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Abstract
Pathway-selective gene delivery would be critical for future gene therapy against neuropsychiatric disorders, traumatic
neuronal injuries, or neurodegenerative diseases, because the impaired functions depend on neural circuits affected by the
insults. Pathway-selective gene delivery can be achieved by double viral vector techniques, which combine an injection of a
retrograde transport viral vector into the projection area of the target neurons and that of an anterograde viral vector into their
somas. In this study, we tested the efficiency of gene delivery with different combinations of viral vectors to the pathway
extending from the ventral tegmental area (VTA) to the cortical motor regions in rats, considered to be critical in the
promotion of motor recovery from neural injuries. It was found that retrograde recombinant adeno-associated virus 2-retro
(rAAV2reto) combined with anterograde AAVDJ (type2/type4/type5/type8/type9/avian/bovine/caprine chimera) exhibited
the highest transduction efficiency in the short term (3–6 weeks) but high toxicity in the long term (3 months). In contrast,
the same rAAV2reto combined with anterograde AAV5 displayed moderate transduction efficiency in the short term but low
toxicity in the long term. These data suggest that the combination of anterograde AAV5 and retrograde rAAV2retro is
suitable for safe and efficient gene delivery to the VTA-cortical pathway.

Introduction

Viral vectors are powerful tools for gene therapy and have
been applied against neurodegenerative diseases, such as
Alzheimer’s and Parkinson’s diseases (PD) [1, 2]. Most of
the current methods are nonselective to cell types around

the injection site. Viral vectors infect all cell types including
both excitatory and inhibitory neurons and glial cells as
long as nonselective promotors such as the cytomegalovirus
promotor are applied [3]. To avoid side effects and enhance
efficiency, it is desirable to make the transduction cell-type
specific. One way is to use cell-type specific promotors such
as the neuron-specific synapsin promotor or the excitatory
neuron-specific CaMKII promotor [4–6]. Another way to
enable cell-type specificity is to make the transduction
pathway-selective. For future gene therapy, such pathway-
selective gene delivery may be beneficial, as some neu-
ropsychiatric disorders and neuronal injuries depend on
particular neural pathways, such as addiction on the
mesoaccumbal pathway, PD on the nigrostriatal pathways
and motor paralysis on the corticospinal and other des-
cending motor pathways [7–9]. In mice, which can be
transgenic, combining the Cre-lines for specific promotors
to the target cell type and viral vectors with lox-P sequence
enables pathway specificity if the promotor is known [10].
However, for application in humans or nonhuman primates,
double vector technologies would be realistic in which a
retrograde transport viral vector is injected in the target area
of the cells in question, and another anterograde transport
vector is injected at the location of their cell somas,
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combined with the regulatory system of gene expression
such as Cre or Tet [11, 12]. However, this technique is still
new, and the process of selecting the vectors and serotypes
is not well established. Thus, it is not obvious whether the
efficiency and safety of gene transduction of individual
vectors with single use can explain the efficiency and safety
when anterograde and retrograde viral vectors that were
combined with the regulatory system of gene expression
were simultaneously infected as described above. In addi-
tion, efficiency of gene delivery with viral vectors is often
different among various cell types or animal species
[1, 13, 14].

In this study, to develop pathway-selective gene therapy in
order to modulate the functions of particular pathways, we
have focused on evaluating the efficiency and safety of gene
transduction using double vector system that combined con-
ventional and new vectors for enabling optogenetic control of
the dopaminergic pathway from the ventral tegmental area
(VTA) to the cortical motor area (CMA) in rats. The dopa-
minergic VTA-CMA pathway is involved in promoting the
recovery after brain and spinal cord injury in the animal
models as well as in motor skill learning [9, 15–18]. Here, we
have tested several viral vectors that display infective tropism
in dopaminergic neurons to find the optimal combination of
anterograde and retrograde vectors for safe and efficient gene
delivery to VTA-CMA pathway [19–30] (Fig. 1a). The viral
vectors carried Cre or ChR2-enhanced yellow fluorescent
protein (EYFP) between loxP sequences. Thus, only cells to
which both the Cre recombinase and loxP sequences are
delivered could produce ChR2-EYFP fusion proteins that can
be activated by light illumination (Fig. 1b). Instead of just a
marker protein, the ChR2-EYFP fusion protein was used,
since a previous study reported that the transduction ability of
an adeno-associated vector (AAV) is affected by its genome
size [31].

