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Abstract
The increasing prevalence ofmarine debris is a global problem, and urgent action for amelioration is
needed. Identifying hotspots wheremarine debris accumulates will enable effective control; however,
knowledge on the location of accumulation hotspots remains incomplete. In particular,marine debris
accumulation on beaches is a concern. Surveys of beaches require intensive human effort, and survey
methods are not standardized. Ifmarine debrismonitoring is conducted using a standardizedmethod,
data fromdifferent regions can be compared.With an unmanned aerial vehicle (UAV) and deep
learning computationalmethods,monitoring awide area at a low cost in a standardizedwaymay be
possible. In this study, we aimed to identifymarine debris on beaches through deep learning using
high-resolutionUAV images by conducting a survey onNarugashima Island in the Seto Inland Sea of
Japan. Theflight altitude relative to the groundwas set to 5m, and images of a 0.81-ha areawere
obtained. Flightwas conducted twice: before and after the beach cleaning. The combination ofUAVs
equippedwith a zoom lens and operation at a low altitude allows for the acquisition of high resolution
images of 1.1mm/pixel. The training dataset (2970 images)was annotated by usingVoTT,
categorizing them into two classes: ‘anthropogenicmarine debris’ and ‘natural objects.’Using
RetinaNet,marine debris was identifiedwith an average sensitivity of 51%and a precision of 76%. In
addition, the abundance and area ofmarine debris coveragewere estimated. In this study, it was
revealed that the combination ofUAVs and deep learning enables the effective identification ofmarine
debris. The effects of cleanup activities by citizens were able to be quantified. Thismethod canwidely
be used to evaluate the effectiveness of citizen efforts toward beach cleaning and low-cost long-term
monitoring.

Introduction

The rapid increase in anthropogenicmarine debris has been recognized as a global environmental problem
(Ostle et al 2019). Themajority ofmarine debris consists of plastic (Barnes et al 2009), and it is estimated that
4.4–12.7millionmetric tons of plastic are discharged into the ocean annually (Jambeck et al 2015). Previous
studies have indicated that in thewestern PacificOcean, particularly in theKuroshio Current area,more than
3.5million pieces of debris per square kilometer at the ocean surfacemay be present (Yamashita and
Tanimura 2007). The problemwithmarine debris is not only the amount of inflowbut also its persistence.
Plastics are chemically resistant to degradation and remain in themarine environment for hundreds to
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thousands of years (Derraik 2002). Therefore, they continue to accumulate over a long time and have a variety of
effects, such as an impact on tourismdue to aesthetic degradation and ingestion bymarine organisms. In
addition, plastic fragmentation and degradation driven by environmental factors such as ultraviolet (UV) light
result in small particles that are known asmicroplastics (Andrady 2011, Cole et al 2011).

Marine debris affects the human economy, particularly, shipping, fishing, and tourism (McIlgorm et al
2011). For example, in tourist destinations, aesthetic degradation bymarine litter decreases revenue from
tourism, and local authorities need to bear the cost of cleanup (Iñiguez et al 2016). The dynamics ofmarine
debris widely vary, and heavier itemsmay accumulate on the seafloor. There have been attempts to collect
marine debris, but these are costly and sometimes dangerous. For instance, in a project to remove debris from
the seabed in SouthKorea, about 460 tons of trashwere recovered at a cost of $3.8million, and fatal incidents
were involved (Cho 2011).

Marine ecosystems are also affected bymarine debris. Ingestion and entanglement are two impacts ofmarine
debris onmarine organisms (Derraik 2002).Marine organisms from awide range of taxonomic groups ingest
marine debris, sometimes leading to death (Gregory 2009). Entanglement in discarded fishing gear-related
debris is known as ‘ghostfishing’ and is recognized as a serious threat. At least 690 species are threatened by
marine debris, of which at least 17% are classified as near-threatened or higher on the IUCNRed List (Gall and
Thompson 2015). Tomitigate the impact ofmarine debris, a quantitative assessment of the distribution of
marine debris is thefirst step.Once the location and amount ofmarine debris present are understood, the
removal ofmarine debris can be implemented.

