star, C :¼ GMNS=ðc2RNSÞ, is small,

3. the dimensionless spin parameter of the black hole, v, is high with the definition

of signature stated above.

If we presume that the neutron-star mass is fixed, the conditions 1 and 2 may be

restated as

1’. the black-hole mass is small,

2’. the neutron-star radius is large,

respectively.

Quantitative discussions have to take the general-relativistic nature of black

hole–neutron star binaries into account. For this purpose, it is advantageous to

rewrite Eq. (6) in terms of the orbital angular velocity as

X2 � 1

2c3
R

GMNS

R3
NS

1 þ Q�1
� �

; ð10Þ

because X can be defined in a gauge-invariant manner even for a comparable-mass

binary in general relativity. It should be remarked that the orbital frequency at the

onset of mass shedding is determined primarily by the average density of the

neutron star, /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MNS=R

3
NS

p
. According to the results of fully general-relativistic

numerical studies for quasiequilibrium states (Taniguchi et al. 2007, 2008, see

Sect. 2 for the details), the mass-shedding condition is given by

X2 �X2
ms :¼ C2

X
GMNS

R3
NS

1 þ Q�1
� �

; ð11Þ

where CX.0:3 for binaries of a nonspinning black hole and a neutron star with the

irrotational velocity field. The smallness of CX\1=
ffiffiffi
2

p
indicates that the mass

shedding is helped by significant tidal deformation, i.e., cR [ 1, and/or by rela-

tivistic gravity. This condition also indicates that the gravitational-wave frequency

at the onset of mass shedding is given by
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fms ¼
Xms

p
J1:0 kHz

CX

0:3

� �
MNS

1:4M�

� �1=2
RNS

12 km

� ��3=2

1 þ Q�1
� �1=2

: ð12Þ

This value might be encouraging for ground-based gravitational-wave detectors,

which have high sensitivity up to � 1 kHz. However, we again caution that the mass

shedding is merely a necessary condition for tidal disruption, and thus the frequency

at tidal disruption should be higher than this value.

1.3.2 Tidal interaction in the orbital evolution

The discussion in Sect. 1.3.1 did not take the effect of tidal deformation of a neutron

star on the orbital motion into account except for a fudge factor cR. Tidally-induced

higher multipole moments of the neutron star modify the gravitational interaction

between the binary components (see, e.g., Poisson and Will 2014), so are the orbital

evolution and the criterion for tidal disruption. This problem has thoroughly been

investigated in Newtonian gravity with the ellipsoidal approximation, in which the

isodensity contours are assumed to be self-similar ellipsoids (Lai et al.

1993a, b, 1994a, b). They find that the tidal interaction acts as additional attractive

force and accordingly the radius of the innermost stable circular orbit is increased

(see also Rasio and Shapiro 1992, 1994; Lai and Wiseman 1996; Shibata 1996).

Because (i) the tidally-deformed neutron star develops a reduced quadrupole

moment with the magnitude of components being / r�3 associated with the tidal

field of the black hole and (ii) the reduced quadrupole moment produces potential of

the form / r�3, the gravitational potential in the binary develops an r�6 term in

addition to the usual r�1 term of the monopolar (i.e., mass) interaction. The reason

that this interaction works as the attraction is that the neutron star is stretched along

the line connecting the binary components and the enhancement of the pull at the

inner edge dominates over the reduction at the outer edge. The steep dependence of

the potential on the orbital separation indicates that the tidal interaction is especially

important for determining properties of the close orbit.

These discussions about the tidal effects on the orbital motion have been revived

in the context of gravitational-wave modeling and data analysis (Flanagan and

Hinderer 2008). Specifically, it has been pointed out that the finite-size effect of a

star on the orbital evolution and hence gravitational waveforms are characterized

quantitatively by the tidal deformability as far as the deformation is perturbative

(Hinderer 2008; Binnington and Poisson 2009; Damour and Nagar 2009). Because

the additional attractive force increases the orbital angular velocity required to

maintain a circular orbit for a given orbital separation, the gravitational-wave

luminosity is also increased. In addition, the coupling of the quadrupole moments

between the binary and the deformed star also enhances the luminosity. These

effects accelerate the orbital decay particularly in the late inspiral phase to the

extent that the difference of gravitational waveforms may be used to extract tidal

deformability of neutron stars. This extraction has been realized in GW170817

(Abbott et al. 2017d, 2018; De et al. 2018; Abbott et al. 2019c; Narikawa et al.

2020) and GW190425 (Abbott et al. 2020a), whereas the statistical errors are large.
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It should also be cautioned that the effect of tidal deformability is not very large

compared to various other effects, e.g., the spin and the eccentricity (Yagi and

Yunes 2014; Favata 2014; Wade et al. 2014). In particular, the tidal effect comes

into play effectively at the fifth post-Newtonian order (r�6=r�1 ¼ r�5), but the

point-particle terms at this order have not yet been derived in the post-Newtonian

approximation. Thus, accurate extraction of tidal deformability requires sophisti-

cation not only in the description of tidal effects but also in the higher-order post-

Newtonian corrections to point-particle, monopolar interactions. This fact has

motivated gravitational-wave modeling in the effective-one-body formalism

(Buonanno and Damour 1999, 2000) and numerical relativity.

Tidal interaction and criteria for mass shedding in general relativity have long

been explored for a circular orbit of a ‘‘test’’ Newtonian fluid star around a Kerr (or

Schwarzschild) black hole as follows (Fishbone 1973; Mashhoon 1975; Lattimer

and Schramm 1976; Shibata 1996; Wiggins and Lai 2000; Ishii et al. 2005). The

center of mass of the star is assumed to obey the geodesic equation in the

background spacetime, and the stellar structure is computed with a model based on

the Newtonian Euler’s equation of the form

dui
ds

¼ � 1

q
oP

oxi
� o/
oxi

� Cijx
j; ð13Þ

where s, xi, ui, q, P, /, and Cij denote the proper time of the stellar center, spatial

coordinates orthogonal to the geodesic, the internal velocity, the rest-mass density,

the pressure, the gravitational potential associated with the star itself, and the tidal

tensor associated with the black hole, respectively. The self-gravity of the fluid star

is computed in a Newtonian manner from Poisson’s equation sourced by 4pGq. The

tidal force of the black hole is incorporated up to the quadrupole order via the tidal

tensor derived from the fully relativistic Riemann tensor (Marck 1983, see also van

de Meent 2020). Because the gravity of the fluid star is assumed not to affect the

orbital motion and general relativity is not taken into account for describing its self-

gravity, the analysis based on this model is valid quantitatively only for the cases in

which the black hole is much heavier than the fluid star (Q 	 1) and the fluid star is

not compact (C 
 1). In addition, the tidal force of the black hole beyond the

quadrupole order, Cij, is neglected (Marck 1983), and this model is valid only if the

stellar radius is much smaller than the curvature scale of the background spacetime

(again, Q 	 1 is assumed). Regarding this point, higher-order tidal interactions

have also been incorporated (Ishii et al. 2005) via the tidal potential computed in the

Fermi normal coordinates (Manasse and Misner 1963).

A series of analysis described above confirms the qualitative dependence of the

mass-shedding and tidal-disruption conditions inferred from Eq. (9) on binary

parameters in a semiquantitative manner. Specifically, the mass shedding from an

incompressible star is found to occur for the mass and the spin of the black hole

satisfying
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MBH.CMðvÞM�
MNS

1:4M�

� ��1=2
RNS

10 km

� �3=2

; ð14Þ

where CMð0Þ � 4:6, CMð0:5Þ � 7:8, CMð0:75Þ � 12, CMð0:9Þ � 19, and CMð1Þ �
68 (Shibata 1996). This condition tells us that tidal disruption of a neutron star by a

nonspinning black hole is possible only if the black-hole mass is small compared to

astrophysically typical values (see, e.g., Özel et al. 2010; Kreidberg et al. 2012;

Abbott et al. 2019a, 2021a). At the same time, the increase in the threshold mass by

a factor of � 15 for extremal black holes is impressive particularly in light of many

massive black holes discovered by gravitational-wave observations.

The threshold mass of the black hole for mass shedding and thus tidal disruption

also depends on the neutron-star equation of state even if the mass and the radius are

identical (Wiggins and Lai 2000; Ishii et al. 2005). If we focus on polytropes, stiffer

equations of state characterized by a larger adiabatic index are more susceptible to

tidal deformation due to the flatter, less centrally condensed density profile.

Conversely, neutron stars with a soft equation of state are less subject to tidal

disruption than those with a stiff one. These features are also reflected in the tidal

Love number and tidal deformability (Hinderer 2008). Note that the incompressible

model corresponds to the stiffest possible equation of state. According to the

computations performed adopting compressible stellar models (Wiggins and Lai

2000; Ishii et al. 2005), the threshold mass of the black hole may be reduced by

10%–20% for a soft equation of state characterized by a small adiabatic index.

In reality, the self-gravity of the neutron star needs to be treated in a general-

relativistic manner. General-relativistic effects associated with the neutron star have

been investigated by a series of work in a phenomenological manner based on the

ellipsoidal approximation (Ferrari et al. 2009, 2010; Pannarale et al. 2011; Ferrari

et al. 2012; Maselli et al. 2012). However, quantitative understanding of the mass

shedding and tidal disruption ultimately requires numerical computations of

quasiequilibrium states and dynamical simulations of the merger process in full

general relativity.

1.4 Brief history of studies on black hole–neutron star binaries

Here, we briefly review studies on black hole–neutron star binaries from the

historical perspectives in an approximate chronological order. We also introduce

pioneering studies that are not fully relativistic, e.g., Newtonian computations of

equilibrium states and partially-relativistic simulations of the coalescences. In the

main part of this article, Sects. 2 and 3, we will review fully general-relativistic

results, i.e., quasiequilibrium states satisfying the Einstein constraint equations and

dynamical evolution derived by solving the full Einstein equation, from the physical

perspectives.
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1.4.1 Nonrelativistic equilibrium computation

Equilibrium configurations of a neutron star governed by Newtonian self-gravity in

general-relativistic gravitational fields of a background black hole was first studied

in Fishbone (1973) for incompressible fluids in the corotational motion (i.e., the

fluid is at rest in the corotating frame of the binary). The criterion for mass shedding

was investigated and qualitative results were obtained. This type of studies has been

generalized to accommodate irrotational velocity fields (i.e., the vorticity is absent;

Shibata 1996), compressible, polytropic equations of state (Wiggins and Lai 2000),

and higher-order tidal potential of the black hole (Ishii et al. 2005). Another

direction of extension was to remove the assumption of the extreme mass ratio of

the binary. This extension was done in Taniguchi and Nakamura (1996) by adopting

modified pseudo-Newtonian potential for the black hole based on the so-called

Paczyński–Wiita potential (Paczyńsky and Wiita 1980) to determine the location of

the innermost stable circular orbit.

However, all these studies have limitation even if we accept the Newtonian self-

gravity of neutron stars. The ellipsoidal approximation is strictly valid only if the

fluid is incompressible and the tidal field beyond the quadrupole order can be

neglected (Chandrasekhar 1969). Thus, the internal structure of compressible

neutron stars in a close orbit can be investigated only qualitatively.

The hydrostationary equilibrium of black hole–neutron star binaries was derived

in Uryū and Eriguchi (1998) assuming that the black hole was a point source of

Newtonian gravity and that the neutron star with irrotational velocity fields obeyed a

polytropic equation of state (irrotational Roche–Riemann problem). The center-of-

mass motion of the neutron star was computed fully accounting for its self-gravity,

and the tidal field of the Newtonian point source was incorporated to the full order

in the ratio of the stellar radius to the orbital separation. Their subsequent work,

Uryū and Eriguchi (1999), considered both the corotational and irrotational velocity

fields, and differences from the ellipsoidal approximation have been analyzed.

1.4.2 Relativistic quasiequilibrium computation

One of the essential features of general relativity is the existence of gravitational

radiation, whose reaction prohibits exactly stationary equilibria of binaries. Still, an

approximately stationary solution to the Einstein equation may be obtained by

solving the constraint equations, quasiequilibrium conditions derived by some of the

evolution equations, and hydrostationary equations. Such solutions are called

quasiequilibrium states, and Eq. (5) suggests that they are reasonable approxima-

tions to inspiraling binaries except near merger (see also Blackburn and Detweiler

1992; Detweiler 1994). The quasiequilibrium states are important not only by their

own but also as initial data of realistic numerical-relativity simulations.

Quasiequilibrium states and sequences of black hole–neutron star binaries in full

general relativity were first studied in Miller (2001) with preliminary formulation.

Approximate quasiequilibrium states in the extreme mass ratio limit were obtained

for the corotational velocity field in Baumgarte et al. (2004) and later for the

irrotational velocity field in Taniguchi et al. (2005). Because gravitational fields
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around the black hole are not required to be solved in the extreme mass ratio limit,

these computations were performed only around (relativistic) neutron stars.

General-relativistic quasiequilibrium states for comparable-mass binaries were

obtained in 2006 by various groups both in the excision (Grandclément 2006;

Taniguchi et al. 2006) and the puncture frameworks (Shibata and Uryū 2006, 2007).

A general issue in the numerical computation of black-hole spacetimes is how to

handle the associated physical or coordinate singularity. The excision framework

handles the black hole by removing the interior of a suitably-defined horizon (see,

e.g., Dreyer et al. 2003; Ashtekar and Krishnan 2004; Gourgoulhon and Jaramillo

2006) from the computational domains and by imposing appropriate boundary

conditions (Cook 2002; Cook and Pfeiffer 2004). The puncture framework separates

the singular and regular components in an analytic manner so that only the latter

terms are solved numerically (Bowen and York 1980; Brandt and Brügmann 1997).

The details are presented in Appendix A.

Taniguchi et al. (2007) derived accurate quasiequilibrium sequences in the

excision framework by adopting the conformally-flat background and investigated

properties of close black hole–irrotational neutron star binaries such as the mass-

shedding limit (see also Grandclément 2007). Taniguchi et al. (2008) further

improved the sequences by enforcing nonspinning conditions for the black hole in a

sophisticated manner via the boundary condition at the horizon. Quasiequilibrium

states with spinning black holes were computed with the same code as initial data

for numerical simulations (Etienne et al. 2009).

Quasiequilibrium states in the puncture framework were also derived for

irrotational velocity fields in Shibata and Taniguchi (2008) by extending the

formulation for corotating neutron stars (Shibata and Uryū 2006, 2007). Kyutoku

et al. (2009) obtained quasiequilibrium sequences of nonspinning black holes with

varying the method for determining the center of mass of the binary, which is not

uniquely defined in the puncture framework. Quasiequilibrium states in the puncture

framework were extended to black holes with aligned and inclined spins (Kyutoku

et al. 2011a; Kawaguchi et al. 2015), and the same formulation has also been

adopted to perform merger simulations in the conformal-flatness approximation

(Just et al. 2015). Recently, the eccentricity reduction method has been imple-

mented in this framework (Kyutoku et al. 2021, see below for preceding work in the

excision framework).

Except for early work in the puncture framework (Shibata and Uryū 2006, 2007),

all the computations described above were performed with the spectral-method

library, LORENE, which enables us to achieve very high precision (see

Grandclément and Novak 2009 for reviews). Note that Grandclément (Grand-

clément 2006) and Taniguchi (Taniguchi et al. 2006) are two of the main developers

of LORENE.

Foucart et al. (2008) also computed quasiequilibrium sequences in the excision

framework with an independent code, SPELLS (Pfeiffer et al. 2003). This code

implemented a modified Kerr-Schild background metric for computing highly-

spinning black holes (Lovelace et al. 2008) and the eccentricity reduction method

for performing realistic inspiral simulations (Pfeiffer et al. 2007). Initial data with

inclined black-hole spins were also derived (Foucart et al. 2011). The computations
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of quasiequilibrium states have now been extended to high-compactness (Hen-

riksson et al. 2016) and/or spinning neutron stars (Tacik et al. 2016). Papenfort

et al. (2021) have also derived quasiequilibrium sequences by using another

spectral-method library, KADATH (Grandclément 2010).

1.4.3 Non/partially-relativistic merger simulations

The merger process of black hole–neutron star binaries was first studied in

Newtonian gravity primarily with the aim of assessing the potentiality for the

central engine of gamma-ray bursts. In the early work, the black hole was modeled

by a point source of Newtonian gravity with (artificial) absorbing boundary

conditions. A series of simulations with a smoothed-particle-hydrodynamics code

explored influences of the rotational states of the fluids and stiffness of the

(polytropic) equations of state for neutron-star matter (Kluźniak and Lee 1998; Lee

and Kluźniak 1999a, b; Lee 2000, 2001). They studied the process of tidal

disruption, subsequent formation of a black hole–disk system and mass ejection,

properties of the remnant disk and unbound material, and gravitational waveforms

emitted during merger.

Around the same time, Janka et al. (1999) performed simulations incorporating

detailed microphysics with a mesh-based hydrodynamics code. Specifically, their

code had implemented a temperature- and composition-dependent equation of state

(Lattimer and Swesty 1991) and neutrino emission modeled in terms of the leakage

scheme (Ruffert et al. 1996). By performing simulations for various configurations

of binaries, a hot and massive remnant disk with J10 MeV and 0.2–0:7M� was

suggested to be formed, and the neutrino luminosity was found to reach

1053�1054 erg s�1 during 10�20 ms after formation of a massive disk. Pair

annihilation of neutrinos was also investigated by post-process calculations (Ruffert

et al. 1997) and was found to be capable of explaining the total energy of gamma-

ray bursts. Although these Newtonian results were still highly qualitative and both

the disk mass and temperature can be overestimated for given binary parameters

(see below), it was first suggested by dynamical simulations that black hole–neutron

star binary coalescences could be promising candidates for the central engine of

short-hard gamma-ray bursts if the massive accretion disk was indeed formed.

Rosswog et al. (2004) also performed simulations in similar setups with a

smoothed-particle-hydrodynamics code adopting a different equation of state (Shen

et al. 1998).

The gravity in the vicinity of a black hole modeled by a Newtonian point source

is qualitatively different from that in reality. In particular, the innermost

stable circular orbit is absent in the Newtonian point-particle model. Because of

this difference, early Newtonian work concluded that the neutron star might be

disrupted without an immediate plunge even in an orbit closer to the black hole than

.6GMBH=c
2. Consequently, they indicated that a massive remnant disk with

J0:1M� might be formed around the black hole irrespective of the mass ratio and

the rotational states of fluids. It should also be mentioned that the orbital evolution

within Newtonian gravity frequently exhibited episodic mass transfer (see Clark and
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Eardley 1977; Cameron and Iben 1986; Benz et al. 1990 for relevant discussions).

That is, the neutron star is only partially disrupted via the stable mass transfer during

the close encounter with the black hole, becomes a ‘‘mini-neutron star’’ (Rosswog

2005) with increasing the binary separation, and continues the orbital motion. This

has never been found in fully relativistic simulations (although not completely

rejected throughout the possible parameter space) and may be regarded as another

qualitative difference associated with the realism of gravitation (see also

Appendix C.1).

To overcome these drawbacks, Rosswog (2005) performed smoothed-particle-

hydrodynamics simulations by modeling the black-hole gravity in terms of a

pseudo-Newtonian potential (Paczyńsky and Wiita 1980). A potential for modeling

the gravity of a spinning black hole (Artemova et al. 1996) was also adopted in later

mesh-based simulations (Ruffert and Janka 2010), and the episodic mass transfer

was still observed for some parameters of binaries. These work found that the

massive disk with J0:1M� was formed only for binaries with low-mass and/or

spinning black holes. Because this feature agrees qualitatively with the fully

relativistic results, simulations with a pseudo-Newtonian potential might be helpful

to understand the nature of black hole–neutron star binary mergers qualitatively or

even semiquantitatively.4

While numerical-relativity simulations have been feasible since 2006 (see

Sect. 1.4.4), approximately general-relativistic simulations have also been per-

formed without simplifying the black holes by point sources of gravity. This is

particularly the case of smoothed-particle-hydrodynamics codes, which are

especially useful to track the motion of the material ejected from the system but

have not been available in numerical relativity (see Rosswog and Diener 2021 for

recent development of smooth-particle hydrodynamics in numerical relativity). One

of the popular approaches to incorporate general relativity is the conformal-flatness

approximation (Faber et al. 2006a, b; Just et al. 2015). In these work, the gravity of

neutron stars was also treated in a general-relativistic manner. Another work

adopted the Kerr background for modeling the black hole, while the neutron star is

modeled as a Newtonian self-gravitating object, and studied dependence of the

merger process on the inclination angle of the black-hole spin with respect to the

orbital angular momentum (Rantsiou et al. 2008). Results of these simulations agree

qualitatively with those from pseudo-Newtonian and numerical-relativity

simulations.

1.4.4 Fully-relativistic merger simulations

General-relativistic effects play a crucial role in the dynamics of close black hole–

neutron star binaries. First of all, the inspiral is driven by gravitational radiation

4 It should be cautioned that, in the Newtonian and pseudo-Newtonian simulations in which the black

hole is modeled by a point particle, numerical results can depend significantly on the treatment for the

accreted material. For example, it is not clear how the angular momentum of the infalling material is

distributed to the spin and the orbital angular momentum of the black hole in this treatment. Thus, a rule

has to be artificially determined. By contrast, in fully-general-relativistic simulations, the evolution of the

black hole is computed in an unambiguous manner.
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reaction. Dynamics right before merger is affected crucially by further general-

relativistic effects, which include strong attractive force between two bodies,

associated presence of the innermost stable circular orbit, spin-orbit coupling, and

relativistic self-gravity of neutron stars. Accordingly, the orbital evolution, the

merger process, the criterion for tidal disruption, and the evolution of disrupted

material are all affected substantially by the general-relativistic effects. Although

non-general-relativistic work has provided qualitative insights, numerical simula-

tions in full general relativity are obviously required for accurately and quantita-

tively understanding the nature of black hole–neutron star binary coalescences. This

is particularly the case in development of an accurate gravitational-wave template

for the data analysis.

Soon after the breakthrough success in simulating binary-black-hole mergers

(Pretorius 2005; Campanelli et al. 2006; Baker et al. 2006), Shibata and Uryū

(2006, 2007); Shibata and Taniguchi (2008) started exploration of black hole–

neutron star binary coalescences in full general relativity extending their early work

on binary neutron stars (Shibata 1999; Shibata and Uryū 2000, 2002; Shibata et al.

2003, 2005; Shibata and Taniguchi 2006). While these work adopted initial data

computed in the puncture framework for moving-puncture simulations, Etienne

et al. (2008) independently performed moving-puncture simulations with excision-

based initial data by extending their early work on binary neutron stars (Duez et al.

2003, see also Löffler et al. 2006 for early work on a head-on collision in a similar

setup). Duez et al. (2008) also performed simulations for black hole–neutron star

binaries based on the excision method by introducing hydrodynamics equation

solvers to a spectral-method code, SpEC, for binary black holes (Boyle et al.

2007, 2008; Scheel et al. 2009). All these studies were performed for nonspinning

black holes and neutron stars modeled by a polytropic equation of state with C ¼ 2.

To derive accurate gravitational waveforms, longterm simulations need to be

performed. Effort in this direction was made with the aid of an adaptive-mesh-

refinement code (see Appendix B.3), SACRA (Yamamoto et al. 2008), by the

authors (Shibata et al. 2009, 2012). Around the same time, Etienne et al. (2009)

independently studied the effect of black-hole spins by another adaptive-mesh-

refinement code. Systematic longterm studies were started employing nuclear-

theory based equations of state approximated by piecewise-polytropic equations of

state (Read et al. 2009a) for both nonspinning (Kyutoku et al. 2010, 2011b) and

spinning black holes (Kyutoku et al. 2011a). A tabulated, temperature- and

composition-dependent equation of state (Shen et al. 1998) was also incorporated in

simulations with SpEC around the same time (Duez et al. 2010), while neutrino

reactions were not considered in this early work. SpEC was also used to simulate

systems with inclined black-hole spins (Foucart et al. 2011) or an increased mass

ratio of Q ¼ 7 (Foucart et al. 2012). These simulations clarified quantitatively the

criterion for tidal disruption, properties of the remnant disk and black hole, and

emitted gravitational waves in the merger phase.

Mass ejection from black hole–neutron star binaries and associated fallback of

material began to be explored in numerical relativity at the beginning of 2010’s

(Chawla et al. 2010; Kyutoku et al. 2011a). Actually, these studies predate the

corresponding investigations for binary neutron stars in numerical relativity
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(Hotokezaka et al. 2013b). Although the authors of this article suggested that

� 0:01M� may be ejected dynamically from black hole–neutron star binaries in

this early work (Kyutoku et al. 2011a), they were unable to show the ejection of

material with confidence, partly because the artificial atmosphere was not tenuous

enough and the computational domains were not large enough. By contrast, the

mass ejection from hyperbolic encounters was discussed clearly (Stephens et al.

2011; East et al. 2012, 2015).

Serious investigations of the dynamical mass ejection were initiated in 2013

(Foucart et al. 2013b; Lovelace et al. 2013; Kyutoku et al. 2013), right after the first

version of this review article was released, stimulated by the importance of

electromagnetic counterparts to gravitational waves (Abbott et al. 2020b, the

preprint version of which appeared on arXiv in 2013). Kyutoku et al. (2015)

systematically studied kinematic properties such as the mass and the velocity as

well as the morphology of dynamical ejecta with reducing the density of artificial

atmospheres and enlarging the computational domains. Kawaguchi et al. (2015)

also investigated the impact of the inclination angle of the black-hole spin for both

the remnant disk and the dynamical ejecta (see also Foucart et al. 2013b). The study

of mass ejection has now become routine in numerical-relativity simulations of

black hole–neutron star binary coalescences. Accordingly, a lot of discussions about

mass ejection are newly added in this update.

The current frontier of numerical relativity for neutron-star mergers is the

incorporation of magnetohydrodynamics and neutrino-radiation hydrodynamics as

accurately as possible. These physical processes play essentially no role during the

inspiral phase (Chawla et al. 2010; Etienne et al. 2012a, c; Deaton et al. 2013), and

thus gravitational radiation, disk formation, and dynamical mass ejection are safely

studied by pure hydrodynamics simulations except for the chemical composition of

the dynamical ejecta. However, both neutrinos and magnetic fields are key agents

for driving postmerger evolution including disk outflows and ultrarelativistic jets. In

addition, the electron fraction of the ejected material, either dynamical or

postmerger, can be quantified only by simulations implementing composition-

dependent equations of state with appropriate schemes for neutrino transport.

Although numerical-relativity codes for magnetohydrodynamics were already

available in the late 2000’s and a preliminary simulation was performed by Chawla

et al. (2010), magnetohydrodynamics simulations are destined to struggle with the

need to resolve short-wavelength modes of instability (see, e.g., Balbus and Hawley

1998 for reviews). Various simulations have been performed aiming at clarifying

the launch of an ultrarelativistic jet, generally finding magnetic-field amplification

difficult to resolve (Etienne et al. 2012a, c). The situation was much improved by

high-resolution simulations performed in Kiuchi et al. (2015b, see also Wan 2017

for a follow-up). At around the same time, magnetohydrodynamics simulations with

a presumed strong dipolar field have been performed to clarify the potentiality of

black hole–neutron star binaries as a central engine of short-hard gamma-ray bursts

(Paschalidis et al. 2015; Ruiz et al. 2018, 2020). Simulations beyond ideal

magnetohydrodynamics have recently been performed aiming at clarifying magne-

tospheric activities right before merger (East et al. 2021).
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As the electron fraction of the ejected material is crucial to determine the

nucleosynthetic yield and the feature of associated kilonovae/macronovae, numer-

ical-relativity simulations with neutrino transport have been performed extensively

following those for binary-neutron-star mergers (Sekiguchi et al. 2011a, b).

Neutrino-radiation-hydrodynamics simulations of black hole–neutron star binaries

were first performed in Deaton et al. (2013); Foucart et al. (2014, 2017); Brege

et al. (2018) with neutrino emission based on a leakage scheme (see Ruffert et al.

1996; Rosswog and Liebendörfer 2003, for the description in Newtonian cases) and

with composition-dependent equations of state. These simulations are also capable

of predicting neutrino emission from the postmerger system. Kyutoku et al. (2018)

incorporated neutrino absorption by the material based on the two moment

formalism (Thorne 1981; Shibata et al. 2011) again following work on binary

neutron stars (Wanajo et al. 2014; Sekiguchi et al. 2015).

The longterm postmerger evolution of the remnant accretion disk also requires

numerical investigations. These simulations need to be performed with sophisticated

microphysics, because the evolution of the disk is governed by weak interaction

processes such as the neutrino emission and absorption and magnetohydrodynam-

ical processes. The liberated gravitational binding energy may eventually be tapped

to launch a postmerger wind as well as an ultrarelativistic jet. Simulations focusing

on the postmerger evolution with detailed neutrino transport are initially performed

without incorporating sources of viscosity for a short term (Foucart et al. 2015).

This work has been extended in the Cowling approximation to incorporate magnetic

fields that provide effective viscosity and induce magnetohydrodynamical effects

(Hossein Nouri et al. 2018). Fujibayashi et al. (2020a, b) performed fully-general-

relativistic viscous-hydrodynamics simulations for postmerger systems with

detailed neutrino transport. Finally, Most et al. (2021b) reported results of

postmerger simulations for nearly-equal-mass black hole–neutron star binaries

with neutrino transport and magnetohydrodynamics in full general relativity. Still, it

is not feasible to perform fully-general-relativistic simulations incorporating both

detailed neutrino transport and well-resolved magnetohydrodynamics. Because the

postmerger mass ejection is now widely recognized as an essential source of

nucleosynthesis and electromagnetic emission for binary-neutron-star mergers

(Shibata et al. 2017a), sophisticated simulations for this problem will remain the

central topic in the future study of black hole–neutron star binary coalescences.

After the detection of gravitational waves from binary neutron stars GW170817

(Abbott et al. 2017d) and GW190425 (Abbott et al. 2020a), it became apparent that

robust characterization of source properties requires us to distinguish binary neutron

stars from black hole–neutron star binaries (see Sect. 4.2.2). This situation

motivated studies on mergers of very-low-mass black hole–neutron star binaries

to clarify disk formation, mass ejection, and gravitational-wave emission in a more

precise manner than what was done before (Foucart et al. 2019b; Hayashi et al.

2021; Most et al. 2021a). Here, ‘‘very low mass’’ means that it is consistent with

being a neutron star and that observationally distinguishing binary types is not

straightforward. Interestingly, these studies are revealing overlooked features of

very-low-mass ratio systems. Finally, longterm simulations with J10–15 inspiral
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orbits have recently been performed aiming at deriving accurate gravitational

waveforms (Foucart et al. 2019a, 2021).

1.5 Outline and notation

This review article is organized as follows. In Sect. 2, we review the current status

of the study on quasiequilibrium states of black hole–neutron star binaries in general

relativity. First, we summarize physical parameters characterizing a binary in

Sect. 2.1. Next, the parameter space surveyed is summarized in Sect. 2.2. Results

and implications are reviewed in Sects. 2.3 and 2.4, respectively. In Sect. 3, we

review the current status of the study on coalescences of black hole–neutron star

binaries in numerical relativity. Methods for numerical simulations are briefly

described in Sect. 3.1, and the parameter space investigated is summarized in

Sect. 3.2. The remainder of Sect. 3 is devoted to reviewing numerical results, and

readers interested only in them should jump into Sect. 3.3, in which we start from

reviewing the overall process of the binary coalescence and tidal disruption in the

late inspiral and merger phases. Properties of the remnant disk, remnant black hole,

fallback material, and dynamical ejecta are summarized in Sect. 3.4. Postmerger

evolution of the remnant disk is reviewed in Sect. 3.5. Gravitational waveforms and

spectra are reviewed in Sect. 3.6. Finally in Sect. 4, we discuss implications of

numerical results to electromagnetic emission and characterization of observed

astrophysical sources. Formalisms to derive quasiequilibrium states and to simulate

dynamical evolution are reviewed in Appendices A and B, respectively. Ap-

pendix C presents analytic estimates related to discussions made in this article.

The notation adopted in this article is summarized in Table 1. Among the

parameters shown in this table, MBH, v, i, MNS, and RNS are frequently used to

characterize binary systems in this article. The negative value of v is allowed for

describing anti-aligned spins, meaning that the dimensionless spin parameter and

the inclination angle are given by vj j and i ¼ 180�, respectively. Hereafter, the

dimensionless spin parameter is referred to also by the spin parameter for simplicity.

Greek and Latin indices denote the spacetime and space components, respectively.

We adopt geometrical units in which G ¼ c ¼ 1 in Sects. 2, 3.6, Appendices A, and

B.

This article focuses on fully general-relativistic studies of black hole–neutron star

binaries, and other types of compact object binaries are not covered in a

comprehensive manner. Numerical-relativity simulations of compact object binaries

in general are reviewed in, e.g., Lehner and Pretorius (2014); Duez and Zlochower

(2019). Simulations of compact object binaries involving neutron stars and their

implications for electromagnetic counterparts are reviewed in, e.g., Paschalidis

(2017); Baiotti and Rezzolla (2017); Shibata and Hotokezaka (2019). Black hole–

neutron star binaries are also reviewed briefly in Foucart (2020).
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2 Quasiequilibrium state and sequence

Quasiequilibrium states of compact object binaries in close orbits are important

from two perspectives. First, they enable us to understand deeply the tidal

interaction of comparable-mass binaries in general relativity. Second, they serve as

realistic initial conditions for dynamical simulations in numerical relativity.

For the purpose of the former, a sequence of quasiequilibrium states parametrized

by the orbital separation or angular velocity, i.e., quasiequilibrium sequences,

should be investigated as an approximate model for the evolution path of the binary.

In this section, we review representative numerical results of quasiequilibrium

sequences derived to date. The formulation to construct black hole–neutron star

binaries in quasiequilibrium is summarized in Appendix A. Because the differential

equations to be solved are typically of elliptic type (see also the end of this section),

most numerical computations adopt spectral methods for achieving high precision

(see Grandclément and Novak 2009 for reviews). In this section, geometrical units

in which G ¼ c ¼ 1 is adopted.

2.1 Physical parameters of the binary

In this Sect. 2.1, we present physical quantities required for quantitative analysis of

quasiequilibrium sequences. Each sequence is specified by physical quantities

conserved at least approximately along the sequences, and these quantities also

serve as labels of binary models in dynamical simulations. We also need physical

quantities that characterize each quasiequilibrium state to study its property.

To begin with, we introduce a helical Killing vector used in modeling

quasiequilibrium states of black hole–neutron star binaries (see also Appendix A).

Because the time scale of gravitational radiation reaction is much longer than the

orbital period except for binaries in a very close orbit as we discussed in Sect. 1.2,

the binary system appears approximately stationary in the comoving frame. Such a

system is considered to be in quasiequilibrium and is usually modeled by assuming

the existence of a helical Killing vector with the form of

nl ¼ ðotÞl þ XðouÞl; ð15Þ

where X denotes the orbital angular velocity of the system. The helical Killing

vector is timelike and spacelike in the near zone of -.c=X and the far zone of

-Jc=X, respectively, where - denotes the distance from the rotational axis and we

inserted c for clarity. Thus, if we focus only on quasiequilibrium configurations in

the near zone, we may assume the existence of a timelike Killing vector, which

allows us to define several physical quantities in a meaningful manner.

Here, it is necessary to keep the following two (not independent) caveats in mind

if we consider helically symmetric spacetimes. First, spacetimes of binaries cannot

be completely helically symmetric in full general relativity. That is, it is not realistic

to assume that a helical Killing vector exists in the entire spacetime. The reason is

that the helical symmetry holds throughout the spacetime only if standing

gravitational waves are present everywhere. However, the total energy of the
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system diverges for such a case. Thus, the helical Killing vector can be supposed to

exist only in a limited region of the spacetime, e.g., in the local wave zone. A

simpler strategy for studying quasiequilibrium states of a binary is to neglect the

presence of gravitational waves. Although this is an overly simplified assumption,

this strategy has been employed in the study of quasiequilibrium states of compact

object binaries. The results introduced in this section are derived by assuming that

gravitational waves are absent. Moreover, the induced metric is assumed to be

conformally flat (see Appendix A for the details.)

Second, gravitational radiation reaction violates the helical symmetry in full

general relativity. To compute realistic quasiequilibrium states of compact object

binaries, we need to take radiation reaction into account. Procedures for this are

described in Appendix A.5.2.

2.1.1 Parameters of the black hole

It is reasonable to assume that the irreducible mass (i.e., the area of the event

horizon) and the magnitude of the spin angular momentum of the black hole are

conserved along a quasiequilibrium sequence, because the absorption of gravita-

tional waves by the black hole is only a tiny effect (Alvi 2001; Chatziioannou et al.

2013, see also Poisson and Sasaki 1995; Poisson 2004 for relevant work in black-

hole perturbation theory). The irreducible mass of the black hole is defined by

(Christodoulou 1970)

Mirr :¼
ffiffiffiffiffiffiffiffi
AEH

16p

r
; ð16Þ

where AEH is the proper area of the event horizon. Because the event horizon cannot

be identified in quasiequilibrium configurations, its area, AEH, is usually approxi-

mated by that of the apparent horizon, AAH. It is reasonable to consider that AAH

agrees at least approximately with AEH in the current context, because a timelike

Killing vector is assumed to exist in the vicinity of the black hole (Hawking and

Ellis 1973, Chap. 9). The magnitude of the spin angular momentum is determined in

terms of an approximate Killing vector niS for axisymmetry on the horizon as

(Dreyer et al. 2003; Caudill et al. 2006)

SBH :¼ 1

8p

I

S

Kij � Kcij
� �

njSdSi: ð17Þ

An approximate Killing vector, niS, may be determined on the horizon by requiring

some properties satisfied by genuine Killing vectors to hold (see Appendix A.1.1).

The angle of the black-hole spin angular momentum is usually evaluated in terms

of coordinate-dependent quantities specific to individual formulations, because no

geometric definition is known. It should be cautioned that the direction of the black-

hole spin seen from a distant observer changes for the case in which the precession

motion occurs (Apostolatos et al. 1994). Still, the angle between the black-hole spin

and the orbital angular momentum of the binary is approximately conserved during

the evolution, and hence, can be employed to characterize the system.
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The gravitational mass (sometimes called the Christodoulou mass; Christodoulou

1970) of the black hole in isolation is given by

M2
BH ¼ M2

irr þ
S2

BH

4M2
irr

: ð18Þ

By introducing a dimensionless spin parameter of the black hole,

v :¼ SBH

M2
BH

; ð19Þ

the gravitational mass is also written by

MBH ¼ Mirr

2

1 þ ð1 � v2Þ1=2

" #1=2

: ð20Þ

Because MBH is directly measured in actual observations, this quantity rather than

Mirr is usually adopted to label quasiequilibrium sequences and the models of binary

systems in dynamical simulations for spinning black holes, along with the spin

parameter, v.

2.1.2 Parameters of the neutron star

The baryon rest mass of the neutron star given by

MB ¼
Z

qut
ffiffiffiffiffiffiffi�g

p
d3x ¼

Z
qaut

ffiffiffi
c

p
d3x ð21Þ

is conserved along quasiequilibrium sequences assuming that the continuity equa-

tion holds and that mass ejection from the neutron star does not occur prior to

merger. The spin angular momentum of the neutron star may be evaluated on the

stellar surface by Eq. (17) (Tacik et al. 2016), although it is not conserved on a long

time scale due to the spin-down. The orientation of the spin is also affected by the

precession motion.

In contrast to black holes, an equation of state needs to be provided to specify

finite-size properties of neutron stars such as the radius and the tidal deformability,

although the realistic equation of state at supranuclear density is still uncertain (see,

e.g., Lattimer and Prakash 2016; Oertel et al. 2017; Baym et al. 2018 for reviews).

Because of rapid cooling by neutrino emission in the initial stage and subsequent

photon emission (see, e.g., Potekhin et al. 2015 for reviews), temperature of not-so-

young neutron stars relevant to coalescing compact object binaries is likely to be

much lower than the Fermi energy of constituent particles. Thus, it is reasonable to

adopt a fixed zero-temperature equation of state throughout the quasiequilibrium

sequence. The zero-temperature equation of state allows us to express all the

thermodynamic quantities as functions of a single variable, e.g., the rest-mass

density.

As a qualitative model, the polytrope of the form
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PðqÞ ¼ jqC; ð22Þ

where j and C are the polytropic constant and the adiabatic index, respectively, has

often been adopted in the study of quasiequilibrium sequences. The neutron-star

matter is frequently approximated by a polytrope with C � 2–3. More sophisticated

models include piecewise polytropes (Read et al. 2009a) and generalization thereof

(O’Boyle et al. 2020), spectral representations (Lindblom 2010), and various

nuclear-theory-based tabulated equations of state. We will come back to this topic

later in Sect. 3.1.2.

Once a hypothetical equation of state is given, the gravitational mass of a neutron

star in isolation, MNS, is determined for a given value of the baryon rest mass, MB,

via the Tolman-Oppenheimer-Volkoff equation (Tolman 1939; Oppenheimer and

Volkoff 1939) [if the neutron star is spinning, the magnitude of the spin also comes

into play (Hartle 1967; Friedman and Stergioulas 2013)]. The gravitational mass

rather than the baryon rest mass is usually adopted to label the models of dynamical

simulations, primarily because the gravitational mass is directly measured in actual

observations. The equation of state also determines the radius and the compactness

for a given mass of the neutron star. By imposing perturbative tidal fields on a

background spherical configuration, the tidal deformability as a function of the

neutron-star mass is computed from the ratio of the tidally-induced multipole

moment and the exerted tidal field (Hinderer 2008; Binnington and Poisson 2009;

Damour and Nagar 2009).

2.1.3 Parameters of the binary system

The Arnowitt–Deser–Misner (ADM) mass of the system (Arnowitt et al. 2008) is

evaluated in isotropic Cartesian coordinates (see, e.g., York 1979; Gourgoulhon

2012, Chap. 8 for further details) as

MADM ¼ � 1

2p

I

r!1
oiwdSi; ð23Þ

where w is the conformal factor, which is given by w ¼ c1=12 in Cartesian coordi-

nates for a conformally-flat case (see Appendix A). This quantity should decrease as

the orbital separation decreases along a quasiequilibrium sequence because of the

strengthening of gravitational binding. The binding energy of a binary system is

often defined by

Eb :¼ MADM � m0; ð24Þ

where the total mass m0 :¼ MBH þMNS corresponds to the ADM mass of the binary

system at infinite orbital separation.