Materials and methods

Animals, viral injections, and brain sections

Sixty-five male Wistar/ST rats, weighing 300–350 g, were
used. Experiments were conducted in accordance with the
guidelines of the Animal Care Institute of Laboratory
Animals and approved by the Animal Care Committee of
the Graduate School of Medicine, Kyoto University.
All efforts were made to minimize suffering and the num-
ber of animals used in the present study was kept to
a minimum. Tested viral vectors were as follows
(Fig. 1a): AAVDJ (type2/type4/type5/type8/type9/avian/
bovine/caprine chimera) -EF1α-DIO-ChR2-EYFP (titer,
2.5 × 1013 viral genomes (vg) /ml), AAV1-EF1α-DIO-
ChR2-EYFP (4.0 × 1013 vg/ml) and AAV5-EF1α-DIO-

ChR2-EYFP (1.5 × 1013 vg/ml) as anterograde viral vec-
tors; AAVDJ-CAGGS-Cholera toxin B subunit (CTb)-
Cre (1.1 × 1013 vg/ml), AAV1-CAGGS-CTb-Cre (5.3 ×
1012 vg/ml), rAAV2retro-CAGGS-Cre (2.8 × 1012 vg/ml)
and Lenti-FuG/E-MSCV-Cre (8.7 × 1010 copies/ml) as ret-
rograde viral vectors. All the AAV and lentiviral vectors

Fig. 1 Outline of the double viral vector technology for selective
manipulation of the VTA-CMA pathway. a In this study, we tested
4 types of retrograde vectors and 3 types of anterograde vectors. The
retrograde vector that carried CAGGS or MSCV promoter and Cre
was injected into the CMA, whereas the anterograde vector that carried
EF1α promoter and ChR2-EYFP between loxP sequences was injected
into the VTA. b When the neurons that express the Cre recombinase
are infected with the anterograde vector, the only double infected
neurons (neuron A in a and b) produce ChR2-EYFP fusion proteins.
In this study, only VTA-CMA neurons were doubly infected by an
anterograde vector injected into the VTA and a retrograde vector
injected into the CMA and express EYFP, while other VTA neurons
which were not projecting to CMA (neuron B in a and b) and neurons
in other areas projecting to CMA (neuron C in a and b) are single
infection and do not express EYFP. Abbreviations: ChR2 channe-
lorhodopsin-2, CMA cortical motor area, EYFP enhanced yellow
fluorescent protein, VTA ventral tegmental area.
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were prepared as described previously [32]. Rats were
randomly assigned to each vector.　The rats were deeply
anesthetized with intraperitoneal injection of a mixture of
ketamine hydrochloride (48 mg/kg body weight: DAIICHI
SANKYO PROPHARMA, Tokyo, Japan) and xylazine (3
mg/kg: Bayer AG, Leverkusen, Germany), fixed to a ste-
reotaxic apparatus (SR-6R-HT, Narishige, Tokyo, Japan),
and were then kept anesthetized by inhalation of 1–2%
isoflurane (Pfizer, NY, USA) [33]. The anterograde viral
vector was injected into bilateral VTA (0.3 µl: 5.3–5.4 mm
anterior to the bregma, 2.265 mm lateral to the midline,
7.8–8.0 mm below the brain surface at 10º to midline,
according to the atlas of Paxinos and Watson) with a glass
micropipette attached to a manipulator (SMM-200, Nar-
ishige) and a syringe pump (the rate of 100 µl/min: Legato
130, KD Scientific Inc., MA, USA), 2–3 days after the
injection of the retrograde viral vector into the bilateral
CMA at two sites (each 0.5 µl: 4.0 mm anterior, 2.0 mm
lateral, 1.0 – 1.1 mm deep; 2.5 mm anterior, 2.2 mm lateral,
1.0–1.1 mm deep) with a manipulator (SM-15M, Nar-
ishige). Four weeks after these injections, the rats were
deeply anesthetized with an intraperitoneal injection of
sodium pentobarbital (130 mg/kg: Kyoritsu Seiyaku Cor-
poration, Tokyo, Japan), and transcardially perfused with
50 mM phosphate-buffered saline (PBS), followed by 4%
(w/v) paraformaldehyde in 0.1 M sodium phosphate buffer
(pH 7.4). The brains were removed, postfixed overnight at
4 °C with the same fixative and then cryoprotected suc-
cessively with 10, 20, and 30% (w/v) sucrose in 0.1 M
sodium phosphate buffer (pH 7.4). After the brains were
divided into two hemispheric blocks at the midline, each
block was cut into 40-µm-thick coronal or sagittal sections
on a freezing microtome (REM-710, Yamato Koki Indus-
trial Co., Saitama, Japan). The sections were collected
serially in PBS.