The accumulation ofmarine debris has been confirmed over a wide area from theArctic to the Antarctic and
in the deep sea (Woodall et al 2014). However, the amount of plastic debris observed in the ocean ismuch lower
than that previously expected (Cózar et al 2014). Various studies have been conducted to determinewhere the
‘missing plastic’ exists (Law andThompson 2014). This ‘missing plastic’may be drifting in currents (Eriksen et al
2014) orwater columns (Dai et al 2018) or is accumulating on the seafloor (Chiba et al 2018). However, the
importance of focusing on beaches has been highlighted (Brennan et al 2018,Olivelli et al 2020). About half of
theworld’s population lives near the coast,making coastal areas hotspots formicroplastic pollution (Cole et al
2011). Shorelines are also strongly influenced by terrestrial factors such as stormwater and road distribution
(Willis et al 2017), and backshore areas with vegetation can be a sink for largemarine debris (Olivelli et al 2020).
In addition, plastic products on beaches are exposed toUV light that causes photo-oxidative degradation (Singh
and Sharma 2008 Sathish et al 2019). On beaches in the daylight, the thermal degradation of plastic progress
faster than in seawater (Andrady 2011).

In recent years, unmanned aerial vehicles (UAVs)have been used in awide range of research fields (Jiménez
López andMulero-Pázmány 2019). They are also used to surveymarine debris on beaches (Kako et al 2012, Bao
et al 2018, Deidun et al 2018, Andriolo et al 2020, Gonçalves et al 2020, Lo et al 2020,Merlino et al 2020). UAVs
have the advantage of cost effectiveness and the ability to obtain high-resolution images. Studies have conducted
marine debris surveys using satellite images, but the high cost and low resolution of the data have been issues.
For example,WorldView-4 satellite imagery, with a resolution of about 0.3m, cannot detect themajority of
marine debris on beaches (Topouzelis et al 2019). UAVs also facilitate surveys in difficult to access areas such as
islands (Lavers and Bond 2017). In addition, UAVs can be used to collect substantial data using a standardized
method and compare the distribution ofmarine debris fromdifferent locations.However, the analysis of image
data taken byUAVs remains labor-intensive (Jiménez López andMulero-Pázmány 2019). Deep learning can
improve the efficiency of data processing and analysis. However, research on the automatic identification of
marine debris fromUAV images is a new field, and there are few previous studies on this topic (Martin et al 2018,
Fallati et al 2019, Kako et al 2020,Martin et al 2021, Papakonstantinou et al 2021).

In this study, we aimed to identify anthropogenicmarine debris on a beach via high-resolutionUAV images
using deep learning. The challenges we hope to address in this study are (1)whetherUAV images are suitable for
automatic identification by deep learning and (2)whether identifying anthropogenicmarine debris from the
variety of objects present on the beach is possible. If these can be accomplished, it will be possible to survey a
wide area with a standardized protocol, which could significantly improve theworld’s futuremarine debris
management.

Methods

Study area
The Seto Inland Sea is the largest semi-enclosed sea in Japan, with about 31million residents,more than 700
islands, and a total coastline of about 7,230 km. The climate ismild throughout the year, and the landscape
attractsmany tourists. The estimated total annual inflowofmarine debris into the Seto Inland Sea is 4,500 tons,
of which about 70%comes from land (Fujieda et al 2010). Training and test imageswere taken at a site located on
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Narugashima Island (34.288351N, 134.952303E) inHyogo Prefecture (figure 1). Narugashima Island is located
in the southeastern part of Awajishima Island. The island has an area of about 25-ha and a total length of about
3 km. There are beaches on the east andwest sides, facingOsaka Bay andYura Bay, respectively. The shorelines
of this island are strongly affected by tides, waves, andwinds, and a large quantity ofmarine debris is therefore
accumulated. This area belongs to Setonaikai National Park, so local volunteers engage in cleanup activities once
a year. Preliminary investigations showedmany plastic products drifting on thewest rather than the east side of
the island (figure 2). Both beaches were set asUAVphotography areas to collect the training images.