The Komar mass is originally defined as a charge associated with a timelike

Killing vector (Komar 1959) and is evaluated in the 3 þ 1 formulation by (see, e.g.,

Shibata 2016, Sect. 5)
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MK ¼ 1

4p

I

r!1
oia� Kijb

j
� �

dSi: ð25Þ

Since quasiequilibrium states of black hole–neutron star binaries are computed

assuming the existence of a helical Killing vector which is timelike in the near zone,

the Komar mass may be considered as a physical quantity, at least approximately. If

the second term in the integral falls off sufficiently rapidly, as is typical for the case

in which the linear momentum of the system vanishes, the Komar mass may be

evaluated only from the first term, i.e., the derivative of the lapse function. Because

the ADM and Komar masses should agree if a timelike Killing vector exists

(Friedman et al. 2002; Shibata et al. 2004, see also Beig 1978; Ashtekar and

Magnon-Ashtekar 1979), their fractional difference,

dM :¼ MADM �MK

MADM

				
				; ð26Þ

measures the global error in the numerical computation. This quantity is sometimes

called the virial error.

An ADM-like angular momentum of the system may be defined by (York 1979)

Ji :¼
1

16p
�ijk

I

r!1
XjKkl � XkKjl
� �

dSl; ð27Þ

where Xi and �ijk denote, respectively, Cartesian coordinates relative to the center of

mass of the binary and the Levi-Civita tensor for the flat space. It should be cau-

tioned that this quantity is well-defined only in restricted coordinate systems (see,

e.g., York 1979; Gourgoulhon 2012, Chap. 8). This subtlety is irrelevant to the

results reviewed in this article. For binary systems with the reflection symmetry

about the orbital plane, only the component normal to the plane is nonvanishing and

will be denoted by J.

2.2 Current parameter space surveyed

Although a decade has passed since the release of the first version of this article, the

parameter space surveyed for the study of quasiequilibrium sequences remains

narrow. The main progress achieved during this period may be the computations of

sequences involving high-compactness neutron stars with a tabulated equation of

state (Henriksson et al. 2016). We classify the current study shown in Table 2

according to the following seven items (see Appendix A for the details).

1. Metric: Choice of the spatial background metric ĉij and the extrinsic curvature

K. The abbreviations ‘‘CFMS,’’ ‘‘KS,’’ and ‘‘MKS’’ mean, respectively, the

conformally-flat and maximal-slicing condition (K ¼ 0; see Appendix A.1),

Kerr–Schild, and modified Kerr–Schild.

2. Hole: Method to handle the singularity associated with the black hole. The

abbreviations ‘‘Ex’’ and ‘‘Pu’’ indicate the excision and the puncture

approaches, respectively.
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3. Spin: Dimensionless spin parameter of the black hole v. Note that the spin is

zero or anti-aligned with the orbital angular momentum in these work.

4. Flow: State of the fluid flow in the neutron star. The abbreviations ‘‘Ir’’ and

‘‘Co’’ indicate irrotational and corotational flows, respectively. Arbitrary spins

of neutron stars are not considered in these computations.

5. EOS: Equation of state for neutron-star matter. Here, ‘‘Poly’’ means the

polytrope (specifically, that with C ¼ 2) and ‘‘Tab’’ means a tabulated equation

of state. Specifically, the SLy equation of state (Douchin and Haensel 2001) is

adopted for computing quasiequilibrium sequences in Henriksson et al. (2016).

6. Compactness: Compactness of the neutron star C.

7. Mass Ratio: Mass ratio Q.

Quasiequilibrium sequences with high and/or misaligned spins of either component

have not been derived. Meanwhile, computations of individual quasiequilibrium

states have been extended to a wide range of the parameter space including spin

vectors for both black holes and neutron stars (Tacik et al. 2016). Additionally,

many quasiequilibrium configurations, including those with a radial approaching

velocity to reduce the orbital eccentricity (Foucart et al. 2008; Kyutoku et al. 2021),

have been computed as initial conditions of dynamical simulations, whose results

will be discussed in Sect. 3.

2.3 Numerical results

Hereafter in this section, we focus on the results reported in Taniguchi et al. (2008),

because a systematic survey for a wide range of the parameter space was performed

Table 2 Summary of the study on quasiequilibrium sequences

References Metric Hole Spin Flow EOS Compactness Mass ratio

Taniguchi et al. (2006) KS Ex 0 Ir Poly 0.088 5

Taniguchi et al. (2007) CFMS Ex 0 Ir Poly 0.088, 0.145 1–10

Taniguchi et al. (2008) CFMS Ex 0 Ir Poly 0.109–0.132 1–9

Grandclément

(2006, 2007)

CFMS Ex 0 Ir Poly 0.075–0.150 5

Shibata and Uryū (2006) CFMS Pu 0 Co Poly 0.139 2.47

Shibata and Uryū (2007) CFMS Pu 0 Co Poly 0.139, 0.148 2.47, 3.08

Kyutoku et al. (2009) CFMS Pu 0 Ir Poly 0.132, 0.145, 0.160 1, 3, 5

Foucart et al. (2008) CFMS Ex 0 Ir Poly 0.144 1

MKS Ex - 0.5, 0 Ir Poly 0.144 1

Henriksson et al. (2016) MKS Ex 0 Ir Tab 0.23, 0.25 6

Papenfort et al. (2021) CFMS Ex 0 Ir Poly 0.138 1

The first column points to the references. The other columns are explained in the body text. We do not list

references which present individual quasiequilibrium states, including initial data for dynamical

simulations
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only there. Accordingly, all the results are derived in the excision approach, the

conformal-flatness and maximal-slicing condition, nonspinning black holes, the

irrotational flow, and the C ¼ 2 polytrope. Still, this work reasonably captures the

properties of quasiequilibrium sequences. As the polytropic equation of state has

only a single dimensional parameter, j, we may normalize various quantities such

as the length, mass, and time by the polytropic length scale,

Rpoly :¼ j1=ð2C�2Þ ¼ j1=ð2C�2ÞG�1=2cðC�2Þ=ðC�1Þ
h i

: ð28Þ

We will put an overbar above a symbol for indicating quantities in the polytropic

unit, e.g., �MB :¼ MB=RPoly½¼ GMB=ðc2RpolyÞ�.
Figure 2 displays contours of the conformal factor, w, for a black hole–neutron

star binary with the mass ratio Q ¼ 3 and the baryon rest mass of the neutron star
�MB ¼ 0:15 (C ¼ 0:145). This contour plot shows the configuration at the smallest

orbital separation for which the code used in Taniguchi et al. (2008) successfully

achieved a converged solution. The thick solid circle for X\0 (left) denotes the

excised surface, i.e., the apparent horizon, while that for X[ 0 (right) denotes the

surface of the neutron star. A saddle point exists between the black hole and the

neutron star, and for this close orbit, it is located in the vicinity of the inner edge of

the neutron star. This fact suggests that the orbit of the binary is close to the mass-

shedding limit. The value of w on the excised surface is not constant, because a

Neumann boundary condition is imposed (see Appendix A.1.1).

2.3.1 Binding energy and total angular momentum

Figure 3 shows the binding energy, Eb=m0½¼ Eb=ðm0c
2Þ�, and the total angular

momentum, J=m2
0½¼ cJ=ðGm2

0Þ�, as functions of the orbital angular velocity,

Xm0ð¼ GXm0=c
3Þ, for a binary with Q ¼ 3 and �MB ¼ 0:15 (C ¼ 0:145). All the

quantities of the binary are expressed as dimensionless quantities normalized by the

total mass, m0. This figure shows that the numerical results agree quantitatively with

the third-order post-Newtonian approximation (Blanchet 2002). The results also

agree with the up-to-date, fourth-order post-Newtonian approximations (Blanchet

Fig. 2 Contour of the conformal
factor, w, on the orbital plane for
the innermost configuration with
the mass ratio Q ¼ 3 and the
baryon rest mass of the neutron

star �MB ¼ 0:15 (C ¼ 0:145).
The cross symbol indicates the
position of the rotational axis.
Image reproduced with
permission from Taniguchi et al.
(2008), copyright by APS
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2014), which differ only by \1% and \3% for the binding energy and the total

angular momentum, respectively, from the third-order ones in the range of Xm0

considered here. For this parameter set, the numerical sequence terminates at the

mass-shedding limit, i.e., at an orbit for which a cusp is formed at the inner edge of

the neutron star and the material begins to flow out, before the innermost

stable circular orbit is encountered, i.e., before the minimum of the binding energy

appears.

If the binary separation at the mass-shedding limit is substantially larger than the

radius of the innermost stable circular orbit, the neutron star is expected not only to

start shedding mass but also to be tidally disrupted before being swallowed by the

black hole. Equation (9) presented in Sect. 1.3.1 suggests that the ratio of the binary

separation at the mass-shedding limit to the radius of the innermost stable circular

orbit decreases with increasing the mass ratio, Q, and/or the compactness of the

neutron star, C. Thus, it is naturally expected that quasiequilibrium sequences

encounter minima in the binding energy and the total angular momentum as in the
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(right) as functions of Xm0ð¼ GXm0=c
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curve with the filled circles shows numerical results, and the dashed curve denotes the results derived in
the third-order post-Newtonian approximation for point particles (Blanchet 2002). Image reproduced with
permission from Taniguchi et al. (2008), copyright by APS
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two-point-particle problem in general relativity, if the mass ratio is sufficiently high

and/or the compactness is sufficiently large.

Figure 4 shows the binding energy, Eb=m0, and the total angular momentum,

J=m2
0, as functions of Xm0 for a binary with Q ¼ 5 and �MB ¼ 0:15 (C ¼ 0:145).

While the compactness of the neutron star is the same as that shown in Fig. 3, the

mass ratio is higher. In this sequence, an innermost stable circular orbit is

encountered before the onset of mass shedding, i.e., we see minima in the binding

energy and the angular momentum just before the end of the sequence.

Figure 4 shows that the turning points in the binding energy and the total angular

momentum appear simultaneously within the numerical accuracy as described by

theory of binary thermodynamics (Friedman et al. 2002). A simultaneous turning

point appears as a cusp in the curve representing the relation between the binding

energy and the total angular momentum. This fact is clearly seen in Fig. 5, which

shows the relations for sequences with Q ¼ 5 but with different compactnesses of

neutron stars. As suggested by Eq. (9), turning points are not found for small

compactnesses such as C ¼ 0:120, since the sequences terminate at mass shedding

before encountering an innermost stable circular orbit. By contrast, for large

compactnesses, these curves indeed form a cusp. Note that sequences derived in

post-Newtonian approximations for point particles cannot identify mass shedding

and therefore always exhibit turning points. The difference of Eb=m0 as a function

of J=m2
0 between the third- and fourth-order post-Newtonian approximations is less

than 0.1% before the binary reaches an innermost stable circular orbit for the binary

parameters chosen here. Although it may appear from Fig. 5 that the numerical

results deviate from the post-Newtonian approximation as the compactness

increases, i.e., approaching a point-particle limit, quasiequilibrium sequences of

binary black holes also deviate from the analytic computation based on the post-

Newtonian approximation in a similar manner to the high-compactness sequence of

black hole–neutron star binaries (Cook and Pfeiffer 2004; Caudill et al. 2006).
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2.4 Endpoint of the sequence

One of the most important questions in the study of black hole–neutron star binaries

is whether the coalescence leads to mass shedding of the neutron star before

reaching the innermost stable circular orbit or to the plunge of the neutron star into

the black hole before the onset of mass shedding. The answer to this question is

essential for the topics raised in Sect. 1.1: Orbital dynamics and gravitational waves

in the late inspiral and merger phases are affected strongly by this issue, and hence,

its precise understanding is necessary for developing theoretical templates. For

driving a short-hard gamma-ray burst, formation of an accretion disk surrounding

the black hole is the most promising model. The r-process nucleosynthesis and

electromagnetic emission occur if the material of the neutron star is ejected from the

system. Both the disk formation and the mass ejection can result only if the neutron

star is disrupted prior to reaching the innermost stable circular orbit.

Quantitative exploration of this issue ultimately requires dynamical simulations,

and their results will be reviewed in Sect. 3. However, in-depth studies of

quasiequilibrium sequences also provide a guide to the binary parameters that

separate mass shedding and the dynamical plunge. In the following, we summarize

quantitative insights obtained from the study of quasiequilibrium sequences.

Specifically, we will review semiquantitative expressions that may be used to

predict whether a black hole–neutron star binary of arbitrary values of Q and C
encounters an innermost stable circular orbit before the onset of mass shedding or

not. Since the detailed study was performed only for nonspinning black holes, we do

not consider the effect of black-hole spins in the following. However, as discussed

in Sect. 1.3, we have to keep in mind that the spin of the black hole is crucial for

determining the fate of general black hole–neutron star binaries.

2.4.1 Mass-shedding limit

First, we summarize the results for the orbital angular velocity at which mass

shedding sets in, i.e., the mass-shedding limit. For this purpose, a mass-shedding

indicator5 introduced in studies of binary neutron stars (Gourgoulhon et al. 2001;

Taniguchi and Gourgoulhon 2002, 2003)

X :¼
oðln hÞ=orjeq

oðln hÞ=orjpole

ð29Þ

is used to determine the mass-shedding limit (Taniguchi et al. 2006, 2007, 2008).

The numerator is the radial derivative of the log-enthalpy at the surface toward the

black hole on the orbital plane. The denominator is that on the pole. Here, the radial

coordinate is defined with respect to the center of the neutron star. The mass-

shedding indicator, X, is unity for a spherical neutron star at infinite orbital sepa-

ration, while X ¼ 0 indicates the formation of a cusp on the stellar surface, and

hence, the onset of mass shedding. Note that the quasiequilibrium sequences have

5 This quantity is originally denoted by v, but in this article we keep v for the dimensionless spin

parameter, which is now widely used in studies of compact binary coalescences.
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been analyzed only for binary systems with the reflection symmetry about the

orbital plane. Thus, ‘‘pole’’ and ‘‘eq’’ are well-defined.

In Newtonian gravity and partially-relativistic approaches, simple formulae may

be introduced to fit the effective radius of a Roche lobe (Paczyński 1971; Eggleton

1983; Wiggins and Lai 2000; Ishii et al. 2005). In Shibata and Uryū (2006, 2007), a

fitting formula is introduced for binaries composed of a nonspinning black hole and

a corotating neutron star in general relativity. In this Sect. 2.4.1, we review how to

derive a fitting formula from data of Taniguchi et al. (2008) for a nonspinning black

hole and an irrotational neutron star.

To derive the fitting formula, we need to determine the orbital angular velocity at

the mass-shedding limit. However, stellar configurations with cusps cannot be

constructed by the numerical code used in Taniguchi et al. (2008), because it is

based on a spectral method and accompanied by the Gibbs phenomena in the

presence of a nonsmooth stellar surface (but see also Ansorg et al. 2003;

Grandclément 2010). This is also the case for a configuration with smaller values

of X 0:5, even though a configuration with a cusp does not appear. Thus, data for

the mass-shedding limits have to be determined by extrapolation.

Taniguchi et al. (2008) tabulated the values of X as a function of the orbital

angular velocity and their sequence is extrapolated to X ¼ 0 by using polynomial

functions to find the orbits at the onset of mass shedding. Figure 6 shows an

example of such extrapolations for sequences with C ¼ 0:145 and Q ¼ 1; 2; 3; and

5. By extrapolating results toward X ¼ 0, the orbital angular velocity at the mass-

shedding limit, Xms, is approximately determined for each set of Q and C.

To derive a fitting formula for Xms as a function of Q and C, the Newtonian

expression of Eq. (11) is useful, although it is semiquantitative. By fitting the

sequence of data with respect to this expression, Taniguchi et al. (2008) determined

the value of CX for the C ¼ 2 polytrope to be 0.270, i.e.,

�Xms ¼ 0:270
C3=2

�MNS

1 þ Q�1
� �1=2

; ð30Þ

or equivalently,
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Xmsm0 ¼ 0:270C3=2ð1 þ QÞ 1 þ Q�1
� �1=2

: ð31Þ

Figure 7 shows the results of the fitting for the mass-shedding limit. The agreement

is not perfect but fairly good for Q� 2.

It may be interesting to note that the value of CX ¼ 0:270 is the same as that

found for quasiequilibrium sequences in general relativity of binary neutron stars

(Taniguchi and Shibata 2010) and of black hole–corotating neutron star binaries

(Shibata and Uryū 2006, 2007). Thus, the value of CX ¼ 0:270 could be widely used

for an estimation of the orbital angular velocity at the mass-shedding limit of a

neutron star in a relativistic binary system with C ¼ 2. We also note that CX ¼
0:270 corresponds to cR ¼ 1:90, which is defined in Sect. 1.3.1.

2.4.2 Innermost stable circular orbit

Next, we summarize the results for the orbital angular velocity at which the

minimum of the binding energy, i.e., the innermost stable circular orbit appears.

Because the numerical data are discrete and do not necessarily give the exact

minimum, the minimum point may be located approximately by fitting three nearby

points of the sequence to a second-order polynomial.

A simple empirical fitting that predicts the angular velocity XISCO at the

innermost stable circular orbit for an arbitrary companion orbiting a black hole may

be derived in the manner of Taniguchi et al. (2008). They search for an expression

of XISCO as a function of the mass ratio Q and the compactness C of the companion.

Specifically, they assume a functional form of

XISCOm0 ¼ c1 1 � c2

Qp1
1 � c3C

p2ð Þ

 �

; ð32Þ

where c1, c2, c3, p1, and p2 are parameters to be determined in the following manner.

The coefficients c1, c2, and c3 are determined for given values of p1 and p2 by

requiring that three known values of XISCO are recovered: (1) that of a test particle

orbiting a Schwarzschild black hole, XISCOm0 ¼ 6�3=2 (for Q ! 1), (2) that of an
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equal-mass binary-black-hole system, XISCOm0 ¼ 0:1227 (for Q ¼ 1 and C ¼ 0:5;

Caudill et al. 2006), and finally (3) that of a black hole–neutron star configuration

with Q ¼ 5 and C ¼ 0:1452, XISCOm0 ¼ 0:0854 (Taniguchi et al. 2008). The

exponents p1 and p2 are determined by requiring the fitted curves to lie near the data

points for all the systems.

As demonstrated in Fig. 8, the numerical data are fitted nicely by a function

XISCOm0 ¼ 0:0680 1 � 0:444

Q0:25
1 � 3:54C1=3
� �
 �

: ð33Þ

The agreement is sufficient for finding the orbital angular velocity at the innermost

stable circular orbit within the error of � 10%.

2.4.3 Critical mass ratio

Combining Eqs. (31) and (33), we can identify the critical binary parameters which

separate two final fates that the binary encounters an innermost stable circular orbit

before initiating mass shedding or that the neutron star reaches the mass-shedding

limit before plunging into the black hole. Figure 9 illustrates the final fate of black

hole–neutron star binaries with C ¼ 0:145. Because the orbital angular velocities at

the mass-shedding limit [Eq. (31)] and the innermost stable circular orbit [Eq. (33)]

depend differently on the mass ratio, Q, they intersect in this figure. An inspiraling

binary evolves along horizontal lines toward increasing �X, i.e., from the left to the

right, until it reaches either the innermost stable circular orbit or the mass-shedding

limit. For a sufficiently high mass ratio, the binary reaches an innermost

stable circular orbit. Quasiequilibrium sequences cannot predict the fate of the

neutron star after that, because it enters a dynamical plunge phase (see Sect. 3).

Thus, the mass-shedding limit for unstable quasiequilibrium sequences included in

Fig. 9 should be regarded as only indicative. As shown in Fig. 9, the sequence with

Q ¼ 6 (dot-dashed line) encounters the innermost stable circular orbit, while that

with Q ¼ 3 (dot-dot-dashed line) ends at the mass-shedding limit. The intersection

of the curve for the mass-shedding limit and that for the innermost stable circular

0.04 0.06 0.08 0.1 0.12 0.14

Ω
ISCO

3

4

5

6

7

8

9

10

M
as

s 
ra

tio
  (

 M
B

H
 / 

M
N

S )

C = 0.109
C = 0.120
C = 0.132
C = 0.145
C = 0.160
C = 0.178

Fig. 8 Fit of the minimum point
of the binding energy curve by
Eq. (33). Image reproduced with
permission from Taniguchi et al.
(2008), copyright by APS

123

5 Page 36 of 182 K. Kyutoku et al.



orbit marks a critical point that separates the two distinct fates of the binary inspiral.

Specifically, the critical mass ratio is found to be Q � 4:2 for this case, i.e., binaries

of a nonspinning black hole and an irrotational neutron star with C ¼ 0:145

modeled by a C ¼ 2 polytrope.

The critical mass ratio which separates black hole–neutron star binaries that

encounter an innermost stable circular orbit before initiating mass shedding and

those reach the mass-shedding limit before the plunge is obtained as a function of

the compactness of the neutron star by equating Eqs. (31) and (33). Specifically, the

critical mass ratio is determined by

0:270C3=2ð1 þ QÞ 1 þ Q�1
� �1=2¼ 0:0680 1 � 0:444

Q0:25
1 � 3:54C1=3
� �
 �

; ð34Þ

and the curve that separates those two regions on the Q-C plane is shown in Fig. 10.

If the mass ratio of a black hole–neutron star binary is higher than the critical value,

the quasiequilibrium sequence terminates by encountering the innermost stable cir-

cular orbit, while if lower, it ends at the mass-shedding limit. We emphasize that the

mass shedding is only a necessary condition for tidal disruption. In Sect. 3, we will

see that dynamical simulations tend to predict that tidal disruption occurs for a more

restricted range of parameters than that shown in Fig. 10.

We again caution that the classification shown in Fig. 10 is appropriate only for

nonspinning black hole–neutron star binaries. The spin of the black hole

significantly modifies the critical mass ratio. For example, if the spin of the black

hole is high and prograde, i.e., aligned with the orbital angular momentum of the

binary, the region of ‘‘Mass-shedding’’ will be enlarged significantly. Systematic

studies on the effect of black-hole spins have not been performed yet, and further

investigations are awaited.
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2.5 Summary and issues for the future

In this section, we have reviewed the current status of the studies on quasiequi-

librium sequences of black hole–neutron star binaries in general relativity, focusing

mainly on Taniguchi et al. (2008). In particular, we highlighted a curve of the

critical mass ratio, which separates black hole–neutron star binaries that encounter

an innermost stable circular orbit before initiating mass shedding and vice versa, as

a function of the compactness of the neutron star. The result is shown in Eq. (34)

and in Fig. 10. Such a critical curve clearly classifies the possible final fate of black

hole–neutron star binaries, which depends on the mass ratio and the compactness of

the neutron star for a given equation of state. The final fate depends also on the spin

of the black hole (see Sect. 3), although only nonspinning configurations are

discussed here.

As seen in Table 2, the parameter space surveyed is still quite narrow, partly

because the community has been devoting effort to dynamical simulations. A

systematic study of quasiequilibrium sequences has been done only for binaries

composed of a nonspinning black hole and an irrotational neutron star with the

C ¼ 2 polytrope. It may be useful to survey the remaining parameter space in a

systematic manner in the future. Systematic numerical results for such a study will

be helpful for predicting the final fate of black hole–neutron star binaries and for

checking the results derived in numerical simulations in light of the high

computational precision of quasiequilibrium states. Specifically, quasiequilibrium

sequences of binaries composed of a spinning black hole and a neutron star with an

equation of state other than the C ¼ 2 polytrope remain to be studied in detail.

The formulation for quasiequilibrium states should be improved further for more

rigorous studies. To date, all the computations adopted formulations which solve
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only five out of ten components of the Einstein equation: constraint equations and

the slicing condition (see Appendix A). Employing an improved formulation in

which full components of the Einstein equation are solved is left for the future (see

Shibata et al. 2004; Cook and Baumgarte 2008 for proposed formulations and Uryū

et al. 2006, 2009 for studies of binary neutron stars).

3 Merger and postmerger simulation

Dynamical simulations for coalescences of black hole–neutron star binaries have

been performed in full general relativity by several groups since Shibata and Uryū

(2006). These studies have explored the merger process, the criterion for tidal

disruption of a neutron star, the mass and the spin parameter of the remnant black

hole, properties of the remnant disk and the ejected material, and gravitational

waveforms. Results from different groups agree with each other quantitatively when

they can be compared. Longterm simulations of the accretion disks around black

holes for � 10 s are also becoming available in recent years. These studies begin to

clarify the evolution of the dense and hot accretion disk, neutrino luminosity, the

role of neutrino emission, properties of the disk outflow, and possible launch of an

ultrarelativistic jet. In this section, we review our current understanding about these

topics.

3.1 Numerical method for coalescence simulations

Numerical-relativity simulations for black hole–neutron star binary coalescences are

performed by solving the Einstein evolution equations with appropriate gauge

conditions and hydrodynamics equations, which may involve neutrino-radiation

transfer and magnetohydrodynamics. General formulation and numerical techniques

are summarized in Appendix B. In this Sect. 3.1, we summarize general aspects of

initial data and equations of state adopted in numerical simulations of black hole–

neutron star binary coalescences.

Numerical-relativity simulations for black hole–neutron star binaries throughout

the inspiral-merger-postmerger phases have typically been performed only for

.100 ms and are still in the early stage for studying the postmerger evolution. To

explore the longterm evolution of the merger remnant, simulations of black hole–

accretion disk systems have also been performed in full general relativity for J1 s

(Fujibayashi et al. 2020a, b, see also Most et al. 2021b). The setup of these

simulations will be described separately in Sect. 3.5.

3.1.1 Initial condition

Realistic simulations of black hole–neutron star binary coalescences always adopt

quasiequilibrium states reviewed in Sect. 2 as their initial conditions. Typically,

simulations based on the generalized harmonic formalism with the excision method

adopt quasiequilibrium states computed in the excision framework. While many

simulations based on the BSSN formalism (or its extension) with the moving-
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puncture method adopt quasiequilibrium states computed in the puncture frame-

work, quasiequilibrium states computed in the excision framework have also been

adopted (Etienne et al. 2008, 2009, 2012a, c; Paschalidis et al. 2015; Ruiz et al.

2018, 2020; Most et al. 2021a). Because the moving-puncture method needs data of

the metric inside the excision surface in the initial configurations, the interior needs

to be filled artificially by extrapolating the data outside the excision surface. This

extrapolation generally produces constraint-violating initial data, and care must be

taken so that this violation does not affect significantly the evolution outside the

excision surface (Etienne et al. 2007, see also Brown et al. 2007).

Strictly speaking, quasiequilibrium states derived under the assumption of the

helical symmetry cannot be realistic, because the radial approaching velocity

induced by gravitational radiation reaction is not taken into account. This drawback

gives rise to the inspiral motion with the residual eccentricity of eJ0:01 for typical

initial data. Because the eccentricity of e � 0:01 introduces a phase shift larger than

the tidal effect (Favata 2014), numerical simulations used for developing theoretical

templates are required to adopt initial data with the eccentricity as low as e.10�3 in

order not to bias estimation of tidal deformability in the analysis of gravitational

waves from realistic circular binaries. Although the residual eccentricity may be

reduced if we could start simulations from a distant orbit at which radiation reaction

is sufficiently weak, this is not practical with current and near-future computational

resources. To obtain low-eccentricity inspirals with a reasonable initial separation,

iterative eccentricity reduction is routinely applied in the excision-based simulations

(Foucart et al. 2008, see Appendix A.5.2 for details). Essentially the same technique

has recently been developed for and applied to puncture-based initial data (Kyutoku

et al. 2021).

Because all the quasiequilibrium states have been computed in the framework of

pure ideal hydrodynamics assuming that the neutron star is cold, additional

variables need to be specified if we perform simulations with detailed microphysics.

For evolving neutron stars with composition-dependent equations of state, we need

to give the electron fraction in the initial condition. These variables are usually

determined by the condition of a(n approximate) zero-temperature b-equilibrium

(see, e.g., Duez et al. 2010). This step is in particular necessary for neutrino-

radiation-hydrodynamics simulations (Deaton et al. 2013; Foucart et al. 2014, 2017;

Brege et al. 2018; Kyutoku et al. 2018; Foucart et al. 2019b; Most et al. 2021a).

For magnetohydrodynamics simulations, magnetic fields are superposed on the

initial configuration with arbitrary strength and arbitrary geometry. Their magnitude

should not be very large, because too strong magnetic fields destroy the

hydrostationary equilibrium. Still, this condition admits an astrophysically strong

magnetic fields of .1017 G in the neutron star, for which the gravitational binding

energy is larger by orders of magnitude. To resolve short-wavelength modes

associated with the magnetorotational instability in the postmerger phase (Balbus

and Hawley 1991), it is customary to impose magnetar-level magnetic fields inside

neutron stars. This may be justified, because the magnetic fields are likely to be

amplified on a dynamical time scale in the accretion disk formed after merger in the

real world. However, it has not been clarified yet whether a strong and coherent
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poloidal field is really established by some mechanism, e.g., the dynamo process.

While many magnetohydrodynamics simulations have adopted poloidal magnetic

fields initially confined in the neutron star to avoid difficulty in handling force-free

magnetospheres (Chawla et al. 2010; Etienne et al. 2012a, c; Kiuchi et al. 2015b;

Most et al. 2021a), pulsar-like dipolar magnetic fields are also adopted with a non-

tenuous artificial atmosphere outside the neutron star in simulations that focus on

the possible jet launch (Paschalidis et al. 2015; Ruiz et al. 2018, 2020). We note that

an artificial atmosphere itself is always required by hydrodynamics simulations

performed in a conservative scheme (see also Appendix B.2.2).

3.1.2 Equation of state

The equation of state for neutron-star matter is a key ingredient for deriving realistic

outcomes of and multimessenger signals from black hole–neutron star binary

coalescences. The primary reason for this is that the equation of state determines the

density distribution and hence the radius of the neutron star for a given value of the

mass. Whether tidal disruption occurs or not during the coalescence and, if it occurs,

its degree are determined primarily by the radius or the compactness of the neutron

star for given masses and spins of binary components [see Eq. (34)]. Thus, the

gravitational waveform, the properties of the remnant disk, and the properties of the

ejecta are governed crucially by the equation of state. The equation of state also

determines the tidal deformability of the neutron star, which affects the late inspiral

phase of compact binary coalescences.

However, as mentioned in Sect. 2.1.2, the equation of state for supranuclear-

density matter is still uncertain (see, e.g., Lattimer and Prakash 2016; Oertel et al.

2017; Baym et al. 2018 for reviews). In the study of compact binary coalescences

involving neutron stars, it is more beneficial to explore the possibility of

determining the equation of state via gravitational-wave observations (Lindblom

1992; Vallisneri 2000; Read et al. 2009b; Ferrari et al. 2010; Lackey et al. 2012;

Maselli et al. 2013; Lackey et al. 2014; Pannarale et al. 2015b) than to derive

observable signals relying on a single candidate of the realistic equation of state. For

this purpose, it is necessary to prepare theoretical templates of gravitational

waveforms by performing simulations systematically over the parameter space of

black hole–neutron star binaries with a wide variety of hypothetical equations of

state. Such a systematic survey is also indispensable for predicting electromagnetic

counterparts (see Sect. 3.4 for the dependence of the disk and ejecta properties on

the equation of state). Thus, all the equations of state adopted in simulations

reviewed in this article should be understood as hypothetical.

Due to the reason described in Sect. 2.1.2, we may safely adopt zero-temperature

equations of state during the inspiral and early merger phases before the shock

heating begins to play a role. Moreover, the zero-temperature equations of state are

sufficient for simulating black hole–neutron star binary coalescences which do not

result in tidal disruption of neutron stars, because essentially no heating process is
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involved. However, because polytropes are not quantitative models of neutron stars,

it is desirable to adopt nuclear-theory-based equations of state for the purpose of

investigating realistic black hole–neutron star binary coalescences.

Sophisticated zero-temperature equations of state are implemented in numerical

simulations by various means. A straightforward method is to adopt numerical

tables calculated based on hypothetical models of nuclear physics (see, e.g.,

Glendenning and Moszkowski 1991; Müller and Serot 1996; Akmal et al. 1998;

Douchin and Haensel 2001; Alford et al. 2005). The drawback of this method is that

the capability of systematic studies is limited by available tables. A popular tool for

conducting a systematic study is an analytic, piecewise-polytropic equation of state,

with which the pressure is given by a broken power-law function of the rest-mass

density as

PðqÞ ¼ jiq
Ci ðqi  q\qiþ1Þ; ð35Þ

where i 2 ½0 : n� 1�, q0 ¼ 0, and qn ! 1 (Read et al. 2009a, b; Özel and Psaltis

2009, see also O’Boyle et al. 2020 for generalization and Haensel and Potekhin

2004; Lindblom 2010; Potekhin et al. 2013 for other analytic approaches). It has

been shown that most of the nuclear-theory-based equations of state for neutron-star

matter can be approximated to reasonable accuracy up to the rest-mass density of

J1015gcm�3 by piecewise polytropes consisting of one for the crust region and

three for the core region if we choose q2 ¼ 1014:7gcm�3 and q3 ¼ 1015gcm�3 (Read

et al. 2009a).

It is remarkable that the maximum density in the system only decreases in time

(except for possible minor fluctuations) during the black hole–neutron star binary

coalescences. This is a striking difference from the binary-neutron-star merger, after

which a massive or collapsing neutron star with increased central density is formed

(see, e.g., Hotokezaka et al. 2011; Takami et al. 2015; Dietrich et al. 2015; Foucart

et al. 2016a). This property indicates that black hole–neutron star binaries are not

influenced by the equation of state at very high density, e.g., several times the

nuclear saturation density, unless the neutron star is close to the maximum-mass

configuration. Thus, numerical simulations for binaries with plausibly canonical

� 1:4M� neutron stars may safely adopt simplified models of nuclear-matter

equations of state. For example, if the central density is lower than 1015gcm�3, we

may adopt piecewise polytropes with a reduced number of pieces for the core

focusing only on its low-density part (Read et al. 2009b; Kyutoku et al.

2010, 2011a). This feature also indicates a weak point that we will not be able to

investigate properties of ultrahigh-density matter from observations of black hole–

neutron star binaries without extrapolation relying on theoretical models (see, e.g.,

Abbott et al. 2018; Raaijmakers et al. 2019).

Once the heating process is activated in the merger phase, particularly via the

shock associated with self-crossing of the tidal tail, the zero-temperature approx-

imation is no longer valid. Finite-temperature effects become increasingly important

in the remnant disk, because temperature increases due to the shock interaction and

presumably to subsequent viscous heating associated with magnetohydrodynamical
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turbulence, while the Fermi energy decreases due to the decreased rest-mass density

compared to neutron stars.

One popular and qualitative approach for incorporating finite-temperature effects

is to supplement zero-temperature equations of state with an approximate

correction. A simple prescription for this purpose is to add an ideal-gas-like term

(Janka et al. 1993),

Pth ¼ ðCth � 1Þqeth; ð36Þ

where ethðe; qÞ :¼ e� ecoldðqÞ is the finite-temperature part of the specific internal

energy with ecoldðqÞ being the specific internal energy given by a zero-temperature

equation of state. Indeed, the ideal-gas equation of state, P ¼ ðC� 1Þqe, which

reduces to a polytrope with the adiabatic index C for the isentropic fluid and/or at

zero temperature assumed in computations of quasiequilibrium, is occasionally

adopted in dynamical simulations as a qualitative model of neutron-star matter. A

parameter Cth represents the strength of the thermal effect, and its appropriate value

may be estimated by calibration with simulations performed adopting genuinely

finite-temperature equations of state, which are usually given by numerical

tables (Bauswein et al. 2010; Figura et al. 2020). It should be cautioned that,

however, the constant value of Cth is not faithful to nuclear-theory-based calcula-

tions (Constantinou et al. 2015) even though uncertain thermal effects at supranu-

clear density may not be relevant to black hole–neutron star binary coalescences

(Carbone and Schwenk 2019). In addition, the use of zero-temperature equations of

state is not fully justified after tidal disruption even if the temperature is not

increased. This is because, although zero-temperature equations of state are derived

as a function of a single variable, e.g., rest-mass density, assuming the b-equilib-

rium, the rapid decompression of the disrupted material preserves the composition

on a dynamical time scale and violates the b-equilibrium condition (Foucart et al.

2017).

To investigate the entire merger and postmerger phases in a self-consistent

manner, it is necessary to adopt temperature- and composition-dependent equations

of state with an appropriate scheme for neutrino transport (see Appendix B.2.1).

These equations of state are usually given in a tabulated form as e.g.,

P ¼ Pðq; T ; YeÞ; ð37Þ

e ¼ eðq; T ;YeÞ; ð38Þ

where T and Ye are the temperature and the electron fraction, respectively (see, e.g.,

Lattimer and Swesty 1991; Shen et al. 1998; Hempel et al. 2012; Steiner et al.

2013; Banik et al. 2014, see also Raithel et al. 2019 for a detailed analytic approach

to augment zero-temperature equations of state in a similar manner to Eq. (36)).

Because these variables are tightly related to neutrino emission and absorption,

neutrino transport is an essential ingredient for accurately determining thermal

properties of material in the postmerger phase. Multidimensional neutrino-radiation-

hydrodynamics simulations in full general relativity have been developed in the

stellar-core collapse (Sekiguchi 2010; Sekiguchi and Shibata 2011) and are later
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applied to binary neutron stars (Sekiguchi et al. 2011a, b) as well as black hole–

neutron star binaries (Deaton et al. 2013; Foucart et al. 2014; Kyutoku et al. 2018).

3.2 Current parameter space surveyed

As reviewed in Sect. 2.1, models of black hole–neutron star binaries are

characterized by various parameters. In this section, we focus only on the models

in which neutron stars are initially in the irrotational state, which is presumably

realistic for the majority of compact object binaries as we discussed in Sect. 1.2 (see

Foucart et al. 2019a; Ruiz et al. 2020 for studies on spinning neutron stars). Then,

the properties of binaries are characterized by the mass of the black hole, MBH, the

spin parameter of the black hole, v, its orientation, i, and the mass of the neutron

star, MNS. Furthermore, hypothetical equations of state for neutron-star matter

should also be regarded as a free parameter (or function) characterizing the models.

Properties of an equation of state may be usefully represented by the radius of the

neutron star, RNS, particularly when we focus on tidal disruption.

To date, numerical-relativity simulations of black hole-neutron star binaries have

been performed focusing mainly on neutron stars with typical masses in our Galaxy

of MNS � 1:2–1:5M� (Tauris et al. 2017; Farrow et al. 2019). Accordingly, the

results are reviewed below focusing on the models with these typical values.

Because the mass of the neutron star does not vary much among the models, it is

useful in many occasions to characterize a binary model by quantities directly

related to the criterion for mass shedding to occur outside the innermost

stable circular orbit, Eq. (9), namely the mass ratio Q and the compactness C
instead of MBH and RNS, respectively. This parametrization is also sufficient for

qualitative but scale-free polytropic equations of state (see Sect. 2.3). It will be

worthwhile in the future to simulate mergers of black hole–neutron star binaries

with MNS � 2M� employing nuclear-theory-based equations of state, particularly in

light of possible detections of such neutron stars with gravitational waves (Abbott

et al. 2020a, 2021b), although tidal disruption is unlikely to be common due to the

large compactness (see also Sect. 4.2.1).

The range of the mass ratio covered by numerical-relativity simulations has been

enlarged to 1Q.8:3 in the last decade. The small value in this range is adopted to

clarify the difference between black hole–neutron star binaries and binary neutron

stars in the feature of the mergers, and we will discuss this topic in Sect. 4.2.2. The

large values of Q are directly related to realistic black hole–neutron star binaries,

taking into account the fact that the observed stellar-mass black holes typically have

MBHJ5–7M� (Özel et al. 2010; Kreidberg et al. 2012; Abbott et al. 2019a, 2021a,

see also Thompson et al. 2019 for a low-mass black-hole candidate with

� 3:3þ2:8
�0:7 M�).

A wide range of black-hole spins, both in terms of the magnitude and the

orientation, have been adopted in simulations of black hole–neutron star binaries.

Most of the recent simulations have focused on the prograde spin, because it is

required for tidal disruption by massive black holes with MBHJ5M� or QJ4.

Notably, the largest value of the spin parameter simulated is increased to v ¼ 0:97
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(Lovelace et al. 2013). Although this is only the case for a single system with

Q ¼ 3, the capability of simulating nearly-extremal black holes is important for

future investigations of tidal disruption in high mass-ratio systems. Inclined spins of

the black holes are also handled in many simulations. Essentially all the orientations

of the spin have already been handled, although covering the parameter space

becomes computationally demanding simply because of the increased degree of

freedom.

After the early days of adopting qualitative ideal-gas (polytropic at zero

temperature) equations of state, many simulations have been performed with

nuclear-theory-based equations of state. In particular, temperature- and composi-

tion-dependent equations of state are routinely adopted in neutrino-radiation-

hydrodynamics numerical-relativity simulations. Figure 11 shows the mass-to-

radius relations of neutron stars for various equations of state which are popular in

numerical-relativity simulations, along with constraints on the neutron-star prop-

erties derived by observations of Galactic massive pulsars (Demorest et al. 2010;

Antoniadis et al. 2013; Arzoumanian et al. 2018; Cromartie et al. 2020; Fonseca

et al. 2021), J0030?0451 by NICER (Miller et al. 2019b), and GW170817 by the

LIGO-Virgo collaboration (Abbott et al. 2018). Table 3 summarizes characteristic

quantities of neutron stars modeled by these equations of state. Because the

maximum mass of the neutron star is widely accepted to exceed � 2M� from the

observations of massive pulsars, recent numerical simulations seldom employ soft

equations of state which are incompatible with these measurements.