Immunoperoxidase staining for EYFP

The following incubations were performed at room tem-
perature, and the sections were rinsed with PBS containing
0.3% (v/v) Triton-X 100 (PBS-T) [33, 34]. The sections were
incubated for 30min with a blocking solution (0.6% (v/v)
H2O2, 20% (v/v) dimethyl sulfoxide in methanol) to suppress
endogenous peroxidase activity. After incubation for 30
minutes with 10% (v/v) normal goat serum (NGts: S-1000,
Vector Laboratories, Burlingame, CA, USA) in PBS-T, the
sections were incubated overnight with 1/2,000-diluted rabbit
antibody against GFP (A11122, Thermo Fisher Scientific,
Waltham, MA, USA) and 1% NGts in PBS-T (PBS-Tgs).
Next, the sections were incubated for 2 hours with 5 µg/ml
biotinylated goat antibody against rabbit IgG (BA-1000,
Vector Laboratories) in PBS-Tgs, and then for 1 hour
with 1/100-diluted avidin-biotinylated peroxidase complex

(PK-4000, Vector Laboratories) in PBS-T. After sufficient
rinsing with PBS and 50mM Tris-buffered saline (pH 7.6)
(TBS), the sections were reacted for 30minutes with 0.01%
(w/v) diaminobenzidine, 1% (w/v) nickel ammonium sulfate
and 0.0015% (v/v) H2O2 in TBS. The stained sections were
mounted onto gelatin-coated glass slides, dehydrated in
ethanol series, cleared in xylene, and finally coverslipped with
mounting medium MX (Matsunami, Osaka, Japan).
Monochrome images were taken with an optical microscope
BZ-9000 (KEYENCE, Osaka, Japan). In addition, Nissl-
stained sections of non-injected brains were prepared to
determine the cytoarchitecture according to the atlas of
Paxinos and Watson [35].

Double immunofluorescent labeling for EYFP
and TH

The sections were incubated for 30 min with 10% NGts in
PBS-T, and then overnight with 1/2,000-diluted rabbit
antibody against GFP and 1/500-diluted mouse antibody
against tyrosine hydroxylase (TH) (T2928, Sigma, St.
Louis, MO, USA) in PBS-Tgs. The sections were incubated
for 2 hours with 5 µg/ml Alexa Fluor 488-conjugated goat
antibody against rabbit IgG (A-11034, Thermo Fisher Sci-
entific) and 5 µg/ml Alexa Fluor 594-conjugated goat anti-
body against mouse IgG (A11032, Thermo Fisher
Scientific) in PBS-Tgs. After mounting on the slides, the
immunostained sections were coverslipped with 50% (v/v)
glycerol in TBS. Color images were taken with the optical
microscope BZ-9000.