UAV survey protocols
TheDJIMavic 2 zoomwas used in this study. This UAV is equippedwith a 24–48mmoptical zoom lens and a
camerawith a 1/2.3CMOS and a 12.4Mpixel sensor. Thefield of view (FOV) is 83° for the 24-mmzoomand
48° for the 48-mmzoom. It is possible to obtain higher-resolution images with the zoom lens. Theflight route
wasmapped using theDJI GS Pro application, which allows the user to set theflight area and speed in advance
and check the shooting status in real time. A 0.81-haflight planwas created in advance, and shootingwas
conducted onNovember 27 andDecember 4, 2020, and January 25, 2021. Since theflight time of one battery is
only 26 min, the batterywas continuously replaced. The operators walked on the beach alongside theUAV and
used a Jackery portable battery 700 to recharge the depleted batteries for reuse. Theflight altitudewas set to 5m,
calculated at the point where theUAV took off; therefore, the exact altitudemay slightly vary for each image. The
shooting interval was set for 50%horizontal and 50%vertical image overlap. The camera’s ISO, aperture, and
shutter speedwere set to AUTOmode, and imageswith a resolution of 4000×3000 pixels were recorded. In
this study, the images obtained from the survey ofNarugashima Island onNovember 27, 2020, were used as the
training images (table 1). In addition, to improve themodel, training images that contained only a PETbottle
were obtained from theKamigamo test site of the KyotoUniversity Field Science Center onDecember 16, 2020.
Since the cleanup activity was performed on this island onDecember 5, test imageswere acquired before and
after the day to evaluate the effectiveness of the cleanup activity. Finally, 4,421 test images from thewest beach
were obtained fromNarugashima Island’s survey onDecember 4, 2020, and January 25, 2021.

The deep learning algorithm
Annotations
Weannotated images usingVoTT, an open-source labeling software developed byMicrosoft.We annotated a
total of 2,970 images by classifying them into either ‘anthropogenicmarine debris’ or ‘natural objects’ that
mainly consisted of large driftwood.Marine debris larger than 100 pixels was annotated. The classified images
were exported in Pascal VOC format and used for training. In this study, 80%of the images were set as training
data and 20%were used as validation data.

Figure 1.The geographic location of the study site. The surveywas conducted in the area indicated by the dotted line.
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Data augmentation
Deep learning requires a large amount of training data to avoid overfitting. Therefore, we augmented the
training datasets using the ‘imgaug’ python library. For each image, image scaling, random erasing, and contrast
changes were appliedwith a probability of 50%. For random erasing, a rectangular region of 10%of the image
sizewas created andfilledwith randomRGBvalues in order to detect partially hidden objects during
identification. Tomask the part of the image, 5–10 of these rectangular areaswere randomly generated. Finally,
contrast changes were randomly varied between 50%and 200% to correspond to sunlight exposure.

RetinaNet
In this study, we trained themodel using RetinaNet (Lin et al 2017), an object detectionmodel derived from
region-based convolutional neural networks (Girshick et al 2016). RetinaNet consists of a backbone network
and two subnetworks. The depthwas set to 50 because the F-score is the highest in parameter tuning
(supplementary information 1 (available online at stacks.iop.org/ERC/4/015003/mmedia)).We set the depth
to 50, the epochs to 60, and the batch size to 6 for training. A threshold ofmore than 0.5 for the scorewas used for
ourmodel to detectmarine debris. In addition, non-maximum suppression (NMS)was applied after object
detection (Girshick et al 2014). NMS is amethod that integratesmultiple detections of the same object into a
single result. In this experiment, the object with the highest probability was used as the standard, and other
objects withmore than 50%overlapwith the standardwere removed.

Figure 2.Anthropogenicmarine debris observed at the study site. (A)On thewest beach taken from theUAV; (B)Taken from the
UAV at an altitude of 5m; (C)On thewest beach taken from the ground; (D)On the east beach taken from the ground.

Table 1. Location, date, time, weather, purpose of the images, and objects photographed in each investigation conducted byUAV survey.

Narugashima

islamd

Narugashima

islamd

Narugashima

islamd

KyotoUniversity

Experimental Station

Narugashima

islamd

location East andwest beach West beach West beach KamigamoExperimental

Station

West beach

date November 27 December 4 December 4 December 16 January 25

time 12:00–15:00 10:00–15:00 15:00–16:00 14:00–15:00 10:00–15:00

weather Sunny Sunny Sunny Sunny Sunny

Purpose of

images

Training Test Training Training Test

objects Marine debris Marine debris PET bottle PET bottle Marine debris
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Orthomosaic images
The samemarine debrismay have been identifiedmultiple times because overlapping images were taken.
Therefore, orthorectified imageswere used for identification using theAgisoft PhotoScan software. This
software uses the Structure fromMotion algorithm to create orthomosaic images fromoverlapping images. In
this study, we used 200 images to create each orthomosaic image froma total of 4,421 images. Some areaswere
not orthorectified andwere displayed inwhite due to low image overlap. Therefore, we processed the data to
avoid detectionwhen areas hadmore than 80%white pixels.