Last but not least, various magnetohydrodynamics simulations have been

performed. It should be cautioned that the initial strength and geometry of magnetic

fields need to be chosen somewhat arbitrarily in current simulations (see

Sect. 3.5.3). This limitation might not affect the numerical evolution of the
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Fig. 11 Mass-to-radius relation of cold, spherical neutron stars for various equations of state.
Unstable configurations with small radii are not shown in this plot. We also display the measured mass
(68.3% credibility) of a pulsar in J1614-2230 (cyan band: Demorest et al. 2010; Arzoumanian et al.
2018), that in J0348?0432 (green band: Antoniadis et al. 2013), that in J0740?6620 (magenta band:
Cromartie et al. 2020; Fonseca et al. 2021), posterior samples obtained by analysis of J0030?0451
(magenta dot: Miller et al. 2019b, thinned out from provided samples), and those by analysis of
GW170817 (green dot: Abbott et al. 2018)
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remnant accretion disk if the grid resolution is sufficiently high. This is because the

magnetic fields inside the accretion disk are expected to be amplified by the

magnetorotational instability and a turbulent state is expected to be developed (see,

e.g., Balbus and Hawley 1998 for reviews). Consequently, the relaxed quasisteady

state should not depend on the initial conditions. However, the grid resolution is

usually not high enough for guaranteeing numerical convergence due to the limited

computational resources. Thus, results obtained by current magnetohydrodynamics

simulations should be carefully interpreted. We also caution that the global

configuration of the magnetic field in the final state could be impacted by the initial

choice of a large-scale poloidal field.

3.3 Merger process

We begin with the review of the merger process focusing on tidal disruption,

subsequent disk formation, and dynamical mass ejection (or absence thereof). In

particular, this Sect. 3.3 focuses on the dynamics until � 10 ms after the onset of

merger. Effects of the magnetic field (Chawla et al. 2010; Etienne et al. 2012a, c;

Kiuchi et al. 2015b) and/or neutrino transport (Deaton et al. 2013; Foucart et al.

2014; Kyutoku et al. 2018) play a significant role in the dynamical evolution of the

system only after the disrupted material winds around the black hole and collides

itself to form a circularized disk. Thus, properties of the neutron star are

characterized only by the mass and zero-temperature equations of state during the

processes discussed here.

The orbital separation of a black hole–neutron star binary decreases due to

dissipation of the energy and the angular momentum via gravitational radiation

reaction, and eventually two objects merge. As we discussed in Sect. 1, the final fate

of black hole–neutron star binary coalescences is classified into two categories (we

Table 3 List of representative equations of state adopted in simulations of black hole–neutron star binary

coalescences and characteristic quantities of neutron stars

Name References Mmax½M�� MB;1:35½M�� R1:35ð kmÞ C1:35 K1:35

APR4 Akmal et al. (1998) 2.20 1.50 11.1 0.180 322

SFHo Steiner et al. (2013) 2.06 1.48 11.9 0.167 420

ALF2 Alford et al. (2005) 1.99 1.49 12.4 0.161 733

LS220 Lattimer and Swesty (1991) 2.03 1.48 12.6 0.158 653

DD2 Banik et al. (2014) 2.42 1.47 13.2 0.151 854

H4 Lackey et al. (2006) 2.03 1.47 13.6 0.147 1110

FSU2.1 Shen et al. (2011) 2.10 1.46 13.6 0.147 980

MS1 Müller and Serot (1996) 2.77 1.46 14.4 0.138 1740

TM1 Hempel et al. (2012) 2.21 1.46 14.5 0.138 1430

Mmax denotes the maximum mass of cold, spherical neutron stars. MB;1:35, R1:35, C1:35, and K1:35 are,

respectively, the baryon rest mass, the circumferential radius, the compactness, and the l ¼ 2 tidal

deformability of a 1:35M� neutron star
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will later refine this dichotomy). One is the case in which the neutron star is

swallowed by the black hole without experiencing tidal disruption. The other is the

case in which the neutron star is tidally disrupted outside the innermost

stable circular orbit of the black hole. As we described in Sect. 1.3.1, which of

these two possibilities is realized is determined primarily by competition between

the orbital separation at which the tidal disruption occurs and the radius of the

innermost stable circular orbit. Figures 12 and 13 display the snapshots of the rest-

mass density and the region inside the apparent horizon on the equatorial plane at

selected time slices for typical examples of these two categories (Kyutoku et al.

2015).

Figure 12 illustrates the case in which the neutron star is not tidally disrupted

before it is swallowed by the black hole. This system is characterized by

MBH ¼ 4:05M�, v ¼ 0, MNS ¼ 1:35M�, and RNS ¼ 11:1 km (Q ¼ 3, C ¼ 0:180)

modeled by a piecewise-polytropic approximation of the APR4 equation of state

(Akmal et al. 1998). Because the neutron star is tidally deformed significantly only

Fig. 12 Evolution of the rest-mass density profile and the location of the apparent horizon on the
equatorial plane for a binary with MBH ¼ 4:05M�, v ¼ 0, MNS ¼ 1:35M�, and RNS ¼ 11:1 km (Q ¼ 3,
C ¼ 0:180) modeled by a piecewise-polytropic approximation of the APR4 equation of state (Akmal
et al. 1998). The black filled circles denote the regions inside the apparent horizon of the black hole. The

color map of each figure shows log10ðq½gcm�3�Þ. This figure is generated from data of Kyutoku et al.
(2015)
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after it comes very close to the black hole, mass shedding sets in for an orbit too

close to induce subsequent disruption outside the innermost stable circular orbit.

This is consistent with the expectation from Fig. 10 presented in Sect. 2.4.

Accordingly, the masses of the remnant disk and the dynamical ejecta are

negligible, say, 
 0:01M�. At the same time, most of the neutron-star material falls

into the black hole approximately simultaneously through a narrow region of the

horizon. This coherent infall efficiently excites quasinormal-mode oscillations of

Fig. 13 Same as Fig. 12 but for a binary with MBH ¼ 4:05M�, v ¼ 0:75, MNS ¼ 1:35M�, and RNS ¼
11:1 km (Q ¼ 3, C ¼ 0:180) modeled by a piecewise-polytropic approximation of the APR4 equation of
state (Akmal et al. 1998). This figure is generated from data of Kyutoku et al. (2015)
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the remnant black hole. We discuss gravitational waves later in Sect. 3.6. Overall,

the behavior of the system in this category universally resembles that of binary-

black-hole coalescences with the same masses and spins of components, because the

finite-size effect of the neutron star does not play a role (Foucart et al. 2013a). This

seems to be the case for all the black hole–neutron star binaries and their candidates

reported as of 2021 (Abbott et al. 2021a, b).

Figure 13 illustrates the case in which the neutron star is disrupted before the

binary reaches the innermost stable circular orbit. This system is characterized by

MBH ¼ 4:05M�, v ¼ 0:75, MNS ¼ 1:35M�, and RNS ¼ 11:1 km (Q ¼ 3,

C ¼ 0:180) modeled by a piecewise-polytropic approximation of the APR4

equation of state (Akmal et al. 1998). In this case, mass shedding from an inner

cusp of the deformed neutron star sets in at an orbital separation much larger than

that of the innermost stable circular orbit. After a substantial amount of material is

removed from the inner cusp, the neutron star is tidally disrupted outside the

innermost stable circular orbit. It should be emphasized that tidal disruption does

not occur immediately after the onset of mass shedding but occurs for an orbital

separation smaller than that for the onset of mass shedding as illustrated by Fig. 13.

Thus, conditions such as Eq. (34) are not a sufficient condition but a necessary

condition for tidal disruption.

Once the neutron star is disrupted, the material spreads around the black hole and

forms a one-armed spiral structure, so-called tidal tail. As a result of the angular

momentum transport from the inner to the outer parts of the tidal tail, a large amount

of material in the outer part avoids being swallowed immediately by the black hole.

Because the tidal tail is in differential rotation, it eventually winds around the black

hole and collides with itself (the right middle panel of Fig. 13). This results in

circularization and thus formation of an approximately axisymmetric disk

surrounding the remnant black hole. The disk material can no longer be treated

as zero temperature because of shock heating, and longterm simulations for the disk

require appropriate implementations of finite-temperature effects. Still, the disk

does not become completely axisymmetric in the typical rotational period of

� 5 msðm0=10M�Þ (see also Sect. 3.4.1). A one-armed spiral structure with a small

amplitude persists for a long time and gradually transports the angular momentum

outward. Hence, mass accretion by the black hole continues even if viscous or

magnetohydrodynamical processes do not set in. Because the accretion time scale is

much longer than the rotational period, the disk is in a quasisteady state on a time

scale of 	 10 ms. This evolution process agrees qualitatively with that found for

longterm evolution of black hole–accretion disk systems (Hawley 1991; Korobkin

et al. 2011; Kiuchi et al. 2011; Wessel et al. 2021). In reality, longterm evolution of

the disk will be driven by magnetically-induced turbulent viscosity (Balbus and

Hawley 1991). We will defer discussions about this stage to Sect. 3.5.

The outermost part of the tidal tail obtains energy sufficient to become unbound

from the remnant black hole. Figure 14 visualizes the process of dynamical mass

ejection on the phase space of the specific energy and the specific angular

momentum for a system with MBH ¼ 3M�, v ¼ 0, MNS ¼ 1:35M�, and RNS ¼
12:3 km (Q � 2:2, C ¼ 0:162) modeled by a piecewise polytrope called H (Hayashi

et al. 2021). Here, unboundedness is identified by the criterion �ut [ 1, which is
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suitable for dynamical mass ejection as far as the spacetime is approximated as

stationary, because the shock heating, and hence, the contribution of the internal

energy, does not play a role. If the internal energy contributes significantly, a

reasonable criterion may be defined based on �hut taking the offset associated with

the composition into account (see, e.g., Fujibayashi et al. 2020a). First, the outer

Fig. 14 Distribution of material on the phase space of specific energy ~E and specific angular momentum

normalized by the mass of the remnant black hole Ĵ for a binary with MBH ¼ 3M�, v ¼ 0,
MNS ¼ 1:35M�, and RNS ¼ 12:3 km (Q � 2:2, C ¼ 0:162) modeled by a piecewise polytrope called H
(Read et al. 2009b). The left top panel shows the distribution in the final stage of the inspiral. The right
top panel shows the distribution at the onset of merger. The distribution is broadened and spans a wide

range of ~E and Ĵ due to the angular momentum transport. The left bottom panel shows the state after the

infall of the material with low Ĵ. Only the material with the angular momentum exceeding that for the

innermost stable circular orbit, ĴISCO, remains outside the black hole. This material has gained exclusively
the energy during the coalescence of the black hole and the major part of the neutron star. The right
bottom panel shows the stage in which the remnant disk establishes a quasisteady state. The purple dashed
curves denote the relation for stable circular orbits (Bardeen et al. 1972), and the material along this curve
is the remnant disk. The cyan dashed curves denote the relation for material with a fixed periastron
distance, and the material along this curve consists of the dynamical ejecta and fallback material. Image
reproduced with permission from Hayashi et al. (2021), copyright by APS
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part acquires the angular momentum and also the energy via the tidal torque (from

the left top to the right top panels). Next, it gains exclusively the energy via work

done by impulsive outward radial force, which is likely to be associated with the

infall of the major part of the neutron star to the black hole (from the right top to the

left bottom panels). If the energy of a fluid element exceeds the gravitational

binding energy, the element escapes from the system as the dynamical ejecta.

Material behind the dynamical ejecta also acquires some energy but remains

bound to the remnant black hole, and thus it eventually falls back onto the disk. The

disk and fallback components may approximately be distinguished by temperature

higher and lower than 0.1–1 MeV, respectively, as shown in Fig. 15 generated by

Brege et al. (2018), because the shock interaction sets in when the fallback material

hits the outer edge of the disk. Although the longterm fallback dynamics cannot be

fully tracked in current simulations of black hole–neutron star binary coalescences,

estimated fallback rates of the mass are found to coincide with the well-known t�5=3

law for tidal disruption events (Chawla et al. 2010; Kyutoku et al. 2015; Brege et al.

2018, see also Rosswog 2007 for early Newtonian work).

The left bottom panel of Fig. 14 implies that the fallback material and the

dynamical ejecta may be considered to be launched from an approximately common

periastron. Taking the t�5=3 fallback behavior into account, the process depicted

here might seem similar to tidal disruption of stars by supermassive black holes in

slightly unbound, hyperbolic encounters (Rees 1988; Phinney 1989). However, it

should be remarked that gravitational-wave-driven mergers of compact object

binaries occur in a strongly bound, quasicircular orbit. Therefore, it is not trivial a
priori that even a finite amount of material could be ejected by tidal disruption in

black hole–neutron star binary coalescences.

The process of tidal disruption described in Fig. 13 is qualitatively common for

systems with a large neutron-star radius, a small black-hole mass, and/or a high

black-hole spin. However, quantitative details depend on the parameters of the

Fig. 15 Temperature profile and the location of the apparent horizon (black filled circle) at 7 ms after the
onset of merger for a binary with MBH ¼ 7M�, v ¼ 0:9, MNS ¼ 1:2M�, and RNS ¼ 13:5 km (Q � 5:8,
C ¼ 0:130) modeled by the FSU2.1 equation of state (Todd-Rutel and Piekarewicz 2005; Shen et al.
2011). The left panel is magnification of the white box in the right panel. The white, red, and black curves

denote 1011, 1010, and 109gcm�3, respectively. Image reproduced with permission from Brege et al.
(2018), copyright by APS
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binary. The orientation of the black-hole spin also introduces qualitative differences

in the merger dynamics and morphology of the remnant. In the following, we review

the dependence on these parameters.

3.3.1 Dependence on the equation of state

As found from the analysis of Sects. 1.3 and 2, the merger process depends on the

compactness of the neutron star, which is determined by the equation of state.

Systematic studies performed employing a variety of piecewise polytropes clearly

show that neutron stars with smaller compactnesses are tidally disrupted more easily

(Kyutoku et al. 2010, 2011a, 2015). This tendency also holds for nuclear-theory-

based tabulated equations of state (Kyutoku et al. 2018; Brege et al. 2018).

Even if the compactness and the mass are identical, the density profiles generally

differ among neutron stars modeled by different equations of state. If the density

profile is more centrally condensed, the neutron star is less subject to tidal disruption

as discussed in Sect. 1.3.2. This tendency is demonstrated by a study employing

two-piecewise polytropes with different adiabatic indices for the core region

(Kyutoku et al. 2010). Specifically, if the adiabatic index for the core region is

smaller, the neutron star with a given compactness is more centrally condensed and

less subject to tidal disruption.

3.3.2 Dependence on the mass ratio

As indicated by the analysis of Sects. 1.3 and 2, the possibility of tidal disruption

increases as the mass ratio decreases. For example, the amount of the mass

remaining outside the black hole is likely to be larger for the lower mass ratio. This

dependence is particularly important for nonspinning black holes, because

significant tidal disruption occurs only for low-mass black holes such as those in

the putative mass gap (Shibata et al. 2009, 2012). Stated differently, for a plausibly

realistic mass ratio of QJ4, the neutron star can be tidally disrupted only if the

black hole has a high prograde spin, as we discuss in Sect. 3.3.3.

After the discovery of binary neutron stars by gravitational waves, very-low-mass

black hole–neutron star coalescences acquire renewed interest (Foucart et al.

2019a, b; Hayashi et al. 2021; Most et al. 2021a, see Sect. 1.4.4 for definition of

‘‘very low mass’’). The primary reason for this is that they could be potential

mimickers of binary-neutron-star coalescences, rendering astrophysical interpreta-

tion of gravitational-wave sources ambiguous (Hinderer et al. 2019; Kyutoku et al.

2020). Distinguishing very-low-mass black hole–neutron star binaries and binary

neutron stars would be invaluable for gaining knowledge about the maximum mass

of neutron stars, the mass gap between black holes and neutron stars (see, e.g.,

Kreidberg et al. 2012), and the formation mechanism of these compact objects, i.e.,

stellar core collapse and supernova explosions.

Recent numerical simulations have shown that susceptibility to tidal disruption is

not reflected monotonically in the remnant material for very-low-mass-ratio systems

(Foucart et al. 2019b; Hayashi et al. 2021; Most et al. 2021a). Rather, the mass of

the remnant disk saturates to a value of �Oð0:1ÞM� for the case in which the black
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hole is nonspinning (see also Brege et al. 2018 and Appendix of Hayashi et al.

2021). Quantitatively, the saturated value of the disk mass depends on the equation

of state. Moreover, the mass of the dynamical ejecta, which increases with

decreasing Q down to a moderately large values of Q ¼ Qpeak � 3, begins to

decrease as the mass ratio decreases for Q\Qpeak (Hayashi et al. 2021). The precise

value of Qpeak again depends on the equation of state. We will discuss quantitative

dependence of the remnant disk and the dynamical ejecta on the mass ratio later in

this section.

We note that, while the physical reason of the behavior at very low-mass ratios

described above is not fully understood yet, it may not be unexpected taking the fact

that an extremely low-mass black hole with MBH 
 MNSðQ 
 1Þ cannot make the

neutron star unbound because of the tiny contribution of such a minute black hole to

the dynamics of the entire system. Related simulations have been performed in the

context of consumption of a neutron star by an endoparasitic black hole at the center

(East and Lehner 2019; Richards et al. 2021).

3.3.3 Dependence on the black-hole spin (I) aligned spin

The spin of the black hole quantitatively modifies the orbital evolution in the late

inspiral phase and the merger dynamics. First, we focus on the cases in which the

black-hole spin is (anti-)aligned with respect to the orbital angular momentum of the

binary. Figure 16 generated by Etienne et al. (2009) shows the trajectories of the

black hole and the neutron star for systems characterized by Q ¼ 3, C ¼ 0:145

modeled by a C ¼ 2 polytrope, and two different values of the spin parameter v ¼ 0

(left) and v ¼ 0:75 (right). Because a polytropic equation of state is adopted, the

mass of the binary components can be scaled arbitrarily as discussed in Sect. 2.3.

Both systems have the same values of initial orbital angular velocity normalized by

Fig. 16 Coordinate trajectory of the black hole (black solid curve) and the neutron star (blue dashed
curve) on the orbital plane for binaries with Q ¼ 3, C ¼ 0:145 modeled by a C ¼ 2 polytrope, and v ¼ 0
(left) and v ¼ 0:75 (right). Image reproduced with permission from Etienne et al. (2009), copyright by
APS
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the total mass, Gm0X=c3 � 0:033. The nonspinning (v ¼ 0) and spinning (v ¼ 0:75)

systems merge after � 4 and 6 orbits, respectively. The difference in the number of

orbits is ascribed mainly to the spin-orbit interaction. Specifically, this interaction

serves as repulsive force for a prograde spin of the black hole, v[ 0, and vice versa

(see, e.g., Kidder et al. 1993; Kidder 1995 for two-body equations of motion in the

post-Newtonian approximation). The repulsion for v[ 0 counteracts the gravita-

tional pull between the binary components and reduces the orbital angular velocity

to maintain a circular orbit for a given orbital separation (or a given circumferential

radius of the orbit). Because the gravitational-wave luminosity is as sensitive to the

orbital angular velocity as / X10=3, the approaching velocity associated with the

radiation reaction is also decreased. This effect increases the lifetime of the binary.

In addition, the spin-orbit repulsion decreases the radius of the innermost stable orbit

and strengthens gravitational binding there (Bardeen et al. 1972). This further helps

to increase the lifetime of a progradely-spinning black hole–neutron star binary,

because it needs to emit a larger amount of energy to reach the innermost

stable circular orbit than that for a nonspinning black hole. These effects increase

the number of inspiral orbits.

The higher the prograde spin of the black hole, the neutron star is disrupted more

easily, and thus, the disk formation and the mass ejection are more pronounced. This

is clearly shown by comparing Figs. 12 and 13, between which the only difference

is the spin of the black hole. Quantitatively, while the mass of the disk for v ¼ 0 is

less than 10�3 M�, it increases to 0:19M� for v ¼ 0:75 in these examples. The mass

of the dynamical ejecta also increases as the black-hole spin increases, specifically

from 
 10�3 M� to 0:01M� in these examples (Kyutoku et al. 2015). These

increases are ascribed primarily to the small radius of the innermost stable circular

orbit with the prograde spin (Bardeen et al. 1972). As an extreme, it has been shown

that about more than a half of the neutron-star material remains outside the remnant

black hole right after the onset of merger for a binary with Q ¼ 3, C ¼ 0:144

modeled by a C ¼ 2 polytrope, and v ¼ 0:97, which is the largest value of the spin

parameter simulated for black hole–neutron star binaries to date (Lovelace et al.

2013). In light of the astrophysically plausible range of Q and C (e.g., QJ4 and

CJ0:16), it is remarkable that the prograde spin enables tidal disruption to occur

for a binary which results in the plunge if the black hole is nonspinning. By contrast,

if the spin of the black hole is retrograde, the neutron star is swallowed by the black

hole without tidal disruption even if Q\3 for a wide range of equations of state. We

defer further quantitative discussions to Sect. 3.4.2.

If tidal disruption occurs in a binary with a spinning black hole and a realistic

mass ratio of QJ4, the elongated neutron star can be swallowed by the black hole

through a narrow region of its large surface (Kyutoku et al. 2011a). This feature is

advantageous for exciting nonaxisymmetric, fundamental quasinormal modes of the

remnant black hole as we discuss in Sect. 3.6. This does not occur for nonspinning

black holes, because the tidal disruption is possible only for a binary with a low

mass ratio of Q.ð3CÞ�3=2
[cf., Eq. (9) and Fig. 10] and thus for a black hole with a

small surface. For such a case, the tidally-disrupted material is swallowed through a

wide region of the black-hole surface, and the quasinormal-mode excitation is
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suppressed. These differences are reflected in both gravitational waveforms and

spectra as predicted by a black-hole perturbation study (Saijo and Nakamura

2000, 2001).

Figure 17 illustrates the case described above, i.e., the tidally-elongated neutron

star is swallowed through a narrow region of the black-hole surface (Kyutoku et al.

2011a). This system is characterized by MBH ¼ 4:05M�, MNS ¼ 1:35M�, RNS ¼
11:6 km (Q ¼ 3, C ¼ 0:172) modeled by a piecewise polytrope called HB, and a

moderately high and prograde spin of v ¼ 0:5. Tidal disruption occurs at an orbit

outside but close to the innermost stable circular orbit. The dense part of disrupted

material does not have a sufficient time for winding around the black hole before the

infall. Thus, it falls into the black hole in a significantly nonaxisymmetric manner

and excites quasinormal-mode oscillations. This behavior is frequently found for a

binary with a high mass ratio and a high black-hole spin. Conversely, for a

retrograde spin, tidal disruption becomes insignificant even for a small value of

Q ¼ 2–3 (Kyutoku et al. 2011a). An alternative interpretation of this finding is that

the orientation of the black-hole spin plays an important role. We will discuss this

viewpoint for a general inclination angle in Sect. 3.3.4.

To summarize, numerical-relativity simulations have revealed that the merger

process may be classified into three types according to the mass and the spin of

black holes for a given equation of state (see also Pannarale et al. 2013, 2015a for

relevant classifications):

1. The neutron star is tidally disrupted at an orbit far from the innermost

stable circular orbit. This occurs for the cases in which the black-hole mass is

small and/or the black-hole spin is prograde and sufficiently high.
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Fig. 17 Same as Fig. 12 but for a binary with MBH ¼ 4:05M�, v ¼ 0:5, MNS ¼ 1:35M�, and RNS ¼
11:6 km (Q ¼ 3, C ¼ 0:172) modeled by a piecewise polytrope called HB (Read et al. 2009b). Image
reproduced with permission from Kyutoku et al. (2011a), copyright by APS
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2. The neutron star is tidally disrupted at an orbit close to the innermost

stable circular orbit. This occurs for the cases in which the black-hole mass is

not small and the black-hole spin is prograde and high.

3. The neutron star is not tidally disrupted. This occurs for the cases in which the

black-hole mass is not small and/or the black-hole spin is retrograde or prograde

but not high. An approximate criterion for tidal disruption is found in Eq. (9).

These three types are displayed schematically in Fig. 18. The differences of merger

processes for these types, particularly that between 1 and 2, are imprinted in

gravitational waveforms and spectra described in Sect. 3.6.

3.3.4 Dependence on the black-hole spin (II) inclined spin

The inclination angle has a qualitative impact on the inspiral and merger dynamics

(Foucart et al. 2011, 2013b; Kawaguchi et al. 2015; Foucart et al. 2017, 2021).

Figure 19 compares typical orbital evolution of black hole–neutron star binaries for

which the spin of the black hole is absent or (anti-)aligned with respect to the orbital

angular momentum of the binary (left: v ¼ 0) and inclined (right: v ¼ 0:75 and

i � 90�). The reflection symmetry about the orbital plane is lost in the presence of

spin misalignment. Because the orbital angular velocity vector is inclined with

respect to the total angular momentum of the system, the vector normal to the

orbital plane precesses approximately around the total angular momentum during

the inspiral phase (Apostolatos et al. 1994; Kidder 1995; Racine 2008).

The spin misalignment also reduces the degree of tidal disruption, as well as the

masses of the remnant disk and the dynamical ejecta, for the same magnitude of the

spin. This is because the spin-orbit coupling is proportional to, in the post-

Newtonian terminology, the inner product S�L of the spin angular momentum S and

the orbital angular momentum L. The effect of the black-hole spin on the radius of

the innermost stable circular orbit, or an innermost stable spherical orbit (Hughes

Fig. 18 Schematic picture for three types of merger processes. The filled circle, the solid red circle, and
the black dashed circle denote the black hole, the innermost stable circular orbit, and the radius at which
tidal disruption occurs, respectively. The deformed ellipsoid denotes the neutron star. The left, middle,
and right panels correspond to the types 1, 2, and 3, described in the body text, respectively. Image
adapted from Kyutoku et al. (2011a), copyright by APS
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2001; Buonanno et al. 2006; Fragile et al. 2007; Stone et al. 2013), is also

determined primarily by this inner product. Thus, the spin-orbit repulsion for a

given magnitude of the spin becomes weak as the inclination angle increases. For

systems with the black-hole spin being confined in the orbital plane, S�L � 0, the

spin of the black hole is likely to play only a minor role in tidal disruption of the

neutron star irrespective of its magnitude, while systematic surveys have not yet

been performed.

Orbital precession caused by the spin misalignment introduces qualitative

differences also in the morphology of the disrupted material (Foucart et al. 2013b;

Kawaguchi et al. 2015). Because the misalignment breaks the reflection symmetry,

the remnant also exhibits a reflection-asymmetric structure. Figure 20 generated by

Foucart et al. (2013b) shows three-dimensional plots of the rest-mass density and

the region inside the apparent horizon. The system on the left column is

characterized by Q ¼ 7, C ¼ 0:144 modeled by a C ¼ 2 polytrope, and v ¼ 0:9
aligned with the orbital angular momentum of the binary. The merger dynamics and

the morphology of the remnant are essentially the same as those described in

Fig. 13. The system on the right column of Fig. 20 has the same parameters as those

on the left column, except that the black-hole spin has an inclination angle of

i ¼ 40� with respect to the orbital angular momentum. The tidal tail of this system

inherits precessing motion of the inspiral phase. Accordingly, it does not form a

circularized disk immediately after single orbital revolution. Instead, the tidal tail

eventually collides with itself from various directions and forms a thick torus. The

inclination angle between the angular momentum of the remnant torus and the spin

angular momentum of the remnant black hole becomes smaller than the inclination

angle during the inspiral phase, i, because a substantial fraction of the orbital

angular momentum is brought into the black hole by the infalling neutron-star

material (Foucart et al. 2011; Kawaguchi et al. 2015). This effect is more significant

for lower mass-ratio systems, for which the initial spin angular momentum of the

black hole accounts for a smaller fraction of the total angular momentum.

In the long run, a tilted disk will evolve in a manner different from an aligned one

via the Lense-Thirring precession (Bardeen and Petterson 1975; Papaloizou and

Pringle 1983), magnetically-induced turbulent viscosity (Fragile et al. 2007) and/or

magnetic coupling with the remnant black hole (McKinney et al. 2013). Longterm

evolution of a remnant torus of precessing black hole–neutron star binaries with
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Fig. 19 Evolution of the coordinate separation between the black hole and the neutron star for binaries
with MBH ¼ 4:05M�, MNS ¼ 1:35M�, and RNS ¼ 11:1 km (Q ¼ 3, C ¼ 0:180) modeled by a piecewise-
polytropic approximation of the APR4 equation of state (Akmal et al. 1998). The spin of the black hole is
zero for the left panel and v ¼ 0:75 with the inclination angle i � 90� for the right panel. The z-axis is
taken to be the direction of the total angular momentum at the initial instant. This figure is generated from
data of Kyutoku et al. (2021)
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realistic microphysics is a subject for future studies in numerical relativity (but see

Mewes et al. 2016 for pure hydrodynamics).

3.4 Remnant

In this Sect. 3.4, we present quantitative details of the remnant black hole, disk,

fallback material, and dynamical ejecta derived by merger simulations. Unless

explicitly stated, we discuss the cases in which the spin of the black hole is aligned

with respect to the orbital angular momentum and the system possesses reflection

symmetry about the orbital plane. We will make it explicit when we consider the

effects of the spin misalignment. The longterm evolution of the remnant disk and

associated outflows are discussed separately in Sect. 3.5.

Fig. 20 Three-dimensional plot of the rest-mass density and the location of the apparent horizon (denoted
by the filled black region) for binaries with Q ¼ 7, v ¼ 0:9, and C ¼ 0:144 (RNS ¼ 14:4 km if we suppose
a 1:4M� neutron star) modeled by a C ¼ 2 polytrope. The angles between the spin angular momentum of
the black hole and the orbital angular momentum of the binary are 0� and 40� for the left and right panels,
respectively. The top and bottom panels show snapshots at different times. Image reproduced with
permission from Foucart et al. (2013b), copyright by APS
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3.4.1 Black hole

The mass and the spin of the black hole change during merger, because it swallows

the material of the neutron star. The mass of the remnant black hole MBH;f is

approximately estimated by (Shibata and Uryū 2007)

MBH;f � MBH þMNS �Mr[ rAH
� EGW; ð39Þ

where Mr[ rAH
denotes the mass of the material remaining outside the black hole,

which is composed of the remnant disk, the fallback material, and the dynamical

ejecta, and EGW denotes the energy carried away by gravitational radiation (see

Duez et al. 2008; Shibata et al. 2009 for other methods of estimation). Because a

large fraction of the neutron-star material falls into the black hole for most cases and

also EGW is much smaller than the total rest-mass energy of the system, MBH;f is

larger than 0:9m0 except for nearly-extremal spins (Lovelace et al. 2013). Because

both Mr[ rAH
and EGW decrease as the spin of the black hole decreases, MBH;f

becomes close to m0 for small values of v and/or large inclination angles. Specif-

ically, the difference between MBH;f and m0 is only a few percent for anti-aligned,

retrograde spins of v ¼ �0:5 (stated differently, v ¼ 0:5 and i ¼ 180�; Kyutoku

et al. 2011a).

The spin parameter of the remnant black hole vf is determined primarily by the

mass ratio of the binary, Q, and the initial spin parameter of the black hole, v
(Kyutoku et al. 2011a). Figure 21 shows the spin parameter of the remnant black

hole as a function of the initial spin parameter v for various mass ratios obtained by

pure hydrodynamics simulations performed by several groups with various

numerical implementations. Some particular combinations of Q and v are simulated
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Fig. 21 Spin parameter of the remnant black hole, vf , for a range of binary parameters as a function of the
initial spin parameter, v. The solid lines denote the fitting for the results of Q ¼ 2 and 3 (Kyutoku et al.
2011a). This figure is generated from data of Etienne et al. (2009); Kyutoku et al. (2010); Foucart et al.
(2011); Kyutoku et al. (2011a); Foucart et al. (2012); Kyutoku et al. (2015). If the neutron-star mass and/
or equation of state are varied in a single paper, the results are averaged

123

Coalescence of black hole–neutron star binaries Page 59 of 182 5



by several groups independently, and results are overplotted. Taking inherent

variation associated with the neutron-star mass, the neutron-star equation of state,

and the methods for evaluating vf (Duez et al. 2008; Shibata et al. 2009) into

account, all the results are consistent among independent groups. This figure shows

that the dependence on the initial spin parameter is more pronounced for higher

mass ratios. The reason for this is that, as we describe below, the spin angular

momentum becomes dominant and the orbital angular momentum gives a minor

contribution in such systems. Meanwhile, the remnant spin parameter is found to

depend only weakly on the equation of state (not shown in this figure), and this fact

indicates that the material remaining outside the remnant black hole takes only a

minor fraction of the mass and the angular momentum for the systems considered. It

is also found that the remnant spin parameter is larger than that for binary black

holes with the same values of Q and v for the case in which tidal disruption occurs.

For example, the coalescence of equal-mass, nonspinning binary black holes is

known to form a Kerr black hole with vf � 0:686 (Scheel et al. 2009), which is

significantly smaller than vf � 0:84 for black hole–neutron star binaries (Etienne

et al. 2009; Foucart et al. 2019b). This difference stems from the fact that black

hole–neutron star binaries which result in tidal disruption do not experience orbits as

close as those in binary black holes. Accordingly, black hole–neutron star binaries

do not emit gravitational waves as strongly as binary black holes do.

Qualitative dependence of vf on Q and v can be understood by the following

analysis. The total angular momentum of two point particles in a circular orbit with

the orbital angular velocity X is given in Newtonian gravity by

Jorb ¼ G2=3MBHMNS

ðXm0Þ1=3
: ð40Þ

The spin parameter of the system, which is also denoted by vf here, may be given

approximately by

vf ¼
cJorb=Gþ vM2

BH

m2
0

¼ Gm0X=c3ð Þ�1=3
Qþ vQ2

ðQþ 1Þ2
;

ð41Þ

where we assumed that the spin of the black hole is aligned with the orbital angular

momentum. Because the orbital angular velocity at the onset of merger or at tidal

disruption is given by Gm0X=c3 � 0:05–0.1 for a wide range of binary parameters,

ðGm0X=c3Þ�1=3
takes a narrow range of 2.2–2.7. Thus, as far as we may neglect the

mass and the angular momentum of the remnant material and the energy carried

away by gravitational radiation, vf gives the spin parameter of the remnant black

hole. This expression depends primarily on the mass ratio and the initial spin

parameter of the black hole, and furthermore, explains the pronounced dependence

on the initial spin parameter for a high mass-ratio system.

Numerical simulations suggest that the remnant black hole is not overspun by the

infall of the neutron star, respecting the cosmic censorship conjecture (Penrose
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1969, 2002). Rather, fitting formulae derived in Kyutoku et al. (2011a) predict that

the spin parameter should decrease during merger for nearly-extremal spins as

shown at the right edge of Fig. 21. Simulations of a system with Q ¼ 3 and v ¼
0:97 illustrate that the spin parameter indeed decreases below 0.97 (Lovelace et al.

2013), consistently with the prediction of the fitting formulae. Detailed phe-

nomenological models of both the mass and the spin of the remnant black hole are

provided by Pannarale (2013, 2014).

The magnitude of the spin parameter of the remnant black hole decreases as the

inclination angle increases for a given value of the magnitude of the spin parameter

of the initial black hole (Foucart et al. 2011; Kawaguchi et al. 2015; Foucart et al.

2017). This is because the magnitude of the spin angular momentum, which is a

vectorial quantity, does not increase as sizably as the mass of the remnant black hole

in the presence of the inclination. The magnitude of the spin parameter can even

decrease from the initial value for a large inclination angle (Kawaguchi et al. 2015;

Foucart et al. 2017) in the same manner as the cases with anti-aligned spins shown

in Fig. 21. The direction of the spin of the remnant black hole is approximately

aligned with the total angular momentum of the system right before merger, as most

of the orbital angular momentum is swallowed by the black hole.

3.4.2 Accretion disk, or material remaining outside the black hole

We separate discussions about the remnant disk into two parts. Here in Sect. 3.4.2,

we describe dependence of the disk mass, or the mass of the remnant (see below), on

binary parameters. Thermodynamic variables such as the rest-mass density of the

remnant disk will be discussed later in Sect. 3.4.3.

Regarding the disk mass, early systematic surveys have rather focused on the

total mass of the material remaining outside the black hole, Mr[ rAH
, without

distinguishing bound and unbound components. This quantity can be derived more

accurately than the disk or bound mass, which suffers from a subtle task of

determining the boundary between bound and unbound components. Furthermore,

Mr[ rAH
is found to show clearer correlations with the neutron-star compactness than

the disk or bound mass is. Thus, we base our discussions on Mr[ rAH
.

To date, dependence of Mr[ rAH
on the spin parameter has been studied most

extensively for a qualitative C ¼ 2 polytrope by several independent groups.

Figure 22 plots the fractional baryonic mass of the material remaining outside the

black hole obtained by three independent groups as a function of the spin parameter

of the black hole for systems with Q ¼ 3 and C � 0:145 modeled by the C ¼ 2

polytrope. Care must be taken for the fact that these quantities are measured at

different times in each simulation, and particularly the result for v ¼ 0:75 is inferred

as late as � 25 ms after the onset of merger for a hypothetical value of MNS ¼
1:35M� (Etienne et al. 2009, Fig. 13). Taking this limitation into account, the

results agree approximately for v ¼ 0 (Etienne et al. 2009; Foucart et al. 2011;

Shibata et al. 2012). Figure 22 also shows that Mr[ rAH
increases as the value of the

spin parameter increases for Q ¼ 3 and this equation of state. Specifically, the

values of Mr[ rAH
=MB are approximately proportional to expðbvÞ with b � 2:5–3 for
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a range displayed in Fig. 22. This enables us to reconfirm that the degree of tidal

disruption depends strongly on the spin of the black hole.

Figure 23 plots Mr[ rAH
as a function of the spin parameter of the black hole for

systems with MNS ¼ 1:35M� and RNS ¼ 11:6 km (C ¼ 0:172) modeled by a

piecewise polytrope called HB, which approximates soft nuclear-theory-based

equations of state. This figure again illustrates the importance of the black-hole spin

depicted in Fig. 22. Quantitatively, Mr[ rAH
becomes as large as � 0:1M� for v ¼

0:75 even if the compactness is realistically large with this soft equation of state and

the mass ratio Q is as high as 5. Various subsequent studies have further shown that
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Fig. 22 Summary of the mass of the material remaining outside the black hole, Mr[ rAH
, as a function of

the spin parameter of the black hole for binaries with Q ¼ 3 and C � 0:145 modeled by a C ¼ 2
polytrope computed by three independent groups. The vertical axis shows the fraction of Mr[ rAH

to the
baryon rest mass of the neutron star, MB. Note that these values are measured at different times in each
simulation (see also Foucart 2012). This figure is generated from data of Shibata et al. (2012); Etienne
et al. (2009); Foucart et al. (2011); Lovelace et al. (2013)
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Fig. 23 Mass of the material
remaining outside the black hole
at 10 ms after the onset of
merger as a function of the spin
parameter of the black hole for a
variety of the mass ratio. The
mass and the radius of the
neutron star are fixed,
respectively, to MNS ¼ 1:35M�
and RNS ¼ 11:6 km (C ¼ 0:172)
modeled by a piecewise
polytrope called HB (Read et al.
2009b). This figure is generated
from data of Kyutoku et al.
(2011a)
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large values of the spin parameter allow such significant tidal disruption to occur

even for Q � 7, which corresponds to typical masses of Galactic black holes, �
10M� (Foucart et al. 2013b, 2014; Kyutoku et al. 2015). Conversely, it is highly

unlikely that the neutron star with CJ0:17 is disrupted by a black hole with

MBHJ10M� to leave material of J0:1M� unless the spin parameter is as high as

vJ0:9.

As the inclination angle of the black-hole spin increases, the degree of tidal

disruption and thus the mass of the remnant disk decrease (Foucart et al.

2011, 2013b; Kawaguchi et al. 2015). Figure 24 shows contours for the mass of

the bound material only (not Mr[ rAH
). The masses of the black hole and the neutron

star are fixed to be MBH ¼ 6:75M� and MNS ¼ 1:35M�, respectively, and the

magnitude of the black-hole spin is fixed to be v ¼ 0:75. This figure shows that the

mass of the bound material decreases as the inclination angle increases. A similar

trend holds for the unbound material and thus for the total mass remaining outside

the black hole. Quantitatively, the mass of the bound material decreases from

0:1M� (magenta) to 0:01M� (black) with the increase of the inclination angle by

only � 20�–30� for a given value of the compactness at C.0:17. It has been pointed

out that the mass of the material remaining outside the black hole with inclined

spins is approximately reproduced by a model with an aligned black-hole spin

whose magnitude derives the same radius of the innermost stable (circular or

spherical) orbits as that of the original configuration (Foucart et al. 2013b; Stone

et al. 2013) or, more simply, by a model with an aligned spin whose dimensionless

magnitude is v cos i (Kawaguchi et al. 2015). The effect of the spin orientation has

not been explored systematically over the parameter space, and this is a subject for

future study. Figure 24 also shows that the mass of the bound material decreases as

the compactness of the neutron star increases. We discuss the dependence of

Fig. 24 Contour for the mass of
the bound material (denoted by
Mdisk in this figure) at 10 ms
after the onset of merger on the
compactness-inclination angle
(denoted by itilt in this figure)
plane for binaries with
MBH ¼ 6:75M�, v ¼ 0:75, and
MNS ¼ 1:35M� (Q ¼ 5). The
mass of the unbound material is
excluded. Image reproduced
with permission from
Kawaguchi et al. (2015),
copyright by APS
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Mr[ rAH
on the neutron-star compactness below, going back to the aligned-spin

systems.

Figure 25 plots Mr[ rAH
as a function of the compactness for Q ¼ 2 (left) and

Q ¼ 3 (right). The mass of the neutron star is fixed to be MNS ¼ 1:35M�, and the

compactness is varied by adopting a one-parameter family of piecewise polytropes

(see Kyutoku et al. 2011a for the details). The values of the spin parameter are also

varied systematically. This figure shows that Mr[ rAH
decreases approximately

linearly as the compactness increases until the value decreases to .0:01M�. This

trend holds irrespective of the values of Q or v. Figure 25 also shows that Mr[ rAH

increases steeply as the spin parameter of the black hole increases as already seen in

Figs. 22 and 23. Quantitatively, Mr[ rAH
J0:1M� is achieved for a wide range of

compactness, C.0:18, if the black-hole spin is as high as 0.5 for Q ¼ 2 and 0.75 for

Q ¼ 3.

Although the primary effect of the equation of state is captured by the

compactness of the neutron star, the density profile also affects the susceptibility to

tidal disruption. A comparison performed using a two-parameter family of

piecewise polytropes shows that the mass of the material remaining outside the

black hole decreases by more than a factor of 2 for a centrally-condensed profile of

the neutron star even if the compactness is approximately the same (Kyutoku et al.

