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ABSTRACT
We report the implementation of effective quantum electrodynamics (QED) potentials for all-electron four-component relativistic molecular
calculations using the DIRAC code. The potentials are also available for two-component calculations, being properly picture-change trans-
formed. The latter point is important; we demonstrate through atomic calculations that picture-change errors are sizable. Specifically, we have
implemented the Uehling potential [E. A. Uehling, Phys. Rev. 48, 55 (1935)] for vacuum polarization and two effective potentials [P. Pyykkö
and L.-B. Zhao, J. Phys. B: At., Mol. Opt. Phys. 36, 1469 (2003) and V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005)]
for electron self-energy. We provide extensive theoretical background for these potentials, hopefully reaching an audience beyond QED spe-
cialists. We report the following sample applications: (i) We first confirm the conjecture of P. Pyykkö that QED effects are observable for the
AuCN molecule by directly calculating ground-state rotational constants B0 of the three isotopomers studied by microwave spectroscopy;
QED brings the corresponding substitution Au–C bond length rs from 0.23 to 0.04 pm agreement with experiment. (ii) In regard to spectro-
scopic constants of van der Waals dimers M2 (M = Hg, Rn, Cn, Og), QED induces bond length expansions on the order of 0.15(0.30) pm for
row 6(7) dimers. (iii) We confirm that there is a significant change of valence s population of Pb in the reaction PbH4 → PbH2 +H2, which
is thereby a good candidate for observing QED effects in chemical reactions, as proposed in [K. G. Dyall et al., Chem. Phys. Lett. 348, 497
(2001)]. We also find that whereas in PbH4 the valence 6s1/2 population resides in bonding orbitals, it is mainly found in nonbonding orbitals
in PbH2. QED contributes 0.32 kcal/mol to the reaction energy, thereby reducing its magnitude by −1.27%. For corresponding hydrides of
superheavy flerovium, the electronic structures are quite similar. Interestingly, the QED contribution to the reaction energy is of quite similar
magnitude (0.35 kcal/mol), whereas the relative change is significantly smaller (−0.50%). This curious observation can be explained by the
faster increase in negative vacuum polarization over positive electron self-energy contributions as a function of nuclear charge.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0116140

I. INTRODUCTION
Relativistic quantum chemistry is the proper framework for the

theoretical study of heavy elements.1–5 For example, the yellow color
of gold6,7 and the cell potential of the lead-acid battery8 cannot be
explained without relativistic effects. Even for light elements, the
fine structure of their spectra is essentially due to spin–orbit (SO)
interaction (e.g., Refs. 9–11).

Improvements in both computational power and methodol-
ogy nowadays allow highly accurate electronic structure calculations
including both relativistic and electron correlation effects. A next
challenge for increased accuracy is the inclusion of the effects of
quantum electrodynamics (QED), which in principle means going
beyond the no-pair approximation.5,12,13 We focus on QED effects
generating the Lamb shift, roughly described as follows:
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● Vacuum polarization (VP): A charge in space is surrounded
by virtual electron–positron pairs and this contributes to its
observed charge.

● The electron self-energy (SE): The electron drags along its
electromagnetic field and this contributes to its observed
mass.

For hydrogen, the splitting between the 2S1/2 and 2P1/2 states is a
mere 4 meV,14 but for U91+, it has grown to a whopping 468 eV.15

QED effects would possibly constitute the final correction to chem-
istry concerning the fundamental interparticle interactions because
the next contribution, parity nonconservation (PNC) associated
with the weak force, is typically ten orders of magnitude smaller.16

The magnitude of QED effects has been estimated based on the ion-
ization potential (IP) of alkali atoms, and the rule of thumb is that
QED effects reduce relativistic effects by about 1%.17

Calculations within the rigorous QED framework have been
reported for few-electron systems, and they are in excellent agree-
ment with experiment. Examples are the Lamb shift of Li-like
uranium,18,19 the hyperfine coupling constant (HFCC) of few-
electron atoms,20,21 and the anomalous g factor,22 thus, providing
stringent tests of the accuracy of QED.