Accuracy assessment
We segmented the orthorectified images created for the test set with the same size as training images. After
identification, an observer randomly selected 100 images to calculate the true positive (TP), false negative (FN),
and false positive (FP) rates.We defined FNswhenmarine debris larger than 100 pixels was not identified. The
model was evaluated using sensitivity, precision, and the F-score. For these indices, the following equationswere
used: sensitivity=TP/(TP+FN); precision=TP/(TP+FP); and F-score=2TP / (2TP+FP+FN).
Changes in themarine debris were quantified by comparing the number of pieces and the area. The comparison
sites were selected from the north, central, and south parts of each beach.Ourmodelmarks the detectedmarine
debris with a blue frame. The number of blue frames surrounding themarine debris was defined as counts of
marine debris, andwe compared the number ofmarine debris per orthorectified image for each comparison
site. The area of themarine debris was calculated using the followingmethod: First, the area containing the blue
framewas calculated. Next, the area of themarine debris within the blue framewas calculated for 100 randomly
selected samples, whichwas used as the averagemarine debris percentage. Finally, the total area of the blue-
framed areas in the comparison site was calculated andmultiplied by the averagemarine debris percentage to
obtain the estimated area ofmarine debris. The actual length per pixel in the images was calculated bymeasuring
the size of the PETbottle. ImageJ was used to calculate the area of the blue boxes andmarine debris.

Results

The deep learningmodel successfully identifiedmarine debris in the high-resolution images (figure 3). For data
fromNarugashima Island inDecember 4, the sensitivity was 59% and the precisionwas 90% (table 2). On the
other hand, for the data taken in January 25, the sensitivity was 43% and the precisionwas 62%. The average of
both results was 51% for sensitivity and 76% for precision. Themain FPswerewaves and rocks (figure 4), and
when themarine debris contacted driftwood, it was not detected (figure 5).

As a result of the identification by our deep learningmodel, the numbers ofmarine debris at the site on
December 4were 53, 297, and 118 pieces in the north, central, and south parts of the beach, respectively (table 3).
Themean number ofmarine debris (±standard error (SE))was 156 pieces (±72.95 pieces). On January 25, the
numbers ofmarine debris at the comparison site were 80, 30, and 93 pieces in the north, central, and south parts
of the beach, respectively. Themean number ofmarine debris (±SE)was 68 pieces (±19.20 pieces). On
December 4, themarine debris density was 0.12, 0.66, and 0.26 pieces/m2 in the north, center, and south,
respectively. The averagemarine debris density (± SE)was 0.35 pieces/m2 (±0.16 pieces/m2), and themarine
debris density on January 25was 0.18, 0.06, and 0.21 pieces/m2 in the north, center, and south, respectively. On
this observation date, the averagemarine debris density on this observation date (±SE)was 0.15 pieces/m2

(±0.04 pieces/m2).
The areas ofmarine debris decreasedmore on January 25 than onDecember 4. By calculating the actual

length of the pixels, the area of the debris could be calculated from the images. The actual length of one pixel
(±SE)was 1.06mm (±0.04mm). Based on this length, the areas of the blue frames onDecember 4were 2.77,
12.81, and 3.94m2 in the north, central, and south part of the beach, respectively. The average blue-framed area
(± SE)was 6.51m2 (±3.17m2). On January 25, the areas of the blue frameswere 3.95, 4.26, and 6.12m2 in the
north, central, and south beach, respectively. The average blue-framed area (± SE)was 4.78m2 (±0.68m2). The
meanmarine debris percentage in the blue-framed area (± SE)was 62.6% (±1.77%). Based on this percentage,
the areas ofmarine debris onDecember 4were 1.74, 8.02, and2.47m2 in the north, center, and south, respectively.
The average area (±SE)was 4.08m2 (±1.99m2). The areas ofmarine debris on January 25were 2.48, 2.67, and
3.83m2 in the north, center, and south, respectively. The average area (± SE)was 2.99m2 (±0.42m2).