2010, 2011b). This is because the central condensation tends to suppress the degree

of tidal deformation and thus tidal disruption is appreciably delayed from the onset

of mass shedding. We note that it has been pointed out that the correlation of

Mr[ rAH
with the tidal deformability, K, is not stronger than that with the

compactness (Foucart 2012; Foucart et al. 2018). Thus, neither the compactness nor

the tidal deformability is fully appropriate to determine the amount of material

remaining outside the black hole.

Figure 26 shows the dependence of Mr[ rAH
on the neutron-star compactness

from another perspective for fixed values of v ¼ 0:75 (left) and v ¼ 0:5 (right). The

mass of the neutron star is fixed to be MNS ¼ 1:35M�. Again, it is found that

Mr[ rAH
increases approximately linearly as the compactness decreases irrespective
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Fig. 25 Mass of the material remaining outside the black hole at 10 ms after the onset of merger for
binaries with MNS ¼ 1:35M� as a function of the compactness, which is varied by adopting a one-
parameter family of piecewise polytropes. The spin parameter of the black hole is also varied. The left
and right panels show the results of systems with Q ¼ 2 and 3, respectively. Image adapted from Kyutoku
et al. (2011a), copyright by APS
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of Q or v. One notable feature that becomes clearly visible in this plot, although

presaged in previous figures, is that the dependence of Mr[ rAH
on the mass ratio, Q,

becomes weak or even inverted from naive expectations at the small compactness of

C.0:15. Analytic estimation in Sect. 1.3 suggests that the degree of tidal disruption

and thus Mr[ rAH
is likely to decrease as the black hole becomes massive, i.e., as Q

becomes high. This indeed holds for systems with a large neutron-star compactness,

CJ0:15, but does not for C.0:15. This fact suggests that the dependence on the

mass ratio is worth investigating in detail.

The dependence of Mr[ rAH
on the mass ratio, Q, has recently been found to

become very weak for very-low-mass and nonspinning black holes (Hayashi et al.

2021). Figure 27 shows Mr[ rAH
as a function of Q for nonspinning black hole–

neutron star binaries with various equations of state. The mass of the neutron star is

fixed to be MNS ¼ 1:35M�. It is clearly shown that the value of Mr[ rAH
levels off at
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Fig. 26 Same as Fig. 25 but for v ¼ 0:75 (left) and v ¼ 0:5 (right). The mass ratio is varied in each plot.
Image adapted from Kyutoku et al. (2011a), copyright by APS

Fig. 27 Mass of the material remaining outside the black hole at 12 ms after the onset of merger as a
function of the mass ratio for binaries with v ¼ 0 and MNS ¼ 1:35M�. Equations of state are varied by
adopting a one-parameter family of piecewise polytropes called HB, H, and 1.25H (Read et al. 2009b;
Lackey et al. 2012). Symbols with different sizes show the result obtained with different grid resolutions
and are not visible for Mr[ rAH

J0:01M� on the scale of this figure. Image reproduced with permission
from Hayashi et al. (2021), copyright by APS
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0.05–0:1M� for Q.2–3, where their precise values depend on the equation of state

(and presumably the black-hole spin). We note that, as we discuss later in

Sect. 3.4.5, Mr[ rAH
is approximately identical to the mass of the remnant disk at

this low-Q saturation regime. In fact, such disappearance of the dependence on

binary parameters may be observed in various regions of the parameter space for

which the degree of tidal disruption increases (Brege et al. 2018; Hayashi et al.

2021) as is also suggested by Fig. 26. By what and how the saturation values of

Mr[ rAH
are determined have not been understood yet and may be counted as one of

the unsolved problems about black hole–neutron star binaries.

Fitting formulae for the mass of the material remaining outside the black hole are

provided by Foucart (2012); Foucart et al. (2018). These fitting formulae are

especially useful for deriving an approximate criterion for tidal disruption. Figure 28

displays the contour above which more than 1% of the baryon rest mass of the

neutron star is left outside the apparent horizon at 10 ms after the onset of merger for

a given value of the neutron-star compactness (denoted by C in this figure) on the Q-

v plane adopting a formula of Foucart et al. (2018). This formula is claimed to be

accurate within � 15% for 1Q 7 and �0:5 v 0:9 for the case in which less

than 30% of the baryon rest mass remains outside the apparent horizon. Because the

equation of state is uncertain and the mass of the neutron star is different among

realistic binaries, we draw contours for various values of the compactness, C, which

is the only finite-size effect of the neutron star taken into account in the formula

adopted here (see Foucart et al. 2018 for another formula based on tidal

deformability). This figure clearly shows that high prograde spins enable tidal

disruption to occur outside the innermost stable circular orbit of massive black holes

for a wide range of the neutron-star compactness. It should be cautioned that,

however, all the previous simulations of black hole–neutron star binaries have not

systematically varied masses of the neutron stars except for a scale-free, qualitative
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C ¼ 2 polytrope. Thus, predictions for MNS.1:2M� or MNSJ1:5M� need to be

taken with particular care.

3.4.3 Thermodynamic properties of the disk

Continuing the discussions in Sect. 3.4.2, we summarize thermodynamic properties

of the remnant disk. For a given value of the mass, the structure and time evolution

of the remnant disk depend primarily on the total mass of the system, m0. This is

because the length scale of the system after merger is proportional to the mass of the

remnant black hole, which agrees approximately with the total mass as we discussed

in Sect. 3.4.1. If we focus on systems with a fixed value of MNS, the total mass of

the system is controlled by the mass ratio as m0 ¼ ð1 þ QÞMNS.

Fig. 29 Profile of the rest-mass density and the location of the apparent horizon on the equatorial plane at
10 ms after the onset of merger for binaries with v ¼ 0:75, MNS ¼ 1:35M�, and RNS ¼ 11:6 km
(C ¼ 0:172) modeled by a piecewise polytrope called HB (Read et al. 2009b). The mass of the black
hole, MBH, is varied. The total mass of the system is 4:05M� (left top, Q ¼ 2), 5:4M� (right top, Q ¼ 3),

6:75M� (left bottom, Q ¼ 4), and 8:1M� (right bottom, Q ¼ 5). The color map shows log10ðq½gcm�3�Þ.
The dashed curves denote isodensity contours of 1010 and 1012gcm�3. Image reproduced with permission
from Kyutoku et al. (2011a), copyright by APS
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Figure 29 displays the profiles of the rest-mass density of the remnant disk on the

equatorial plane for systems with v ¼ 0:75, MNS ¼ 1:35M�, RNS ¼ 11:6 km

(C ¼ 0:172) modeled by a piecewise polytrope called HB but with different values

of MBH (Kyutoku et al. 2011a). This figure shows that the rest-mass density in the

inner region is systematically higher for a smaller value of the total mass.

Quantitatively, the maximum rest-mass density is � 1013gcm�3 for m0 ¼ 4:05M�
(Q ¼ 2) and � 1011gcm�3 for m0 ¼ 8:1M� (Q ¼ 5). This difference cannot be

ascribed to the difference in the mass of the material, because Mr[ rAH
varies only

by a factor of � 2 among the systems presented in this figure. Instead, reflecting the

fact that the typical length scale such as the radius of the innermost stable circular

orbit is smaller for a smaller value of m0, the remnant disk is spatially more

concentrated and the rest-mass density is increased. Conversely, low-density regions

with q.1010gcm�3 extend to a more distant region for larger values of m0. Thus, the

density gradient becomes shallow as the total mass increases.

The angular momentum profile after circularization is slightly sub-Keplerian by

�Oð10%Þ due to pressure support, particularly in the outer part (Foucart et al.

2013b; Lovelace et al. 2013; Foucart et al. 2014). In addition, the disk is not

geometrically thick at its formation. These features are qualitatively different from

those of a geometrically-thick torus with constant specific angular momentum,

which is typically adopted in longterm simulations for black hole–accretion disk

systems (Fernández and Metzger 2013; Just et al. 2015; Siegel and Metzger

2017, 2018; Fernández et al. 2019; Miller et al. 2019a; Fernández et al. 2020).

Although the profiles of the rest-mass density and the angular momentum are

derived reasonably by pure hydrodynamics simulations, determining temperature

and chemical composition of the disk requires implementations of a temperature-

and composition-dependent equation of state and a scheme for neutrino transport.

Such simulations are now becoming available along with gradual sophistication of

the neutrino transport scheme (Deaton et al. 2013; Foucart et al. 2014, 2017;

Kyutoku et al. 2018; Brege et al. 2018; Most et al. 2021a). Figure 30 generated by

Foucart et al. (2014) illustrates a three-dimensional plot of the rest-mass density as

well as the profiles of the electron fraction and the temperature on the meridional

cross section at 5 ms after the onset of merger for a typical model. This simulation is

Fig. 30 Three-dimensional plot of the rest-mass density (left), profile of the electron fraction on the
meridional plane (middle), and that of the temperature in units of MeV (right) at 5 ms after the onset of
merger for a binary with MBH ¼ 7M�, v ¼ 0:8, MNS ¼ 1:4M�, and RNS ¼ 12:7 km (Q ¼ 5, C ¼ 0:163)
modeled by the LS220 equation of state (Lattimer and Swesty 1991). Images repoduced with permission
from Foucart et al. (2014), copyright by APS

123

5 Page 68 of 182 K. Kyutoku et al.



performed with the LS220 equation of state (Lattimer and Swesty 1991) and a

leakage scheme for neutrino emission (but without neutrino absorption).

Maximum temperature in the accretion disk reaches J10 MeV, i.e., J1% of the

rest-mass energy of nucleons. For example, the system shown in Fig. 30 realizes

� 15 MeV (Foucart et al. 2014). Other simulations by an independent group show

that another set of systems with MBH ¼ 5:4M� and MNS ¼ 1:35M� (Q ¼ 4) also

realizes 10–20 MeV (Kyutoku et al. 2018). These values are reasonably expected,

because the temperature of the disk is increased by liberating the kinetic energy of

the radial motion, whose velocity is �Oð0:1cÞ at tidal disruption. Closer inspection

reveals that the temperature is higher for a more compact neutron star, which is

disrupted at a closer orbit to the black hole with higher velocity (Kyutoku et al.

2018). Although the maximum temperature exceeds 10 MeV, the average temper-

ature of the disk is typically 3–5 MeV at the disk formation, because the shock

heating plays a major role only in a limited region of the disk.

The electron fraction of the remnant disk is Ye � 0:1 in most of the region, and it

is increased to 0.2–0.3 from the cold, b-equilibrium value of the neutron star for the

region with high temperature of J10 MeV (Deaton et al. 2013; Foucart et al.

2014, 2017; Kyutoku et al. 2018). The reason for this increase is that the originally

neutron-rich material of the remnant disk formed from the neutron star is protonized

by capture reactions of thermally-produced electron/positron pairs onto nucleons.

The profile of the electron fraction has been found to depend on binary parameters

including equations of state (Foucart et al. 2014; Kyutoku et al. 2018). Systematic

studies for the temperature and the chemical composition of the remnant disk have

not been performed vigorously throughout the parameter space compared to studies

in pure hydrodynamics for the mass and the rest-mass density. These may be one of

the future directions.

In this Sect. 3.4.3, we have reviewed thermodynamic properties of the disk right

after the onset of merger, e.g., at � 10 ms after the disk formation. Longterm

evolution and states at late times are determined by ensuing neutrino cooling and

magnetic-field amplification (see, e.g., Siegel and Metzger 2017; Hossein Nouri

et al. 2018; Fernández et al. 2019; Miller et al. 2019a; Christie et al. 2019). After

the initial circularization stage, the disk temperature will gradually decrease due to

the accretion and neutrino emission unless heating due to the effective viscosity

associated with magnetohydrodynamical turbulence is highly efficient. As the disk

expands and the rest-mass density decreases, the electron fraction will gradually

increase due to weak interactions such as electron/positron captures and neutrino

irradiation (Fujibayashi et al. 2020a, b; Just et al. 2022). In fact, these longterm

evolution processes are partially observed in the simulations introduced above.

However, these simulations are not realistic for J10 ms due to the lack of the

angular momentum transport expected to be driven by magnetohydrodynamical

effects. These topics will be discussed in Sect. 3.5.

3.4.4 Fallback material

When a part of the material outside the black hole becomes unbound as we discuss

in Sect. 3.4.5, some material behind them simultaneously obtains energy but
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remains bound to the remnant black hole. The latter material travels to a distant

region, turns around, joins the remnant disk with shock heating, and may energize

electromagnetic transients such as extended and plateau emission of short-hard

gamma-ray bursts (Rossi and Begelman 2009; Lee et al. 2009; Metzger et al.

2010a; Cannizzo et al. 2011; Kisaka and Ioka 2015; Desai et al. 2019; Ishizaki et al.

2021). Although current numerical-relativity simulations are not capable of tracking

very longterm evolution of the temporally-ejected material for 	 1 s, the fallback

rate may be estimated from instantaneous profiles of the fluid (Chawla et al. 2010;

Kyutoku et al. 2015; Brege et al. 2018) with the aid of extrapolation by analytic

models (Rosswog 2007).

Figure 31 generated by Chawla et al. (2010) (left) and Brege et al. (2018) (right)

shows the mass fallback rate right after tidal disruption in black hole–neutron star

binaries for various systems. The fallback rate is found to obey the power law in

time of / t�5=3 irrespective of the models. This time dependence coincides with that

of tidal disruption events of stars in marginally unbound orbits around supermassive

black holes (Rees 1988; Phinney 1989). Normalization of the fallback rate depends

significantly on the binary system, and � 0:001–0:01M� s�1ðt=1 sÞ�5=3
may

reasonably be expected for the case in which significant tidal disruption occurs

(Kyutoku et al. 2015; Brege et al. 2018).

As we stated in Sect. 3.3, coalescences of circular compact binaries in bound

orbits are fundamentally different from tidal disruption events associated with

hyperbolic encounters. Thus, it is not expected a priori that the fallback rate is given

by a power law with the index of �5=3. A key ingredient for realizing this index is

that the mass of fallback material is distributed uniformly with respect to the

specific energy, ~E (Rees 1988). Actually, the uniform distribution is found to be

approximately realized for bound material with ~E\0 in black hole–neutron star

binaries. Figure 32 shows the distribution at 10 ms after the onset of merger for a

typical system. We exclude material within 200 km around the remnant black hole
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Fig. 31 Left: Mass distribution as a function of the fallback time predicted from data of a simulation for a
binary with Q ¼ 5, v ¼ 0:5 and C ¼ 0:1 (RNS ¼ 20:7 km for a 1:4M� neutron star) modeled by a C ¼ 2

polytrope at different times. The dashed line shows expected t�2=3 behavior. Right: Mass fallback rate
predicted from data of simulations for various black hole–neutron star binaries. Images repoduced with
permission from [left] Chawla et al. (2010); and [right] from Brege et al. (2018), copyright by APS
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from this plot considering that they approximately correspond to disk components,

and the disk outflow is also absent in this simulation. While the amount of

dynamical ejecta with ~E[ 0 decreases as ~E increases, the fallback material with
~E\0 exhibits an approximately flat profile, resulting in the approximate t�5=3

fallback rate. The mechanism that realizes this distribution has not been clarified

yet, and it would be worthwhile to study this topic in more detail (see, e.g., Lodato

et al. 2009 for a study on tidal disruption events).

Because the disk outflow is launched at some point after disk formation (see

Sect. 3.5.2), a part of it will prevent fallback of the material at late times.

Furthermore, mass ejection from the remnant disk itself could produce additional

fallback material. The realistic fallback rate and relevance to observable features

will be determined by interaction of various components. In addition, r-process

heating also modifies the fallback rate (Metzger et al. 2010a; Desai et al. 2019;

Ishizaki et al. 2021). They need further investigations.

3.4.5 Dynamical ejecta

Dynamical ejecta from black hole–neutron star binaries are generated from the

outermost part of the tidal tail and characterized by the high degree of nonsphericity

(Kyutoku et al. 2013). Figure 33 illustrates the rest-mass density of only unbound

material at 10 ms after the onset of merger for a representative case. The dynamical

ejecta typically take a crescent-like shape on the equatorial plane at this instant as

long as the degree of tidal disruption is significant. Quantitatively, they sweep out

only about a half of the orbital plane and are concentrated around the plane with a

half opening angle of � 10�–20� (Kyutoku et al. 2013; Foucart et al. 2017; Brege

et al. 2018). Anisotropy of mass ejection is ascribed to the (not independent) facts

that (i) black hole–neutron star binaries are completely asymmetric systems in terms
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Fig. 32 Mass distribution as a function of the specific energy of material remaining outside the black hole
at 10 ms after the onset of merger for a binary with MBH ¼ 4:05M�, v ¼ 0:75, MNS ¼ 1:35M� and
RNS ¼ 13:6 km (Q ¼ 3, C ¼ 0:147) modeled by a piecewise-polytropic approximation of the H4 equation

of state (Glendenning and Moszkowski 1991; Lackey et al. 2006). Components with ~E\0 and ~E[ 0
represent bound and unbound material, respectively. The material within 200 km around the central black
hole is removed from the plot assuming that it represents an accretion disk. This figure is generated from
data of Kyutoku et al. (2015)
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of the profile of material and (ii) dynamical mass ejection in black hole–neutron star

binaries is driven primarily by tidal torque, which is most efficient in the direction

along the orbital plane. This morphology should be contrasted with more spherical

dynamical ejecta from binary neutron stars, especially equal-mass systems (see, e.g.,

Hotokezaka et al. 2013b). The opening angles depend only weakly on the equation

of state except for the cases in which tidal disruption occurs only marginally

(Kyutoku et al. 2015), and we present its simplified explanation in Appendix C.2.

Anisotropic mass ejection may induce various potentially-observable features

(Kyutoku et al. 2013, 2015). Possible effects on electromagnetic emission are

discussed later in Sect. 4.1. One kinematic consequence is recoil motion of the

remnant black hole (see Rosswog et al. 2000 for early discussions in the case of

asymmetric binary neutron stars). Because the dynamical ejecta escape from the

system carrying a net linear momentum with a typical center-of-mass velocity of

0.1–0.2c, the remnant black hole obtains the recoil velocity in the direction opposite

to the ejecta. The center-of-mass velocity of the remnant black hole may become as

high as � 1000kms�1, particularly if the system experiences significant tidal

disruption. We note that significant tidal disruption suppresses gravitational-wave

recoil (Shibata et al. 2009), which might be efficient in the final plunge phase in the

absence of tidal disruption (Wiseman 1992; Blanchet et al. 2005).

As they escape from the gravitational binding of the remnant black hole, the

expansion of the dynamical ejecta gradually becomes homologous (Kyutoku et al.

2015). In the course of this transition, the crescent-like shape should change to a

-1000  0  1000
x (km)

-1000

 0

 1000

y 
(k

m
)

 5

 v=0.5c

 6

 7

 8

 9

 10

-1500 -1000 -500  0  500  1000  1500
x (km)

 0

 500

 1000

 1500

z 
(k

m
)

 5
 6
 7
 8
 9
 10

 v=0.5c

Fig. 33 Profile of the rest-mass
density and the velocity of the
unbound material on the
equatorial plane (top) and the
meridional plane (bottom) at
10 ms after the onset of merger
for a binary with
MBH ¼ 4:05M�, v ¼ 0:75,
MNS ¼ 1:35M�, and RNS ¼
13:6 km (Q ¼ 3, C ¼ 0:147)
modeled by a piecewise-
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(Glendenning and Moszkowski
1991; Lackey et al. 2006).
Image reproduced with
permission from Kyutoku et al.
(2013), copyright by APS
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half-disk-like shape, because the inner region is decelerated further by the influence

of a deep gravitational potential. The morphology of the ejecta may also be modified

by the radioactive decay heat of r-process elements (Darbha et al. 2021, see also

Rosswog et al. 2014 for binary neutron stars in Newtonian gravity). To derive

precise observational features related to the ejecta morphology, (not necessarily

fully general relativistic) longterm evolution for 1–10 s is necessary. On a long time

scale of 10–100yr which depends not only on the ejecta property but also on the

density of the interstellar medium, the dynamical ejecta as well as the disk outflow

(see Sect. 3.5.2) are decelerated by the interstellar medium and eventually dissolve

into it (Nakar and Piran 2011).

Dynamical ejecta from black hole–neutron star binaries can take a wide range of

mass depending on binary parameters (Kyutoku et al. 2015). Figure 34 displays the

mass of the dynamical ejecta, Mej, for various black hole–neutron star binaries. If

tidal disruption does not occur, the ejecta mass is essentially zero. This is a typical

outcome for binaries with a high mass ratio, a low black-hole spin, and/or a large

neutron-star compactness such as those detected by and/or reported with gravita-

tional waves during the LIGO-Virgo O3 (Abbott et al. 2021a, b). By contrast, the

mass can easily exceed 0:01M� if tidal disruption is significant. Notably, Lovelace

et al. (2013) reported that ð0:26 � 0:16ÞM�ð1:4M�=MNSÞ may be ejected from a

system with Q ¼ 3, C ¼ 0:144 modeled by a C ¼ 2 polytrope, and a very high

black-hole spin of v ¼ 0:97. These large values should be compared with dynamical

ejecta from binary neutron stars, whose mass is limited to .0:02M� (see

Hotokezaka et al. 2013b; Sekiguchi et al. 2015, 2016; Kiuchi et al. 2019; Vincent

et al. 2020, for reports of J0:01M�) unless the mass ratio is higher than an extreme

value (as binary neutron stars) of � 1:5 (Dietrich et al. 2017b).

Because the shock interaction plays only a minor role in the ejection process, the

dynamical ejecta keep extreme neutron richness of the cold neutron star (Deaton

et al. 2013; Foucart et al. 2014, 2017; Kyutoku et al. 2018; Brege et al. 2018;

Foucart et al. 2019b). The left panel of Fig. 35 shows the mass distribution as a

function of the electron fraction for simulations with neutrino irradiation (Kyutoku

et al. 2018). This figure shows that the electron fraction is as low as Ye � 0:05–0.1

preserving original values of the neutron-star material even if the neutrino
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irradiation is taken into account in numerical simulations. This should again be

compared with the dynamical ejecta from binary neutron stars, the range of whose

electron fraction can be extended up to Ye � 0:4 by the shock heating and associated

weak interactions, i.e., electron/positron captures and neutrino irradiation

(Sekiguchi et al. 2015; Palenzuela et al. 2015; Foucart et al. 2016a; Sekiguchi

et al. 2016; Radice et al. 2016; Lehner et al. 2016; Bovard et al. 2017; Radice et al.

2018; Vincent et al. 2020). There are two reasons for this significant difference.

First, because the dynamical ejecta from black hole–neutron star binaries do not

experience significant shock heating, the temperature is kept so low that the

electron/positron pairs are not efficiently produced. Second, the dynamical ejecta

are located at the distant region when the circularized accretion disk starts to emit a

copious amount of neutrinos. Thus, the neutrino flux is low when neutrinos catch up

the dynamical ejecta. These two facts do not allow the dynamical ejecta to increase

the electron fraction. As a minor effect, equations of state that predict small neutron-

star radii tend to give slightly low electron fraction. This correlation may stem from

the correlation between the symmetry energy of the nuclear matter and the radius of

the neutron star (Lattimer and Prakash 2001).

The low electron fraction of the dynamical ejecta indicates that the yield of

subsequent nucleosynthesis is dominated by heavy r-process elements with the mass

number J130, i.e., beyond the second peak. This expectation is confirmed in the

right panel of Fig. 35 generated by Roberts et al. (2017), which shows the

abundance pattern of the nucleosynthesis for selected models of black hole–neutron

star binaries. The abundance pattern is robust against variation of binary parameters,

although the detailed features depend on nuclear physics inputs (see, e.g., Mendoza-

Temis et al. 2015; Mumpower et al. 2016; Wu et al. 2016; Zhu et al. 2021).

One intriguing question may be as follows: ‘‘Do the dynamical ejecta or the disk

outflow dominate the mass of the ejected material?’’ This is important for

understanding abundance of r-process elements and emission features of the
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kilonova/macronova for black hole–neutron star binaries (see also Sect. 3.5). In the

case of binary neutron stars, it is strongly believed that the disk outflow dominates

the dynamical ejecta from theoretical calculations and observations of AT 2017gfo

(see, e.g., Kasen et al. 2017; Shibata et al. 2017a; Perego et al. 2017; Villar et al.

2017).

The answer for black hole–neutron star binaries may be that it depends on the

mass ratio. Figure 36 compares the mass of the dynamical ejecta with that of the

remnant disk for various systems with MNS ¼ 1:35M�. This figure indicates that the

mass of the dynamical ejecta is correlated with that of the bound material in a

manner dependent on the mass ratio for a parameter range depicted here,

specifically 3Q 7. It should be cautioned that, however, the neutron-star mass

is not varied in Fig. 36. In fact, most simulations of black hole–neutron star binaries

have focused on the plausibly typical value of MNS.1:35–1:4M� to date. Further

investigations are required to reveal precise dependence on binary parameters

(Foucart et al. 2014). In particular, high mass-ratio systems with Q[ 7 should also

be investigated systematically. Accordingly, the following discussions need to be

understood with this caveat in mind.

For high mass-ratio systems QJ5, the mass of the dynamical ejecta depends

relatively weakly on the mass of the disk. For example, they become comparable at

Mbd � Mej � 0:02M� for Q ¼ 7. Presuming that � 30% could be ejected from the

remnant disk (see Sect. 3.5.2), dynamical mass ejection could be a dominant

mechanism for black hole–neutron star binaries with QJ7, particularly for the case

in which the tidal disruption is moderate (that is, the amount of material remaining

outside the black hole is not very large). As we will discuss later in Sect. 3.5.2, the

realistic fraction of the material ejected from the remnant disk is estimated to be

15%–30% from various simulations.
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As the mass ratio decreases, the fraction of the disk outflow increases. Figure 36

shows that the mass of the dynamical ejecta is typically only � 5%–20% of the disk

mass for Q� 3–5. Thus, it is likely that the amount of the disk outflow becomes

comparable to that of the dynamical ejecta. This trend is enhanced for the regime of

very-low-mass black holes, or equivalently, very low mass ratios. The mass of the

dynamical ejecta decreases to .10�3 M� for nonspinning black holes with Q.3

(Foucart et al. 2019b; Hayashi et al. 2021; Most et al. 2021a), although the remnant

disk can be as massive as � 0:05–0:1M�. For these systems, the disk outflow will

dominate the amount of the ejected material.

The mass ratio also governs the average velocity of the dynamical ejecta,

although significant dispersion is found associated with variations of other binary

parameters (Kyutoku et al. 2015; Foucart et al. 2017; Hayashi et al. 2021). Here,

the average velocity is defined from the kinetic energy, Tkin, and the mass, Mej, byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tkin=Mej

p
. Quantitatively, the asymptotic velocity is as high as � 0:2c for high

mass-ratio systems with Q� 5–7, for which corresponding kinetic energy reaches

� 1052 erg. As the mass ratio decreases to Q.1:5, the asymptotic velocity decreases

to � 0:1c and the kinetic energy decreases by orders of magnitude due to the small

value of the ejecta mass (Foucart et al. 2019b; Hayashi et al. 2021).

The velocity of the dynamical ejecta is distributed approximately symmetrically

about the averaged value and does not extend to high velocity of J0:5c (Kyutoku

et al. 2015; Brege et al. 2018; Most et al. 2021a, see also Rosswog et al. 2013 for

early Newtonian work). Figure 37 shows the mass distribution as a function of the

velocity for various black hole–neutron star binaries (Kyutoku et al. 2015), which is

directly related to the ~E[ 0 side of Fig. 32. The cutoff features on the highest-

velocity side in these distributions are distinct from the so-called fast tail found in

binary-neutron-star mergers, which may extend to J0:8c (Hotokezaka et al.
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2013b, 2018; Radice et al. 2018). This difference may be reflected in electromag-

netic counterparts, particularly in the early part of kilonova/macronova remnants as

we discuss in Sect. 4. We note that, although Fig. 37 is derived by analyzing only

the material on the equatorial plane, the conclusion remains the same even if all the

dynamical ejecta are taken into account (Brege et al. 2018; Most et al. 2021a).

Fitting formulae for the mass of the dynamical ejecta are provided by Kawaguchi

et al. (2016); Krüger and Foucart (2020), where Kawaguchi et al. (2016) also derive

a formula for the velocity. A fitting formula for the disk outflow is also proposed

based on the fitting formulae for the mass of the material remaining outside the

black hole and for the dynamical ejecta (Raaijmakers et al. 2021), while the

efficiency of the ejection depends on the mass and the compactness of the disk and

thus is highly uncertain (see Sect. 3.5.2).

3.5 Postmerger activity

The remnant disk is considered to evolve via neutrino emission and magnetohy-

drodynamical turbulence on a long viscous time scale. In a wide range of

astrophysics studies, the kinematic shear viscosity m in the accretion disk is often

parametrized by the so-called alpha parameter am as (Shakura and Sunyaev 1973)

m ¼ amcsH; ð42Þ

where cs and H are the sound speed and the scale height of the disk, respectively.

The value of am is believed to be determined by magnetohydrodynamical processes

as we describe in Sect. 3.5.3, and recent studies suggest am � 0:01–0.1 is reasonable

(Fernández et al. 2019; Christie et al. 2019). If we presume such values of am, the

viscous time scale is estimated by

tvis :¼
R2

m
� 0:33s

am
0:03

� ��1 cs
0:1c

� ��1 H=R

1=3

� ��1 R

100 km

� �
; ð43Þ

where R is the cylindrical radius of the disk. This is much longer than the dynamical

time scale of the disk,

tdyn :¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

GMBH;f

s
¼ 5:5 ms

R

100 km

� �3=2
MBH;f

10M�

� ��1=2

: ð44Þ

Furthermore, tvis becomes even longer for an outer region of the disk. This com-

parison indicates that a longterm simulation of Oð1Þ s 	 tdyn is required for

understanding the evolution of the accretion disk. Because the evolution is also

governed by neutrino emission, implementation of neutrino transfer is another key

ingredient for quantitative exploration. These facts make the physical postmerger

simulation computationally challenging.

To date, only a few work have reported longterm simulations of an accretion disk

surrounding a black hole in full general relativity i.e., numerical relativity, (Shibata

and Sekiguchi 2012; Foucart et al. 2015; Fujibayashi et al. 2020a, b; Most et al.

2021b), although many work have been done in (pseudo-)Newtonian gravity
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(Setiawan et al. 2004; Lee et al. 2005; Setiawan et al. 2006; Fernández and Metzger

2013; Just et al. 2015; Fernández et al. 2020) or with adopting a fixed background

spacetime (Shibata et al. 2007; Siegel and Metzger 2017, 2018; Fernández et al.

2019; Miller et al. 2019a; Christie et al. 2019), in some cases starting with initial

conditions taken from merger simulations (Cowling approximation; Hossein Nouri

et al. 2018). In this Sect. 3.5, we review the current status of our understanding for

neutrino emission, the disk outflow powered by the viscous heating, and the effect

of magnetic fields, focusing on the results obtained by fully general-relativistic

simulations. We caution that magnetohydrodynamics simulations in numerical

relativity as long as 1 s have not been reported and are needed for robust

understanding of the postmerger evolution in the future (see Most et al. 2021b, for a

recent simulation up to � 350 ms).

3.5.1 Neutrino emission

The hot and massive remnant accretion disk emits a copious amount of neutrinos

primarily via electron/positron captures onto nucleons (Deaton et al. 2013; Foucart

et al. 2014; Kyutoku et al. 2018, see also Janka et al. 1999 for pioneering study in

Newtonian gravity). If a massive accretion disk of J0:1M� is formed around a

rapidly spinning black hole with .10M�, the luminosity reaches J1053erg.s�1 at

� 10 ms after the onset of merger, when the tidal tail collides with itself and forms a

remnant disk. The order of the peak luminosity is the same as that found for stellar

core collapse and binary-neutron-star mergers. The emission efficiency is a few to

several percent of the accretion rate onto the black hole for a disk with the

maximum rest-mass density of J1011gcm�3 and increases as the spin parameter of

the remnant black hole increases (Fujibayashi et al. 2020a, b). Because the optical

depth of the disk to neutrinos can exceed unity (see, e.g., Deaton et al. 2013;

Foucart et al. 2015; Hossein Nouri et al. 2018), the neutrino luminosity is saturated

to � 1053erg.s�1 in the early stage of the postmerger evolution until the disk

becomes optically thin to neutrinos as a result of the accretion onto the black hole

(see also Lee et al. 2005; Setiawan et al. 2006).

Among the six species of neutrinos, electron antineutrinos always carry away the

largest amount of energy. Figure 38 generated by Foucart et al. (2014) shows a

typical example of luminosity evolution in an early stage of the postmerger

accretion disk (Foucart et al. 2014). Quantitatively, the peak luminosity of electron

antineutrinos typically reaches J1053erg.s�1 if the accretion disk with J0:1M� is

formed, and it is higher than the luminosity of electron neutrinos by a factor of � 2.

The reasons for the dominance of electron antineutrinos are twofold, and both are

ascribed to the neutron-rich composition of the remnant disk inherited from the

neutron star. First, the number of capture reactions is larger for positrons than for

electrons, because the remnant disk equilibrates toward a protonized state from a

neutron-rich state. Second, the neutron-rich disk is optically thicker to electron

neutrinos than to electron antineutrinos. This feature puts the neutrinosphere (an

analog of the photosphere for photons) for electron antineutrinos at high-

temperature regions close to the midplane of the disk. Thus, the number of emitted
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neutrinos is larger and the energy of individual neutrinos is higher for electron

antineutrinos than for electron neutrinos. The dominance in number should be

contrasted with neutrino emission from core-collapse supernovae, in which electron

neutrinos are larger in number than electron antineutrinos due to continuous

deleptonization. This difference may introduce differences in neutrino oscillations

such as matter-neutrino resonances (Malkus et al. 2012, see also the end of this

Sect. 3.5.1). Muon and tau neutrinos and their antineutrinos, denoted collectively by

‘‘x’’ neutrinos in the context of stellar core collapse and compact binary mergers, are

typically dimmer by more than an order of magnitude than two dominant species.

This is because the x neutrinos are emitted only via neutral-current processes and

the temperature of the disk is relatively low as described in Sect. 3.4.3.

More precisely, the energy of individual neutrinos is the lowest for electron

neutrinos, the middle for electron antineutrinos, and the highest for x neutrinos.

Quantitatively, for example in the case of MBH ¼ 5:4M�, v ¼ 0:75, and MNS ¼
1:35M� (Q ¼ 4) shown in Fig. 39, the average values of the energy for electron

neutrinos, electron antineutrinos, and x neutrinos are 8, 11, and 13 MeV,

respectively, at 20 ms after the onset of merger, depending weakly on the equation

of state (Kyutoku et al. 2018). The average values of neutrino energy owe their

hierarchy to the optical depth of the disk to each species of neutrinos described

above. That is, the average values reflect the location and the temperature of the

neutrinosphere for each species. We caution that the energy of neutrinos is derived

only approximately by the total energy and number of neutrinos in these

simulations. Quantitative estimation of the neutrino energy requires a multienergy

transport scheme, which has never been adopted in simulations of black hole–

neutron star binaries. Studies such as the one conducted by Foucart et al. (2020) for

binary neutron stars are necessary.

The peak neutrino luminosity does not always increase with the increase of the

disk mass, because the temperature can be lower for a more massive disk (Kyutoku
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et al. 2018). As we discussed in Sect. 3.4.2, the disk mass is smaller for a more

compact neutron star if the other binary parameters are fixed. However, as we

discussed in Sect. 3.4.3, the temperature tends to be higher for a more compact

neutron star, because tidal disruption occurs at an orbit closer to the black hole, and

reflecting higher velocity at the closer orbit, the shock interaction results in higher

temperature. As the emission rate of energy via the electron/positron capture is

approximately proportional to T6 (Fuller et al. 1985), the temperature, T, plays a

more decisive role in neutrino emission than the disk mass or the rest-mass density.

To date, no inspiral-merger-postmerger simulation in neutrino-radiation hydro-

dynamics has incorporated well-resolved magnetohydrodynamical or viscous

heating of the disk, and thus the luminosity for J10 ms after the onset of merger

is likely to be underestimated (but see also Most et al. 2021a, b, for the effort). In

reality, longterm neutrino emission is controlled by magnetically-induced viscous

heating, which compensates the neutrino cooling (Lee et al. 2005; Setiawan et al.

2006). Magnetohydrodynamics simulations in the Cowling approximation found

that magnetically-induced turbulent viscosity enhances the neutrino luminosity by a

factor of � 2 for initial � 50 ms if the magnetic-field strength is J1015G at the

maximum inside the accretion disk (Hossein Nouri et al. 2018). Further longterm

simulations have been performed in viscous-hydrodynamics numerical-relativity

simulations in axisymmetry, which are described in Sect. 3.5.2 with a particular

emphasis on the disk outflow (Fujibayashi et al. 2020a, b). Generally speaking, the

neutrino luminosity is higher than 1053 erg s�1 only in the initial 10–100 ms and

decreases to .1050 erg s�1 at � 1 s after the disk formation, because the time scale

of the weak interaction becomes too long due to the viscous disk expansion. Thus, it

is not very likely that neutrino pair annihilation (Rees and Meszaros 1992, see also

the next paragraph) can drive an ultrarelativistic jet for the entire duration of short-

hard gamma-ray bursts, which is typically 0.1–1 s (see, e.g., Nakar 2007; Berger

2014 for reviews), in black hole–neutron star binary coalescences. It should also be

noted that neutrino-driven winds have not been observed in numerical-relativity

simulations without viscosity (Kyutoku et al. 2018). Neutrino absorption is not
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found to enhance the mass of the viscous disk outflow, either, in numerical-relativity

simulations with viscosity (Fujibayashi et al. 2020a).

We should mention two neutrino processes that have never been incorporated in

numerical-relativity simulations of black hole–neutron star binaries as a topic for

future investigations. One is the neutrino pair annihilation, which could power an

ultrarelativistic jet (Mochkovitch et al. 1993; Janka et al. 1999; Birkl et al. 2007;

Zalamea and Beloborodov 2011). Although this process may be handled

semiquantitatively within the moment formalism (Fujibayashi et al. 2017, 2018),

solving Boltzmann’s equation directly will be valuable for incorporating precise

angular dependence of neutrinos (see, e.g., Cardall et al. 2013; Shibata et al. 2014

for approaches in numerical relativity). Monte-Carlo neutrino-radiation transport is

also useful to incorporate pair annihilation (Foucart et al. 2020). The other is the

neutrino oscillation, which could modify nucleosynthetic yields for some part of the

ejecta (Malkus et al. 2012, 2016; Wu and Tamborra 2017; Wu et al. 2017; Padilla-

Gay et al. 2021; Li and Siegel 2021). Its modeling will require us to address the

challenging task of solving quantum kinetic equations in a dynamical spacetime

(see, e.g., Richers et al. 2019 for relevant work). The so-called fast flavor

conversion is partially incorporated in a disk simulation in a fixed, Kerr background

(Li and Siegel 2021).

3.5.2 Disk outflow

The long time scale of J1 s for the evolution of the remnant disk makes its accurate

simulation a challenging task. In particular, because magnetohydrodynamic

instabilities are often characterized by a short wavelength and magnetohydrody-

namical turbulence can be maintained only in three-dimensional simulations (see

Balbus and Hawley 1998 for reviews), the computational cost is extremely high if

we try to study the longterm evolution of the remnant disk by magnetohydrody-

namics simulations irrespective of whether the gravity is Newtonian or relativistic.

To save computational costs, it is customary to adopt viscous hydrodynamics with a

value of am chosen phenomenologically to reproduce results of high-resolution

magnetohydrodynamics simulations. Here, we need to keep in mind that this

prescription does not reproduce all of the magnetohydrodynamical effects in a

faithful manner (see also the final paragraph of Sect. 3.5.2).

Numerical-relativity simulations of black hole–accretion disk systems have

recently been performed in two-dimensional, axisymmetric neutrino-radiation

viscous hydrodynamics (Fujibayashi et al. 2020a, b). Initial conditions of these

work are given by an axisymmetric equilibrium disk surrounding a black hole

(Shibata 2007). While the entropy per baryon is taken to be constant throughout the

disk, the profiles of the angular momentum and the electron fraction are modeled by

functions motivated by results of inspiral-merger-postmerger simulations of black

hole–neutron star binaries in neutrino-radiation hydrodynamics (Kyutoku et al.

2018). The equation of state is given by the DD2 equation of state for high density

(Banik et al. 2014) and by the Helmholtz equation of state for low density (Timmes

and Swesty 2000). In the following, we describe properties of the viscous disk

outflow investigated in Fujibayashi et al. (2020a, b, see also Fernández and Metzger
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2013; Just et al. 2015 for pioneering pseudo-Newtonian simulations). We focus

mainly on the results for the fiducial value of am ¼ 0:05.

In the early stage of the postmerger evolution, most of the internal energy

generated by the viscous heating is consumed by the neutrino emission from the

accretion disk. The viscous disk outflow is insignificant during the stage in which

the neutrino cooling is efficient. As the temperature and the rest-mass density

decrease due to the viscous disk expansion and the mass accretion onto the black

hole, the time scale for weak interactions becomes long. Once it exceeds the viscous

time scale of Oð1Þ s, the internal energy generated by the viscous heating increases

the entropy in the innermost region, because the neutrino emission becomes

inefficient. As shown in Fig. 40, the entropy gradient activates convective motion so

that the disk begins to expand significantly at � 0:5 s after the start of viscous

evolution. The viscous disk outflow sets in as well due to the energy transport

associated with the convection. Because the time scale of the convective motion,

� 10 ms, is much shorter than the viscous time scale, the outer part of the disk

immediately gains energy once the neutrino cooling becomes inefficient.

The viscous outflow from the remnant disk of black hole–neutron star binary

mergers typically ejects 15%–30% of the initial disk material (see also, e.g., Siegel

Fig. 40 Profile of the rest-mass density (left top), the temperature in units of MeV (right top), the entropy
per baryon in units of the Boltzmann constant (left bottom), and the electron fraction (right bottom) at 1 s
(left) and 2 s (right) after the start of viscous evolution for a 0:1M� disk surrounding a 3M� black hole
with v ¼ 0:8. The size of the drawing area is 300 m for the left top panel and 2 km for the others. The
alpha parameter am is taken to be 0.05. Image reproduced with permission from Fujibayashi et al. (2020a),
copyright by the authors
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and Metzger 2018; Fernández et al. 2019; Christie et al. 2019; Fernández et al.

