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Abstract

The increasing prevalence of marine debris is a global problem, and urgent action for amelioration is
needed. Identifying hotspots where marine debris accumulates will enable effective control; however,
knowledge on the location of accumulation hotspots remains incomplete. In particular, marine debris
accumulation on beaches is a concern. Surveys of beaches require intensive human effort, and survey
methods are not standardized. If marine debris monitoring is conducted using a standardized method,
data from different regions can be compared. With an unmanned aerial vehicle (UAV) and deep
learning computational methods, monitoring a wide area at alow cost in a standardized way may be
possible. In this study, we aimed to identify marine debris on beaches through deep learning using
high-resolution UAV images by conducting a survey on Narugashima Island in the Seto Inland Sea of
Japan. The flight altitude relative to the ground was set to 5 m, and images of a 0.81-ha area were
obtained. Flight was conducted twice: before and after the beach cleaning. The combination of UAV's
equipped with azoom lens and operation at a low altitude allows for the acquisition of high resolution
images of 1.1 mm/pixel. The training dataset (2970 images) was annotated by using VoTT,
categorizing them into two classes: ‘anthropogenic marine debris’ and ‘natural objects.” Using
RetinaNet, marine debris was identified with an average sensitivity of 51% and a precision of 76%. In
addition, the abundance and area of marine debris coverage were estimated. In this study, it was
revealed that the combination of UAVs and deep learning enables the effective identification of marine
debris. The effects of cleanup activities by citizens were able to be quantified. This method can widely
be used to evaluate the effectiveness of citizen efforts toward beach cleaning and low-cost long-term
monitoring.

Introduction

The rapid increase in anthropogenic marine debris has been recognized as a global environmental problem
(Ostle etal 2019). The majority of marine debris consists of plastic (Barnes et al 2009), and it is estimated that
4.4-12.7 million metric tons of plastic are discharged into the ocean annually (Jambeck et al 2015). Previous
studies have indicated that in the western Pacific Ocean, particularly in the Kuroshio Current area, more than
3.5 million pieces of debris per square kilometer at the ocean surface may be present (Yamashita and
Tanimura 2007). The problem with marine debris is not only the amount of inflow but also its persistence.
Plastics are chemically resistant to degradation and remain in the marine environment for hundreds to
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thousands of years (Derraik 2002). Therefore, they continue to accumulate over a long time and have a variety of
effects, such as an impact on tourism due to aesthetic degradation and ingestion by marine organisms. In
addition, plastic fragmentation and degradation driven by environmental factors such as ultraviolet (UV) light
result in small particles that are known as microplastics (Andrady 2011, Cole et al 2011).

Marine debris affects the human economy, particularly, shipping, fishing, and tourism (Mcllgorm et al
2011). For example, in tourist destinations, aesthetic degradation by marine litter decreases revenue from
tourism, and local authorities need to bear the cost of cleanup (Ifiguez et al 2016). The dynamics of marine
debris widely vary, and heavier items may accumulate on the seafloor. There have been attempts to collect
marine debris, but these are costly and sometimes dangerous. For instance, in a project to remove debris from
the seabed in South Korea, about 460 tons of trash were recovered at a cost of $3.8 million, and fatal incidents
were involved (Cho 2011).

Marine ecosystems are also affected by marine debris. Ingestion and entanglement are two impacts of marine
debris on marine organisms (Derraik 2002). Marine organisms from a wide range of taxonomic groups ingest
marine debris, sometimes leading to death (Gregory 2009). Entanglement in discarded fishing gear-related
debris is known as ‘ghost fishing’ and is recognized as a serious threat. Atleast 690 species are threatened by
marine debris, of which at least 17% are classified as near-threatened or higher on the [UCN Red List (Gall and
Thompson 2015). To mitigate the impact of marine debris, a quantitative assessment of the distribution of
marine debris is the first step. Once the location and amount of marine debris present are understood, the
removal of marine debris can be implemented.