Quantitative analysis of native and
immunofluorescence for EYFP

Double infected rats were prepared by injection of
rAAV2retro-CAGGS-Cre (1.4 × 1012 vg/ml) into CMA
combined with injection of AAVDJ-EF1α-DIO-ChR2-
EYFP (titer, 1.0 × 1012 vg/ml) or AAV5-EF1α-DIO-ChR2-
EYFP (1.0 × 1012 vg/ml) into the VTA as described above,
and were transcardially perfused 3, 6, or 12 weeks after the
anterograde viral injections. The sections prepared from the
double infected rats were incubated for 30 minutes with
10% NGts in PBS-T, and then overnight with 1/2,000-
diluted rabbit antibody against GFP and 1/200-diluted
chicken antibody against NeuN (266006, Synaptic Systems,
Göttingen, Germany) in PBS-Tgs. The sections were
incubated for 2 h with 5 µg/ml Alexa Fluor 568-conjugated
donkey antibody against rabbit IgG (A10042, Thermo
Fisher Scientific) and 5 µg/ml Alexa Fluor 647-conjugated
goat antibody against chicken IgG (103-605-155, Jackson
ImmunoResearch, West Grove, PA, USA) in PBS-Tgs.
After mounting onto the slides, the immunostained
sections were coverslipped with 50% (v/v) glycerol in TBS.
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Digital pseudocolor images (16-bit scale) were captured
with a confocal laser-scanning microscope TCS SP8 (Leica
Microsystems, Wetzler, Germany), using 63× objective lens
(HC PL APO CS2, NA= 1.4), zoom factor of 0.75 and
photon counting mode, as based on a previous study [36].
EYFP-native fluorescence, Alexa Fluor 568 and Alexa
Fluor 647 were excited with 488-nm, 561-nm, and 633-nm
laser beam and observed through a prism filter set to the
bandwidth of 529–537 nm, 580–630 nm, and 657–757 nm,
respectively. The laser beam strength was predetermined in
a preliminary capture to avoid saturation with TetraSpeck

Fluorescent Microsphere Sampler kit (T7284, Thermo
Fisher Scientific). The mean intensity of native fluorescence
and immunofluorescence for EYFP in individual cell bodies
was measured with the software Fiji (https://fiji.sc), in
which the intensity of native fluorescence and immuno-
fluorescence for EYFP in the area of a NeuN-
immunopositive cell body (enclosed within a dashed line
in Fig. 7) was measured at the optical section passing
through the nucleoli of the cell. The intensities were nor-
malized with the intensities of the Fluorescent
Microsphere kit.

Fig. 2 Comparison of the efficiency of 4 retrograde vectors when
combined with anterograde vector AAVDJ-DIO-ChR2-EYFP. The
EYFP expression in neurons double infected by anterograde AAVDJ-
DIO-ChR2-EYFP and a retrograde vector was visualized with
immunostaining with Ni-DAB. Each image is shown in a sagittal
plane. a–d EYFP-immunopositive neurons were dominantly found in
the VTA, though a few EYFP-immunopositive neurons were found
along the trajectory of a glass pipet used for the injection of viral
vector (arrows in b and d). e–h In the VTA, the cell bodies and
neuropils of EYFP-immunopositive neurons were observed. i–l In the

M1, EYFP-immunopositive axons were observed. Arrowhead in l
indicates a layer 5 pyramidal neuron that exhibits EYFP immunor-
eactivity. m–t The EYFP-immunopositive axons in the cortical
superficial layers (m–p) as well as in the deeper layers (q–t) of the
cerebral cortex are shown in higher magnification images. The location
of high magnification images (m–t) was taken from the black squares
with corresponding letters in the lower magnification images (i–l).
Scale bar= 1 mm in (d) (applies to a–c); 100 µm in (h) (applies to
e–g); 500 µm in (l) (applies to i–k); 50 µm in (t) (applies to m–s).
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Statistical analysis

Sample size was determined based on previous works.
Wilcoxon rank sum test (Fig. 8a, b), Shapiro-Walk nor-
mality test and Pearson correlation (Fig. 8c) were performed
with the software RStudio (version 1.1a, https://www.
rstudio.com).