The area coverages could also be estimated from the images. The area coverages ofmarine debris were
0.41%, 1.79%, and 0.54% in the north, central, and south parts of the beach inDecember 4. The average area (±
SE)was 0.92% (±21.16%). Similarly, the area ofmarine debris was 0.57%, 0.56%, and 0.86% at the three parts of
the beach, respectively, in January 25. The average area (± SE)was 0.66% (±3.88%). The number and area
coverages ofmarine debris were lower in January compared toDecember. In addition, it was demonstrated that
deep learning could identifymarine debris fromUAV images and that changes in the debris could be quantified.
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Discussion

In this study, high-resolution images ofmarine debris were acquired by combining aUAV equippedwith a
zoom lens and low altitudeflight operation. In addition, the study showed thatUAV images can be used for the
object detection ofmarine debris. AlthoughUAVs have also been used inmarine debris surveys, high-resolution
image acquisitionwas a challenge. For example, the resolution in the previous studywas 4.4mm/pixel when the
DJI Phantom4was used at 10mand 5.0mm/pixel when it was used at 17m (Fallati et al 2019; Kako et al 2020).
In this study, a resolution of 1.1mm/pixel was obtained using theDJIMavic 2 zoom froman altitude of 5m. The
resolution of the present studywas high compared to previous studies, and it was achieved using the combined
approach of aUAV thatwas equippedwith the zoom lens and operated from a low altitude.

The advantage ofUAVs is that the vehicles can perform survey at a low cost, so periodicmonitoring can
reveal the spatio-temporal distribution ofmarine debris. In this study, we acquired 4,421 images and performed
an intensive survey at a low altitude to obtain high-resolution images from the target area. Our survey over an
area of 0.81-hawas implemented by replacing the battery 12 times. To the best of our knowledge, this is the first
study inwhich aUAV equippedwith a zoomcamerawas operated at a 5m altitude to identifymarine debris.

Ourmodel achieves a sensitivity of 0.59 because of the high-resolution images from theUAV.Moreover, our
model could identify anthropogenicmarine debris from thewide variety of objects on a beach. Training data
containingmultiple types of debris enabled the high performance of ourmodel. In addition, we annotated two
classes, anthropogenicmarine debris and natural objects, allowing themodel to distinguish between human and
natural-origin debris. The types and composition of these categories differ, and annotating typical natural
objects improved the performance of themodel.

Figure 3. Identification results. (A) and (B) are images taken onDecember 4, before and after identification; (C) and (D) are images
taken on January 25, before and after identification. The blue boxes show anthropogenicmarine debris, and the red boxes show
natural objects identified by themodel in this study.

Table 2. Identification results and comparisonwith previous studies.

Algorithm Area TP FN FP Sensitivity Precision F-score

Martin et al 2018 Saudi Arabia 164 251 1941 0.40 0.08 0.13

Fallati et al 2019 (Average) Maldives 57.9 74 48.9 0.44 0.54 0.49

Our algorithm Narugashima (December 4) 283 200 30 0.59 0.90 0.71

Narugashima (January 25) 78 103 48 0.43 0.62 0.51

Narugashima (Average) 180.5 151.5 30 0.51 0.76 0.61

6

Environ. Res. Commun. 4 (2022) 015003 KTakaya et al



Our technique evinced a decrease inmarine debris through cleanup activities. These activities have been
performedworldwide on beaches. However, continuouslymonitoring a large area after cleanup activities is
labor-intensive. In our study, we found that combiningUAVs and deep learningmakes it possible to compare

Figure 4.Major false positive images. (A) and (B) are before and after images, respectively, taken inDecember 4; (C) and (D) are before
and after images, respectively, taken in January 25.

Figure 5.Unidentifiedmarine debris owing to partial interference of driftwood. The images of (A) and (B) are taken onDecember 4;
(C) and (D) are taken on January 25. (B) and (D) are partial expanded viewof thewhite frames of (A) and (C), respectively. Thewood
in this image has been artificially processed. This study targetedmarine debrismade of anthropogenicmaterial such as plastic, glass,
andmetal; woodwas excluded because it decomposes naturally.
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the amount of debris before and after a cleanup activity and quantify the effectiveness of the cleanup effort.
Moreover, we clarified that the distribution ofmarine debris varied depending on the site. Ocean currents and
wind directionmay affectmarine debris distribution. In the future, continuous surveys using this technique
might reveal the factors behindmarine debris accumulation.