The accumulation of marine debris has been confirmed over a wide area from the Arctic to the Antarctic and
in the deep sea (Woodall et al 2014). However, the amount of plastic debris observed in the ocean is much lower
than that previously expected (Cdzar et al 2014). Various studies have been conducted to determine where the
‘missing plastic’ exists (Law and Thompson 2014). This ‘missing plastic’ may be drifting in currents (Eriksen et al

2014) or water columns (Dai et al 2018) or is accumulating on the seafloor (Chiba et al 2018). However, the
importance of focusing on beaches has been highlighted (Brennan et al 2018, Olivelli et al 2020). About half of
the world’s population lives near the coast, making coastal areas hotspots for microplastic pollution (Cole et al
2011). Shorelines are also strongly influenced by terrestrial factors such as stormwater and road distribution
(Willis er al 2017), and backshore areas with vegetation can be a sink for large marine debris (Olivelli ef al 2020).
In addition, plastic products on beaches are exposed to UV light that causes photo-oxidative degradation (Singh
and Sharma 2008 Sathish et al 2019). On beaches in the daylight, the thermal degradation of plastic progress
faster than in seawater (Andrady 2011).

In recent years, unmanned aerial vehicles (UAVs) have been used in a wide range of research fields (Jiménez
Lépez and Mulero-Pézmdny 2019). They are also used to survey marine debris on beaches (Kako et al 2012, Bao
etal 2018, Deidun et al 2018, Andriolo et al 2020, Gongalves et al 2020, Lo et al 2020, Merlino et al 2020). UAVs
have the advantage of cost effectiveness and the ability to obtain high-resolution images. Studies have conducted
marine debris surveys using satellite images, but the high cost and low resolution of the data have been issues.
For example, WorldView-4 satellite imagery, with a resolution of about 0.3 m, cannot detect the majority of
marine debris on beaches (Topouzelis et al 2019). UAVs also facilitate surveys in difficult to access areas such as
islands (Lavers and Bond 2017). In addition, UAVs can be used to collect substantial data using a standardized
method and compare the distribution of marine debris from different locations. However, the analysis of image
data taken by UAVs remains labor-intensive (Jiménez Lépez and Mulero-Pazmdny 2019). Deep learning can
improve the efficiency of data processing and analysis. However, research on the automatic identification of
marine debris from UAV images is a new field, and there are few previous studies on this topic (Martin et al 2018,
Fallati et al 2019, Kako et al 2020, Martin et al 2021, Papakonstantinou et al 2021).

In this study, we aimed to identify anthropogenic marine debris on a beach via high-resolution UAV images
using deep learning. The challenges we hope to address in this study are (1) whether UAV images are suitable for
automatic identification by deep learning and (2) whether identifying anthropogenic marine debris from the
variety of objects present on the beach is possible. If these can be accomplished, it will be possible to survey a
wide area with a standardized protocol, which could significantly improve the world’s future marine debris
management.

Methods

Study area

The Seto Inland Sea is the largest semi-enclosed sea in Japan, with about 31 million residents, more than 700
islands, and a total coastline of about 7,230 km. The climate is mild throughout the year, and the landscape
attracts many tourists. The estimated total annual inflow of marine debris into the Seto Inland Sea is 4,500 tons,
of which about 70% comes from land (Fujieda et al 2010). Training and test images were taken at a site located on
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Figure 1. The geographic location of the study site. The survey was conducted in the area indicated by the dotted line.

Narugashima Island (34.288351N, 134.952303E) in Hyogo Prefecture (figure 1). Narugashima Island is located
in the southeastern part of Awajishima Island. The island has an area of about 25-ha and a total length of about

3 km. There are beaches on the east and west sides, facing Osaka Bay and Yura Bay, respectively. The shorelines
of this island are strongly affected by tides, waves, and winds, and a large quantity of marine debris is therefore
accumulated. This area belongs to Setonaikai National Park, so local volunteers engage in cleanup activities once
ayear. Preliminary investigations showed many plastic products drifting on the west rather than the east side of
the island (figure 2). Both beaches were set as UAV photography areas to collect the training images.