2020, for a wider range of predictions). The precise fraction of the ejected mass

depends on the physical condition of the black hole–accretion disk system such as

the mass and the compactness of the disk as well as the effective viscosity

(Fujibayashi et al. 2020a, b). In particular, the higher viscosity, or equivalently the

larger value of the alpha parameter, results in the larger fraction. The top panel of

Fig. 41 shows the time evolution of the mass ejected from the system (Fujibayashi

et al. 2020a). This figure shows that the amount of ejected material increases

appreciably as the value of am increases (compare K8, K8h, and K8s). Thus, accurate

determination of the magnitude of the kinematic viscosity is important to predict

quantitatively the amount of the disk outflow. Physically, it is necessary to clarify

how the magnetorotational instability enhances the turbulence (see Sect. 3.5.3).

The velocity of the viscous disk outflow is typically 0.05–0.1c, depending only

weakly on the physical condition of the system. This value is smaller than that for

the dynamical ejecta, because this outflow is driven primarily from the outer region
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Fig. 41 Time evolution of the mass (top) and the electron fraction (bottom) of the material ejected from a
0:1M� disk surrounding a 3M� black hole for several initial configurations and three values of am. The
initial radius of the disk is � 180 km, and the spin parameter of the black hole v is 0.8 except for the
model denoted by K6 with v ¼ 0:6. Note that the scales of the horizontal axes are different between two
panels. Image reproduced with permission from Fujibayashi et al. (2020a), copyright by the authors
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of the disk, where the typical velocity scale is smaller than the orbital velocity at

tidal disruption during merger. The viscous disk outflow is driven nearly

isotropically except for a narrow polar region, into which the angular momentum

barrier prohibits the penetration of the material.

Although the black hole–accretion disk system does not host a strong neutrino

emitter such as the hot and massive neutron star, the average electron fraction of the

disk increases to Yeh i � 0:3 in tvis � 0:5 s from the onset of viscous disk evolution,

and the viscous disk outflow is also characterized by relatively high electron fraction

if it is launched later than tvis (see below for the discussion about the case of rapid

launch). The increase of the electron fraction is ascribed to the relaxation to the

equilibrium of electron/positron captures onto nucleons. Because the rest-mass

density of the disk decreases to q.109gcm�3 prior to the launch of the outflow in

this case, the degeneracy of electrons is not strong with kT � 2 MeV where k is the

Boltzmann constant. The bottom panel of Fig. 41 displays the time evolution of the

average electron fraction of the ejected material and shows that the average electron

fraction is higher than 0.25 for all the cases studied in Fujibayashi et al. (2020a).

Although neutrino irradiation from the disk itself helps to increase the electron

fraction by � 0:05, this works only in an early evolution stage of .0:1 s and is not a

key ingredient for increasing the electron fraction of the disk outflow. This fact is

found by comparing models K8 (neutrino irradiation is taken into account) and K8n

(not taken into account) in the bottom panel of Fig. 41. Because the rest-mass

density is lower for disks surrounding more massive black holes as we have

discussed in Sect. 3.4.3, the electron fraction is even higher due to the weaker

degeneracy of electrons (Fujibayashi et al. 2020b). An extensive study of the

dependence of the electron fraction on various physics inputs is performed within

pseudo-Newtonian gravity by Just et al. (2022).

Reflecting the relatively high value of the electron fraction, the r-process

nucleosynthesis in the viscous disk outflow does not efficiently produce heavy r-
process elements with the mass number J130, i.e., beyond the second peak.

Figure 42 shows the mass distribution as a function of three important quantities

which control the production of the heavy r-process elements, namely the electron

fraction, the entropy per baryon, and the expansion timescale of the ejected material.

According to the criterion proposed in Hoffman et al. (1997), the viscous disk

outflow considered here is not capable of producing abundant heavy r-process

elements with the mass number J130. Indeed, results of nucleosynthesis

calculations shown also in Fig. 42 indicate that the viscous disk outflow dominantly

produces transiron and light r-process elements with the mass number � 50–130,

and the fraction of heavy r-process elements with the mass number J130 is limited.

This yield indicates that, if the viscous disk outflow is the dominant source of the

mass ejection for a black hole–neutron star binary, the resultant abundance may not

resemble the solar r-process pattern. This particularly applies to black hole–neutron

star binaries with Q.3, for which dynamical mass ejection is inefficient in

comparison with the disk formation (see Sect. 3.4.5). For black hole–neutron star

binaries with QJ5, the neutron-rich dynamical ejecta may contribute substantially

to the yield, and thus the abundance pattern may be inclined to heavy r-process
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elements. Suitable superposition of the dynamical ejecta and the viscous disk

outflow might reproduce the solar r-process pattern (Just et al. 2015), and it would

be worthwhile to investigate whether this can be realized by realistic black hole–

neutron star binaries.

A word of caution is necessary here. Although the fractional mass and the

velocity of the disk outflow agree semiquantitatively among various simulations, the

electron fraction is vigorously debated (Fernández and Metzger 2013; Just et al.

2015; Siegel and Metzger 2018; Fernández et al. 2019, 2020, see Just et al. 2022 for

a detailed investigation). In particular, if the material is ejected as early as .0:1 s

after merger, the electron fraction of the disk outflow is unlikely to be increased to

Yeh iJ0:25, because the equilibrium of electron/positron captures is not achieved

for this short time scale. In the framework of viscous hydrodynamics, the rapid mass

ejection can be realized by adopting a large value of the alpha parameter of amJ0:1.

Indeed, the average electron fraction of the viscous disk outflow is found to be as

low as Yeh i � 0:25 if such a large value of am is adopted (Fujibayashi et al.

2020a, b). Thus, the electron fraction is likely to be determined by the realistic

process of mass ejection, which is still not well-understood. The electron fraction of

the disk outflow also decreases if the disk mass is small, because the outflow is
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Fig. 42 Mass distribution as a function of the electron fraction (left top), the entropy per baryon (right
top), and the expansion time scale (left bottom) for the viscous outflow from a 0:1M� disk with the initial
radius � 180 km surrounding black holes with v � 0:8 and various masses. The alpha parameter am is
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of the r-process nucleosynthesis. Image reproduced with permission from Fujibayashi et al. (2020b),
copyright by the authors
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launched earlier and the material does not spend a long time for increasing the

electron fraction.

Precise strength of the effective viscosity can be understood only by high-

resolution magnetohydrodynamics simulations performed with realistic magnetic-

field geometry. The rapid ejection may occur in the presence of hypothetical,

coherent magnetic fields right after merger via the magnetic winding and the

Lorentz force (Fernández et al. 2019). Indeed, fully-relativistic magnetohydrody-

namics simulations of black hole–neutron star binary mergers throughout the

coalescence indicated enhancement of the effective viscosity associated with

magnetically-induced turbulence (Kiuchi et al. 2015b). We discuss the current

status of magnetohydrodynamics simulations in numerical relativity in Sect. 3.5.3.

3.5.3 Magnetic activity

Magnetohydrodynamics simulations (with a sufficiently high resolution) are

indispensable for clarifying not only the disk outflow and accompanying r-process

nucleosynthesis but also the mechanism of short-hard gamma-ray bursts. It is

strongly believed that the effective viscosity in the accretion disks stems from

turbulence induced by the magnetorotational instability (Balbus and Hawley 1991).

Magnetic winding and subsequent magnetic braking can also contribute to

transporting the angular momentum inside the differentially-rotating remnant disk

and may drive the mass accretion. These magnetic effects are always active in

accretion disks and govern their longterm evolution. If the magnetic field amplified

in the accretion disks by the magnetohydrodynamic instabilities gives rise to a

strong and globally-coherent configuration penetrating the black hole, the Bland-

ford–Znajek mechanism could extract rotational kinetic energy of the black hole

and launch an ultrarelativistic jet (Blandford and Znajek 1977; Mészáros and Rees

1997). Furthermore, as we discussed in the end of Sect. 3.5.2, magnetic-field

configurations may be the key for determining the timing at which the disk outflow

is launched. For example, the magnetocentrifugal effect (Blandford and Payne

1982) with the field lines anchored in the inner region of the disk can contribute to

the disk outflow.

If the neutron star is seeded with strong dipolar magnetic fields aligned with the

orbital angular momentum of the binary at the outset, a collimated outflow with

possibly ultrarelativistic terminal velocity may be launched from the remnant black

hole–disk system (Paschalidis et al. 2015). Figure 43 generated by Paschalidis et al.

(2015) illustrates the rest-mass density and the structure of magnetic fields for a

system with Q ¼ 3, v ¼ 0:75, C ¼ 0:145 modeled by a C ¼ 2 polytrope, and the

initial dipolar magnetic field reaching up to � 1017 Gð1:4M�=MNSÞ in the stellar

interior. Strong magnetic fields are helpful for resolving the magnetorotational

instability in the accretion disk with a sufficient number of grids, and the magnetic

stress in this system is found to correspond to am � 0:01–0.04. Although this value is

broadly consistent with results obtained by numerical studies of other similar

systems (see, e.g., Kiuchi et al. 2018; Fernández et al. 2019), the value of am has not

yet settled due to the difficulty in achieving convergence in three-dimensional
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magnetohydrodynamics simulations. Actually, it is not claimed that the magne-

torotational instability is resolved in Paschalidis et al. (2015).

The results of Paschalidis et al. (2015) suggest that strong poloidal magnetic

fields on a large scale may be essential for driving an ultrarelativistic jet in the low-

density polar region, which may become force-free in the real world. While

differential rotation of the tidal tail amplifies the toroidal field after tidal disruption,

the poloidal component still persists and connects distinct portions of the remnant

disk. The differential rotation of the disk continues to twist the poloidal component

in the polar region, and the amplified toroidal field eventually overcomes the ram

pressure and establishes a funnel-like, low-density environment. A collimated and

mildly-relativistic outflow is driven in this region with the Lorentz factor of � 1:2–

1.3 (equivalently, � 0:6c) and the opening angle of � 20�. However, the

acceleration cannot be fully tracked to the terminal velocity, because a force-free

environment cannot be resolved and, as a result, the acceleration to ultrarelativistic

velocity close to the speed of light is prohibited in magnetohydrodynamics

simulations. Despite this limitation, the terminal Lorentz factor in Paschalidis et al.

(2015) is suggested to be as large as � 100 if the baryon loading is not severe. In

addition, the large terminal Lorentz factor is realized only if the magnetic-field

energy is converted efficiently to the kinetic energy of the material (see, e.g., Rees

and Gunn 1974; Kennel and Coroniti 1984 for the so-called sigma problem in the

pulsar wind nebula). Because the Poynting luminosity reaches 1051 erg s�1 and the

accretion time scale is estimated to be � 0:5 s, their results support the idea that the

Blandford–Znajek mechanism drives a short-hard gamma-ray burst in black hole–

neutron star binaries if the assumed magnetic-field configuration is realistic.

Fig. 43 Evolution of the profile of the rest-mass density (normalized by its initial maximum value), the
location of the apparent horizon (black filled sphere), and the magnetic-field lines (white solid) for a
binary with Q ¼ 3, v ¼ 0:75, and C ¼ 0:145 modeled by a C ¼ 2 polytrope. The maximum value of the

initial magnetic-field strength is � 1017 Gð1:4M�=MNSÞ. Image reproduced with permission from
Paschalidis et al. (2015), copyright by AAS
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However, all this depends on whether strong poloidal magnetic fields presumed

in Paschalidis et al. (2015) at the outset are developed on a large scale within the

lifetime of the accretion disk. Actually, their own follow-up study revealed that the

dipolar field tilted by 90� did not allow an outflow to be launched (Ruiz et al. 2018).

This may be reasonable, because the tilt angle of 90� eliminates net vertical

magnetic fields threading the orbital plane. This finding indicates the importance of

deriving the strength and geometry of magnetic fields at the disk formation in a self-

consistent manner by merger simulations, even if it is a computationally challenging

task (Etienne et al. 2012a, c). Although the Kelvin–Helmholtz instability at disk

circularization and subsequent magnetorotational instability rapidly amplify small-

scale magnetic fields (Kiuchi et al. 2015b, see also Kiuchi et al. 2015a for

magnetic-field amplification at the contact surface of binary neutron stars), it is not

obvious whether and, if yes, how globally coherent fields stronger than the initial

fields are developed.

If a magnetohydrodynamical disk outflow is launched, global poloidal magnetic

fields are likely to be developed due to the flux freezing. Actually, fully-relativistic

magnetohydrodynamics simulations have witnessed the launch of a disk outflow

from the innermost region of the accretion disk with high velocity as shown in

Fig. 44 (Kiuchi et al. 2015b). As a result, the wind generates strong and coherent

magnetic fields, which may subsequently extract rotational energy of the black hole

via the Blandford–Znajek mechanism with the luminosity of 1049–1050 erg s�1. To

achieve this luminosity, a coherent magnetic field with J1014 G needs to penetrate

the black hole. Although numerical convergence is not fully confirmed, the

magnetorotational instability is likely to be resolved in the highest-resolution

simulation with the grid spacing of 120 m in Kiuchi et al. (2015b).

It is worthwhile to note that Liska et al. (2020) demonstrated that poloidal

magnetic fields can be generated from purely toroidal fields in very-high-resolution

simulations for an accretion disk in a fixed, Kerr black-hole background. This global

poloidal field is generated by a runaway growth of one of flux loops generated

locally in a stochastic manner. The realistic magnetic fields and subsequent outflows

may be clarified by future numerical-relativity simulations if the computational

resources allow us to achieve sufficiently high resolutions.

One caveat in most magnetohydrodynamics simulations of black hole–neutron

star binary coalescences performed to date is that neutrino transport is not taken into

account. It is unclear whether magnetohydrodynamical disk outflows like that found

in Kiuchi et al. (2015b) are driven in the presence of neutrino cooling. Actually, this

outflow is not observed in neutrino-radiation magnetohydrodynamics simulations

performed by Most et al. (2021b), although this difference may simply be ascribed

to the insufficient grid resolution. A sufficiently-high-resolution numerical-relativity

simulation of the whole coalescence process with detailed microphysics will

become a milestone for clarifying realistic magnetic-field configurations, post-

merger evolution, jet launch, and mass ejection. Last but not least, for clarifying the

jet launch in particular, we need to develop novel numerical techniques for

accurately resolving the force-free environment with low density and strong

magnetic fields.
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3.6 Gravitational waves

The last topic of Sect. 3 is gravitational waves from the merger of black hole–

neutron star binaries. After discussing general features of the time- and frequency-

domain waveforms in Sects. 3.6.1 and 3.6.2, respectively, we quantify the

correlation between the hypothetical neutron-star equation of state and the cutoff

frequency of the spectrum observed in the final inspiral and merger phases in

Sect. 3.6.3. Our discussions are based mainly on systematic surveys performed in

Kyutoku et al. (2010, 2011a), because the features of gravitational waves are

qualitatively the same among the results obtained by independent groups. We also

focus on the dominant l ¼ mj j ¼ 2 modes of gravitational waves from nonprecess-

ing binaries, because they have been studied systematically in previous work.

Higher harmonic modes and precession-induced modulation are discussed briefly in

Fig. 44 Profile of the rest-mass density (left top), the plasma b, i.e., the ratio of the gas pressure to the
magnetic pressure, (right top), the thermal part of the specific internal energy (left bottom), and the sum of
Maxwell and Reynolds stress (right bottom) on the meridional plane at � 50 ms after the onset of merger
for a binary with MBH ¼ 5:4M�, v ¼ 0:75, MNS ¼ 1:35M�, and RNS ¼ 13:6 km (Q ¼ 4, C ¼ 0:147)
modeled by a piecewise-polytropic approximation of the H4 equation of state (Glendenning and
Moszkowski 1991; Lackey et al. 2006). The maximum value of the initial magnetic-field strength is

� 1015 G. The white arrows in the left top panel denote the velocity field on this plane. The black
contours indicate ut ¼ �0:98 (thick dashed), �1 (solid), and �1:02 (thin dashed). Image reproduced with
permission from Kiuchi et al. (2015b), copyright by APS
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Sect. 3.6.4 while keeping in mind that further investigations are required to

understand these topics in black hole–neutron star binaries. In this Sect. 3.6, we

adopt geometrical units in which G ¼ c ¼ 1.

We note that the remnant disk does not emit gravitational waves significantly

unless instabilities such as the Papaloizou-Pringle instability set in (Papaloizou and

Pringle 1977). While it has been suggested that nearly-extremally-spinning black

hole–neutron star binary coalescences may be accompanied by gravitational waves

from massive remnant disks, this issue has not yet been settled (Lovelace et al.

2013). Thus, postmerger gravitational waves from black hole–neutron star binary

coalescences are considered to be composed either of a ringdown signal from the

remnant black hole or of a steep shutdown of the amplitude due to tidal disruption

(see below). This point is in stark contrast with postmerger gravitational waves from

binary-neutron-star coalescences, which can be highly diverse depending on masses

and equations of state of neutron stars (see, e.g., Hotokezaka et al. 2013a).

3.6.1 Waveform

In preparation for discussing gravitational waveforms from black hole–neutron star

binaries, it would be useful to review those from binary black holes, which have

been detected more often than on a weekly basis in the LIGO-Virgo O3 (Abbott

et al. 2019a, 2021a, see also Jani et al. 2016; Healy et al. 2019; Boyle et al. 2019

for catalogs of gravitational waveforms derived in numerical relativity). In the

inspiral phase, the orbital frequency continues to increase due to gravitational

radiation reaction. Both the amplitude and the frequency of gravitational waves

increase accordingly, and the waveform with this feature is observed as the so-

called chirp signal. As the merger approaches, general-relativistic effects on the

orbital motion such as the spin-orbit and spin-spin couplings gradually become

significant. While the waveform remains to be of the chirp type, an accurate

description requires increasingly higher-order post-Newtonian corrections in this

phase (see Blanchet 2014 for reviews). The merger time may be identified by the

time at which the amplitude becomes maximum, and the waveform during the

merger phase is smoothly connected with the chirp waveform in the inspiral phase

and the ringdown waveform in the postmerger phase. A reliable merger waveform

can be derived only by numerical-relativity simulations (see, e.g., Centrella et al.

2010; Duez and Zlochower 2019 for reviews). Gravitational waves in the

postmerger phase are dominated by the ringdown waveform, which is a

superposition of quasinormal modes of the remnant Kerr black holes (see, e.g.,

Berti et al. 2009 for reviews). It should be pointed out that gravitational waves

associated with the quasinormal modes are emitted efficiently in the coalescence of

binary black holes, because the merging process is highly nonaxisymmetric and

dynamical.

If the neutron star is not significantly deformed (and thus not disrupted) by the

black hole, gravitational waveforms from black hole–neutron star binaries are

essentially the same as those from binary black holes with the same values of the

masses and the spins. Figure 45 generated by Foucart et al. (2013a) is a comparison

of the two waveforms for systems with Q ¼ 6, v ¼ 0, and C ¼ 0:156 (for the black
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hole–neutron star binary) derived by numerical-relativity simulations. Because tidal

disruption is absent for this nonspinning black hole–neutron star binary with a high

mass ratio, the two waveforms are practically indistinguishable. While a slight

deviation is found during and after merger, this is within estimated numerical errors.

This indistinguishability generally holds for nondisruptive systems, which are

typical for high mass ratios, zero or retrograde spins of the black hole, and/or large

compactnesses of the neutron star.

Presence of the neutron-star matter influences gravitational waves from black

hole–neutron star binaries for the cases in which tidal effects are strong, particularly

in the merger and postmerger phases. Figure 46 displays gravitational waves from

nonspinning, v ¼ 0 black hole–neutron star binaries with MBH ¼ 4:05M�, MNS ¼
1:35M� (Q ¼ 3) and various equations of state (Kyutoku et al. 2010). The most

prominent imprint of tidal disruption is the abrupt shutdown of gravitational-wave

emission and suppression of the ringdown waveform for low mass-ratio binaries

with low-compactness neutron stars, e.g., for 1.5H-Q3M135 in Fig. 46. The primary

mechanism for the suppression of the ringdown waveform is phase cancellation

(Nakamura and Sasaki 1981; Shapiro and Wasserman 1982; Nakamura and Oohara

1983). That is, quasinormal modes are excited only incoherently by the infall of

widely-spread material as depicted in the left panel of Fig. 18, and thus their

amplitude is reduced by the interference. This effect is enhanced more appreciably

for a neutron star with a larger radius, which is disrupted at a more distant orbit from

the innermost stable circular orbit. Here, it is appropriate to point out that the

incoherent infall of the widely-spread material is realized because of the small

radius of a low-mass black hole compared to that of a neutron star. We recall that, if

the black hole is nonspinning, tidal disruption is possible only for low mass-ratio

systems discussed here. If the spin parameter of the black hole is large, tidal

disruption becomes possible for high mass-ratio systems, and the gravitational

waveform may exhibit different features as we discuss later.

The gravitational-wave frequency at which this shutdown occurs is determined

approximately by the orbital frequency at which tidal disruption occurs. One

important remark is that this is in general distinct from the orbital frequency at the
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onset of mass shedding. Even after the mass shedding sets in, the neutron star

remains to be approximately gravitationally self-bound and preserves its orbital

evolution as a two-body system for a while. Tidal disruption occurs only after the

orbital separation decreases further as a result of continued emission of inspiral-like

gravitational waves. Because the gravitational-wave amplitude suddenly decreases

only at tidal disruption, the orbital frequency at the onset of mass shedding may not

leave noticeable imprints in the waveform. By contrast, if the neutron star is not

disrupted, e.g., Fig. 45 and B-Q3M135 in Fig. 46, the maximum frequency is

determined universally by the quasinormal mode of the remnant black hole. This is

because most of the neutron-star material falls into the black hole simultaneously

through a narrow region (see the middle panel of Fig. 18) and the quasinormal

modes are excited efficiently. The maximum amplitude of gravitational waves also

becomes as large as that of binary black holes in the absence of tidal disruption.

The spin of the black hole also modifies the gravitational waveform qualitatively

as it affects the merger process (Sect. 3.3) and properties of the remnant (Sect. 3.4).
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Fig. 46 l ¼ mj j ¼ 2 mode of gravitational waveforms for black hole–neutron star binaries modeled by
various equations of state. The left top, right top, left bottom, and right bottom panels show the results for
a very stiff (1.5H: RNS ¼ 13:7 km, C ¼ 0:146), stiff (H: RNS ¼ 12:3 km, C ¼ 0:162), moderate (HB:
RNS ¼ 11:6 km, C ¼ 0:172), and soft (B: RNS ¼ 11:0 km, C ¼ 0:182) equations of state, respectively
(Read et al. 2009b; Lackey et al. 2012). Other parameters are fixed to be MBH ¼ 4:05M�, v ¼ 0, and
MNS ¼ 1:35M� (Q ¼ 3). This figure is generated from data of Kyutoku et al. (2010); Lackey et al.
(2012)
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Figure 47 displays gravitational waves from black hole–neutron star binaries with

MBH ¼ 4:05M�, MNS ¼ 1:35M�, RNS ¼ 11:6 km (Q ¼ 3, C ¼ 0:172) modeled by

a piecewise polytrope called HB for various values of the (anti-)aligned spin of the

black hole. This figure clearly shows that the lifetime of the binary and the number

of gravitational-wave cycles in the inspiral phase increase as the spin of the black

hole increases. This is caused mainly by the spin-orbit coupling as described in

Sect. 3.3.3.

Figure 47 also illustrates that gravitational waveforms in the merger phase are

modified qualitatively by the spin of the black hole, because it critically affects the

final fate of the companion neutron star. In particular, the quasinormal-mode

excitation is suppressed for HB-Q3M135a75 with v ¼ 0:75 compared to HB-

Q3M135 with v ¼ 0. This is because the radius of the innermost stable circular orbit

is decreased and tidal disruption occurs far outside it if the black hole has a prograde

spin. Conversely, quasinormal modes are clearly visible for zero and retrograde

spins of the black hole, v 0, because tidal disruption does not occur. Remarkably,

HB-Q3M135a5 with v ¼ 0:5 shows the ringdown signal, although the neutron star
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Fig. 47 Same as Fig. 46 but for various values of the black-hole spin. The left top, right top, left bottom,
and right bottom panels show the results for v ¼ 0:75, 0.5, 0, and �0:5, respectively. Other parameters
are fixed to be MBH ¼ 4:05M�, MNS ¼ 1:35M�, and RNS ¼ 11:6 km (Q ¼ 3, C ¼ 0:172) modeled by a
piecewise polytrope called HB (Read et al. 2009b). All the models have the same values of the initial
orbital angular velocity, m0X ¼ 0:030. The result for HB-Q3M135 has already been shown in Fig. 46, but
we replot it for comparison. This figure is generated from data of Kyutoku et al. (2010, 2011a)
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is tidally disrupted and leaves the material as much as 0:11M� outside the apparent

horizon at 10 ms after the onset of merger. The reason that the quasinormal modes

are excited even if the neutron star is tidally disrupted is that the tidal disruption

occurs only near the innermost stable circular orbit and thus the infall of the

disrupted material proceeds from a narrow region of the black-hole surface without

spreading around it (see the right panel of Fig. 18).

Tidal disruption of the neutron star in high mass-ratio systems is typically

compatible with the quasinormal-mode excitation of the remnant black hole.

Figure 48 displays the gravitational waveforms for black hole–neutron star binaries

with v ¼ 0:75, MNS ¼ 1:35M�, RNS ¼ 11:6 km (C ¼ 0:172) modeled by a piece-

wise polytrope called HB, and two different values of the black-hole mass MBH ¼
5:4M� (Q ¼ 4, left) and 6:75M� (Q ¼ 5, right). The ringdown waveform is clearly

visible for both systems due to the same reason as that described above for HB-

Q3M135a5. Although tidal disruption is less significant for higher mass-ratio

systems, HB-Q5M135a75 with Q ¼ 5 still leaves 0:095M� outside the apparent

horizon at 10 ms after the onset of merger. Thus, the excitation of quasinormal

modes cannot be ascribed to the absence of tidal disruption. The existence of the

ringdown waveform, however, does not imply that the entire waveform is identical

to that of binary black holes. We discuss this point further using the spectrum in

Sect. 3.6.2.

3.6.2 Spectrum

Gravitational waves in the frequency domain clearly exhibit rich information about

their sources. Frequency-domain gravitational waveforms are also useful for

applications to gravitational-wave data analysis, which is usually performed in the

frequency domain. For the early stage of the inspiral phase, during which the orbital

frequency is .1 kHz, the spectral amplitude and phase of the frequency-domain

waveform agree approximately with those derived by the post-Newtonian
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Fig. 48 Same as Fig. 46 but for two values of the mass ratio. The left and right panels show the results for
MBH ¼ 5:4M� (Q ¼ 4) and 6:75M� (Q ¼ 5), respectively (see also the left top panel of Fig. 47 for
Q ¼ 3). Other parameters are fixed to be v ¼ 0:75, MNS ¼ 1:35M�, and RNS ¼ 11:6 km (C ¼ 0:172)
modeled by a piecewise polytrope called HB (Read et al. 2009b). This figure is generated from data of
Kyutoku et al. (2011a)
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calculations. The effective spectral amplitude defined by heff :¼ f ~hðf Þ
		 		, where ~hðf Þ

is the Fourier transform of the time-domain waveform, behaves universally as /
f�1=6 at low frequency in accordance with the prediction of the quadrupole formula

(see, e.g., Thorne 1987; Sathyaprakash and Dhurandhar 1991). The gravitational-

wave phase is determined primarily by the chirp mass, M :¼ M
3=5
BH M

3=5
NS =m

1=5
0 , and

thus M is determined with high accuracy by analyzing gravitational waves in this

stage (Sathyaprakash and Dhurandhar 1991; Finn and Chernoff 1993). In closer

inspiral orbits with higher frequency, the spectral index increases as the nonlinearity

of general relativity and finite-size effects of the neutron star become important at

the small orbital separation. In this stage, we may be able to extract the mass ratio,

which allows us to determine the masses of individual components, and spin

parameters of the binary (Cutler and Flanagan 1994; Poisson and Will 1995). These

measurements are indeed realized for black hole–neutron star binaries in LIGO-

Virgo O3 (Abbott et al. 2021a, b). Tidal deformability of the neutron star may also

be extracted if the finite-size effect is appreciable and the signal-to-noise ratio is

large (Flanagan and Hinderer 2008).

The final fate of the neutron star in black hole–neutron star binaries is clearly

reflected in the damping of the gravitational-wave spectrum at high frequency of

fJ1 kHz. If tidal disruption (not the mass shedding) occurs at a distant orbit from

the innermost stable circular orbit, the spectral amplitude of gravitational waves is

characterized by damping above cutoff frequency, fcut. Its precise value is given by

the frequency of gravitational waves in the last stage of the inspiral phase, � 1–

2 kHz, and depends primarily on the compactness of the neutron star (see

Sect. 1.3.1). If tidal deformation (and thus disruption) is not significant, the

spectrum in the high-frequency range agrees approximately with that for binary

black holes. Even if the neutron star is tidally disrupted near the innermost

stable circular orbit, the inspiral-like motion continues inside it on a dynamical time

scale and gravitational waves with a large amplitude are emitted. Thus, the effective

amplitude, heffðf Þ, is larger than the case in which tidal effects play a significant role

in determining the final fate of the binary coalescence. If the tidal effect is very

weak, the effective amplitude even increases for fJ1 kHz until it damps

exponentially above the cutoff frequency determined by quasinormal modes of

the remnant black hole in a similar manner to the case of binary-black-hole

coalescences. A proposal for quantitative definition of the cutoff frequency will be

reviewed later in Sect. 3.6.3.

Figure 49 generated by Etienne et al. (2009) displays the variation of the spectral

cutoff with respect to the degree of tidal disruption by comparing results for

nonspinning black hole–neutron star binaries with different mass ratios (equiva-

lently, different masses of the black holes with the same mass and radius of the

neutron stars). The top panel for Q ¼ 1 shows that the spectrum damps at f � 1 kHz,

which is far below the quasinormal-mode frequency for the remnant black hole of

� 6 kHz. The cutoff of this spectrum reflects tidal disruption at a distant orbit from

the innermost stable circular orbit. The bottom panel for Q ¼ 5 shows that the cutoff

frequency of this spectrum agrees approximately with the quasinormal-mode

frequency, because tidal disruption is insignificant. The middle panel for Q ¼ 3
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shows intermediate behavior. Specifically, the cutoff frequency is determined by

tidal disruption which occurs near the innermost stable circular orbit.

The spin of the black hole is the key for observing cutoff behavior associated

with tidal disruption (Etienne et al. 2009; Kyutoku et al. 2011a). Figure 50 shows

that the spectrum depends quantitatively and also qualitatively on the black-hole

spin. Because tidal disruption does not occur significantly for systems with v 0

shown in this figure, the cutoff frequency, fcut, is � 2:5–3 kHz determined by the

quasinormal modes of the remnant black holes with � 5:3M�. For the system with

v ¼ 0:75, the cutoff frequency becomes as low as fcut � 1:5–2 kHz, because tidal

disruption occurs outside the innermost stable circular orbit. Notably, the system

with v ¼ 0:5 shows both of these features. That is, the spectrum for v ¼ 0:5 first

exhibits softening of the spectrum at f � 2 kHz associated with tidal disruption and

next damps exponentially above f � 3 kHz associated with the quasinormal mode,

consistently with the gravitational waveform of HB-Q3M135a5 (exactly the same

model) shown in the left top panel of Fig. 47. Hereafter, we refer to the former as

the cutoff frequency, because we are primarily interested in tidal disruption. This

type of the spectrum is produced for the case depicted in the right panel of Fig. 18,

and schematic gravitational-wave spectra for these three types of the merger process

are shown in Fig. 51.

Fig. 49 Gravitational-wave spectrum for black hole–neutron star binaries with Q ¼ 1 (top: Case E), 3
(middle: Case A), and 5 (bottom: Case D). Other parameters are fixed to be v ¼ 0 and C ¼ 0:145
modeled by a C ¼ 2 polytrope. To plot the curves in physical units, the baryon rest mass of the neutron
star is set to be 1:4M� and the distance of D ¼ 100 Mpc is assumed. The black solid curves show the
spectra of hybrid waveforms constructed by a second-and-a-half-order post-Newtonian approximation
and numerical-relativity simulations, while the black dotted curves show only the latter. The red dashed
curve shows the so-called PhenomA model for binary black holes (Ajith et al. 2008). The blue solid curve
is the noise spectral density of the Advanced LIGO planned as of 2009. Image reproduced with
permission from Etienne et al. (2009)
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The spin-orbit coupling described in Sect. 3.3.3 induces two features preferable

for observing the cutoff frequency by gravitational-wave detectors if the spin is

prograde. First, because the prograde spin reduces the orbital angular velocity to
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Fig. 50 Gravitational-wave spectrum of the l ¼ mj j ¼ 2 mode for black hole–neutron star binaries with
various values of the black-hole spin. Other parameters are fixed to be MBH ¼ 4:05M�, MNS ¼ 1:35M�,
and RNS ¼ 11:6 km (Q ¼ 3, C ¼ 0:172) modeled by a piecewise polytrope called HB (Read et al. 2009b).
These spectra are derived from the waveforms shown in Fig. 47, and the cutoff at f.400 Hz results from
the fact that numerical simulations started there. The left and bottom axes show these quantities in
physical units assuming that the observer is located at 100 Mpc along the direction perpendicular to the
orbital plane. The right and top axes show normalized, dimensionless amplitude and frequency,
respectively. The dashed curves labeled by ‘‘Standard’’ and ‘‘Broadband’’ are two options for the noise
spectral density of the Advanced LIGO planned as of 2011. Those labeled by ‘‘LCGT’’ and ‘‘ET’’ are the
planned noise spectral density of KAGRA, formerly called LCGT, and the Einstein Telescope,
respectively. Image adapted from Kyutoku et al. (2011a); copyright by APS
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Fig. 51 Schematic description of three types of gravitational-wave spectra for black hole–neutron star
binaries. The filled and open circles denote frequency associated with tidal disruption and a quasinormal
mode of the remnant black hole, respectively. The spectrum (i) corresponds to the case depicted in the left
panel of Fig. 18, for which tidal disruption is induced by a black hole with a small mass. The spectrum (ii)
corresponds to the case depicted in the middle panel of Fig. 18, for which tidal disruption is induced by a
black hole with a large mass and a high spin. The spectrum (iii) corresponds to the case depicted in the
right panel of Fig. 18, for which tidal disruption does not occur as the black hole is massive and does not
have a high prograde spin
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maintain a circular orbit for a given orbital separation, the cutoff frequency of

gravitational waves at tidal disruption is reduced. Next, the effective amplitude

before tidal disruption increases for given frequency due to the reason explained by

the following post-Newtonian argument (Kyutoku et al. 2011a). By retaining only

the first-and-a-half-order post-Newtonian term related to the spin-orbit coupling, the

binding energy of the system, E, as a function of the gravitational-wave frequency

behaves as (Kidder 1995)

dE

df
¼ Q

3ð1 þ QÞ2

ðpm0f Þ5=3

pf 2
1 þ vŜ�L̂ 5ð4Qþ 3Þ

3ð1 þ QÞ2
ðpm0f Þ

" #
; ð45Þ

where Ŝ and L̂ are the unit vectors in the direction of the black-hole spin and the

orbital angular momentum, respectively. Note that we have also neglected the spin

of the neutron star. Here, d�
dE

f is related to the effective amplitude via

dE

df
/ f ~hðf Þ

		 		� 2¼ h2
effðf Þ: ð46Þ

Thus, for given frequency, the effective amplitude increases as the spin of the black

hole increases in the prograde direction, reflecting the fact that the binary has to

emit larger energy via gravitational waves for increasing the orbital angular velocity

against the spin-orbit repulsive force. These two effects are clearly shown in

Fig. 50.

Arguably the most important feature of the cutoff frequency is that it depends on

the equation of state of the neutron star, in particular the average density (see

Sect. 1.3.1). Thus, the cutoff frequency will give us information about the equation

of state for supranuclear-density matter, particularly if it is stiff (Vallisneri 2000).

Figure 52 plots the gravitational-wave spectrum for black hole–neutron star

binaries with v ¼ 0:75 and MNS ¼ 1:35M� modeled by a variety of equations of

state. In this figure, MBH is taken to be 6:75M� (left: Q ¼ 5, unpublished) and

9:45M� (right: Q ¼ 7, Kyutoku et al. 2015). This figure clearly shows that the

cutoff frequency at which the effective amplitude begins to damp depends on the

equation of state for given values of the mass and the spin of the components.

Specifically, the cutoff frequency is in the range of � 1–2:5 kHz and becomes lower

as the equation of state becomes stiffer (i.e., the compactness of the neutron star

becomes smaller) for the systems considered here, because tidal disruption occurs at

a more distant orbit with lower frequency. At the same time, the effective amplitude

for given frequency at fJ1 kHz increases as the equation of state becomes soft (i.e.,

the compactness becomes large). For a softer equation of state, the cutoff frequency

becomes higher and saturates approximately to the quasinormal-mode frequency as

tidal disruption becomes insignificant. These features are discussed in more detail in

Sect. 3.6.3.

A remarkable feature of high mass-ratio systems with the high prograde spin of

the black hole is that the neutron star can be tidally disrupted outside the innermost

stable circular orbit for a wide range of equations of state. This feature can make

variation of the spectra and the cutoff frequency visible in the sensitivity band of

123

5 Page 98 of 182 K. Kyutoku et al.



current ground-based detectors such as the Advanced LIGO. Thus, binaries of a

high-mass, high-spin black hole and a neutron star is a promising target for studying

the equation of state via the cutoff frequency. For even larger values of the black-

hole spin parameter, say v� 0:9, tidal disruption of a neutron star with the typical

mass in our Galaxy of 1.3–1:4M� will also be possible for even larger values of the

mass ratio, QJ10 or equivalently more massive black holes with MBHJ13–14M�.

Exploration of tidal disruption at such a high mass-ratio regime is an important topic

for a future study in numerical relativity.

Conversely, the cutoff frequency is higher than � 2 kHz if the mass ratio of the

system is Q.3. We recall that the cutoff frequency is determined not by mass

shedding but by tidal disruption, which occurs in a closer orbit with higher

frequency, in particular for the small values of Q. Thus, the cutoff frequency of low

mass-ratio systems allows us to investigate neutron-star equations of state only if we

are capable of detecting signals at fJ2 kHz, for which the sensitivity of detectors is

degraded. Moreover, the amplitude is not very large because of the small mass.

These facts imply that the study of the cutoff frequency with nonspinning black

hole–neutron star binaries will await third-generation detectors such as the Einstein

Telescope (Maggiore et al. 2020) and the Cosmic Explorer (Abbott et al. 2017a).

Before concluding Sect. 3.6.2, we comment on the current status of the

development of phenomenological frequency-domain waveform templates with

various methods utilizing results of numerical relativity. Preliminary models, one of

which is called LEA, were constructed with the aid of a phenomenological model

called PhenomC (Santamarı́a et al. 2010) or the effective-one-body formalism

(Taracchini et al. 2012) by calibrating free parameters for both the amplitude and

Fig. 52 Same as Fig. 50 but for binaries with v ¼ 0:75 and MNS ¼ 1:35M� modeled by various
equations of state. The left panel is for MBH ¼ 6:75M� (Q ¼ 5), and the equations of state are taken to be
piecewise polytropes called 1.5H (RNS ¼ 13:7 km, C ¼ 0:146), H (RNS ¼ 12:3 km, C ¼ 0:162), and B
(RNS ¼ 11:0 km, C ¼ 0:182) (Read et al. 2009b; Lackey et al. 2012). The right panel is for MBH ¼
9:45M� (Q ¼ 7), and the equations of state are taken to be piecewise polytropic approximations of MS1
(Müller and Serot 1996, RNS ¼ 14:4 km, C ¼ 0:138), H4 (Glendenning and Moszkowski 1991; Lackey
et al. 2006, RNS ¼ 13:6 km, C ¼ 0:147), ALF2 (Alford et al. 2005, RNS ¼ 12:4 km, C ¼ 0:161), and
APR4 (Akmal et al. 1998, RNS ¼ 11:1 km, C ¼ 0:180). The dashed curves labeled by ‘‘AdLIGO,’’ ‘‘ET,’’
and ‘‘CE’’ are the noise spectral density of the Advanced LIGO at the design sensitivity, Einstein
Telescope, and Cosmic Explorer, respectively, taken from Abbott et al. (2017a). The left and right panels
are generated from data of unpublished work and Kyutoku et al. (2015), respectively
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the phase with numerical-relativity simulations of black hole–neutron star binaries

(Lackey et al. 2014). One of the up-to-date models, PhenomNSBH (Thompson

et al. 2020), is constructed by combining an amplitude model calibrated with

numerical-relativity simulations of black hole–neutron star binaries (Pannarale et al.

2015a) with a phase model consisting of a model called PhenomD for the point-

particle baseline (Khan et al. 2016) and the NRTidal model for the tidal effect

(Dietrich et al. 2017a, 2019), which is derived also in a phenomenological manner

by calibrating free parameters with numerical-relativity simulations of binary

neutron stars. Another model, SEOBNR_NSBH (Matas et al. 2020), is constructed

in a similar manner except that the point-particle baseline is taken to be an effective-

one-body model called SEOBNR (Bohé et al. 2017) and new numerical-relativity

waveform models are used to recalibrate the amplitude model. These phenomeno-

logical models are available in LSC Algorithm Library. A common drawback

among these waveform models may be that no higher harmonic mode or no

precession has been modeled despite their relevance for black hole–neutron star

binaries. These issues are discussed in Sect. 3.6.4. In addition, the ringdown phase is

not incorporated appropriately in the phase model.