Results

Efficiency of viral vector combinations for transgene
delivery

To find the optimal combination of anterograde and retro-
grade viral vectors for efficient gene delivery to VTA-CMA
neurons, we tested combinations of several viral vectors as
shown in Fig. 1a. The mechanism for enabling pathway-
selective gene expression is described in Fig. 1b. The time
between the injection of the vectors and perfusion of the
animals was 4 weeks. All combinations of anterograde and
retrograde viral vectors had the ability to infect VTA-CMA
neurons (Figs. 2, 4, and 5; Table 1). In each retrograde viral
vector combined with anterograde AAVDJ, cell bodies and
dendritic neuropils of EYFP-immunopositive neurons were
found in the VTA (Fig. 2a–h). The cell bodies and dendritic
neuropils that exhibited strong EYFP immunoreactivity
were densely observed when combined with rAAV2retro
(Fig. 2h), whereas they were not densely observed when
combined with other retrograde vectors (Fig. 2e–g). The
axonal fibers of EYFP-immunopositive neurons were also
seen in the CMA (Fig. 2i–2t). The axonal fibers with suf-
ficient EYFP immunoreactivity were densely located in
both superficial and deep layers when combined with
rAAV2retro (Fig. 2l, p, t), whereas the axonal density with
EYFP immunoreactivity was very weak and sparse when
combined with other retrograde vectors (Fig. 2i–k, m–o and
q–s). EYFP immunoreactivities were found not only in a
large number of VTA-CMA neurons but also in a small
number of cortical layer 5 pyramidal neurons (arrowhead in
Fig. 2l). This accidental exhibition of EYFP-
immunoreactivity in a pyramidal neuron seems to have
been caused by a retrograde uptake of AAVDJ from the

corticofugal axons around the VTA. Moreover, stained
perikarya-like structures were found in the injected sites of
retrograde AAVDJ and AAV1 (Fig. 3a–d), whereas such
stained structures were not observed in the injected site of
rAAV2retro (Fig. 3e, f), indicating that the injected sites of
retrograde AAVDJ-CTb and AAV1-CTb may exhibit
inflammatory responses, while this is not the case for
rAAV2retro. Retrograde rAAV2retro combined with either
anterograde AAV1 (Fig. 4) or AAV5 (Fig. 5) also showed
dense labeling of cell bodies, dendritic processes and axonal
fibers with EYFP immunoreactivity in comparison with the
other retrograde vectors (Table 1). In addition, the findings
demonstrated differences in the staining of axonal arbor-
izations in the CMA not only among retrograde viral

Table 1 The density of EYFP-
immunopositive axons in the
CMA compared among the
different combinations of double
vectors.

Retrograde viral vector

Anterograde viral vector AAVDJ-CTb-Cre AAV1-CTb-Cre Lenti-FuG/E-Cre AAV2retro-Cre

AAVDJ-DIO-ChR2-EYFP ++ (i) + (i) + +++++

AAV1-DIO-ChR2-EYFP ++ (i) ++ (i) + ++++

AAV5-DIO-ChR2-EYFP + (i) + (i) ++ +++

(i), inflammation in cortical injection sites.

Fig. 3 Examples of inflammatory response around the cortical
injection sites. a, b The injection site of retrograde AAVDJ-CTb-Cre
combined with anterograde AAVDJ exhibited perikarya-like struc-
tures. c, d The perikarya-like structures were found also around the
injection site of retrograde AAV1-CTb-Cre combined with ante-
rograde AAVDJ. e, f The injection site of retrograde rAAV2retro-
CTb-Cre combined with anterograde AAVDJ did not exhibit any
perikarya-like structure (arrowhead). Scale bar = 500 µm in (e)
(applies to a, c); 100 µm in (f) (applies to b, d).
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vectors but also among anterograde viral vectors (Table 1).
In combination with retrograde rAAV2retro, the EYFP
immunoreactivity and density of stained neuropils were
stronger and higher in case of anterograde AAVDJ than for
anterograde AAV1 or AAV5 (Figs. 2p, t; 4p, t; 5p, t). These
data suggest that retrograde rAAV2retro combined with
anterograde AAVDJ may have the highest ability for gene
delivery to VTA-CMA neurons among all the combinations
of viral vectors where we consider the case of 4 week-
survival time after injection of the vectors.