UAV survey protocols

The DJI Mavic 2 zoom was used in this study. This UAV is equipped with a 24—48 mm optical zoom lens and a
camerawitha1/2.3 CMOS and a 12.4 M pixel sensor. The field of view (FOV) is 83° for the 24-mm zoom and
48° for the 48-mm zoom. It is possible to obtain higher-resolution images with the zoom lens. The flight route
was mapped using the DJI GS Pro application, which allows the user to set the flight area and speed in advance
and check the shooting status in real time. A 0.81-ha flight plan was created in advance, and shooting was
conducted on November 27 and December 4, 2020, and January 25, 2021. Since the flight time of one battery is
only 26 min, the battery was continuously replaced. The operators walked on the beach alongside the UAV and
used a Jackery portable battery 700 to recharge the depleted batteries for reuse. The flight altitude was set to 5 m,
calculated at the point where the UAV took off; therefore, the exact altitude may slightly vary for each image. The
shooting interval was set for 50% horizontal and 50% vertical image overlap. The camera’s ISO, aperture, and
shutter speed were set to AUTO mode, and images with a resolution of 4000 x 3000 pixels were recorded. In
this study, the images obtained from the survey of Narugashima Island on November 27, 2020, were used as the
training images (table 1). In addition, to improve the model, training images that contained only a PET bottle
were obtained from the Kamigamo test site of the Kyoto University Field Science Center on December 16, 2020.
Since the cleanup activity was performed on this island on December 5, test images were acquired before and
after the day to evaluate the effectiveness of the cleanup activity. Finally, 4,421 test images from the west beach
were obtained from Narugashima Island’s survey on December 4, 2020, and January 25, 2021.

The deep learning algorithm

Annotations

We annotated images using VoTT, an open-source labeling software developed by Microsoft. We annotated a
total of 2,970 images by classifying them into either ‘anthropogenic marine debris’ or ‘natural objects’ that
mainly consisted of large driftwood. Marine debris larger than 100 pixels was annotated. The classified images
were exported in Pascal VOC format and used for training. In this study, 80% of the images were set as training
data and 20% were used as validation data.
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Figure 2. Anthropogenic marine debris observed at the study site. (A) On the west beach taken from the UAV; (B) Taken from the
UAV at an altitude of 5 m; (C) On the west beach taken from the ground; (D) On the east beach taken from the ground.

Table 1. Location, date, time, weather, purpose of the images, and objects photographed in each investigation conducted by UAV survey.

Narugashima Narugashima Narugashima Kyoto University Narugashima
islamd islamd islamd Experimental Station islamd
location Eastand westbeach ~ West beach West beach Kamigamo Experimental West beach
Station
date November 27 December 4 December 4 December 16 January 25
time 12:00-15:00 10:00-15:00 15:00-16:00 14:00-15:00 10:00-15:00
weather Sunny Sunny Sunny Sunny Sunny
Purpose of Training Test Training Training Test
images
objects Marine debris Marine debris PET bottle PET bottle Marine debris
Data augmentation

Deep learning requires a large amount of training data to avoid overfitting. Therefore, we augmented the
training datasets using the ‘imgaug’ python library. For each image, image scaling, random erasing, and contrast
changes were applied with a probability of 50%. For random erasing, a rectangular region of 10% of the image
size was created and filled with random RGB values in order to detect partially hidden objects during
identification. To mask the part of the image, 5-10 of these rectangular areas were randomly generated. Finally,
contrast changes were randomly varied between 50% and 200% to correspond to sunlight exposure.

RetinaNet

In this study, we trained the model using RetinaNet (Lin et al 2017), an object detection model derived from
region-based convolutional neural networks (Girshick et al 2016). RetinaNet consists of a backbone network
and two subnetworks. The depth was set to 50 because the F-score is the highest in parameter tuning
(supplementary information 1 (available online at stacks.iop.org/ERC/4/015003 /mmedia)). We set the depth
to 50, the epochs to 60, and the batch size to 6 for training. A threshold of more than 0.5 for the score was used for
our model to detect marine debris. In addition, non-maximum suppression (NMS) was applied after object
detection (Girshick et al 2014). NMS is a method that integrates multiple detections of the same object into a
single result. In this experiment, the object with the highest probability was used as the standard, and other
objects with more than 50% overlap with the standard were removed.
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Orthomosaic images

The same marine debris may have been identified multiple times because overlapping images were taken.
Therefore, orthorectified images were used for identification using the Agisoft PhotoScan software. This
software uses the Structure from Motion algorithm to create orthomosaic images from overlapping images. In
this study, we used 200 images to create each orthomosaic image from a total of 4,421 images. Some areas were
not orthorectified and were displayed in white due to low image overlap. Therefore, we processed the data to
avoid detection when areas had more than 80% white pixels.