3.6.3 Correlation of the cutoff frequency and the compactness

To quantify the cutoff frequency and contained information, Shibata et al. 2009;

Kyutoku et al. 2010, 2011a have fitted the gravitational-wave spectra by a function

of the form

f ~hfitðf ÞD
m0

¼ f ~h3PNðf ÞD
m0

e�ðf=finsÞrins þ Ae�ðf=fdamÞrdam
1 � e�ðf=fins2Þrins2
h i

; ð47Þ

where ~h3PN is obtained by Fourier-transforming the so-called TaylorT4 approximant

(Buonanno et al. 2003), which is one variant of post-Newtonian approximants

(Damour et al. 2001; Buonanno et al. 2009), and fins, fins2, fdam, rins, rins2, rdam, and

A are free parameters to be determined. Then, Kyutoku et al. (2011a) determined

the cutoff frequency fcut by the higher of two frequency at which the second term of

this function becomes a half of the maximum value. Note that earlier work have

simply defined fcut by fdam (Shibata et al. 2009; Kyutoku et al. 2010), but this

definition turned out to be not useful for spinning black hole–neutron star binaries,

primarily because the functional form is not flexible enough to model the spectrum

(ii) in Fig. 51. Robust and useful definition of the cutoff frequency, fcut, is still to be

explored.

Figure 53 plots the dimensionless cutoff frequency fcutm0 for various systems.

The left panel is for Q ¼ 2 with various values of v, and the right panel is for

v ¼ 0:75 with various values of Q. This figure shows that the cutoff frequency

normalized by the inverse of the total mass has a tight correlation with the

compactness of the neutron star for given values of the mass ratio and the spin

parameter of the black hole. Thus, if we are able to determine masses and spin

parameters from gravitational-wave data analysis (see, e.g., Cutler and Flanagan

1994; Hannam et al. 2013, for degeneracy of the mass and the spin), the cutoff
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frequency may enable us to constrain the compactness of the neutron star and hence

the equation of state. Although it is not clear from this figure, for the case in which

tidal disruption does not occur significantly, which is typical for a large

compactness, the cutoff frequency settles approximately to the quasinormal-mode

frequency shown in the upper part of the panels (Shibata et al. 2009; Kyutoku et al.

2010). It has also been found that, by adopting piecewise polytropes with different

values of the adiabatic index for the core region, the cutoff frequency also depends

weakly on the density profile of the neutron star (Kyutoku et al. 2010). This trend is

consistent with that for the mass of the material remaining outside the apparent

horizon described in Sect. 3.4.2.

An important finding is that the dimensionless cutoff frequency, fcutm0, depends

more strongly on the neutron-star compactness than expected from the mass-

shedding condition, Eq. (11). Specifically, although the mass-shedding condition

suggests fcutm0 / C3=2, the results of nonspinning black hole–neutron star binaries

with Q ¼ 2 are found to be approximated by (Kyutoku et al. 2011a)

lnðfcutm0Þ ¼ ð2:92 � 0:06Þ lnCþ ð2:32 � 0:12Þ ð48Þ

up to the compactness above which tidal disruption becomes insignificant. That is,

fcutm0 is approximately proportional to C3. It should be cautioned that this power-

law index depends on the definition of fcut (e.g., Kyutoku et al. 2010 derived a larger

value of � 4) and also decreases for a prograde spin as shown in Fig. 53, specifi-

cally fcutm0 / C2:4 for Q ¼ 2 and v ¼ 0:75. Still, the index is universally larger than

3/2 derived by the mass-shedding condition. This fact illustrates that the cutoff

frequency is not determined simply by mass shedding. Actually, the steep depen-

dence is reasonably expected, because the survival time of a neutron star against

tidal disruption after the onset of mass shedding is generally longer for a more

compact neutron star with a more centrally-condensed density profile.
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Fig. 53 Relation between the normalized, dimensionless cutoff frequency fcutm0 and the compactness of
the neutron star C derived by a suite of simulations with piecewise polytropes. The left panel show the
results for Q ¼ 2 with v ¼ 0:75, 0.5, 0, and �0:5. The red solid and blue dashed lines are results of linear

fittings for v ¼ 0:75 (fcutm0 / C2:39) and v ¼ 0 (fcutm0 / C2:92), respectively. Notice that the power-law
indices are larger than 3/2 [cf., Eq. (12)]. The right panel shows the results for v ¼ 0:75 with Q ¼ 2, 3, 4,
and 5. The dashed horizontal lines in the upper parts of the plots denote typical values of the quasinormal-
mode frequency for each binary parameter. Image adapted from Kyutoku et al. (2011a), copyright by
APS
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3.6.4 Higher harmonic mode and spin-induced precession

Up to here, we have discussed only the dominant l ¼ mj j ¼ 2 modes of gravitational

waves. They approximately represent gravitational waves observed from the

direction perpendicular to the orbital plane of nonprecessing binaries. If we observe

nonprecessing binaries from inclined directions, various harmonic modes contribute

significantly to the observed signal, particularly because black hole–neutron star

binaries are highly asymmetric in terms of the masses of components and emit odd

modes such as l ¼ mj j ¼ 3 efficiently (Abbott et al. 2021a, b). The mode mixing

induces modulation of gravitational-wave amplitude and phase, which cannot be

mimicked only by the dominant mode (Foucart et al. 2021). Thus, accurate

modeling of gravitational waves particularly in the strong-field regime requires us to

take into account higher harmonic modes. It should also be mentioned that

numerical-relativity simulations of compact binary coalescences have only recently

begun to extract m ¼ 0 modes relevant to gravitational-wave memory in a reliable

and accurate manner (Mitman et al. 2020).

If the spin of the black hole is inclined with respect to the orbital angular

momentum, the orbital plane precesses as shown in Fig. 19, and the amplitude and

phase of gravitational waveforms are modulated due to the coupling of orbital and

precessional frequency (Foucart et al. 2011, 2013b; Kawaguchi et al. 2015; Foucart

et al. 2021). The left panel of Fig. 54 displays the plus-mode gravitational

waveforms observed from various directions for a system with MBH ¼ 6:75M�,

v ¼ 0:75, i � 90�, MNS ¼ 1:35M�, and RNS ¼ 14:4 km (Q ¼ 5, C ¼ 0:138)

modeled by a piecewise-polytropic approximation of the MS1 equation of state.

In this figure, the viewing angle, h, is measured from the direction of the total
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Fig. 54 Plus-mode gravitational waveform (left) and spectrum (right) for a binary with MBH ¼ 6:75M�,
v ¼ 0:75, MNS ¼ 1:35M�, and RNS ¼ 14:4 km (Q ¼ 5, C ¼ 0:138) modeled by a piecewise-polytropic
approximation of the MS1 equation of state (Müller and Serot 1996) observed from different directions
with respect to the total angular momentum at the initial instant of simulations. All the modes with
l ¼ 2; 3; and 4 are included. In the left panel, the left axis shows the amplitude in physical units assuming
the distance between the source and the observer to be D ¼ 100 Mpc, and the right axis shows the
dimensionless, normalized amplitude. In the right panel, the left and bottom axes show the effective
amplitude and the frequency in physical units, respectively, and the right and top axes show those in the
dimensionless form. The cutoff of the spectrum at f.300 Hz results from the fact that numerical
simulations started there. Image reproduced with permission from Kawaguchi et al. (2015), copyright by
APS
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angular momentum at the initial instant of the numerical simulations. Even if we

observe the binary from h ¼ 0, the amplitude and phase of the waveform are

modulated by the precession of the orbital plane. The modulation of the amplitude

becomes stronger as the viewing angle becomes larger, because higher harmonic

modes contribute more significantly to the waveform.

Mode couplings and modulation make the extraction of cutoff frequency, fcut,

from the spectrum challenging in realistic observations. The right panel of Fig. 54

shows that the spectra, including their dampings for fJ2 kHz, depend significantly

on the viewing angle. Because the mass ratio of this system is as high as 5 and also

tidal disruption is not very significant with leaving only � 0:02M� outside the

apparent horizon due to the large inclination angle of � 90�, the spectrum is

expected to damp around the quasinormal-mode frequency of � 2 kHz. However,

the different amount of mode mixings prohibits straightforward extraction of the

cutoff frequency independent of the viewing angle. It is a topic for future

investigations how to identify the cutoff frequency which is tightly correlated with

properties of neutron stars in actual observations (see Kawaguchi et al. 2017 for a

preliminary study). Fortunately, the impact of higher harmonic modes on estimation

of parameters common to binary black holes such as the mass and spin is likely to

be marginal for black hole–neutron star binaries with moderate signal-to-noise

ratios of .20 (O’Shaughnessy et al. 2014a, b).

3.7 Summary and issues for the future

In this section, we have reviewed the current status of the studies on dynamical

simulations of black hole–neutron star binary coalescences in full general relativity.

Black hole–neutron star binaries are studied focusing mainly on their potentiality as

a source of gravitational waves, a central engine of short-hard gamma-ray bursts, a

site of r-process nucleosynthesis, and a progenitor of resulting kilonovae/macrono-

vae. In the last decade, not only the parameter space surveyed has been expanded,

but also qualitatively new directions have been opened by the improvement in

numerical techniques and implementations. It has become popular to perform

neutrino-radiation-hydrodynamics simulations with temperature- and composition-

dependent equations of state. Magnetohydrodynamics simulations have also been

performed frequently, although the grid resolution is still not high enough to derive

robust conclusions starting from realistic profiles of the magnetic fields. In addition,

qualitatively new directions of research, namely mass ejection, have been explored

in numerical relativity. This direction is benefited from the development of fully-

relativistic viscous hydrodynamics simulations in axisymmetry.

The final fate of the black hole-neutron star binaries is classified into two

categories. One is tidal disruption of the neutron star before the plunge, and the

other is the plunge of the neutron star into the black hole before tidal disruption.

Tidal disruption is a more likely outcome for systems with a lower mass ratio, a

higher prograde spin of the black hole, and/or a smaller compactness of the neutron

star. If the black hole is nonspinning, tidal disruption of a neutron star with

� 1:35M� is possible only for a low mass-ratio system with Q.3 if the

compactness is in a plausibly realistic range of 0:14.C.0:20 (cf., Fig. 28). If the
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black hole has a high and prograde spin, tidal disruption becomes possible for a

higher mass-ratio system with QJ5 because of the reduced radius of the innermost

stable circular orbit.

If tidal disruption occurs sufficiently outside the innermost stable circular orbit,

an accretion disk is formed and a fraction of material is ejected dynamically. The

masses of the disk and the ejecta depend on the degree of tidal disruption. If the

black hole is nonspinning, the mass of the remnant disk is limited to .0:1M� even

for a very low mass ratio. By contrast, if the spin is nearly extremal, the mass of the

disk could increase to J0:5M�. The mass of the dynamical ejecta is more sensitive

to the mass ratio of the binary than that of the disk. For very low mass-ratio systems

with Q.2, the mass of the dynamical ejecta is limited to .10�3 M� even if the disk

as massive as 0:1M� is formed. For high mass-ratio systems, the mass of the

dynamical ejecta may become comparable to the mass of the remnant disk and

could increase to J0:2M�. Because the dynamical mass ejection in black hole–

neutron star binaries is accompanied by neither significant shock heating nor

neutrino irradiation, the dynamical ejecta preserve an extremely low electron

fraction of the original neutron-star matter, Ye � 0:05–0.1. Thus, the dynamical

ejecta mainly produce heavy r-process elements with the mass number J130, i.e.,

beyond the second peak.

The remnant disk ejects 15%–30% of its mass via viscous and/or magnetohy-

drodynamical processes for a wide range of physical conditions. In the early stage of

the postmerger evolution, the internal energy generated by viscous or magnetohy-

drodynamical heating is consumed by neutrino cooling with the peak luminosity of

J1053 erg s�1. At � 0:1–1 s after the disk formation, the time scale of weak

interactions becomes longer than the heating time scale due to the disk expansion.

Because of this transition, the material in the outer part of the disk is gradually

ejected in an approximately isotropic manner. The disk outflow is likely to dominate

the dynamical ejecta in terms of the mass for low mass-ratio systems with Q.3,

while the dynamical ejecta become important for high mass-ratio systems with

QJ5.

The electron fraction of the disk outflow is still uncertain. If the launch is delayed

until J0:5 s after the disk formation, the disk outflow is characterized by an

increased electron fraction of Yeh i � 0:3 for typical cases, because the disk relaxes

to an equilibrium of electron/positron captures onto nucleons during its longterm

viscous or magnetohydrodynamical evolution. Neutrino irradiation also plays a role

in increasing the electron fraction of the disk material in its early evolution stage of

.0:1 s as the electron antineutrinos are always the brightest. Thus, for the cases with

late mass ejection, the disk outflow mainly produces light r-process elements with

the mass number 80–130 around the first peak. However, if the outflow is launched

earlier by some mechanisms, e.g., magnetohydrodynamical activity, the electron

fraction of the disk outflow could be lower. If strong and coherent poloidal magnetic

fields penetrating the remnant black hole are developed as a result of binary

coalescence, the merger remnant may even launch an ultrarelativistic jet via the

Blandford–Znajek mechanism. However, this possibility has not been deeply

explored in numerical relativity.
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The final fate of the black hole–neutron star binaries is reflected in gravitational

waveforms in the final inspiral and merger phases. In particular, whether tidal

disruption occurs or not has a significant impact on the cutoff frequency, fcut, above

which the gravitational-wave spectrum damps. If tidal disruption does not occur,

quasinormal modes of the remnant black hole are excited and determine the cutoff

frequency. If tidal disruption occurs around a low-mass black hole whose areal

radius is comparable to or smaller than the neutron-star radius, tidal disruption

suddenly suppresses gravitational-wave emission. Accordingly, the spectrum damps

at the cutoff frequency corresponding to the orbital frequency at which tidal

disruption occurs—not the onset of mass shedding. If tidal disruption occurs around

a high-mass black hole, which has to be spinning in a prograde direction, tidal

disruption does not prevent excitation of quasinormal modes. In this case, the

spectrum exhibits two characteristic frequencies, one for tidal disruption and the

other for quasinormal modes. These three types of merger processes and

gravitational-wave spectra are presented schematically in Fig. 18 and Fig. 51,

respectively.

Despite the remarkable progress made in the last decade, there still remain

various issues to be explored. One important issue is to investigate tidal disruption

in high mass-ratio binaries with QJ10 and/or nearly-extremally spinning black

holes of vJ0:99. Although the spin parameter of the black hole has been limited to

v 0:97 in the previous study of black hole–neutron star binaries, a larger value of

the spin parameter can be handled in numerical relativity (Lovelace et al. 2008; Liu

et al. 2009; Ruchlin et al. 2017), and simulations of binary black holes with

v[ 0:97 have been performed (Lovelace et al. 2012; Scheel et al. 2015). Regarding

the inspiral phase, systematic derivations of longterm gravitational waveforms,

particularly for precessing black-hole spins (see Foucart et al. 2019a, 2021 for effort

in this direction), are required to develop accurate theoretical templates toward the

era of third-generation detectors. Dependence of the cutoff frequency in the

gravitational-wave spectrum on neutron-star properties should be revealed thor-

oughly with adopting a variety of equations of state, along with developing methods

for the extraction from observed gravitational-wave data. Another topic for future

study in the inspiral phase is the time evolution of neutron-star magnetospheres.

Because it is extremely difficult to evolve force-free magnetospheres directly by

equations of the usual magnetohydrodynamics, this topic likely requires a novel

method. Such simulations are also necessary for deriving realistic magnetic-field

configurations at the formation of the remnant accretion disk and tracking

acceleration to ultrarelativistic velocity of a possible jet. Neutrino-radiation-

magnetohydrodynamics simulations in numerical relativity for the evolution of the

postmerger system with the duration of J1 s are ultimately required to clarify the

whole picture of mass ejection, r-process nucleosynthesis, and electromagnetic

emission such as short-hard gamma-ray bursts and kilonovae/macronovae (see also

Sect. 4). For this purpose, improved schemes of neutrino transport, e.g., solving full

Boltzmann’s equation (see Cardall et al. 2013; Shibata et al. 2014; Foucart et al.

2020, for viable approaches), and sophisticated methods of magnetohydrodynamics

will play a vital role in the foreseeable future.
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4 Discussion

4.1 Implication for electromagnetic counterparts

Characteristics of various postmerger electromagnetic signals are derived from the

properties of the dynamical ejecta and the disk outflow reviewed in Sects. 3.4.5 and

3.5.2, respectively. In this Sect. 4.1, we briefly discuss possible electromagnetic

counterparts to black hole–neutron star binary mergers focusing on the relation to

the ejected material. Discussions about gravitational-wave memory and cosmic-ray

acceleration are also given in Kyutoku et al. (2013).

4.1.1 Kilonova/macronova

Features of the kilonova/macronova, a quasithermal transient powered by radioac-

tive decays of r-process nuclei, are governed primarily by (i) the mass of the ejecta

M, (ii) the velocity of the ejecta V, (iii) the opacity of the ejecta j, and (iv) the

radioactive heating rate of the material. A simplified spherical model with

homologous expansion, uniform density, and grey opacity predicts the peak time

and the peak bolometric luminosity to be (Li and Paczyński 1998)

tpeak;s � 13 d
j

10 cm2g�1

� �1=2 M

0:01M�

� �1=2 V

0:1c

� ��1=2

; ð49Þ

Lpeak;s � 1:6 � 1040 erg s�1 fheat

10�6

� �
j

10 cm2g�1

� ��1=2
M

0:01M�

� �1=2
V

0:1c

� �1=2

;

ð50Þ

respectively, for the case in which the specific heating rate of the material is given

by fheatc
2=t with t being the time after mass ejection. In this model, V denotes the

surface velocity of the sphere. On this time scale, the homologous expansion is

safely justified (see Sect. 4.1.2). In reality, however, the density profile of the ejecta

is neither uniform nor spherical. The opacity depends on the wavelength, the ion-

ization degree, which varies in time, and moreover, the composition of the r-process

elements in the ejecta, because the complexity of the level structure depends sig-

nificantly on the atomic species (Kasen et al. 2013; Tanaka and Hotokezaka 2013).

The radioactive heating rate also depends on the composition and evolves in time in

a complicated manner, because the majority of the heating is given by the sum of b-

decays of various nuclides near the b-stable line with different lifetimes (Metzger

et al. 2010b; Wanajo et al. 2014; Wanajo 2018). In typical situations, the total

heating rate may be approximated by / t�ð1:2�1:4Þ (Metzger et al. 2010b; Hotoke-

zaka et al. 2017, see also Kasen and Barnes 2019; Waxman et al. 2019; Hotokezaka

and Nakar 2020 for the late-time behavior). Quantitative calculations of (iii) and (iv)

require information about the abundance pattern in the ejecta.

Numerical-relativity simulations are the unique tool to derive information

required for computing the light curve and the spectrum of the kilonova/macronova
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in a quantitative and accurate manner. Macroscopic properties (i) and (ii) along with

the density profile are provided by solving hydrodynamical evolution. Although the

average velocity of the ejecta does not vary much from 0.1–0.2c, the mass depends

significantly on the binary parameters as we have already discussed in Sect. 3.

Furthermore, simulations with weak interactions including neutrino-radiation

transfer give us the distributions of thermodynamic quantities such as the electron

fraction in the ejecta, which determine the nucleosynthetic yield and hence

microscopic properties (iii) and (iv). Precise multiband light curves have been

calculated by photon-radiation-transfer simulations based on the ejecta properties

derived by numerical-relativity simulations of black hole–neutron star binaries

(Tanaka et al. 2014; Fernández et al. 2017; Kawaguchi et al. 2020b; Bulla et al.

2021; Darbha et al. 2021). In the following, we briefly review current understanding

of the kilonova/macronova with particular emphasis on features specific to black

hole–neutron star binaries.

First, we focus on the emission from the dynamical ejecta. The lanthanide-rich

abundance pattern of the dynamical ejecta implies that the associated (Planck mean)

opacity becomes as high as �Oð10Þ cm2g�1 at � 2000–20000 K (Kasen et al.

2013; Tanaka and Hotokezaka 2013; Tanaka et al. 2018, 2020). Then, the

kilonova/macronova is expected to shine in red-optical and infrared bands on a

time scale of � 10 d if the spherical model is valid. Because the dynamical ejecta

from black hole–neutron star binaries are extremely neutron rich, ultraheavy

elements such as 254Cf might be produced in abundance. If this is the case, their

fission and/or a-decay will become an important source of the heating and emission

at late times, for which the b-decay heating becomes inefficient due to the low

density (Wanajo et al. 2014; Zhu et al. 2018; Wu et al. 2019).

The nonspherical morphology of dynamical ejecta described in Sect. 3.4.5

induces various differences from spherical cases, including directional dependence

of the kilonova/macronova (Kyutoku et al. 2013, 2015). For simplicity, we assume

that the binary has the reflection symmetry about the orbital plane (i.e., the spin

misalignment is not taken into account). We further parametrize the opening angles

in the polar and azimuthal directions by 2h and u, respectively, where the prefactor

2 of the former comes from the reflection symmetry. Because photons diffuse

preferentially toward the direction perpendicular to the equatorial plane, for which

the length scale is smaller by � h than for the radial direction, the kilo-

nova/macronova may be brighter and bluer from an earlier epoch if an observer is

located along the polar direction than along the equatorial direction. This qualitative

prediction is confirmed by photon-radiation-transfer simulations (Tanaka et al.

2014). Because the gravitational-wave observation is biased toward finding binary

coalescences from the polar direction (Schutz 2011), this feature is advantageous for

the follow-up detection of the kilonovae/macronovae. If the dynamical ejecta

becomes quasispherical during the expansion due to the r-process heating, however,

this directional dependence weakens (Darbha et al. 2021). Instead, the Doppler

effect associated with the center-of-mass motion dominates the directional

dependence of the emission, making the emission brighter and bluer toward the

direction of the motion, and vice versa (Fernández et al. 2017; Darbha et al. 2021).
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The nonsphericity also modifies the peak time and the peak bolometric

luminosity. The preferential diffusion toward the polar direction associated with a

small value of h shortens the peak time compared to the spherical case. At the same

time, if the opening angle in the azimuthal direction, u, is small, the peak time is

delayed due to the increased density and hence the increased optical depth for given

values of the mass and the velocity of the ejecta. Dependence of the peak time and

the peak bolometric luminosity on the opening angles may be derived by

approximating that photons diffuse only toward the polar direction as (Kyutoku

et al. 2013, 2015)

tpeak � 11 d
j

10 cm2g�1

� �1=2 M

0:01M�

� �1=2 V

0:1c

� ��1=2 h
1=5

� �1=2 u
p

� ��1=2

; ð51Þ

Lpeak � 1:8 � 1040 erg s�1 fheat

10�6

� �
j

10 cm2g�1

� ��1=2
M

0:01M�

� �1=2

� V

0:1c

� �1=2 h
1=5

� ��1=2 u
p

� �1=2

:

ð52Þ

The dependence of Lpeak on various quantities may be understood from Arnett’s rule

(Arnett 1982), Lpeak � fheatMc2=tpeak in our case. For typical values of the opening

angles found in numerical-relativity simulations, the peak time is earlier and the

peak bolometric luminosity is higher by 10%–20% than predictions for spherical

ejecta. Photon-radiation-transfer simulations also find that the temperature is

enhanced for nonspherical ejecta with given values of the mass and the velocity,

because the reduced volume increases the heating efficiency (Tanaka et al. 2014).

Although the realistic spectrum can be derived only by simulations with a detailed

line list, the diffusion approximation suggests that the effective temperature is

increased by 30%–50%, which may have an impact on multiband light curves

(Kyutoku et al. 2015). Detailed photon-radiation-transfer simulations predict that

the peak absolute AB magnitude in the H band is � �ð16–16.5) at � 5 d after

merger depending weakly on the viewing angle, if the mass of the dynamical ejecta

is 0:02M� (Kawaguchi et al. 2020b, see also Darbha et al. 2021).

Another possible characteristic observable feature is a relatively high degree of

polarization induced by significant deformation of the photosphere in an early epoch

(Kyutoku et al. 2013, 2015). If Thomson scattering contributes appreciably to the

opacity, a deformed photosphere produces net linear polarization along the short

principal axis. Although the ejecta dominated by r-process elements with large

atomic numbers tend to reduce the polarization due to the small number of

scattering electrons and depolarization via bound-bound transitions compared to

those consisting of elements up to the iron peak (Kyutoku et al. 2015), photon-

radiation-transfer simulations have suggested that the linear polarization of a few

percent may be expected at 1–2 d after merger in near-infrared bands (Bulla et al.

2021).

Next, we discuss the emission from the disk outflow. Because the disk outflow is

likely to be associated with moderate lanthanide fraction, its (Planck mean) opacity
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is expected to be as low as � 1 cm2g�1 (Tanaka and Hotokezaka 2013; Tanaka

et al. 2020). If this is the case, depending on the mass and the velocity, the

kilonova/macronova from the disk outflow could be bright in blue-optical bands

from the early epoch of � 1 d after merger. This type of emission is sometimes

called the blue kilonova. For example, a photon-radiation-transfer simulation shows

that the peak absolute AB magnitude is � �16 in the r band at � 1 d and � �15 in

the H band at � 3 d, if the mass of the disk outflow is 0:03M� and the average

velocity is 0.06c (Kawaguchi et al. 2020b). Instead, if the disk outflow is lanthanide

rich due to rapid ejection, the opacity becomes � 10 cm2g�1 and the emission will

peak in red-optical and infrared bands on a time scale of � 10 d. Again, if the mass

is 0:03M� and the average velocity is 0.06c, the peak absolute AB magnitude is

� �15 for both the r and H bands at � 1 d and � 7 d, respectively (Kawaguchi et al.

2020b). In this case, the overall emission feature is similar to that from the

dynamical ejecta. Because the disk outflow is characterized by quasispherical

morphology with mild concentration toward the equatorial plane, the emission is

expected to be approximately isotropic irrespective of the lanthanide fraction.

As is frequently discussed in the case of AT 2017gfo, which was associated with

a binary-neutron-star merger (Tanaka et al. 2017; Kasen et al. 2017; Perego et al.

2017; Kawaguchi et al. 2018; Waxman et al. 2018), realistic features of the

kilonova/macronova from black hole–neutron star binaries are likely to be

determined by the combination of the dynamical ejecta and the disk outflow

(Kawaguchi et al. 2020b; Kyutoku et al. 2020). The relation between the disk mass

and the ejecta mass discussed in Sect. 3.4.2 suggests that the disk outflow tends to

be the dominant source of the kilonova/macronova for a system with a low mass

ratio. In the presence of lanthanide-rich dynamical ejecta with high velocity, they

can reprocess the blue kilonova from the disk outflow and emit later in redder bands,

called the lanthanide-curtain effect (Kasen et al. 2015). Although the blocking by

the dynamical ejecta may occur for a wide range of the viewing angle in the case of

binary neutron stars (Kawaguchi et al. 2018), it occurs only in a limited range for

black hole–neutron star binaries because of the aforementioned nonsphericity. If an

observer is located along the direction in which the disk outflow is not covered by

the preceding dynamical ejecta, the blue kilonova can be observed without being

concealed by the dynamical ejecta. In this case, additional emission from the

dynamical ejecta, including the reprocessed emission, enhances the luminosity of

the kilonova/macronova. If an observer is in the direction covered by the dynamical

ejecta, the lanthanide-curtain effect reduces the luminosity in blue bands. This

occurs even if the disk outflow is lanthanide rich and has a composition similar to

the dynamical ejecta, because the opacity characterizing the expanding medium (so-

called expansion opacity: Karp et al. 1977; Eastman and Pinto 1993) is inversely

proportional to the rest-mass density (here we presume that the dynamical ejecta

have a small mass and high velocity; Kyutoku et al. 2020). For a system with a high

mass ratio, the dynamical ejecta tend to become dominant sources of the

kilonova/macronova. Because the expansion occurs rapidly due to the high

velocity, the emission from the dynamical ejecta is likely to be observed directly

irrespective of the disk outflow. The polarization degree of � 1% for the
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wavelength of J0:7lm might still be expected in a wide range of the viewing angle

at 1–2 d after merger for a combination of ejecta components (Bulla et al. 2021, see

also Li and Shen 2019 for an early-time polarization with hypothetical existence of

free neutrons).

Various phenomenological models of the kilonova/macronova from dynamical

ejecta (Kawaguchi et al. 2016) and the sum of them and the disk outflow are

available in the literature. For a reader who is interested in such models, we

recommend to refer to Barbieri et al. (2019, 2020); Zhu et al. (2020).

4.1.2 Kilonova/macronova remnant

Another promising electromagnetic counterpart is nonthermal emission from the

blast wave formed between the ejecta and the interstellar medium (Nakar and Piran

2011). After a period of the homologous expansion, the ejecta are eventually

decelerated by accumulating the interstellar medium. Blast waves develop between

the ejecta and the interstellar medium in the course of this collision, and a part of the

kinetic energy of the ejecta is converted to the internal energy of the postshock

material behind the forward shock. A fraction of this postshock internal energy is

devoted to accelerating electrons to nonthermal velocity distribution (see, e.g., Bell

1978; Blandford and Ostriker 1978) and to amplifying magnetic fields via plasma

instabilities (see, e.g., Weibel 1959; Bell 2004). Then, the accelerated electrons will

emit synchrotron radiation in the magnetized environment.

The flux density of this emission is highly sensitive to the velocity of the

material, which primarily determines the available energy in the postshock region.

Thus, the dynamical ejecta, which can have a component of the velocity up to

� 0:4c, will play a more important role than the disk outflow compared to the case

of the kilonova/macronova. For example, if the power-law index of nonthermal

electron distribution with respect to the Lorentz factor is given by �2:5, the peak

flux density in GHz bands is proportional to v2:75 for a single-velocity outflow with a

fixed kinetic energy (Piran et al. 2013). Here, the velocity may be identified with the

average velocity of the ejecta described in the end of Sect. 3.4.5, i.e., the value

defined from the mass and the kinetic energy.

The emission is expected to be brightest when the deceleration becomes

significant as the accumulated mass becomes comparable to that of the ejecta. Thus,

the time at the onset of significant deceleration (hereafter, simply referred to as the

deceleration time) is critically important to assess detectability. By assuming that

the interstellar medium is composed of hydrogen of mass mp with the number

density n, the deceleration time (also called the Sedov time) for spherical ejecta is

estimated from M ¼ ð4p=3Þðvtdec;sÞ3mpn to be

tdec;s � 15 yr
M

0:01M�

� �1=3 v

0:1c

� ��1 n

1 cm�3

� ��1=3

; ð53Þ

where M again denotes the mass of the ejecta. This estimate may be applicable to

the quasispherical disk outflow. After this time, the ejecta profile evolves approx-

imately according to Sedov-Taylor’s self-similar solution under the assumption that
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nonrelativistic treatment is valid (Piran et al. 2013). The flux density as a function

of time and frequency is derived by assuming the fraction of postshock internal

energy that goes into the accelerated electrons (typically assumed to be � 0:1), the

fraction that goes into the amplified magnetic field (� 0:01–0.1), and the power-law

index of the electron distribution (� 2:5–3) (Nakar and Piran 2011). The fraction of

electrons involved in the particle acceleration may also be introduced (Takami et al.

2014; Kyutoku et al. 2015).

The deceleration time of nonspherical dynamical ejecta becomes long for given

mass and velocity, because they sweep only a limited solid angle. Quantitatively, it

is given in terms of the opening angles defined in Sect. 4.1.1 by (Kyutoku et al.

2013, 2015)

tdec � 38 yr
M

0:01M�

� �1=3
v

0:1c

� ��1 n

1 cm�3

� ��1=3 h
1=5

� ��1=3 u
p

� ��1=3

: ð54Þ

We again note that the morphology and hence the opening angles may be modified

by the r-process heating in the early part of the evolution. Because the peak flux

density is expected to be independent of the opening angles except for low fre-

quency at which self-absorption plays a role, this estimate suggests that the non-

thermal emission from the nonspherical dynamical ejecta of black hole–neutron star

binaries will be long lasting. After the peak time given by � tdec, evolution of the

flux density is more complicated for nonspherical ejecta than for spherical ejecta,

because the hydrodynamical evolution becomes nontrivial due to the lateral

expansion. To derive quantitative predictions, longterm numerical simulations are

necessary for modeling geometrical evolution (see Margalit and Piran 2015 for a

piecewise-spherical approximation).

We finally mention possible proper motion of the radio image caused by the

motion of the ejecta (Kyutoku et al. 2013, 2015). As the dynamical ejecta carry a

net linear momentum, their center-of-mass velocity vCOM typically reaches 0.1–0.2c
as described in Sect. 3.4.5. A characteristic distance scale for the movement of the

ejecta may be estimated by vCOMtdec. For a hypothetical event at Oð100ÞMpc, the

radio image could move on the sky by Oð1Þmilliarcsecond. Taking the fact that

superluminal motion of the radio image by 2:7 � 0:3 milliarcsecond has been

detected in the afterglow of GRB 170817A into account (Mooley et al. 2018a),

there may be a chance for detecting radio proper motion associated with the

dynamical ejecta from black hole–neutron star binaries in forthcoming observations.

The proper motion may be detectable until the slow, quasispherical disk outflow

begins to dominate the entire radio emission.

4.1.3 Influence on the jet propagation

The material ejected to the polar region crucially affects propagation and

collimation of a hypothetical jet launched from the black hole–accretion disk

system. It is not clear whether the ejecta are helpful for realizing observed gamma-

ray bursts. On the one hand, if the jet accumulates too much material from the ejecta

during its propagation, the terminal velocity cannot be ultrarelativistic (the so-called
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baryon-loading problem; Mészáros and Rees 2000). Massive ejecta may even choke

the jet before it breaks out (Gottlieb et al. 2018; Nakar et al. 2018). On the other

hand, gas pressure of the surrounding material composed of the ejecta may be

necessary for collimating the jet to a narrow opening angle (Nagakura et al. 2014;

Harrison et al. 2018; Hamidani and Ioka 2021, see also Matzner 2003; Bromberg

et al. 2011; Mizuta and Ioka 2013 for related work on the stellar envelope).

The current numerical simulations of black hole–neutron star binaries are not

fully successful in driving an ultrarelativistic jet. Thus, for a theoretical study on the

jet propagation, it is customary to inject internal energy artificially in the central

region for investigating the interaction of an expanding fireball and the surrounding

material (Just et al. 2016, see also, e.g., Nagakura et al. 2014; Murguia-Berthier

et al. 2014; Duffell et al. 2015; Murguia-Berthier et al. 2017; Lazzati et al. 2017 for

the case of binary neutron stars). While the robust conclusion cannot be drawn at

this stage, an ultrarelativistic jet may be able to penetrate through the ejecta with

reasonable collimation (Just et al. 2016). One difference from the case of binary-

neutron-star mergers is that the dynamical ejecta do not cover the polar region.

Thus, the hypothetical jet is likely to interact only with the slow disk outflow.

Indeed, this is the reason that Just et al. (2016) find black hole–neutron star binaries

are more advantageous for launching a successful jet with avoiding the baryon-

loading problem than binary neutron stars.

In terms of the energy injection, the Blandford–Znajek mechanism is likely to be

required for explaining observed properties of the short-hard gamma-ray bursts such

as the duration of � 1 s, because other mechanisms, e.g., neutrino pair annihilation,

are unlikely to operate for such a long time scale. Although fully consistent, end-to-

end simulations for the ultrarelativistic jet may be prohibitive, jet propagation and

collimation for black hole–neutron star binaries require further investigations. For

example, it is uncertain whether the Blandford–Znajek jet is launched before or after

the substantial ejection of the disk outflow. Because the fate of ultrarelativistic jets

after propagation depends strongly on the timing difference of the launch (Nagakura

et al. 2014), this point needs to be explored systematically.

4.2 Distinguishability of binary types

One of the lessons from the LIGO-Virgo O3 is that realistic compact object binaries

sometimes challenge our ability to distinguish black holes and neutron stars (Abbott

et al. 2020a, c). Because the sensitivity of the current detectors are not high enough,

some parameters of gravitational-wave sources such as the masses of individual

objects are not determined precisely. Moreover, because we do not know the precise

upper limit of the neutron-star mass, an object with � 2–3M� cannot be concluded

as either a black hole or a neutron star with confidence, even if its mass is

determined without uncertainty. In this Sect. 4.2, we discuss prospects for

observationally distinguishing binary types for the case in which one of the

components has 2–3M�.
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4.2.1 Can we distinguish black hole–neutron star binaries from binary black holes?

If the neutron star is disrupted during merger, both gravitational waves and

electromagnetic counterparts for black hole–neutron star binaries are significantly

different from those for binary black holes. Thus, disruptive black hole–neutron star

binaries may be distinguishable from binary black holes if the distance to the event

is small enough that gravitational waves and electromagnetic counterparts are

detected. For example, numerical-relativity-calibrated waveform models suggest

that gravitational waves with the signal-to-noise ratio of J30–40 enable us to

distinguish these two types of binaries (Thompson et al. 2020) even if we do not

consider cutoff behavior of the waveform or electromagnetic signals. The distance

to which electromagnetic counterparts can be detected depends on both the

properties of the ejecta and available observational instruments. For example, events

at � 400 Mpc give us a fair chance for detections of the kilonova/macronova for a

wide range of binary parameters if rapid follow-up is performed by 8 m-class optical

telescopes or sensitive space-borne infrared telescopes such as the Nancy Grace

Roman Space Telescope (formerly called WFIRST) become available (Tanaka

et al. 2014). Because the typical distance at which black hole–neutron star binaries

are observed to merge is expected to be larger than � 200 Mpc [e.g., the distances to

GW200105 and GW200115 are estimated to be � 300 Mpc (Abbott et al. 2021b)],

large-scale telescopes will play a vital role for detecting associated electromagnetic

counterparts. If a short-hard gamma-ray burst is launched toward us, the

detectable distance will exceed a cosmological distance of z� 1 (see, e.g., Fong

et al. 2015).

As discussed in Sect. 1, distinguishing nondisruptive black hole–neutron star

binaries and binary black holes seems a formidable challenge (Foucart et al. 2013a).

This is demonstrated by actual detections of black hole–neutron star binaries

GW200105 and GW200115 (Abbott et al. 2021b) and a possible candidate

GW190426_152155 (Abbott et al. 2021a). A highly asymmetric binary-black-hole

candidate GW190814 may also fall into this category (Abbott et al. 2020c).

Numerical-relativity-calibrated waveform models suggest that the tidal effect in

gravitational waves will not be useful for identifying the binary type unless the

signal-to-noise ratio exceeds � 100 (Thompson et al. 2020), which is not likely to

be realized in the foreseeable future. The only signal that might allow us to

distinguish these two types of compact object binaries is an electromagnetic

precursor associated with magnetospheric activities, although its understanding is

currently highly uncertain (Hansen and Lyutikov 2001; McWilliams and Levin

2011; Lai 2012; Paschalidis et al. 2013; D’Orazio et al. 2016; Carrasco and Shibata

2020; Wada et al. 2020; East et al. 2021; Carrasco et al. 2021, see also Ioka and

Taniguchi 2000 for binary neutron stars). Because the precursor emission needs to

be detected without gravitational-wave informed localization, a wide-field moni-

toring is required on the observational side. Sophistication of theoretical predictions

is also important on the theoretical side for distinguishing the signal from other

transients.
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4.2.2 Can we distinguish black hole–neutron star binaries from binary neutron
stars?

Distinguishing binary neutron stars from a black hole–neutron star binary with a

small total mass is also not an easy task. Very strictly speaking, even GW170817 is

not inconsistent with a very-low-mass black hole–neutron star binary if we accept

existence of black holes with MBH\2M� (Hinderer et al. 2019). A more subtle

case is the second binary-neutron-star candidate, GW190425 (Abbott et al. 2020a).

Because the total mass of this system, 3:4þ0:3
�0:1 M� for the high-spin prior (i.e., the

spin parameter of each component is assumed to be \0:89 in the data analysis), is

an outlier compared to the mass distribution of Galactic binary neutron stars (Tauris

et al. 2017; Farrow et al. 2019), this system may indicate the existence of a novel

path for compact binary formation. However, a possibility that GW190425 is a

very-low-mass black hole–neutron star binary with MBH [ 2M� is not rejected,

partly because the localization was poor and no electromagnetic counterpart was

detected (Kyutoku et al. 2020; Han et al. 2020). Because either scenario involves

astrophysically unexpected populations of compact object binaries, it is worthwhile

to explore how we can distinguish the type of binaries in a reliable manner in the

foreseeable future (see also Yang et al. 2018, for a similar discussion).

Although gravitational waves from the inspiral phase give us a plenty of

information about the source, it is unlikely to be powerful enough to distinguish

low-mass black hole–neutron star binaries and binary neutron stars. Because the

mass ratio and the spin parameter are tightly correlated (Cutler and Flanagan 1994;

Poisson and Will 1995), the mass of each component is determined only with a

limited precision (Hannam et al. 2013). Although this degeneracy may be mitigated

by taking the precession into account (Chatziioannou et al. 2015), this is likely to be

effective only for edge-on systems, against which gravitational-wave detectors are

biased (Littenberg et al. 2015). Even if the degeneracy is resolved, complete

distinction is hindered from the uncertainty in the maximum mass of the neutron

star. It is also difficult to separate tidal effects of individual components to claim

that one is devoid of tidal deformability (see, e.g., Wade et al. 2014). If the

sensitivity at high frequency of J1 kHz is improved with third-generation detectors

(Abbott et al. 2017a; Maggiore et al. 2020), detections of postmerger signals from

the remnant massive neutron star will allow us to identify the system to be binary

neutron stars without doubt, particularly for binary neutron stars less massive than a

canonical mass of � 2 � 1:35M� (Shibata 2005; Hotokezaka et al. 2011).

Electromagnetic counterparts will give us useful information about the nature of

sources, but in general it is not easy to distinguish low-mass black hole–neutron star

binaries from asymmetric binary neutron stars (Kyutoku et al. 2020). If the total

mass is large, nearly-symmetric binary neutron stars will collapse promptly into a

black hole. Because prompt collapse is unlikely to leave substantial material outside

the formed black hole (Hotokezaka et al. 2013b), detections of electromagnetic

counterparts such as the gamma-ray burst and the kilonova/macronova are not

compatible with symmetric, massive binary neutron stars. However, the outcomes

of black hole–neutron star binaries and asymmetric binary neutron stars are similar
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if the masses of each component are identical. A possible difference may be induced

by the mass of the dynamical ejecta, which is larger for asymmetric binary neutron

stars than very-low-mass black hole–neutron star binaries due probably to the

presence of the stellar surface (see also discussions in Most et al. 2021a). In

addition, because the maximum velocity of the dynamical ejecta is higher for binary

neutron stars than for black hole–neutron star binaries, the kilonova/macronova

remnant may be brighter from an early epoch for the former (Kyutoku et al. 2015;

Brege et al. 2018; Most et al. 2021a). Possible characteristic observable features

associated with nonsphericity of the dynamical ejecta from black hole–neutron star

binaries could also be utilized for distinction (Kyutoku et al. 2013), and further

investigation of this topic will be valuable.