Gene delivery to dopaminergic neurons

To confirm whether VTA-CMA neurons infected with the
combination of anterograde AAVDJ and retrograde
rAAV2retro, which was found to be the best combination,

contain TH immunoreactivity, a marker of dopaminergic
neurons, we performed double immunofluorescent labeling
for EYFP and TH in the midbrain (Fig. 6). EYFP immu-
noreactivity was found in the VTA where TH immunor-
eactivity was also abundantly observed (Fig. 6a). The EYFP
immunoreactivity often overlapped with TH immunor-
eactivity in the same cell body and neuropil (Fig. 6b–d).
The proportion of EYFP-immunopositive neurons among
the TH immunopositive neurons was 22.8 ± 20.7% (mean ±
SEM, n= 3), and that of the TH immunopositive neurons
among EYFP-immunopositive cells was 63.3 ± 31.8%
(mean ± SEM, n= 3) (Fig. 6e), indicating that a small
population of dopaminergic neurons in the VTA sent axonal
collaterals to the CMA, and that at least more than a half of
the VTA-CMA neurons were dopaminergic neurons, even if
there were a considerable number affected by false negative

Fig. 4 Comparison of the efficiency of 4 retrograde vectors
when combined with anterograde AAV1-DIO-ChR2-EYFP. The
EYFP expression in neurons with double infection by anterograde

AAV1-DIO-ChR2-EYFP and a retrograde vector was visualized with
immunostaining with Ni-DAB. The arrangement was the same as in
Fig. 2.
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staining. These data suggest that the combination of ante-
rograde AAVDJ and retrograde rAAV2retro has a strong
gene delivery ability to dopaminergic neurons.

Stability of transgene expression

To investigate the stability of transgene expression in ret-
rograde rAAV2retro combined with anterograde AAVDJ or
AAV5, the intensity of native fluorescence and immuno-
fluorescence for EYFP of individual cell bodies and the
number of double infected cells were monitored up to
12 weeks (Figs. 7 and 8). The number and proportion of
double infected cells counted as EYFP immunopositive
cells among the NeuN-immunopositive cells is indicated on
the left of Fig. 8a. Although there was some discrepancy in
the intensity of native fluorescence and immuno-
fluorescence for EYFP, they were moderately correlated

with each other (Fig. 8c; ρ = 0.373, p < 0.005, Pearson
correlation, n= 66). In addition, there was a clear trend that
in case of the combination of anterograde AAVDJ and
retrograde rAAV2retro, both intensities of native fluores-
cence and immunofluorescence for EYFP were already high
in some infected cell bodies at 3 weeks of survival time
(Figs. 7, 8a, b). An increase in the median intensity of native
fluorescence and immunofluorescence for EYFP was
observed at 6 weeks, whereas the percentage of the double
infected cells among the NeuN-immunopositive cells was
reduced to about half during each monitoring period of
3–6 weeks (18.6%–10.6 %) and 6–12 weeks
(10.6%–4.3%). In contrast, in case of the combination of
anterograde AAV5 and retrograde rAAV2retro, the median
intensity of native fluorescence and immunofluorescence for
EYFP gradually increased during the observation period
(3–6 weeks and 6–12 weeks), though the percentage of

Fig. 5 Comparison of the efficiency of 4 retrograde vectors when
combined with anterograde vector AAV5-DIO-ChR2-EYFP. The
EYFP expression in neurons with double infection by anterograde

AAV5-DIO-ChR2-EYFP and a retrograde vector was visualized with
immunostaining with Ni-DAB. The arrangement was the same as in
Fig. 2.
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infected cells was found to be slightly decreased during the
period of 6–12 weeks (5.4 % to 4.8%) but higher than that
of the combination of AAVDJ and rAAV2retro at 12 weeks
(4.3 %). While the median intensity of EYFP-native fluor-
escence with AAVDJ and AAV-5 at all the survival times
was not significantly different (Fig. 8a), the median inten-
sity of EYFP immunofluorescence in case of anterograde
AAV5 at 12 weeks was significantly higher than that of
anterograde AAVDJ at 3 or 6 weeks (Fig. 8b). These data
indicate that the combination of anterograde AAV5 and
retrograde rAAV2retro may have the advantage of long-
term transgene expression greater than that of anterograde
AAVDJ and retrograde rAAV2retro, and it was suggested
that EYFP immunofluorescence might be a more precise
index to detect the difference in ability for efficient gene
delivery than the EYFP-native fluorescence in the present
case.