Accuracy assessment

We segmented the orthorectified images created for the test set with the same size as training images. After
identification, an observer randomly selected 100 images to calculate the true positive (TP), false negative (FN),
and false positive (FP) rates. We defined FNs when marine debris larger than 100 pixels was not identified. The
model was evaluated using sensitivity, precision, and the F-score. For these indices, the following equations were
used: sensitivity = TP/(TP 4 FN); precision = TP/(TP + FP); and F-score = 2TP / 2TP + FP + EN).
Changes in the marine debris were quantified by comparing the number of pieces and the area. The comparison
sites were selected from the north, central, and south parts of each beach. Our model marks the detected marine
debris with a blue frame. The number of blue frames surrounding the marine debris was defined as counts of
marine debris, and we compared the number of marine debris per orthorectified image for each comparison
site. The area of the marine debris was calculated using the following method: First, the area containing the blue
frame was calculated. Next, the area of the marine debris within the blue frame was calculated for 100 randomly
selected samples, which was used as the average marine debris percentage. Finally, the total area of the blue-
framed areas in the comparison site was calculated and multiplied by the average marine debris percentage to
obtain the estimated area of marine debris. The actual length per pixel in the images was calculated by measuring
the size of the PET bottle. Image] was used to calculate the area of the blue boxes and marine debris.

Results

The deep learning model successfully identified marine debris in the high-resolution images (figure 3). For data
from Narugashima Island in December 4, the sensitivity was 59% and the precision was 90% (table 2). On the
other hand, for the data taken in January 25, the sensitivity was 43% and the precision was 62%. The average of
both results was 51% for sensitivity and 76% for precision. The main FPs were waves and rocks (figure 4), and
when the marine debris contacted driftwood, it was not detected (figure 5).

As aresult of the identification by our deep learning model, the numbers of marine debris at the site on
December 4 were 53,297, and 118 pieces in the north, central, and south parts of the beach, respectively (table 3).
The mean number of marine debris (£standard error (SE)) was 156 pieces (£72.95 pieces). On January 25, the
numbers of marine debris at the comparison site were 80, 30, and 93 pieces in the north, central, and south parts
of the beach, respectively. The mean number of marine debris (+SE) was 68 pieces (-19.20 pieces). On
December 4, the marine debris density was 0.12, 0.66, and 0.26 pieces/ m? in the north, center, and south,
respectively. The average marine debris density (4= SE) was 0.35 pieces/m” (£0.16 pieces/m?), and the marine
debris density on January 25 was 0.18, 0.06, and 0.21 pieces/m? in the north, center, and south, respectively. On
this observation date, the average marine debris density on this observation date (=SE) was 0.15 pieces/m>
(20.04 pieces/m?).

The areas of marine debris decreased more on January 25 than on December 4. By calculating the actual
length of the pixels, the area of the debris could be calculated from the images. The actual length of one pixel
(£SE) was 1.06 mm (£0.04 mm). Based on this length, the areas of the blue frames on December 4 were 2.77,
12.81,and 3.94 m” in the north, central, and south part of the beach, respectively. The average blue-framed area
(£ SE) was 6.51 m? (£3.17 mz). On January 25, the areas of the blue frames were 3.95, 4.26, and 6.12 m?in the
north, central, and south beach, respectively. The average blue-framed area (& SE) was 4.78 m” (£0.68 m®). The
mean marine debris percentage in the blue-framed area (& SE) was 62.6% (£1.77%). Based on this percentage,
the areas of marine debris on December 4 were 1.74, 8.02, and 2.47 m* in the north, center, and south, respectively.
The average area (=SE) was 4.08 m” (£:1.99 m?). The areas of marine debris on January 25 were 2.48, 2.67, and
3.83 m?in the north, center, and south, respectively. The average area (+ SE) was 2.99 m? (£0.42 m?).