A Formulation of quasiequilibrium states

Minimal requirements for modeling black hole–neutron star binaries in quasiequi-

librium are to satisfy the Einstein constraint equations and relativistic hydrosta-

tionary equations supplemented with an equation of state. Sophisticated models of

quasiequilibrium states can be obtained by solving a part of the Einstein evolution

equations with imposing further conditions, e.g., slicing condition. For this purpose,

two approaches have been proposed to construct black hole–neutron star binaries in

quasiequilibrium. The main differences between these two approaches lie in the

method for handling the physical and/or coordinate singularity associated with the

black hole. One is the excision approach, in which the inside of the black-hole

horizon is explicitly eliminated from the computational domain by excising a

coordinate sphere and by imposing an appropriate boundary condition there (Cook

2002; Cook and Pfeiffer 2004; Jaramillo et al. 2004, see also Dreyer et al. 2003;

Ashtekar and Krishnan 2004; Gourgoulhon and Jaramillo 2006 for reviews of the

isolated horizon). The other is the puncture approach, in which the black hole is

modeled by a puncture and the metric quantities are decomposed into singular and

regular parts (Brandt and Brügmann 1997). In this approach, the inside of the black-

hole horizon is eliminated implicitly. In both approaches, the outer boundary is

located exactly at spatial infinity or at a very large distance (Pfeiffer et al. 2003) by

compactifying the radial coordinate.

In this appendix, we first describe gravitational-field equations both for the

excision and the puncture approaches, which derive overlapping but different sets of

equations. Next, we describe relativistic hydrostationary equations. These equations

are solved simultaneously by iterative methods until a sufficient level of

convergence is achieved. We refer the readers to Taniguchi et al.

(2005, 2006, 2007) and Shibata and Uryū (2006, 2007); Kyutoku et al. (2009) for

the excision and the puncture approaches applied to black hole–neutron star

binaries, respectively. We also refer the readers to Cook (2000); Tichy (2017) for

reviews of the initial value problem in numerical relativity and to Gourgoulhon

et al. (2001); Uryū et al. (2009); Taniguchi and Shibata (2010) for details of the

relativistic hydrostationarity. Geometrical units in which G ¼ c ¼ 1 is adopted

entirely in Appendix A.
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A.1 Gravitational field

In both the excision and the puncture approaches, a part of the Einstein equation is

solved based on the extended conformal thin-sandwich formalism (York 1999;

Pfeiffer and York 2003). The line element is written in the 3 þ 1 form as

ds2 ¼ glmdx
ldxm

¼ �a2dt2 þ cij dxi þ bicomdt
� �

dxj þ bjcomdt
� �

:
ð55Þ

As we stated in Sect. 2.1, quasiequilibrium states are modeled assuming the exis-

tence of a helical Killing vector, Eq. (15). Thus, numerical computations of

quasiequilibrium states are usually performed in the comoving frame, because the

system appears stationary there (see, e.g., Gourgoulhon et al. 2001, 2002). The shift

vector in the comoving frame is expressed as

bicom ¼ bi þ birot; ð56Þ

birot ¼ XðouÞi; ð57Þ

where bi is the shift vector in the asymptotic inertial frame and birot is the vector

connecting the two frames with X being the orbital angular velocity of the binary

measured at infinity, which also appears in the helical Killing vector. The method to

determine the value of X will be discussed later. If the radial velocity should be

introduced to reduce or control the orbital eccentricity, an additional vector needs to

be incorporated as we discuss in Appendix A.5.2 (Pfeiffer et al. 2007; Foucart et al.

2008; Henriksson et al. 2016; Kyutoku et al. 2021).

The extrinsic curvature is defined by

Kij ¼ � 1

2
Lncij; ð58Þ

where nl is the future-directed unit timelike vector normal to the constant-time

hypersurface and L denotes the Lie derivative. The extrinsic curvature is decom-

posed into the trace and the traceless parts as

Kij ¼
1

3
Kcij þ Aij; ð59Þ

where cijAij ¼ 0. The trace, K, is usually regarded as a freely-specifiable variable

that determines the constant-time hypersurface (York 1972).

The energy-momentum tensor is decomposed in a 3 þ 1 manner as

qH :¼ nlnmT
lm; ð60Þ

Ji :¼ �cilnmT
lm; ð61Þ

Sij :¼ cilcjmT
lm; ð62Þ
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S :¼ cijSij: ð63Þ

For the case of an ideal fluid, the energy-momentum tensor takes the form of

Tlm ¼ ðqþ qeþ PÞulum þ Pglm

¼ qhulum þ Pglm
ð64Þ

and is decomposed into

qH ¼ qh autð Þ2�P; ð65Þ

Ji ¼ qh autð Þui; ð66Þ

Sij ¼ qhuiuj þ Pcij: ð67Þ

For the purpose of constructing a solvable set of elliptic equations, conformal

transformation is applied to gravitational fields in the solution of the Einstein

constraint equations (York 1979).6 The induced metric is decomposed into the

conformal factor w and the conformal (or ‘‘background’’) metric ĉij as

cij ¼ w4ĉij: ð68Þ

The traceless part of the extrinsic curvature is also transformed as (Ó Murchadha

and York 1974)

Aij ¼ w�10Â
ij
; Aij ¼ w�2Âij; ð69Þ

where Âij ¼ ĉikĉjlÂ
kl

. The reason for adopting this transformation law is that the

divergence of the traceless part of the extrinsic curvature, which is the central

quantity in the momentum constraint, is also conformally transformed as

DjA
ij ¼ w�10D̂jÂ

ij
, where Di and D̂i are the covariant derivatives associated with cij

and ĉij, respectively. The Hamiltonian constraint is rewritten to an elliptic equation

to determine the conformal factor as

D̂w ¼ �2pw5qH þ 1

8
wR̂þ 1

12
w5K2 � 1

8
w�7ÂijÂ

ij
; ð70Þ

where D̂ ¼ ĉijD̂iD̂j and R̂ is the scalar curvature of ĉij.
The conformal traceless extrinsic curvature is given from Eqs. (59), (68), and

(69) by

6 Conformal transformation is sometimes performed also for matter variables. This strategy is

advantageous to ensure the uniqueness of the solution (York 1979), but it has not been found essential for

obtaining quasiequilibrium states of black hole–neutron star binaries.
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Â
ij ¼ w6

2a
L̂bcom

� �ij�ûij
h i

; ð71Þ

where we defined the time derivative (in the comoving frame for this problem) of

the conformal metric,

ûij :¼ otĉij; ð72Þ

ûij ¼ ĉikĉjlûkl; ð73Þ

and the longitudinal derivative, or conformal Killing operator,

L̂V
� �ij

:¼ D̂
i
Vj þ D̂

j
Vi � 2

3
ĉijD̂kV

k: ð74Þ

In the conformal thin-sandwich formalism (York 1999), the momentum constraint is

rewritten to an elliptic equation to determine the shift vector for given ûij as

D̂Lb
i
com ¼ 16paw4Ji þ 4

3
aD̂

i
K þ a

w6
D̂j

w6

a
ûij

� �
� Lbcomð ÞijD̂j ln

w6

a

� �
; ð75Þ

where we defined the vector Laplacian by

D̂LV
i :¼ D̂jðLVÞij ¼ ĉjkD̂jD̂kV

i þ 1

3
D̂

i
D̂jV

j þ R̂
i
jV

j: ð76Þ

In the extended conformal thin-sandwich formalism (Pfeiffer and York 2003), the

evolution equation of the trace of the extrinsic curvature,

ðot �LbÞK ¼ �w�4 D̂aþ 2 D̂
i
lnw

� �
D̂ia
� �h i

þ a 4pðqH þ SÞ þ w�12ÂijÂ
ij þ K2

3


 �
;

ð77Þ

is employed to derive the equation for the lapse function for given otK. It is often

numerically advantageous to combine this equation with the Hamiltonian constraint

to derive an elliptic equation for U :¼ aw as (Wilson and Mathews 1995; Wilson

et al. 1996; Taniguchi et al. 2008)

D̂U ¼ 2pUw4ðqH þ 2SÞ þ 1

8
UR̂þ 5

12
Uw�4K2 þ 7

8
Uw�8ÂijÂ

ij � w5ðot � biD̂iÞK:

ð78Þ

The set of equations, Eqs. (70), (71), (75), and (78), contains four freely specifiable

quantities, ĉij, K, ûij, and otK. Because the direction of the time in the comoving

frame agrees with the helical Killing vector so that nl ¼ ðotÞl, we require

ûij ¼ 0 ¼ otK. We caution that these conditions sometimes require modification in

the far zone, because the helical Killing vector becomes spacelike (Shibata et al.

2004). The remaining variables, ĉij and K, need to be chosen by other conditions.
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The simplest and popular choice is the conformally-flat and maximal-slicing

conditions,

ĉij ¼ fij ; K ¼ 0: ð79Þ

This is numerically advantageous, because the source terms of Eqs. (70), (75), and

(78) become simple and fall off rapidly enough at spatial infinity to obtain accurate

results. Furthermore, the elliptic operator involved in the problem becomes the

Laplacian for a flat three space, methods for solving which are well developed. The

maximal-slicing condition constrains only a single degree of freedom and is usually

justified as the gauge condition on the time. However, the conformal flatness

condition is physically too restrictive. For example, it is known that a Kerr black

hole cannot be constructed with this choice (Garat and Price 2000; Kroon 2004; De

Felice et al. 2019). Moreover, the set of equations can lead to nonunique solutions

(Pfeiffer and York 2005; Baumgarte et al. 2007; Walsh 2007; Cordero-Carrión et al.

2009). A spinning black hole exhibits two solutions with different values of the

physical spin magnitude for a given input parameter that specifies the spin (which

depends on the approach). Only one branch of the solutions is connected to a

Schwarzschild solution in the nonspinning limit, but the dimensionless spin

parameter is limited to v.0:85. Another popular choice is to adopt those for the

Kerr–Schild metric as ðĉij;KÞ. The obvious advantage of this choice is that we can

construct nearly-extremally spinning black holes with v � 1. However, with this

choice, the equations to be solved become complicated and involve terms with slow

falloff at spatial infinity. Accordingly, the accuracy of numerical solutions tends to

be degraded compared to the conformally-flat and maximal-slicing cases (Taniguchi

et al. 2006). Yet another choice of the free variables, a modified Kerr–Schild

background, combines the advantages of these two choices. That is, the metric takes

the Kerr–Schild form only in the vicinity of the black hole and approaches expo-

nentially to the conformally-flat and maximal-slicing one at the distant region to

maintain numerical accuracy (Lovelace et al. 2008; Foucart et al. 2008).

A.1.1 Excision approach

In this Appendix A.1.1, we describe the central idea of the excision approach with

restricting ourselves to the conformally-flat (ĉij ¼ fij) and maximally-slicing

(K ¼ 0) cases. The excision approach is not restricted to these choices, and general

cases are handled in, e.g., Taniguchi et al. (2006); Foucart et al. (2008).

The relevant differential equations are now given by

Dw ¼ �2pw5qH � 1

8
w�7ÂijÂ

ij
; ð80Þ

Dbi þ 1

3
DiDjb

j ¼ 16pUw3Ji þ 2Â
ij
Dj Uw

�7
� �

; ð81Þ
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DU ¼ 2pUw4ðqH þ 2SÞ þ 7

8
Uw�8ÂijÂ

ij
; ð82Þ

where Di and D :¼ f ijDiDj denote the covariant derivative operator and Laplacian of

the flat metric, respectively. This covariant derivative becomes the partial derivative

in Cartesian coordinates. Here, the shift vector in the comoving frame, bicom, is

replaced by that in the asymptotic inertial frame, bi, because the rotational part, birot,

given by Eq. (57) is a (conformal) Killing vector of the flat metric. Similarly,

Eq. (71) becomes

Â
ij ¼ w7

2U
Dibj þ Djbi � 2

3
f ijDkb

k

� �
: ð83Þ

A solution for these elliptic equations requires appropriate boundary conditions at

spatial infinity and the black-hole horizon S, which is set to be a coordinate sphere.

By assuming that the spacetime is asymptotically flat, appropriate boundary con-

ditions at spatial infinity are given by

wðr ! 1Þ ¼ 1; ð84Þ

biðr ! 1Þ ¼ 0; ð85Þ

Uiðr ! 1Þ ¼ 1: ð86Þ

At the black-hole horizon, the assumption that the black hole is in equilibrium leads

to a set of boundary conditions for the conformal factor and the shift vector (Cook

and Pfeiffer 2004, see also Cook 2002; Jaramillo et al. 2004; Caudill et al. 2006).

Specifically, the requirement that the surface is nonexpanding and thus becomes an

apparent horizon (more strictly, marginally outer trapped surface) derives

siDi lnw
		
S
¼ � 1

4
hijDisj � w2L
� �				

S

; ð87Þ

where si is the outward-pointing unit vector to the excision surface with si :¼ w2si,

hij :¼ cij � sisj is the induced metric on S with hij :¼ w�4hij, and L :¼ hijKij. The

shift vector is treated separately for the normal and tangential components with

respect to the excision surface. The normal component in the comoving frame is

determined by the condition that the coordinate location of S does not change in

time as

b?jS¼ ajS: ð88Þ

Note that the radius of S is iteratively determined by requiring the mass (or area) of

the black hole to take a desired value. The tangential component is required to be a

conformal Killing vector on S with its magnitude undetermined. For the confor-

mally-flat case, we can express it as
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bik

			
S
¼ �ijkX

j
rx

k
BH; ð89Þ

where �ijk is the flat Levi-Civita tensor, Xi
r is a freely-specifiable vector that controls

the black-hole spin, and xiBH is the coordinate vector measured from the center of S.

The magnitude (but not the direction) of a quasilocal spin angular momentum of the

black hole may be defined in terms of an approximate Killing vector niS for

axisymmetry on S as

SðnÞ :¼
1

8p

I

S

ðKij � KcijÞn
j
SdSi: ð90Þ

An approximate Killing vector may be found by solving Killing transport equations

(Dreyer et al. 2003; Caudill et al. 2006) or by minimizing an appropriately-defined

norm of the shear (Cook and Whiting 2007; Lovelace et al. 2008). The magnitude

and the direction of Xi
r are iteratively determined by requiring the quasilocal spin to

take a desired value. However, because no method is known for defining the

direction of the spin in a geometric manner, the direction is estimated in a coor-

dinate-dependent manner from the components of Xi
r. Finally, the lapse function on

S can be chosen freely. For example, we may choose a Neumann boundary

condition

siDiU
		
S
¼ 0; ð91Þ

or simply require a to take a constant value on S (Caudill et al. 2006).

A.1.2 Puncture approach

The puncture approach was first proposed to construct initial data containing

multiple black holes with arbitrary linear and spin angular momenta (Brandt and

Brügmann 1997) extending work on time-symmetric (i.e., without momenta)

multiple black holes (Brill and Lindquist 1963). Because of the simplicity of

moving-puncture methods for evolving black-hole spacetimes (Brügmann et al.

2004; Campanelli et al. 2006; Baker et al. 2006), initial data of this type are

popularly adopted in dynamical simulations of binary black holes (Ansorg et al.

2004).

Here, we describe the puncture approach for quasiequilibrium black hole–

neutron star binaries (Shibata and Uryū 2006, 2007; Kyutoku et al. 2009). In

contrast to the excision approach, the conformally-flat and maximal-slicing

conditions are essential for this approach (see Liu et al. 2009 for possible

extension). Thus, we again assume ĉij ¼ fij and K ¼ 0. As a by-product, this

approach for solving the initial value problem can naturally be adopted as a method

of dynamical simulations within the conformal-flatness approximation (Just et al.

2015).

The basic equations for gravitational fields are Eqs. (80), (81), and (82) as in the

case of the excision approach. To avoid appearances of divergent terms in w and U,

they are decomposed into singular and regular parts by
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w ¼ 1 þ MP

2rBH

þ /; ð92Þ

U ¼ 1 � MU

2rBH

þ g; ð93Þ

where MP and MU are positive mass parameters and rBH ¼ xi � xiP
		 		 is the Euclidean

coordinate distance from the puncture located at xiP. Because 1=rBH is a homoge-

neous solution of the flat Laplacian, only the regular parts / and g require numerical

integrations.

The puncture approach for black hole–neutron star binaries employs a mixture of

the conformal thin-sandwich formalism and the conformal transverse-traceless

decomposition to determine the conformal traceless part of the extrinsic curvature,

Â
ij
. Specifically, it is also decomposed into singular and regular parts as

Â
ij ¼ DiWj þ DjWi � 2

3
f ijDkW

k þ Kij
P : ð94Þ

The singular part associated with the puncture is given in a Bowen–York form

(Bowen and York 1980) as

Kij
P ¼ 3

2r2
BH

liPj
BH þ ljPi

BH � f ij � lilj
� �

lkP
k
BH

� 
þ 3

r3
BH

li�jkl þ lj�ikl
� �

SP
k ll; ð95Þ

where li :¼ xiBH=rBH and li :¼ fijl
j. Vectorial constants Pi

BH and SP
i are related to the

linear and spin angular momenta of the black hole, respectively. The vectorial

auxiliary function Wi is determined by the momentum constraint.

The set of the basic equations in the puncture approach is given by

D/ ¼ �2pw5qH � 1

8
w�7ÂijÂ

ij
; ð96Þ

Dbi þ 1

3
DiDjb

j ¼ 16pUw3Ji þ 2Â
ij
Dj Uw

�7
� �

; ð97Þ

Dg ¼ 2pUw4ðqH þ 2SÞ þ 7

8
Uw�8ÂijÂ

ij
; ð98Þ

DWi þ 1

3
DiDjW

j ¼ 8pw10Ji: ð99Þ

Because the matter fields are localized in the neutron star and ÂijÂ
ij / Oðr�4

BHÞ and

/ Oðr�6
BHÞ in the absence and the presence of the black-hole spin, respectively, it is

readily found that no source term diverges at the puncture. In this approach, the

conformal traceless part of the extrinsic curvature, Â
ij
, is determined not by Eq. (83)

but by Eq. (94), because the regularity at the point a ¼ 0 ¼ U is not ensured (see

also Gourgoulhon et al. 2002; Grandclément et al. 2002; Grandclément 2006 for

related issues). The shift vector still needs to be solved, because it is required in the
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solution of hydrostationary equations. A solution for these elliptic equations needs

boundary conditions at spatial infinity, which is derived from the asymptotic flatness

as

/; bi; g;Wi
		
r!1¼ 0: ð100Þ

The lack of the inner boundary could be a drawback, because we cannot impose

physical equilibrium conditions on the black-hole horizon. However, we may also

regard this lack as a flexibility for adjusting initial data to a desirable state (Shibata

and Taniguchi 2008; Kyutoku et al. 2009).

Free parameters in this formulation have to be chosen appropriately. The

puncture or ‘‘bare’’ mass, MP, and the spin parameter, SP
i , are determined by

requiring the black hole to have desired mass and spin, respectively. The values of

the mass and the spin magnitude should be evaluated on the apparent horizon, which

needs to be located numerically in the computation of quasiequilibrium states in the

puncture approach (see Thornburg 2007 for reviews). Empirically, the Euclidean

norm of SP
i coincides with SðnÞ with the fractional error of .10�5 for v.0:75. Again,

the direction of the spin is estimated in a coordinate-dependent manner from the

components of SP
i . Another mass parameter, MU, is determined by the virial

theorem, i.e., the condition that the ADM and Komar masses agree (Beig 1978;

Ashtekar and Magnon-Ashtekar 1979; Friedman et al. 2002; Shibata et al. 2004),
Z

r!1
DiUdSi ¼ �

Z

r!1
DiwdSi ¼ 2pMADM: ð101Þ

The linear momentum parameter, Pi
BH, is determined by requiring that the total

linear momentum of the system vanishes as

Pi
BH ¼ �

Z
Jiw10dV ; ð102Þ

where the integral on the right-hand side is interpreted as the linear momentum of

the neutron star.

A.2 Hydrostationarity

Fluids in quasiequilibrium binaries are required to satisfy the hydrostationary

equations derived by the continuity and Euler’s equations. Several methods for

solving these equations have been proposed focusing particularly on the irrotational

configurations (Bonazzola et al. 1997; Asada 1998; Shibata 1998; Teukolsky 1998;

Gourgoulhon et al. 2001; Shibata et al. 2004, see also Tacik et al. 2016 and

references therein for neutron stars with arbitrary spins). In this Appendix A.2, we

review formulation proposed in Shibata et al. (2004); Uryū et al. (2009).

The continuity equation,
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rl qulð Þ ¼ 0; ð103Þ

and the local energy-momentum conservation equation,

rmT
m
l ¼ 0; ð104Þ

govern the motion of the fluid inside neutron stars. The latter for the ideal fluid is

rewritten to

qumrmðhulÞ þ hulrmðqumÞ þ rlP ¼ 0; ð105Þ

and the second term vanishes due to Eq. (103). If the first law of thermodynamics

under (i) zero temperature or isentropy and (ii) chemical equilibrium, i.e.,

dh ¼ 1

q
dP; ð106Þ

holds throughout the fluid, Eq. (105) becomes

umrmðhulÞ þ rlh ¼ 0: ð107Þ

By defining the relativistic vorticity tensor

xlm :¼ gl
a þ ulu

a
� �

gm
b þ umu

b
� �

ðraub �rbuaÞ
¼ h�1½rlðhumÞ � rmðhulÞ�;

ð108Þ

where we used Eq. (107) to derive the second line, the local energy-momentum

tensor conservation under Eq. (106) is shown to be equivalent to

umxlm ¼ 0: ð109Þ

This equation may be integrated along the Killing vector for the solution of

hydrostationarity. We define the spatial velocity vl of the fluid in the comoving

frame by

ul ¼ ut nl þ vlð Þ; ð110Þ

where nl is the helical Killing vector for the case in which the radial velocity is

absent (see Kyutoku et al. 2014, 2021 for an approximate hydrostationarity with the

radial velocity) and vlnl ¼ 0 is satisfied. As we described in Sect. 2.1, the helical

Killing vector nl is timelike in the near zone. By substituting this equation into

Eq. (109), we obtain

ut LnðhulÞ � rlðhumnmÞ þ vmxml
� 

¼ 0: ð111Þ

Because nl is a Killing vector, we require that

LnðhulÞ ¼ 0: ð112Þ

If the fluid motion is synchronized with the orbital motion, i.e., the fluid is in a
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corotational state with vl ¼ 0, the integration of the local-energy momentum con-

servation gives rise to

huln
l ¼ const: ð113Þ

If instead the fluid motion is irrotational and xij ¼ 0 is satisfied, we again deduce

that huln
l is constant in space (Shibata 1998). The irrotational condition also

implies that the spatial part of the specific momentum, hui, can be expressed as the

gradient of the velocity potential W as

hui ¼ DiW: ð114Þ

The velocity potential is determined by the continuity equation, which is rewritten

as

rlðqulÞ ¼
1

a
Di qau

tvi
� �

¼ 0; ð115Þ

recalling that the time coordinate is taken to be the direction of nl. By inserting

Eqs. (110) and (114) with the expression of the helical Killing vector

nl ¼ anl þ blcom; ð116Þ

we obtain the elliptic equation for the velocity potential,

DiDiWþ DiW� hutbicom

� �
Di ln

qa
h

� �
� Di hu

tbicom

� �
¼ 0: ð117Þ

As in the case of gravitational-field equations, freely-specifiable constants need to

be chosen appropriately. The integration constant, CE :¼ �huln
l, of relativistic

Euler’s equation is usually fixed to its value at the center of the star, which is defined

as the location of the maximum baryon rest-mass density (see also Appendix A.3).

We have another constant X implicitly in the helical Killing vector, and we describe

the method to fix it separately in Appendix A.3.

A.3 Orbital angular velocity for a quasicircular orbit

The first integral of Euler’s equation, CE ¼ �huln
l, involves the orbital angular

velocity, X, via Eqs. (56), (110), and (116). Thus, X needs to be determined

appropriately. In particular, we require that the binary is in a quasicircular orbit to

obtain quasiequilibrium binaries without radial approaching velocity. In the

following, we describe two typical methods for deriving quasicircular orbits,

referring to the line connecting the centers of the black hole and the neutron star as

the X axis. Note that, when we incorporate the radial approaching velocity to reduce

or control the orbital eccentricity, the orbital angular velocity is usually prescribed

to obtain a desired value of the eccentricity (Foucart et al. 2008; Kyutoku et al.

2021).
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One typical method to determine X is to require the force balance along the X
axis. The force-balance condition is equivalent to vanishing of the enthalpy gradient

at the stellar center ONS, which is defined to satisfy

o ln h

oX

				
ONS

¼ 0: ð118Þ

Because the pressure gradient and self-gravitational force vanish at the stellar

center, this equation combined with the first integral of Euler’s equation may be

regarded as the condition that the gravitational force from the black hole and the

centrifugal force associated with the orbital motion are commensurate at the stellar

center. Hence, this condition can be used to determine X for a given set of gravi-

tational-field variables. In this case, the constant CE is determined by specifying the

rest-mass density at the stellar center as explained in Appendix A.2.

The other typical method to determine X is to require that the specific enthalpy

becomes unity, i.e., h ¼ 1, at two points on the stellar surface along the X axis.7

Because the pressure and the internal energy vanish at the stellar surface, the sum of

the black-hole gravitational force, the stellar self-gravitational force, and the

centrifugal force associated with the orbital motion is balanced there. The two

conditions derived at the two points may be used as the conditions to determine CE

and X from a given set of gravitational-field variables.

It has been confirmed that both methods derive accurate numerical results with

the reasonable number of iterations and that the results derived by the two methods

agree within the convergence level of the specific enthalpy (Taniguchi et al.

2006, 2007, 2008; Taniguchi and Shibata 2010). That is, both methods work well.

A.4 Center of mass of a binary

Equation (118) also depends on the location of the center of the mass, with respect

to which the rotational shift vector, birot, is defined via ðouÞi. Thus, we need a

method to determine the center of mass for given locations of the black hole and the

neutron star. Again, the procedures are different for the excision and the puncture

approaches.

In the excision approach, the center of mass is determined by requiring that the

total linear momentum of the system vanishes (Taniguchi et al. 2006; Grandclément

2006; Taniguchi et al. 2007, 2008; Taniguchi and Shibata 2010), i.e.,

Pi ¼ 1

8p

I
r!1

Kij � Kcij
� �

dSj ¼ 0: ð119Þ

The key idea behind this condition is that the total linear momentum depends on the

location of the center of mass for a hypothetical angular velocity, X. Hence, the

location of the center of mass can be determined to satisfy this condition. Once it is

determined at an iteration step, the black hole and the neutron star are moved

7 This condition does not hold if we consider special equations of state, e.g., those for quark stars, for

which the density at the stellar surface does not vanish.
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keeping their separation unchanged so that the center of mass of the binary is

located on the Z axis.

The situation is totally different in the puncture approach. The reason is that the

vanishing of the total linear momentum is used to determine the linear-momentum

parameter of the puncture, Pi
BH. There has been no known natural and physical

condition for determining the center of the mass in the puncture approach, and three

conditions have been proposed. The first method is to require vanishing of the

dipole moment of the conformal factor, w, defined at spatial infinity (Shibata and

Uryū 2006, 2007). The second method is to require the minus of the azimuthal

component of the shift vector, �bu, at the puncture is equal to the orbital angular

velocity, so that the position of the puncture is fixed in the comoving frame (Shibata

and Taniguchi 2008). However, the angular momentum of quasiequilibrium states

derived with these conditions is found to be smaller by � 2% for a close orbit of

m0X� 0:03 than the third or fourth post-Newtonian approximation for Q ¼ 3, and

the deviation is typically larger for higher mass-ratio systems. Accordingly, these

conditions lead to eccentric orbits, whereas the second condition works slightly

better than the first one.

The third method determines the location of the center of mass in a

phenomenological manner by requiring the total angular momentum of the binary

to agree with that derived by post-Newtonian approximations for a given value of

the orbital angular velocity X or equivalently the post-Newton parameter m0X
(Kyutoku et al. 2009). This method allows us to obtain orbits with moderately low

eccentricity of � 0:01, which is smaller than the values achieved with previous two

conditions.

When the orbital eccentricity is reduced by modifying the orbital angular velocity

and incorporating the radial approaching velocity (see Appendix A.5.2), the

puncture approach usually adopts the second condition for determining the center of

mass (Kyutoku et al. 2021). This is because the radial velocity of the puncture is

also identified via the minus of the shift vector at the puncture. Performance of the

eccentricity reduction combined with other methods for determining the center of

mass has not been investigated.

A.5 Beyond the helical symmetry

A.5.1 Spin misalignment

Until Appendix A.4, we have discussed quasiequilibrium states in the presence of a

helical Killing vector. This setup is justified for black holes whose spins are absent

or (anti-)aligned with the orbital angular momentum of the binary as far as the

orbital period is much shorter than the time scale of gravitational radiation reaction.

However, if the spin of the black hole is inclined with respect to the orbital angular

momentum, the orbital plane as well as the black-hole spin precesses due to the

spin-orbit, spin-spin, and monopole-quadrupole couplings (Barker and O’Connell

1975; Apostolatos et al. 1994; Racine 2008). This suggests that the helical

symmetry is acceptable only when the orbital period is much shorter than not only
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the radiation reaction time scale but also the precession period. The same applies to

the spin of the neutron star.

Spin misalignment breaks the reflection symmetry with respect to the orbital

plane. Accordingly, the separation of binary components along the rotational axis,

say the Z axis, needs to be fixed in addition to the other free parameters. In the

computation of initial data, it is usually determined by requiring the force-balance

condition at the stellar center like Eq. (118) along the Z direction (Foucart et al.

2011; Kawaguchi et al. 2015; Henriksson et al. 2016). Furthermore, the Z
component of the linear momentum of a neutron star does not vanish in general

in the absence of the reflection symmetry. In the puncture approach, this is canceled

by adjusting the linear-momentum parameter of the puncture, Pi
BH. In the excision

approach, the Z component of the linear momentum is eliminated by applying the

boost to the whole system via the boundary condition at spatial infinity (Foucart

et al. 2011; Henriksson et al. 2016). This induces coordinate motion of the system

and may not be favorable for longterm simulations (Foucart et al. 2021).

A.5.2 Eccentricity reduction with approaching velocity

Although the orbital period is shorter than the time scale of gravitational radiation

reaction for typical initial data, the radiation reaction cannot be fully neglected if

our purpose is to perform accurate simulations of the inspiral phase. Quantitatively,

the quadrupole formula derives the radial approaching velocity of

f64Q=½5ð1 þ QÞ2�gðm0XÞ3
, which amounts to Oð1%Þ of the orbital velocity for

typical initial data. If the initial data do not contain approaching velocity, radiation

reaction is suddenly excited at the beginning of the dynamical simulations and

induces residual eccentricity of �Oð0:01Þ, which is harmful for modeling

gravitational waveforms (Favata 2014). To start simulations of the inspiral phase

smoothly, we need to introduce approaching velocity to the initial data by

modifying the helical symmetry. Typically, the excision approach adopts a

symmetry vector of the form (Pfeiffer et al. 2007; Henriksson et al. 2016)

�n
l ¼ anl þ bl þ blrot þ _a0ðorÞl: ð120Þ

The last, additional term modifies the set of equations via the inner boundary

condition and hydrostationary equations. The puncture approach adopts a slightly

different form (Kyutoku et al. 2021, see also Kyutoku et al. 2014 for discussions

about these two choices)

�n
l ¼ anl þ bl þ blrot þ viNSðoiÞ

l ð121Þ

to modify hydrostationary equations. Additional parameters, _a0 and viNS, are free

parameters to control the approaching velocity of the binary, vapp.

To achieve low eccentricity, the values of the orbital angular velocity X and the

approaching velocity vapp need to be chosen appropriately for a given value of the

orbital separation, d. In the case of black hole–neutron star binaries, these

parameters are adjusted iteratively by performing dynamical simulations for a few

123

5 Page 128 of 182 K. Kyutoku et al.



orbits (Foucart et al. 2008; Kyutoku et al. 2021) following the technique developed

in binary-black-hole simulations (Pfeiffer et al. 2007; Buonanno et al. 2011).

Corrections at each iteration step are estimated by following steps. First, we

determine the time evolution of the orbital separation d(t) or angular velocity XðtÞ.
Here, we focus on the latter (Buonanno et al. 2011, see Pfeiffer et al. 2007; Boyle

et al. 2007 for methods based on the separation). Next, we fit the evolution of its

time derivative to a function of the form

_XðtÞ ¼ SXðtÞ þ B sinðxt þ /0Þ; ð122Þ

where SXðtÞ is chosen to be a smooth function, e.g., a polynomial in t, which

represents smooth evolution driven by radiation reaction. The sinusoidal term

describes the undesirable modulation caused by the residual eccentricity. Once the

parameters B;x, and /0 are determined by the fitting, we correct the orbital angular

velocity and the approaching velocity of the binary by using formulae derived for

Keplerian orbits as

dX ¼ �Bx sin/0

4X2
; ð123Þ

dvapp ¼ Bd0 cos/0

2X
; ð124Þ

where d0 ¼ dð0Þ, aiming at removing the modulation term. In this procedure, the

orbital eccentricity of the initial data is also estimated by

e � Bj j
2xX

: ð125Þ

By adopting the updated values of X and vapp, we compute new initial data and

perform dynamical simulations until the eccentricity is sufficiently reduced. By

beginning with quasiequilibrium states computed with the helical symmetry, the

orbital eccentricity is typically reduced by an order of magnitude after a few

iterations.

B Formulation of dynamical simulations

Dynamical simulations of black hole–neutron star binaries are performed by

numerically solving the evolution of geometric and hydrodynamical variables. The

time evolution of the metric is obtained by solving the Einstein evolution equations

with partially incorporating the constraint equations (see also Bonazzola et al. 2004

for a fully constrained scheme). In Appendix B.1, we will review formalisms

employed for solving gravitational fields of black hole–neutron star binary

coalescences in full general relativity.

Hydrodynamics equations can be solved to different levels of sophistication. The

simplest strategy is to solve ideal hydrodynamics equation. This is adequate for the

inspiral phase and brief periods after the onset of merger. To perform realistic

longterm simulations of the remnant disk, neutrino-radiation hydrodynamics and

123

Coalescence of black hole–neutron star binaries Page 129 of 182 5



magnetohydrodynamics are essential. Viscous hydrodynamics is a possible

phenomenological alternative to magnetohydrodynamics, whose accurate simula-

tions require extremely large computational resources. We will review these

schemes and their implementations in Appendix B.2.

We conclude this section by reviewing in Appendix B.3 the mesh refinement

technique, which plays a key role in performing systematic studies of compact

binary coalescences. All the topics are covered only briefly in this article, and we

refer the readers to standard textbooks, e.g., Alcubierre (2008); Baumgarte and

Shapiro (2010); Gourgoulhon (2012); Shibata (2016), for details.

Geometrical units in which G ¼ c ¼ 1 is adopted in Appendices B.1 and B.2.

B.1 Evolution of the metric

Two formalisms are currently adopted for evolving the geometry of black hole–

neutron star spacetimes. One is the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

formalism (Part 1 of Nakamura et al. 1987; Shibata and Nakamura 1995; Baumgarte

and Shapiro 1999) with the moving-puncture gauge condition (Campanelli et al.

2006; Baker et al. 2006; Brügmann et al. 2008; Marronetti et al. 2008). Another

formalism is the generalized harmonic formalism (Friedrich 1985; Garfinkle 2002;

Gundlach et al. 2005; Pretorius 2005, 2006; Lindblom et al. 2006). Both formalisms

are different from the standard 3 þ 1 formalism (Arnowitt et al. 2008; York 1979),

which is incapable of conducting numerical-relativity simulations (see, e.g., Shibata

2016, Sect. 2.3). A common feature is that the numbers of variables and constraints

are increased simultaneously.

B.1.1 BSSN formalism

The BSSN formalism, the original version of which was first proposed by Nakamura

in Nakamura et al. (1987), is formulated as a modified version of the 3 þ 1

formalism (Arnowitt et al. 2008; York 1979). The essence of this formalism is to

rewrite the evolution equations by changing the variables from the three metric cij
and the extrinsic curvature Kij to, as a typical choice,

~cij :¼ c�1=3cij; ð126Þ

W :¼ c�1=6; ð127Þ

~Aij :¼ c�1=3 Kij �
1

3
Kcij

� �
; ð128Þ

K :¼ cijKij; ð129Þ

~C
i
:¼ �oj~c

ij; ð130Þ

where c is the determinant of cij. The choice of the conformal-factor variable, W, is

not unique (Campanelli et al. 2006; Baker et al. 2006; Marronetti et al. 2008), but
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the one used in the original formulation was not suitable for evolving the black-hole

spacetime (see below). The definition of the three auxiliary variable, ~C
i
, is also not

unique, and Fi :¼
P

j oj~cij is another standard choice (Shibata and Nakamura 1995).

Because of the increased number of variables, detð~cijÞ ¼ 1; ~cij ~Aij ¼ 0, and ~C
i þ

oj~c
ij ¼ 0 or Fi �

P
j oj~cij ¼ 0 are introduced as new constraints.

This change of variables allows us to write evolution equations for the conformal

three metric, ~cij, and the conformal traceless extrinsic curvature, ~Aij, in the form of

simple wave equations. This prescription prevents the spurious growth of

unphysical modes and enables us to perform stable and longterm evolution for a

variety of systems. Specifically, the basic equations in the BSSN formalism with the

choice of variables ~cij, W, ~Aij, K, and ~C
i

are

ot � bkok
� �

~cij ¼ �2a ~Aij þ ~cikojb
k þ ~cjkoib

k � 2

3
~cijokb

k; ð131Þ

ot � bkok
� �

W ¼ W

3
aK � okb

k
� �

; ð132Þ

ot � bkok
� �

~Aij ¼ W2 a Rij �
1

3
Rcij

� �
� DiDja�

1

3
D2acij

� �
 �

þ a K ~Aij � 2 ~Aik
~Aj
k

� �
þ ~Aikojb

k þ ~Ajkoib
k � 2

3
~Aijokb

k

� 8paW2 Sij �
1

3
Scij

� �
;

ð133Þ

ot � bkok
� �

K ¼ a ~Aij
~A
ij þ 1

3
K2

� �
� D2aþ 4paðqH þ SÞ; ð134Þ

ot � bkok
� �

~C
i ¼ �2 ~A

ij
ojaþ 2a ~C

i
jk
~A
jk � 2

3
~cijojK � 8p~cijJj �

3

W
~A
ij
ojW

� �

� ~C
j
ojb

i þ 2

3
~C
i
ojb

j þ 1

3
~cijojokb

k þ ~cjkojokb
i:

ð135Þ

Here, D2 :¼ DiDi, ~C
i
jk is the Christoffel symbol associated with ~cij, and the matter

variables are decomposed as described in Appendix A.1. An important remark is

that the momentum constraint is used to derive the evolution equation for ~C
i
.

A point in the BSSN formulation is to decompose the Ricci tensor of the induced

metric, cij, as

Rij ¼ ~Rij þ RW
ij ; ð136Þ

where ~Rij is the Ricci tensor of the conformal metric, ~cij, and
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RW
ij ¼ 1

W
~Di
~DjW þ ~cij

1

W
~D
k ~DkW � 2

W2
~D
k
W

� �
~DkW
� �
 �

; ð137Þ

where ~Di is the covariant derivative associated with ~cij. For stable numerical

computations, ~Rij needs to be written using ~C
i

as

~Rij ¼ � 1

2
~cklokol~cij þ

1

2
~cikoj ~C

k þ ~cjkoi ~C
k

� �

� 1

2
ok~cilð Þ oj~c

kl
� �

þ ok~cjl
� �

oi~c
kl

� �
� ~C

l
ol~cij

h i
� ~C

l
ik
~C
k
jl:

ð138Þ

With this prescription, ~Rij � � ð1=2ÞD~cij in the weak-field limit, and thus Eqs. (131)

and (133) essentially constitute a wave equation for ~cij, i.e., the strong hyperbolicity

is guaranteed.

In the puncture-BSSN formalism, accurate and stable evolution of a black hole is

accomplished by redefining the conformal-factor variable (Campanelli et al. 2006;

Baker et al. 2006), adopting finite-differencing schemes higher than or equal to the

fourth order, and employing appropriate moving-puncture gauge conditions (Bona

et al. 1995; Alcubierre et al. 2003). Typical gauge conditions are

ot � bkok
� �

a ¼ �2aK; ð139Þ

ot � bkok
� �

bi ¼ 3

4
Bi; ð140Þ

ot � bkok
� �

Bi ¼ ot � bkok
� �

~C
i � gBB

i; ð141Þ

where Bi is an auxiliary vectorial variable and gB is a constant chosen to be � 1=m0,

whose magnitude limits the size of the time step via the Courant–Friedrichs–Levy

conditions (Schnetter 2010). This formulation usually adopts puncture-type initial

data for the black-hole spacetime, in which the physical singularity is absent (Brandt

and Brügmann 1997). Although the coordinate singularity may appear inside the

horizon of a black hole, it is effectively excised in the moving-puncture gauge

conditions (Hannam et al. 2007, 2008). Consequently, the whole computational

region can be evolved without any special treatment of the interior of horizons such

as the excision.

To mitigate violation of the Hamiltonian and also momentum constraints further

by introducing a mechanism for constraint propagation, various extension to the

BSSN formalism have been proposed (Bernuzzi and Hilditch 2010; Alic et al. 2012)

based on the so-called Z4 formalism (Bona et al. 2003) with a constraint damping

mechanism (Gundlach et al. 2005). Among them, the Z4c prescription (Bernuzzi

and Hilditch 2010; Hilditch et al. 2013) is occasionally adopted in black hole–

neutron star binary coalescences (Kawaguchi et al. 2015; Hayashi et al. 2021; Most

et al. 2021a). Formally, this prescription introduces an additional variable H, which

vanishes when the Hamiltonian constraint is satisfied. Its evolution equation

implemented in the SACRA code (Yamamoto et al. 2008; Kyutoku et al. 2014) is

given by
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ðot � bkokÞH ¼ FðrÞ 1

2
a R� ~Aij

~A
ij þ 2

3
K2 � 16pqH

� �
� aj1ð2 þ j2ÞH


 �
;

ð142Þ

where j1 and j2 are parameters that control the damping of constraints. Their values

are taken typically to be j1 � 0:01=m0 and j2 ¼ 0 (see, e.g., Hilditch et al. 2013).