Despite using the samemodel, the identification accuracy differed, as sensitivity decreasedwhen the test
imageswere taken on January 25. The reduction in the amount ofmarine debris on the beachmay affect the
model’s sensitivity, andmoremarine debris could be detected by changing the threshold of ourmodel. In
addition, detecting entangled debris in vegetationwas challenging. Furthermore, the orientation of themarine
debrismay affect the results. Debris entangled in vegetation can be scattered at various angles, and the training
images did not contain these varied angles. Therefore, improving the training images will improve themodel
performance.

Ourmodel underestimated the amount ofmarine debris owing to a high false negatives. Previous studies
have shown that identifyingmarine debris usingUAVs also underestimates the amount of debris compared to a
human ground survey (Martin et al 2018). The shadows of debris can also affect identification, and it is
recommended thatUAVs be operated around noon to reduce shadows (Martin et al 2018; Lo et al 2020). In our
study, the images were consecutively taken between 10:00 and 15:00. Therefore, the high false negativesmay be
attributed to the Sunlight conditions in each image.

Some limitations still exist in this study. First, detecting small anthropogenicmarine debris such as
fragments of plastic products is difficult. The criteria for the annotation also affect the low detection of small
debris.Marine debris was annotated if the sizewas larger than 100 pixels because it was difficult to annotate all of
the debris. Further consideration of criteria for the annotationwill be needed to detect the smaller size of debris.
Second, the results of our study show lower sensitivity, indicating that themodel cannot detect allmarine debris
because of the excesses of false negatives. A variety of anthropogenicmarine debris was annotated as one class,
such as PET bottles, plastic bags, and cans. Therefore, separating the class intomore subdivided categoriesmay
improve the sensitivity. Although high-resolution images acquired operatedUAV at a low altitude, this
operation requiredmultiple batteries; for example, batteries were replaced 12 times in this study. In addition,
operations over several hours also affect the light conditions of the image; thus, this differencemay have affected
the performance. Additionally, object detectionwas used in this study, but itmay be necessary to consider other
approaches, such as semantic segmentation formore accurate estimation. Finally, our results showmicroplastic
detection is quite challenging; however,monitoring these distributions is essential to understanding plastic
pollution in themarine environment. Citizen science can also be beneficial to surveymicroplastic pollutionwith
other protocols.

Although beaches attract attention as places that often accumulatemarine debris, few studies have identified
marine debris on beaches usingUAVs combinedwith deep learning (Fallati et al 2019). Some studies used
aircraft to survey the distribution ofmarine debris (Moy et al 2018); however, the cost is prohibitive. The
advantage ofUAVs is that they can acquire higher-resolution images at a lower cost than aircraft. In addition,
UAVs enable safe surveys in dangerous areaswheremarine debris accumulates, such as areas containingmedical
waste. In these areas, remote sensing surveys of beaches usingUAVs can be conducted. UsingUAVs is also
beneficial from an ecological perspective (Harris et al 2015). Beaches are essential for the breeding of some
species ofmarinewildlife. For example, the human use of beaches affects areaswhere sea turtles lay their eggs
(Antworth et al 2006) and the behavior of seabirds (Burger andNiles, 2013). Thus,minimizing disturbance to
marinewildlife by conducting surveys without directly entering the beach is possible.

The present study, showed that deep learning could identifymarine debris obtained fromhigh-resolution
UAVs images.Marine debris is expected to increase in the future, and themonitoring is an urgent global issue.

Table 3.Comparison of the number ofmarine debris and the area observed. Average and standard error (SE) are also given for each set.

Date Comparison sites

Number of debris

(blue frame)
Number of debris per comparison

sites (piecesm2)
Area of debris per comparison

sites (%)

December 4 North 53 0.12 0.41

Central 297 0.66 1.79

South 118 0.26 0.54

Average 156.00 0.35 0.92

SE 72.95 0.16 21.16

January 25 North 80 0.18 0.57

Central 30 0.06 0.56

South 93 0.21 0.86

Average 67.67 0.15 0.66

SE 19.20 0.04 3.88
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UsingUAVs and deep learningwill allow for uniform surveys to be conductedworldwide at a low cost. To help
solve themarine debris problem, it is necessary to clarify the current situation at a global scale. Citizen science in
obtainingmarine debris has continued to grow (Sandahl andTøttrup 2020), and ourmodel can be used to
evaluate cleanup activities. Theworldwide use ofmethods such as those described in this study, which combines
field surveys and information science technology, will help enable the efficientmanagement ofmarine debris.
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