Discussion

It is well known that many viral vectors exhibit various cell-
type tropisms [13, 14]. While there are several reports on
the efficiency and safety of individual viral vectors with
single use [19–22, 24, 25, 27], it is not obvious whether it
can explain the efficiency and safety when anterograde viral
vector and retrograde viral one that were combined with the
regulatory system of gene expression were simultaneously
infected. Viral vectors except the CTb-fusion protein-cod-
ing AAVDJ and AAV1, which have been tested in this
study, also have been reported to possess the possibility
of gene delivery to dopaminergic neurons in the midbrain
[19–30]. However, the optimal combination of anterograde
and retrograde vectors for safe and efficient gene delivery to
VTA-CMA neurons has been uncertain and whether there is
an additive influence or not has also been unclear. In terms
of the safety of gene delivery, retrograde AAVDJ-CTb and
AAV1-CTb injected into the CMA was found to cause local
damage of the cortical tissue, presumably because of an
inflammatory response as the AAV capsid structure can
prime an immune response of the neural tissue against a
transgene product [37], even though the toxicity of AAV is
generally considered to be low [1]. On the other hand, the
injection sites of retrograde Lenti-FuG/E- and rAAV2retro
in the CMA did not display any inflammatory responses. In
terms of the efficiency of gene delivery, all cases of retro-
grade rAAV2retro combined with an anterograde vector
were more effective in gene delivery to VTA-CMA neurons
than other pairs of retrograde and anterograde vectors.
Probably, these results suggest that retrograde rAAV2retro
combined with an anterograde vector has the ability for safe
and efficient gene delivery to VTA-CMA neurons including
dopaminergic neurons, though it is not completely solved
whether the efficiency of double vector systems can be
explained simply by the efficiency of individual vector or
there are any additive factors by combining the vectors. In
addition, whether these results can be extended to other cell
types in other animal species or not needs confirmation. For
instance, a previous study has reported that gene delivery of
Lenti-FuG/C to dopaminergic neurons in mice is low in
comparison to other cell types, while it is high in macaque
monkeys [27]. Moreover, recent studies have revealed that
AAV1 has the ability of both anterograde and retrograde
trans-synaptic transport [38, 39]. More recent one has
suggested that the use of AAV1 should be limited to uni-
directional circuits [39]. On the other hand, VTA dopami-
nergic neurons have bidirectional connections with various
brain structures so that the ability of bidirectional trans-
synaptic transport of AAV1 could interfere the expression
of target functional protein in only VTA neurons which
send axons to CMA [40–42]. Actually, ectopic EYFP-
immunopositive neurons were most frequently found

Fig. 6 Double immunofluorescent labeling with anti-EYFP and
anti-TH antibodies in the VTA. The images around the injection site
of anterograde AAVDJ-DIO-ChR2-EYFP combined with
rAAV2retro-CAGGS-Cre injection into the CMA are shown in sagittal
planes. a The merged image in lower magnification clearly indicated
that the immunoreactivity against EYFP and TH was dominantly
found in the VTA. b–d EYFP immunoreactivity (green colored cells
with white arrows) often overlapped with TH immunoreactivity
(purple colored cells with white arrowheads) in the same cell bodies in
the VTA (b). Arrows and arrowheads indicate EYFP- and TH-
immunopositive cell bodies, respectively. Scale bar= 500 µm in (a);
50 µm in (d) (applies to b, c). e The mean proportions of double
immunopositive cell bodies in 3 hemispheric brain blocks are plotted
in the graph. A black circle and a triangle in the graph indicate the
mean proportions of EYFP-immunopositive cell bodies among the
TH-immunopositive cells (upper), and that of TH-immunopositive cell
bodies among the EYFP-immunopositive cells (lower), respectively.
Bars represent SEM.
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outside the VTA when combined with anterograde AAV1
(data not shown). Therefore, we concluded that AAV1 is
not appropriate for our aim in the present study.