An overall function, F(r), has been introduced in Kyutoku et al. (2014) to avoid

possible numerical problems that often occur near the outer boundary. The equation

used in original publications corresponds to FðrÞ ¼ 1 (Bernuzzi and Hilditch 2010;

Hilditch et al. 2013), and boundary issues are handled by imposing sophisticated

boundary conditions (Ruiz et al. 2011; Hilditch and Ruiz 2018). The evolution

equation for K, Eq. (134), is reinterpreted as an evolution equation for a modified

variable K̂ :¼ K � 2H with adding a term FðrÞaj1ð1 � j2ÞH on the right-hand side.

This requires us to regard K on the right-hand sides of equations as a dependent

variable determined by K ¼ K̂ þ 2H. The evolution equation for ~C
i
, Eq. (135), is

modified to

ot � bkok
� �

~C
i ¼ �2 ~A

ij
ojaþ 2a ~C

i
jk
~A
jk � 1

3
~cijoj 2K � 3Hð Þ � 8p~cijJj �

3

W
~A
ij
ojW


 �

� ~C
j

dojb
i þ 2

3
~C
i

dojb
j þ 1

3
~cijojokb

k þ ~cjkojokb
i � 2FðrÞaj1

~C
i � ~C

i

d

� �
;

ð143Þ

where ~C
i

d :¼ ~cjk ~C
i
jk is computed from ~cij. These modification allows violation of the

Hamiltonian and also momentum constraints to propagate away. Similarly, the

CCZ4 formalism (Alic et al. 2012) has also been adopted recently (East et al. 2021).

Generalized harmonic formalism

The generalized harmonic formalism is based on the Einstein equation in a modified

harmonic gauge condition. The Einstein equation in the harmonic gauge is

employed in various branches of general relativity, particularly in the post-

Newtonian approximation (Blanchet 2014), because the basic equations are written

in a hyperbolic form. In the generalized harmonic formalism, the gauge condition is

written in the form of

rlrlx
a ¼ gabHb; ð144Þ

where xa is not a vector but a collection of four coordinate functions and Ha is a set

of arbitrary functions. With an appropriate choice of Ha, the Einstein equation is

written to a hyperbolic equation for the spacetime metric, glm. Although the usual

harmonic gauge condition, Ha ¼ 0, also derives a hyperbolic equation, the time

coordinate is not guaranteed to remain timelike and also coordinate singularities

may develop. Introduction of carefully-chosen gauge source functions, Ha, enables

us to perform stable and longterm simulations in an analogous manner to the
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introduction of ~C
i

or Fi in the BSSN formalism (Garfinkle 2002). This formulation

simultaneously introduces new constraints,

Ha þ glmCalm ¼ 0; ð145Þ

where Calm is the Christoffel symbol associated with glm.
Another modification is to cast the evolution equations to a first-order form by

introducing derivatives of glm (Alvi 2002; Lindblom et al. 2006),

Qlm :¼ �naoaglm; ð146Þ

Dilm :¼ oiglm: ð147Þ

The latter definition simultaneously introduces another constraint, Dilm � oiglm ¼ 0.

In contrast to the BSSN formulation, there are several options for the basic equa-

tions, particularly in the choice of the constraint damping terms in a similar manner

to the Z4c formulation (Gundlach et al. 2005). Details of the formulation employed

for simulating black hole–neutron star binaries are described in, e.g., Lindblom

et al. (2006); Anderson et al. (2008).

Gauge conditions in the generalized harmonic formalism can be expressed in

terms of the 3 þ 1 variables as

ot � bkok
� �

a ¼ �a Ht � bkHk þ aK
� �

; ð148Þ

ot � bkok
� �

bi ¼ acij aHj þ acklCjkl � oja
� 

: ð149Þ

Various choices of the gauge source functions, Hl, have been adopted in simula-

tions of black hole–neutron star binaries (see, e.g., Duez et al. 2008; Foucart et al.

2013a). Recent simulations typically have adopted damped harmonic gauge con-

ditions (Szilágyi et al. 2009),

Hl ¼ lL ln

ffiffiffi
c

p

a

� �
nl � lS

bl
a
; ð150Þ

where lL and lS are arbitrary positive functions.

The generalized harmonic formalism, which does not have a strong singularity-

avoidance property (Bona and Massó 1992), needs to adopt the excision technique,

in which a region inside the apparent horizon is removed from the computational

domains and is replaced by an inner boundary, for handling black holes. Because the

interior of the excision surface is causally disconnected from the exterior spacetime,

no physical boundary condition is required during the simulations as far as

unphysical propagation of information is avoided appropriately. The first success in

simulating orbiting binary black holes is achieved with this method (Pretorius

2005, 2006), and subsequently, a wide variety of highly-accurate numerical

simulations for binary black holes have been performed by the SXS collaboration in

the generalized harmonic formulation (Boyle et al. 2007, 2008; Scheel et al. 2009).
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B.2 Hydrodynamics

In addition to the evolution equations for the gravitational fields, we need to solve

hydrodynamics equations to evolve the neutron star in the inspiral phase and the

disrupted material, including the remnant disk surrounding the black hole, fallback

material, and the ejecta, in the merger and postmerger phases. Moreover, neutrino-

radiation hydrodynamics and magnetohydrodynamics are essential for describing

realistic evolution of the accretion disk. We first discuss ideal hydrodynamics

equations, which are sufficient for modeling the inspiral phase and a short period

after the onset of merger. Later, neutrino-radiation hydrodynamics and magneto-

hydrodynamics equations are described in Appendices B.2.1 and B.2.2,

respectively.

In the 3 þ 1 formalism, the local energy-momentum conservation equation,

rmT
lm ¼ 0, is decomposed into the spatial and temporal parts as

cilrmT
lm ¼ 0; ð151Þ

nlrmT
lm ¼ 0: ð152Þ

By defining variables

S0 :¼ qH

ffiffiffi
c

p
; ð153Þ

Si :¼ Ji
ffiffiffi
c

p
; ð154Þ

these equations are explicitly written as (see, e.g., Shibata 2016, Sect. 4.3)

otSi þ ojða
ffiffiffi
c

p
Si

j � bjSiÞ ¼ �S0oiaþ Sjoib
j � 1

2
a
ffiffiffi
c

p
Sjkoic

jk; ð155Þ

otS0 þ oiðaSi � biS0Þ ¼ �Sioiaþ a
ffiffiffi
c

p
SijK

ij: ð156Þ

In ideal hydrodynamics, Eqs. (155) and (156) give us relativistic Euler’s equation

and the energy equation, respectively. We also solve the continuity equation,

Eq. (103). They constitute a system of evolution equations in a conservative form

(see, e.g., Font 2008 for reviews),

otq� þ oiðq�viÞ ¼ 0; ð157Þ

otðq�ûiÞ þ ojðq�ûivj þ Pa
ffiffiffi
c

p
di

jÞ ¼ Poiða
ffiffiffi
c

p Þ � q� hwoia� ûjoib
j þ a

2hw
ûjûkoic

jk
� �

ð158Þ

otðq�êÞ þ oi q�êv
i þ P

ffiffiffi
c

p ðvi þ biÞ
� 

¼ Pa
ffiffiffi
c

p
K � q�ûic

ijojaþ
q�a
hw

ûiûjK
ij; ð159Þ

where vi :¼ ui=ut, w :¼ aut, and the conserved variables in ideal hydrodynamics are

defined by
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q� :¼ qw
ffiffiffi
c

p
; ð160Þ

ûi :¼
Si
q�

¼ hui; ð161Þ

ê :¼ S0

q�
¼ hw� P

qw
: ð162Þ

In relativistic hydrodynamics, we also need to determine the Lorentz factor, w, to

recover primitive variables such as q and ui after solving for the conserved vari-

ables. This is accomplished by solving the normalization condition of the four

velocity, ulul ¼ �1, together with the adopted equation of state and Eqs. (160),

(161), and (162).

These hydrodynamics equations in the conservative form are schematically

written in the form of

oU

ot
þ oFiðUÞ

oxi
¼ SðUÞ; ð163Þ

where U represents the set of the evolved variables ðq�; Si; S0Þ and Fi are associated

transport fluxes. The source term, SðUÞ, in ideal hydrodynamics comes from the

influence of gravity and consists of the metric and its first derivatives. The source

term seldom causes numerical instabilities and can be evaluated in a straightforward

manner as long as the size of the time step is appropriate.

As is often the case in computational fluid dynamics (see, e.g., Font 2008; Martı́

and Müller 2015; Balsara 2017 for reviews), careful treatment is required for

numerically handling the transport terms. In addition to the scheme for computing

transport terms at a cell surface from the evolved variables on each side, we also

need a method of reconstruction, i.e., interpolation of evolved variables to derive

their values at the cell surface.

For the case in which composition-dependent equations of state are adopted, we

also need to solve the evolution equation of the lepton fractions, e.g., the electron

fraction, Ye. As these variables are tightly related to neutrino transport, we will

discuss their evolution equations in Appendix B.2.1.

B.2.1 Neutrino-radiation hydrodynamics

One of the key features of radiation such as neutrinos is that they obey kinetic

theory. By assuming that the four momentum satisfies papa ¼ const:, the

distribution function f ðt; xi; piÞ for a given species of neutrinos evolves according

to Boltzmann’s equation (see, e.g., Lindquist 1966),

pa
of

oxa
� Ci

abp
apb

of

opi
¼ C½f �; ð164Þ

where C½f � is the collision term. In typical numerical simulations of compact binary

coalescences, neutrinos are assumed to be massless, i.e., papa ¼ 0. For the collision
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term, captures of electrons and positrons onto nucleons and nuclei, electron-positron

pair annihilation, nucleon Bremsstrahlung, and plasmon decay are incorporated as

emission processes (Deaton et al. 2013; Foucart et al. 2014; Brege et al. 2018).

Some simulations also incorporate captures of neutrinos onto nucleons as an

absorption process (Kyutoku et al. 2018; Fujibayashi et al. 2020a, b). Scattering of

neutrinos by nucleons and nuclei is also taken into account. Muon neutrinos, muon

antineutrinos, tau neutrinos, and tau antineutrinos are usually treated collectively as

‘‘x’’ neutrinos in studies of compact binary coalescences as well as supernova

explosions. The reason for this is that the matter temperature does not become as

high as the mass of muons and these neutrinos are produced and destroyed only via

neutral-current processes with the same rate.

Although it is desirable to solve Boltzmann’s equation directly (Cardall et al.

2013; Shibata et al. 2014), this is computationally extremely expensive because of

the six-dimensional nature of the phase space. A popular alternative in numerical

astrophysics is the truncated moment formalism, in which only the first few

moments of the distribution function are solved with imposing a physically-

motivated closure relation at some order (see, e.g., Mihalas and Mihalas 1984,

Sect. 6). A truncated moment formalism for numerical relativity has been developed

in Shibata et al. (2011) based on Thorne (1981). Even if the dimension of the phase

space is reduced to four (three for spatial positions and one for the energy), the time

scale of weak interactions is much shorter than the dynamical time scale in hot and

dense regions such as the innermost region of the accretion disk with q� 1012gcm�3

and kT � 10 MeV, and hence, a special treatment for solving radiation-hydrody-

namics and radiation-transfer equations are necessary. This situation makes

computational costs for radiation hydrodynamics very high. To date, even the

truncated moment formalism has not been employed for studying black hole–

neutron star binaries in its full form.

All the neutrino-radiation-hydrodynamics simulations for black hole–neutron star

binaries have been performed solving the energy-integrated moments of neutrinos

combining some types of the leakage scheme for handling neutrino interactions. For

simplicity, we describe equations neglecting frequency dependence in the follow-

ing. We also neglect neutrino absorption for a while and discuss it later. In the

leakage scheme, whose numerical-relativity version is first formulated in Sekiguchi

(2010), neutrinos are phenomenologically separated into the trapped and streaming

components (see, e.g., Cooperstein 1988 and references therein). The energy-

momentum tensor of the former and the latter is denoted by Tab
sðTÞ and Tab

sðSÞ,

respectively, for each species of neutrinos. Here, s ¼ me, �me, or mx denotes species of

neutrinos. The trapped neutrinos are assumed to couple tightly with the fluid, so that

the radiation hydrodynamics is fully applicable to the sum of these two ingredients.

The streaming neutrinos are assumed to stream out freely from the system. It is also

assumed that the four momentum of neutrinos are transferred from the trapped

component to the streaming component with the leakage rate Qa
s;leak characterized

not by the time scale of weak interactions but by the diffusion time scale in hot and

dense environments. These assumptions lead to two sets of equations to be solved,
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rb Tab
fluid þ

X
s

Tab
sðTÞ

" #
¼ �

X
s

Qa
s;leak; ð165Þ

rbT
ab
sðSÞ ¼ Qa

s;leak; ð166Þ

where Tab
fluid is the energy-momentum tensor of the fluid, e.g., Eq. (64) for the ideal

fluid.

The leakage rate, Qa
s;leak, is determined phenomenologically by interpolating the

diffusion rate Qs;diff in the optically-thick region and the local emission rate Qs;local

in the optically-thin region. The latter is computed in a straightforward manner from

microphysical reaction rates. The former is determined from the optical depth of

neutrinos,

ssðrÞ :¼
Z 1

r

�jsðr0Þdr0; ð167Þ

with �js being the energy-averaged opacity, estimated by combining the values along

various paths on a constant-time slice. A diffusion time scale is defined from ss as

ts;diff :¼ adiff

s2
s

�js
; ð168Þ

where adiff � Oð1Þ is a free parameter, and then the diffusion rate is estimated by

(see Sekiguchi 2010 for a detailed expression)

Qs;diff �
es

ts;diff

; ð169Þ

with es being the energy density of trapped neutrinos of species s. Finally, the

leakage rate is determined by

Qa
s;leak :¼ ua Qs;diffð1 � e�bssÞ þ Qs;locale

�bss
� 

; ð170Þ

where b � Oð1Þ is also a free parameter. Although it has been neglected in this

explanation, neutrino absorption by nucleons may also be incorporated in the

leakage scheme as a heating term. A prescription in the truncated moment for-

malism is described in Fujibayashi et al. (2017).

Equation (165) is solved in the same manner as Eqs. (155) and (156), only by

adding source terms, �a
ffiffiffi
c

p
ciaQ

a
s;leak and a

ffiffiffi
c

p
naQ

a
s;leak, respectively, to the right-

hand sides. The energy-momentum tensor of the streaming neutrinos may be

decomposed in two ways,

Tab
sðSÞ ¼ Esn

anb þ Fa
s n

b þ Fb
s n

a þ Pab
s ; ð171Þ

¼ Jsu
aub þ Ha

s u
b þ Hb

s u
a þ Labs ; ð172Þ

according to whether the decomposition is performed by the Eulerian observer or in
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the rest frame of the fluid. The quantities in the former expression are evolved in a

conservative form as

otEs þ oiðaFi
s � biEsÞ ¼ aPij

s Kij �Fi
soia� a

ffiffiffi
c

p
Ql

s;leaknl; ð173Þ

otFs;i þ ojðaPs;i
j � bjFs;iÞ ¼ �EsoiaþFs;joib

j þ a
2
Pjk

s oicjk þ a
ffiffiffi
c

p
Ql

s;leakcli;

ð174Þ

where Es :¼
ffiffiffi
c

p
Es, Fs;i :¼

ffiffiffi
c

p
Fs;i, and Ps;ij :¼

ffiffiffi
c

p
Ps;ij.

In the truncated moment formalism, Ps;ij is determined by a closure relation

derived by interpolating the form in the optically-thick and optically-thin limits.

Specifically, Shibata et al. (2011) proposed an expression in terms of the so-called

variable Eddington factor (Levermore 1984),

vs;E :¼
3 þ 4F2

s;E

5 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � 3F2

s;E

q ; ð175Þ

Fs;E :¼ ðgab þ uaubÞHa
s H

b
s

J2
s

; ð176Þ

given by

Pij
s ¼

3vs;E � 1

2
Pij
s;thin þ

3ð1 � vs;EÞ
2

Pij
s;thick; ð177Þ

Pij
s;thick ¼ Es

2w2 þ 1
½ð2w2 � 1Þcij � 4ViVj�

þ 1

w
ðFi

sV
j þ Fj

sV
iÞ þ 2Fk

s uk
wð2w2 þ 1Þ ð�w2cij þ ViVjÞ;

ð178Þ

Pij
s;thin ¼ Es

Fi
sF

j
s

cklFk
s F

l
s

; ð179Þ

where Vi :¼ cijuj.
To handle the neutrino reactions, we also need to solve the chemical composition

of the matter in an appropriate manner. The electron fraction evolves according to

uaraYe ¼ ce; ð180Þ

where ce is the net production rate (i.e., the creation rate subtracted for the

destruction rate) of electrons in the rest frame of the fluid. This equation is rewritten

to a conservative form by using the continuity equation as

8 Although this symbol overlaps with a variable in the moving-puncture gauge condition, we expect that

no confusion arises.
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otðq�YeÞ þ oiðq�Yev
iÞ ¼ q�

ut
ce: ð181Þ

After solving this evolution equation, Ye is recovered directly by q�Ye=q�. The

fractions of trapped neutrinos of each species obey similar evolution equations, and

their production rates are evaluated in the leakage scheme as (see Sekiguchi 2010

for details)

cleak
s ¼ ð1 � e�bssÞcdiff

s þ e�bssclocal
s ð182Þ

for each species s. We do not need to solve the fraction of streaming neutrinos,

because they are decoupled from the fluid.

We note that the leakage scheme can take a various form. Actually, simulations

performed with SpEC (e.g., Deaton et al. 2013; Foucart et al. 2014; Brege et al.

2018) adopted a scheme developed in O’Connor and Ott (2010), which closely

resembles preceding formulation in Newtonian simulations (Ruffert et al. 1996;

Rosswog and Liebendörfer 2003). Most et al. (2021a, 2021b) also take a similar

approach. Accuracy of results derived by the leakage scheme should be checked via

comparisons with simulations performed with a sophisticated neutrino-transport

scheme (Foucart et al. 2016b).

B.2.2 Magnetohydrodynamics

Assuming infinite conductivity, we often employ ideal magnetohydrodynamics in

general relativity for exploring black hole–neutron star binary coalescences

(Baumgarte and Shapiro 2003; Shibata and Sekiguchi 2005, see also Palenzuela

et al. 2009; Palenzuela 2013; Dionysopoulou et al. 2013; Shibata et al. 2021 for

resistive magnetohydrodynamics). Indeed, electrical conductivity is fairly high in

most of the region encountered in compact binary coalescences. In the limit of

infinite conductivity, the finiteness of the electric current requires the electric field to

vanish in the rest frame of the fluid via Ohm’s law. As a result, the magnetic field

becomes the only variable to be evolved in ideal magnetohydrodynamics.

Evolution of the magnetic field is governed by the spatial components of the

source-free half of Maxwell’s equations, or the induction equation,

cil�
lmabrmFab ¼ 0; ð183Þ

where �lmab is the Levi-Civita tensor of the spacetime and Fab is the Faraday tensor.

Specifically, this can be written in the conservative form as

otB
i þ ojðBivj �BjviÞ ¼ 0; ð184Þ

where

Bl :¼ 1

2
nm�

mlabFab; ð185Þ

is the magnetic field measured by an Eulerian observer8 and Bi :¼ ffiffiffi
c

p
Bi. We do not

need to solve the charge continuity to determine the electric current, which can
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instead be determined by Ampére–Maxwell’s law from the magnetic field. The

energy-momentum tensor acquires a contribution from the electromagnetic field,

Tlm
EM ¼ 1

4p
baba ulum þ 1

2
glm

� �
� blbm


 �
; ð186Þ

where

bl :¼ 1

2
um�

mlabFab

¼ 1

w
dla þ uluað ÞBa

ð187Þ

is the magnetic field measured in the rest frame of the fluid. They modify the matter

terms of the Einstein equation, qH, Ji, and Sij, as well as variables in the local

energy-momentum conservation, Eqs. (153) and (154). The electric field measured

by the Eulerian observer is determined by the magnetic field as

El ¼ �na�
almabumbb

¼ � 1

w
na�

almbumBb:
ð188Þ

It is a vital requirement for numerical magnetohydrodynamics to ensure the

divergenceless condition of the magnetic field, oiB
i ¼ 0. This condition is derived

by the temporal component of the source-free half of Maxwell’s equations. Here, we

should emphasize that satisfying this condition is merely a necessary condition in

numerical magnetohydrodynamics, because oiB
i ¼ 0 is satisfied even if, e.g., the

magnetic field is spuriously magnified by a constant factor. Another condition to be

satisfied in numerical ideal magnetohydrodynamics is the conservation of the

magnetic flux. One robust method to achieve this goal is to employ the so-called

constrained transport scheme (Evans and Hawley 1988; Balsara and Spicer 1999).

This scheme enables the divergenceless condition and the magnetic-flux conser-

vation to be preserved within the machine precision by carefully locating the

electromagnetic fields measured by an Eulerian observer on the discrete grids. This

scheme is also compatible with the mesh refinement algorithm (Balsara 2001, 2009,

see Appendix B.3 for the mesh refinement), and Kiuchi et al. (2015b) employed this

method for simulating black hole–neutron star binary coalescences using the code

developed in Kiuchi et al. (2012). Another simple method to keep the magnetic field

divergenceless is to evolve the vector potential Al instead of the magnetic field by

rewriting the induction equation. Simulations of black hole–neutron star binaries

with the mesh refinement are demonstrated to be feasible with this method if the

Lorenz gauge condition, rlA
l ¼ 0 (Etienne et al. 2012b), or its generalization,

rlA
l ¼ nnlAl with n� 1=m0 being a damping parameter (Farris et al. 2012), is

adopted. It should be cautioned that, however, the magnetic-flux conservation is not

guaranteed to hold in this scheme.

Because no realistic initial data with magnetic fields have been constructed for

black hole–neutron star binaries, dynamical simulations are performed by
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artificially superposing the magnetic field at the beginning or in the early stage of

the evolution. A typical choice is confined toroidal magnetic fields given by the

vector potential of the form (Shibata et al. 2006)

Au ¼ Ab-
2
NS½maxðP� Pcrit; 0Þ�2; ð189Þ

where Ab is a constant specifying the magnetic-field strength,

-2
NS :¼ ðx� xNSÞ2 þ ðy� yNSÞ2

, xNS and yNS are the coordinates of the stellar

center, and Pcrit is critical pressure chosen to be, e.g., 4% of the maximum value in

the system (Kiuchi et al. 2015b). Another choice is pulsar-like dipolar magnetic

fields modeled by (Paschalidis et al. 2013)

Au ¼ pr2
0I0-

2
NS

ðr2
NS þ r2

0Þ
3=2

1 þ 15r2
0ð-2

NS þ r2
0Þ

8ðr2
NS þ r2

0Þ
2

" #
; ð190Þ

where constant parameters r0 and I0 denote the current-loop radius and the loop

current, respectively, and rNS :¼ xi � xiNS

		 		. If the adopted magnetic field extends

outside the neutron star like this model, a non-tenuous artificial atmosphere is

required for stable evolution. The reason for this is that the determination of the

Lorentz factor, w, becomes highly inaccurate and sometimes fails to find physical

solutions in regions where the energy and momentum are dominated by the mag-

netic field.

Accurate magnetohydrodynamics simulations for the postmerger remnant of

black hole–neutron star binaries such as the black hole–accretion disk system

require high computational costs. The reason for this is that the accretion disk is

likely to be unstable to the magnetorotational instability, for which the wavelength

of the fastest growing mode is as short as (Balbus and Hawley 1998)

kMRI �
Bffiffiffiffiffiffiffiffi
4pq

p 2p
X

� 18 m
B

1012 G

� �
q

1012gcm�3

� ��1=2 X
103 s�1

� ��1

; ð191Þ

where B is the strength of magnetic fields. This strongly suggests that current global,

longterm magnetohydrodynamics simulations cannot resolve magnetic-field

amplification due to this instability if the initial strength is taken to be a plausibly

realistic value of � 1012 G for neutron stars before merger. To make the matter

worse, magnetohydrodynamical turbulence cannot be handled accurately in two-

dimensional, axisymmetric simulations due to the antidynamo theorem (Cowling

1933). Moreover, we need to perform longterm simulations for the entire evolution

of the accretion disks, because they evolve primarily via the viscous effect resulting

from the magnetohydrodynamical turbulence driven by the magnetorotational

instability [see Eq. (43)]. One method to overcome these issues is to choose initial

magnetic fields to be as strong as � 1016–1017 G. To incorporate effects of magnetic

fields on the evolution of postmerger remnants in an approximate manner with a

reasonable computational cost, viscous hydrodynamics discussed below serves as a

phenomenological alternative for the postmerger evolution (Fujibayashi et al.

2020a, b).
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B.2.3 Viscous hydrodynamics

In contrast to ideal hydrodynamics, nonrelativistic viscous hydrodynamics cannot

be extended to relativistic cases in a straightforward manner. The reason is that the

Navier-Stokes equation for viscous hydrodynamics is a diffusion equation for the

velocity field and does not respect causality. Practically, inappropriate formulation

of relativistic viscous hydrodynamics is known to result in extremely rapid

instabilities (Hiscock and Lindblom 1985).

Shibata et al. (2017b) developed a scheme for relativistic viscous hydrodynamics

by adopting a simplified version of theory of Israel and Stewart (1979), in which the

viscosity respects the causality. The energy-momentum tensor of the fluid is

extended by incorporating a viscous stress tensor s0
lm that satisfies s0

lmu
m ¼ 0 as

Tlm ¼ qhulum þ Pglm � qhms0
lm; ð192Þ

where m is the shear kinematic viscosity. The viscous stress tensor evolves as (Israel

and Stewart 1979; Hiscock and Lindblom 1983)

Lus
0
lm ¼ �fðs0

lm � rlmÞ; ð193Þ

where f is a constant. Shibata et al. (2017b) define the relativistic shear tensor rlm
by

rlm :¼ ðdla þ ulu
aÞðdmb þ umu

bÞðraub þrbuaÞ
¼ Luðglm þ ulumÞ:

ð194Þ

The value of f is chosen phenomenologically to be moderately larger than the

inverse of the dynamical time scale of the system, rather than determined from

microphysical considerations. This choice allows s0
lm to approach rlm in a suffi-

ciently short time. The value of f also needs to be much smaller than the inverse of

time steps in numerical simulations to avoid a very stiff evolution equation. This

evolution equation may be rewritten in a form of

Luslm ¼ �fs0
lm; ð195Þ

slm :¼ s0
lm � fðglm þ ulumÞ; ð196Þ

to derive the equation in a conservative form for practical computations,

otðq�sijÞ þ okðq�sijvkÞ ¼ �q�ðsikojvk þ sjkoiv
kÞ � fq�

a
w
s0
ij; ð197Þ

which contains only the first derivative of the velocity. In this scheme, the source

terms for the Einstein equation, qH, Ji, and Sij, contain the contribution from s0
lm, and

other hydrodynamics equations are modified accordingly.

In the simulation of an accretion disk, the shear kinematic viscosity m is typically

given according to the prescription of Shakura and Sunyaev (1973) as
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m ¼ amcsH; ð198Þ

where am � 0:01–0.1 is a free parameter characterizing the strength of viscosity, cs
is the sound speed, and H is another parameter denoting a typical scale height of the

system, which governs the size of the largest turbulent eddy.

B.3 Fixed and adaptive mesh refinement

Compact binary coalescences are characterized by three length scales. The shortest

is the size of compact objects, �GMBH=c
2 for black holes and RNS � 3–9GMNS=c

2

for neutron stars, which may be collectively approximated by Gm0=c
2. The middle

is the orbital separation, d, over which compact objects move throughout the space.

This is approximately given in terms of the orbital angular velocity X by

d � Gm0

X2

� ��1=3

¼ 10
Gm0

c2

Gm0X=c3

0:03

� ��2=3

: ð199Þ

The longest is the wavelength of gravitational waves, k. For a binary in a quasi-

circular orbit with the orbital angular velocity X, the dominant quadrupole mode has

k � pc
X

¼ 105
Gm0

c2

Gm0X=c3

0:03

� ��1

: ð200Þ

Choices of the initial orbital angular velocity in numerical simulations depend on

the parameters of a binary and the purpose of the simulations. Typical initial values

for simulations of black hole–neutron star binaries are Gm0X=c3 � 0:03. Thus, the

longest wavelength k is larger by a factor of J100 than the length scale of compact

objects, Gm0=c
2.

This hierarchy in the length scales makes computations with a uniform grid

extremely inefficient. First, since structures of each compact object need to be finely

resolved for accurate evolution, a grid spacing has to be smaller than

D0 � min½GMBH=ð40c2Þ;RNS=100�, where the numerical factors are taken as

representative choices. Second, the distance to the outer boundary along each

coordinate axis needs to be larger than the wavelength of gravitational waves for

accurate incorporation of radiation reaction and accurate extraction of gravitational

waves in the wave zone. If a uniform grid with the spacing D0 is adopted, the total

number of grid points in one direction should be larger than

k
D0

� max 4200 1 þ Q�1
� � Gm0X=c3

0:03

� ��1

; 1750ð1 þ QÞ GMNS=ðc2RNSÞ
1=6

� �
Gm0X=c3

0:03

� ��1
" #

:

ð201Þ

In a three-dimensional space without any symmetry, the number of required grid

points is larger than ð2k=D0Þ3J1010. This is a prohibitively large number with

current computational resources, and systematic surveys over the parameter space

for black hole–neutron star binaries are far from feasible with a uniform grid. Early
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simulations of black hole–neutron star binaries have been performed with a

nonuniform grid (Shibata and Uryū 2006, 2007; Etienne et al. 2008; Shibata and

Taniguchi 2008). However, this is not an efficient way for the simulations in three

spatial dimensions.

A mesh refinement technique is indispensable for performing simulations with

finite differencing methods in an efficient manner. In computations with a mesh

refinement, we prepare several refinement levels of Cartesian boxes (the geometry

can be generalized) with different grid resolutions; the smaller boxes usually have

higher resolutions, and vice versa. The black hole and the neutron star are resolved

at the finest refinement level with a sufficiently small grid spacing of .D0. At the

same time, propagation of gravitational waves is followed in coarse but large boxes.

While the grid spacings at large boxes are much larger than D0, the wavelength of

gravitational radiation may still be covered by more than, e.g., 100 grid points. The

mesh refinement with the grid structure fixed throughout the simulation is called the

fixed mesh refinement (FMR; see, e.g., Imbiriba et al. 2004; Schnetter et al. 2004).

The FMR is adopted in simulations of black hole–neutron star binary coalescences

which aim at studying the merger and postmerger phases (Kiuchi et al. 2015b;

Kyutoku et al. 2018). Still, simulations with the FMR technique need to resolve the

length scale of the orbital separation d by D0. Thus, the FMR is not satisfactory for

performing longterm simulations of the inspiral phase in a systematic manner.

Recent longterm simulations of compact binary coalescences with finite

differencing are frequently performed by employing an adaptive mesh refinement

(AMR) technique (see, e.g., Anderson et al. 2006; Brügmann et al. 2008;

Yamamoto et al. 2008). The AMR technique improves the efficiency of the FMR

by allowing the grid structure to change during the evolution so that the small grid

spacing is assigned only to the region requiring high resolution (see, e.g., Berger and

Oliger 1984). For the specific application to compact binary coalescences, boxes at

the fine levels are allowed to move following the orbital motion of each binary

component. SpEC solves the gravitational field based on the generalized harmonic

formalism with multidomain spectral methods, and the number of basis functions

can be chosen adaptively by the spectral AMR technique (Lovelace et al. 2011;

Szilágyi 2014).

The mesh refinement is important not only for resolving gravitational fields but

also for matter fields. While the structure of a neutron star has to be resolved during

the inspiral phase, properties of the ejected material can be analyzed accurately only

in a distant region after the motion of the ejecta is settled to homologous expansion.

Numerical-relativity codes based on the puncture-BSSN formalism, such as

SACRA, typically adopt the same AMR technique as that for gravitational fields

to evolve matter fields. In SpEC, hydrodynamics equations are solved on another

grid based on finite volume methods (Duez et al. 2008), and an AMR technique is

implemented separately from spectral grids for the gravitational fields (Foucart

et al. 2017).
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C Analytic estimate

In this section, we present analytic estimates for stable mass transfer and opening

angles of the dynamical ejecta in Appendices C.1 and C.2, respectively.

C.1 Stable mass transfer

Whether the stable mass transfer is possible in black hole–neutron star binaries can

be examined by analyzing conservation of the angular momentum. In this

Appendix C.1, we employ the Newtonian equation of motion together with

gravitational radiation reaction as the only general-relativistic effect (Cameron and

Iben 1986; Benz et al. 1990) and approximately show that the stable mass transfer is

not very likely to occur in black hole–neutron star binaries as long as the neutron-

star radius is not very large.

Assuming that the point-particle approximation holds, the orbital angular

momentum of the binary Jorb with an orbital separation r is given by

Jorb ¼ GMBHMNS

ffiffiffiffiffiffiffiffiffi
r

Gm0

r
: ð202Þ

In the following, we suppose MBH [MNS and thus Q ¼ MBH=MNS [ 1. Equa-

tion (202) derives

_Jorb

Jorb

¼
_MBH

MBH

þ
_MNS

MNS

� _m0

2m0

þ _r

2r
; ð203Þ

where the overdot denotes the time derivative. The mass transfer occurs only when

the orbital separation is small enough to induce mass shedding. Thus, we focus on

close orbits with r.10Gm0=c
2. Because mass ejection is unlikely to occur during

the phase of mass transfer in such close orbits, we assume that the total mass is

conserved, i.e., _m0 ¼ 0, in the following. This implies that _MBH ¼ � _MNS [ 0. If the

mass is ejected from the system, the angular momentum is removed, and hence, the

stable mass transfer is less likely to occur.

In close orbits with r.10Gm0=c
2, the orbital angular velocity is so high that the

gravitational radiation reaction plays a central role in determining the orbital

evolution. After the onset of mass transfer, the spin-up of the black hole and the

formation of a disk around it are also important. That is, the orbital angular

momentum is transferred to the spin angular momentum of the black hole or disk,

the sum of which are denoted by S. The orbital angular momentum of the binary

evolves according to

_Jorb ¼ � _S� _JGW; ð204Þ

where _JGW is the dissipation rate of the angular momentum due to the gravitational

radiation reaction, which is written in the quadrupole approximation as (Peters

1964)
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_JGW ¼ 32

5

G7=2m
1=2
0 M2

BHM
2
NS

c5r7=2
: ð205Þ

Because _S should be proportional to _MNS, we may express it as

_S ¼ �mt
_MNS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMBHRmt

p
; ð206Þ

where 0 �mt  1 represents efficiency of the spin-up of the black hole and the

surrounding disk, and Rmt denotes an average radius of the material orbiting the

black hole. The remaining fraction 1 � �mt of the accreted angular momentum is

assumed to add to the orbital angular momentum of the black hole. For the material

swallowed by the black hole, Rmt should reflect the specific angular momentum at

the innermost stable circular orbit around the black hole. Hence, we suppose

Rmt �GMBH=c
2, recalling that the specific angular momentum at the innermost

stable circular orbit is larger than GMBH=c
2. In the following, we use a dimen-

sionless quantity R̂mt :¼ Rmt=ðGMBH=c
2Þ.

Substituting Eqs. (205) and (206) into Eq. (204), we obtain

_Jorb

Jorb

¼ ��mt

_MNS

MNS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm0

c2r
R̂mt

r
� 32

5

G3m0MBHMNS

c5r4
; ð207Þ

and thus Eq. (203) is rewritten to

_r

2r
¼

_MNS

MNS

				
				 1 � Q�1 � �mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm0

c2r
R̂mt

r !
� 32

5

G3m0MBHMNS

c5r4
: ð208Þ

Multiplying the orbital period P ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=ðGm0Þ

p
, we obtain

P
_r

2r
¼ DMNS

MNS

				
				 1 � Q�1 � �mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm0

c2r
R̂mt

r !
� 64p

5

G5=2m
1=2
0 MBHMNS

c5r5=2
; ð209Þ

where DMNS :¼ P _MNS denotes the mass of the neutron star lost in a single orbital

period.

For the stable mass transfer to continue longer than a couple of orbits,

DMNS=MNS should be smaller than � 0:1. Otherwise, tidal disruption occurs in a

couple of orbits, because the radius of the neutron star is increased significantly for

significant mass loss. As already shown in Sect. 1.3.1, the mass shedding can set in

only for close orbits with r.ð2QÞ1=3cRRNS [see Eq. (7)]. This condition derives

64p
5

G1=2m
1=2
0 MBHMNS

c5r5=2
J 64p

5

ð1 þ QÞ1=2Q1=6

25=6

C

cR

� �5=2

� 0:12 1 þ Q

3

� �1=2
Q

3

� �1=6
cR

1:9

� ��5=2 C

1=6

� �5=2

;

ð210Þ

and thus, for a plausible value of cR � 1:9 (see Sect. 2.4.1) and

C ¼ GMNS=ðc2RNSÞ� 0:145, we obtain
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64

5

G5=2m
1=2
0 MBHMNS

c5r5=2
1 � Q�1
� ��1J0:13 ð211Þ

irrespective of the value of Q. Here, the minimum of this function occurs at

Q ¼ 2:5–3.5 depending on the compactness of the neutron star, C. Therefore, as

long as the compactness is in a plausible range of CJ0:145, _r could be positive

only for the case in which more than � 15% of the neutron-star material are stripped

toward the black hole in a short time scale and that the efficiency of the spin-up, �mt,

is much smaller than unity. However, for the case in which the value of �mt is

appreciable, say a realistic value of 0.5, with R̂mt � 1:5, we have

64p
5

G5=2m
1=2
0 MBHMNS

c5r5=2
1 � Q�1 � �mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm0

c2r
R̂mt

r !�1

J0:18 ð212Þ

(note that _r[ 0 is realized only if the sum of the terms in the parenthesis is

positive). Thus, the condition for _r[ 0 is restricted further. This analysis indicates

that the orbital separation can increase only if a substantial amount of the neutron-

star material is stripped by the tidal force of the black hole. Hence, a steady and

gradual increase of the orbital separation is unlikely to occur for black hole–neutron

star binaries.

The values of �mt and R̂mt are nontrivial and can be determined only by

numerical-relativity simulations. Many numerical-relativity simulations with small

values of Q have been done in the last decade. However, no simulation has shown

the evidence of the stable mass transfer. Thus, we may safely state that the

stable mass transfer is unlikely to occur in black hole–neutron star binaries, if we

suppose neutron stars with a typical mass in our Galaxy of MNS � 1:4M� and

RNS � 10–14 km.

C.2 Opening angle of the dynamical ejecta

As we discussed in Sect. 4.1, the nonspherical morphology of the dynamical ejecta

may be characterized by the opening angle in the equatorial plane u and that in the

meridional plane h, where the latter is defined to refer only to the material above or

below the orbital plane. In the following, we reproduce analytic estimation of these

quantities by Kyutoku et al. (2015) to demonstrate weak dependence on hypothet-

ical equations of state.

Allowing more than one revolution, the opening angle of the dynamical ejecta in

the equatorial plane should be given by

u � 2p
ttd
Ptd

; ð213Þ

where ttd is the time scale of tidal disruption and Ptd is the orbital period at the tidal-

disruption radius, rtd / rms. First, ttd may be given approximately by the sound

crossing time tsc, which is comparable to the dynamical time scale for a stellar

configuration, of the neutron star as
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ttd � tsc /
1ffiffiffi
�q

p ; ð214Þ

where �q is the average rest-mass density of the neutron star, which is determined by

the equation of state. Next, Ptd should approximately be given by

Ptd � 2p

ffiffiffiffiffiffiffiffiffi
r3

td

Gm0

s
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

ð1 þ QÞG�q

s
; ð215Þ

where Eq. (7) was used to derive the last expression. This suggests that the

dependence of u on the equation of state is weak, because u is independent of �q.

This expression also suggests that u is smaller for a larger mass ratio, but the

expected variation is less than 10% for 3Q 7. Prograde black-hole spins will

decrease u, because the orbital frequency of circular geodesic motion around a Kerr

black hole is given by (Bardeen et al. 1972)

XK ¼ ðGMBHÞ1=2

r3=2 þ vðGMBH=c2Þ3=2
; ð216Þ

and thus Ptd increases as v increases.

The opening angle of the dynamical ejecta in the meridional plane, h, is determined

by the ratio of the velocity perpendicular to the orbital plane, v?, to that in the

equatorial direction, vk, as h � arctanðv?=vkÞ � v?=vk. This value should be given by

the ratio of the neutron-star radius perpendicular to the orbital plane to the tidal

disruption radius, rtd. Thus, the dependence of h on the equation of state will be weak

again, because both vk and v? should scale linearly withRNS. Dependence on the mass

ratio is expected to be h / Q�1=3, inherited from that of rtd / rms, but the expected

change is only 25% between 3Q 7. The spin of the black hole will not modify the

value of h.
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Boyle M, Buonanno A, Kidder LE, Mroué AH, Pan Y, Pfeiffer HP, Scheel MA (2008) High-accuracy

numerical simulation of black-hole binaries: computation of the gravitational-wave energy flux and

comparisons with post-Newtonian approximants. Phys. Rev. D 78:104020. https://doi.org/10.1103/

PhysRevD.78.104020. arXiv:0804.4184 [gr-qc]

Boyle M, Hemberger D, Iozzo DAB, Lovelace G, Ossokine S, Pfeiffer HP, Scheel MA, Stein LC,

Woodford CJ, Zimmerman A et al (2019) The SXS collaboration catalog of binary black hole

simulations. Class Quantum Grav 36:195006. https://doi.org/10.1088/1361-6382/ab34e2. arXiv:

1904.04831 [gr-qc]
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Shibata M, Uryū Kō (2000) Simulation of merging binary neutron stars in full general relativity: C=2

case. Phys Rev D 61:064001. https://doi.org/10.1103/PhysRevD.61.064001. arXiv:gr-qc/9911058

[gr-qc]
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