The area coverages could also be estimated from the images. The area coverages of marine debris were
0.41%, 1.79%, and 0.54% in the north, central, and south parts of the beach in December 4. The average area (+
SE) was 0.92% (£21.16%). Similarly, the area of marine debris was 0.57%, 0.56%, and 0.86% at the three parts of
the beach, respectively, in January 25. The average area (& SE) was 0.66% (£3.88%). The number and area
coverages of marine debris were lower in January compared to December. In addition, it was demonstrated that
deep learning could identify marine debris from UAV images and that changes in the debris could be quantified.
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Figure 3. Identification results. (A) and (B) are images taken on December 4, before and after identification; (C) and (D) are images
taken on January 25, before and after identification. The blue boxes show anthropogenic marine debris, and the red boxes show
natural objects identified by the model in this study.

Table 2. Identification results and comparison with previous studies.

Algorithm Area TP FN Fp Sensitivity Precision F-score
Martinetal 2018 Saudi Arabia 164 251 1941 0.40 0.08 0.13
Fallati eral 2019 (Average) Maldives 57.9 74 48.9 0.44 0.54 0.49
Our algorithm Narugashima (December 4) 283 200 30 0.59 0.90 0.71
Narugashima (January 25) 78 103 48 0.43 0.62 0.51
Narugashima (Average) 180.5 151.5 30 0.51 0.76 0.61
Discussion

In this study, high-resolution images of marine debris were acquired by combining a UAV equipped with a
zoom lens and low altitude flight operation. In addition, the study showed that UAV images can be used for the
object detection of marine debris. Although UAVs have also been used in marine debris surveys, high-resolution
image acquisition was a challenge. For example, the resolution in the previous study was 4.4 mm//pixel when the
DJI Phantom 4 was used at 10 m and 5.0 mm/pixel when it was used at 17 m (Fallati et al 2019; Kako et al 2020).
In this study, a resolution of 1.1 mm/pixel was obtained using the DJI Mavic 2 zoom from an altitude of 5 m. The
resolution of the present study was high compared to previous studies, and it was achieved using the combined
approach of a UAV that was equipped with the zoom lens and operated from a low altitude.

The advantage of UAVs is that the vehicles can perform survey at a low cost, so periodic monitoring can
reveal the spatio-temporal distribution of marine debris. In this study, we acquired 4,421 images and performed
an intensive survey at a low altitude to obtain high-resolution images from the target area. Our survey over an
area of 0.81-ha was implemented by replacing the battery 12 times. To the best of our knowledge, this is the first
study in which a UAV equipped with a zoom camera was operated at a 5 m altitude to identify marine debris.

Our model achieves a sensitivity of 0.59 because of the high-resolution images from the UAV. Moreover, our
model could identify anthropogenic marine debris from the wide variety of objects on a beach. Training data
containing multiple types of debris enabled the high performance of our model. In addition, we annotated two
classes, anthropogenic marine debris and natural objects, allowing the model to distinguish between human and
natural-origin debris. The types and composition of these categories differ, and annotating typical natural
objects improved the performance of the model.

6
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Figure 4. Major false positive images. (A) and (B) are before and after images, respectively, taken in December 4; (C) and (D) are before
and after images, respectively, taken in January 25.

Figure 5. Unidentified marine debris owing to partial interference of driftwood. The images of (A) and (B) are taken on December 4;
(C) and (D) are taken on January 25. (B) and (D) are partial expanded view of the white frames of (A) and (C), respectively. The wood
in this image has been artificially processed. This study targeted marine debris made of anthropogenic material such as plastic, glass,
and metal; wood was excluded because it decomposes naturally.

Our technique evinced a decrease in marine debris through cleanup activities. These activities have been
performed worldwide on beaches. However, continuously monitoring a large area after cleanup activities is
labor-intensive. In our study, we found that combining UAVs and deep learning makes it possible to compare
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Table 3. Comparison of the number of marine debris and the area observed. Average and standard error (SE) are also given for each set.