Gene therapy requires safe transgene expression for a
long period. We also evaluated the stability of the transgene
expression in double infected cells with retrograde
rAAV2retro combined with anterograde AAVDJ or AAV5
along time courses. The stability of long-term transgene
expression with their viral combinations is unknown, even
though the single infection of anterograde AAVDJ, ante-
rograde AAV5 or retrograde rAAV2retro has been reported
to be of relatively low toxicity [24, 43, 44]. In combination
with retrograde rAAV2retro, anterograde AAVDJ exhibited
high transduction efficacy at the first observation point of
3 weeks. However, in the cases of anterograde AAVDJ
injection, the number of double infected cells were found to
largely decrease throughout the observation period, though

the intensity of native fluorescence and immunofluorescence
for EYFP in the cell bodies with expression was still
retained. These data indicate that the combination of ante-
rograde AAVDJ and retrograde rAAV2retro is suitable for
short-term transgene expression but not for long term,
though it is not clear whether this was due to the toxicity of
AAJDJ or its poor ability in long term gene expression. In
contrast, the combination of anterograde AAV5 and retro-
grade rAAV2retro increased and maintained the number of
infected cells, which gradually increased the intensity of
native fluorescence and immunofluorescence for EYFP in
the cell bodies with expression. The intensity of EYFP
immunofluorescence in the cases with anterograde AAV5
injection at 12 weeks of survival time was significantly
stronger than that of anterograde AAVDJ at 3 or 6 weeks.
Indeed, although the number of AAV5-infected cells was
not as many as that of AAVDJ-infected cells during the

Fig. 7 Demonstration of EYFP expression across different survival
times after injection of anterograde AAVDJ/retrograde rAAV2-
retro versus anterograde AAV5/retrograde rAAV2retro. EYFP-
native fluorescence (green color), EYFP immunofluorescence (purple
color) and NeuN immunofluorescence (cyan color) in the VTA neu-
rons are shown. Green, purple and cyan arrowheads indicate cell

bodies with EYFP-native fluorescence, EYFP immunofluorescence
and NeuN immunofluorescence, respectively. The intensity of native
fluorescence and immunofluorescence for EYFP in the NeuN-
immunopositive cell body was measured in the area enclosed with a
dashed line. Scale bar = 40 µm in the merge and 12 weeks panel of
AAV5/rAAV2retro (applies also to all the other panels).
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earlier stage (3 and 6 weeks), the injection of higher titer
AAV5 would be expected to increase the number of AAV5-
infected cells, since a direct correlation between viral titer
and infected cell number has previously been reported [36].
Considering these findings, AAV5 may be suitable for long-
term experiments. Thus, we conclude that anterograde
AAV5 and retrograde rAAV2retro is the optimal combina-
tion for safe and efficient gene delivery to VTA-CMA
neurons with stable long-term transgene expression.

Our findings can be useful for pathway-selective gene
therapy for neuropsychiatric disorders and traumatic neu-
ronal injuries. In case of traumatic neuronal injuries such as
stroke and spinal cord injury, new therapeutic approaches
are needed for functional modulating of the transmission of
descending motor pathways spared the damage [9, 45]. This
approach may also be extended to the strategy of upregu-
lating the activity of the motor cortex from subcortical
centers such as the nucleus accumbens, shown in our
previous study [15, 18]. Furthermore, effective pathway-
specific gene delivery may be expected to improve neuro-
degenerative disorders such as PD. In the rat model of PD,
chronic systemic levodopa treatment is known to cause the
development of impulsive-like behavior [46]. If the
nigrostriatal pathway can be selectively controlled by this
approach, undesirable non-motor symptoms including
impulsive behaviors may be avoided. In case of addiction
[7], if we can selectively manipulate the mesoaccumbal

pathway, we may be able to avoid possible side effects of
manipulating the whole VTA that has a wide range of target
areas and is involved in a variety of cognitive and non-
cognitive functions. Thus, accumulating basic knowledge of
pathway-specific gene delivery by double viral vector
technologies is expected to realize the potential for future
safe and effective therapy of neuropsychiatric disorders and
traumatic neuronal injuries.
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