Number of debris Number of debris per comparison Area of debris per comparison

Date Comparison sites (blue frame) sites (pieces m?) sites (%)
December 4 North 53 0.12 0.41
Central 297 0.66 1.79
South 118 0.26 0.54
Average 156.00 0.35 0.92

SE 72.95 0.16 21.16

January 25 North 80 0.18 0.57
Central 30 0.06 0.56
South 93 0.21 0.86
Average 67.67 0.15 0.66
SE 19.20 0.04 3.88

the amount of debris before and after a cleanup activity and quantify the effectiveness of the cleanup effort.
Moreover, we clarified that the distribution of marine debris varied depending on the site. Ocean currents and
wind direction may affect marine debris distribution. In the future, continuous surveys using this technique
might reveal the factors behind marine debris accumulation.

Despite using the same model, the identification accuracy differed, as sensitivity decreased when the test
images were taken on January 25. The reduction in the amount of marine debris on the beach may affect the
model’s sensitivity, and more marine debris could be detected by changing the threshold of our model. In
addition, detecting entangled debris in vegetation was challenging. Furthermore, the orientation of the marine
debris may affect the results. Debris entangled in vegetation can be scattered at various angles, and the training
images did not contain these varied angles. Therefore, improving the training images will improve the model
performance.

Our model underestimated the amount of marine debris owing to a high false negatives. Previous studies
have shown that identifying marine debris using UAVs also underestimates the amount of debris compared to a
human ground survey (Martin et al 2018). The shadows of debris can also affect identification, and it is
recommended that UAVs be operated around noon to reduce shadows (Martin et al 2018; Lo et al 2020). In our
study, the images were consecutively taken between 10:00 and 15:00. Therefore, the high false negatives may be
attributed to the Sunlight conditions in each image.

Some limitations still exist in this study. First, detecting small anthropogenic marine debris such as
fragments of plastic products is difficult. The criteria for the annotation also affect the low detection of small
debris. Marine debris was annotated if the size was larger than 100 pixels because it was difficult to annotate all of
the debris. Further consideration of criteria for the annotation will be needed to detect the smaller size of debris.
Second, the results of our study show lower sensitivity, indicating that the model cannot detect all marine debris
because of the excesses of false negatives. A variety of anthropogenic marine debris was annotated as one class,
such as PET bottles, plastic bags, and cans. Therefore, separating the class into more subdivided categories may
improve the sensitivity. Although high-resolution images acquired operated UAV at a low altitude, this
operation required multiple batteries; for example, batteries were replaced 12 times in this study. In addition,
operations over several hours also affect the light conditions of the image; thus, this difference may have affected
the performance. Additionally, object detection was used in this study, but it may be necessary to consider other
approaches, such as semantic segmentation for more accurate estimation. Finally, our results show microplastic
detection is quite challenging; however, monitoring these distributions is essential to understanding plastic
pollution in the marine environment. Citizen science can also be beneficial to survey microplastic pollution with
other protocols.

Although beaches attract attention as places that often accumulate marine debris, few studies have identified
marine debris on beaches using UAVs combined with deep learning (Fallati et al 2019). Some studies used
aircraft to survey the distribution of marine debris (Moy et al 2018); however, the cost is prohibitive. The
advantage of UAVs is that they can acquire higher-resolution images at a lower cost than aircraft. In addition,
UAVs enable safe surveys in dangerous areas where marine debris accumulates, such as areas containing medical
waste. In these areas, remote sensing surveys of beaches using UAVs can be conducted. Using UAVs is also
beneficial from an ecological perspective (Harris et al 2015). Beaches are essential for the breeding of some
species of marine wildlife. For example, the human use of beaches affects areas where sea turtles lay their eggs
(Antworth et al 2006) and the behavior of seabirds (Burger and Niles, 2013). Thus, minimizing disturbance to
marine wildlife by conducting surveys without directly entering the beach is possible.

The present study, showed that deep learning could identify marine debris obtained from high-resolution
UAVsimages. Marine debris is expected to increase in the future, and the monitoring is an urgent global issue.
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Using UAVs and deep learning will allow for uniform surveys to be conducted worldwide at a low cost. To help
solve the marine debris problem, it is necessary to clarify the current situation at a global scale. Citizen science in
obtaining marine debris has continued to grow (Sandahl and Tettrup 2020), and our model can be used to
evaluate cleanup activities. The worldwide use of methods such as those described in this study, which combines
field surveys and information science technology, will help enable the efficient management of marine debris.
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