The rigorous QED approach for few-electron systems cannot
be extended to many-electron systems because of the high compu-
tational cost involved. A more practical, but approximate, approach
is the introduction of effective QED potentials (effQED).23–27 In the
atomic case, some codes for the calculation with effective potentials
have been reported (e.g., GRASP,28 QEDMOD,29,30 and AMBiT31).
A nice illustration is the recent work by Pašteka et al.,32 which
was finally able to bring the calculated ionization potential (IP) and
the electron affinity (EA) of the gold atom into meV agreement
with experiment, with the high-order electron correlation being the
missing crucial ingredient.

For the case of molecules in chemistry, pioneering works
have been done by Kirk Peterson’s group. They added the fol-
lowing parameterized model potentials to the all-electron scalar
Douglas–Kroll–Hess (DKH) Hamiltonian:33–37 (i) an effective SE
potential in the form of a single Gaussian function, proposed by
Pyykkö and Zhao (PZ)24 and (ii) five Gaussian functions fitted by
Peterson’s group33–35 to a parameterized expression for the Uehling
VP potential23 given in Ref. 17 and corrected in Ref. 24. They then
found that the QED effects on the dissociation energy are about
0.6 and 0.4 kcal/mol in closed- and open-shell Hg systems, respec-
tively.33 A bond length expansion of 0.001 Å was observed for the
HgBr molecule.34 Dolg and co-workers have reported pseudopoten-
tials (PPs) fitted to include QED effects.38–40 For Cn2, a bond length
expansion due to QED of about 0.003 Å was reported,40 in line with
the effect observed by Peterson’s group.34 On the other hand, in
Ref. 41, the QED effect was found to shorten the bond length of
TsH+, LvH, and OgH+. The reason for this opposite trend may
be that the valence orbitals have p-orbital, rather than s-orbital,
contributions from the heavy atom.

PPs are widely used for the inclusion of relativistic effects, and
they generally give accurate results for valence properties compared
with all-electron calculations.42,43 However, the PP approach cannot
be applied to molecular core-properties, such as nuclear magnetic
resonance (NMR) and Mössbauer parameters, which bars the pos-
sibility to investigate the effect of QED in the nuclear region where

such effects are generated.44 The effQED approach promoted by the
Peterson group can in principle be applied to core-properties, but
it should be noted that effQED potentials were added to approx-
imate one-component relativistic Hamiltonians without picture-
change.45–47 To include QED effects in a more rigorous manner,
it seems more appropriate to include effective QED potentials in
four-component relativistic all-electron calculations.

In this work, we report the implementation of effective QED
potentials in the DIRAC code for relativistic molecular calcu-
lations.48 Three potentials have been implemented: the Uehling
potential23 for vacuum polarization, Pyykkö and Zhao’s model
SE potential,24 and the effective SE potential of Flambaum and
Ginges (FG).25 Our implementation is based on numerical routines
from the GRASP atomic code28 that have been grafted onto the DFT
grid of DIRAC.49

As first molecular applications of our implementation, we have
chosen three case studies:

● the AuCN molecule for which Pekka Pyykkö has suggested
QED effects on the bond length;50

● the van der Waals dimers M2 (M = Hg, Rn, Cn, Og) for
which one might suspect QED effects to be on par with inter-
action energies—interestingly, van der Waals forces have
been described in terms of vacuum fluctuations;51,52 and

● the reaction energy of Pb hydrides, PbH4 → PbH2 +H2, sug-
gested by Dyall et al. as a possible candidate for a significant
QED effect in chemistry.53 In addition to the Pb system, we
have also calculated the heavier analog, Fl hydrides.

Very recently, Leonid Skripnikov reported the implementa-
tion of effective QED potentials for four-component all-electron
molecular calculations, so far with a focus on transition energies.54

The initial report has been followed by applications to Ba+, BaF,
RaF, and E120F55 as well as the five low-lying excited states of
RaF.56 The implementation is to some extent complementary to ours
in that it uses the effective SE potential proposed by Shabaev and
co-workers.26,27,29 Interestingly, the implementation is based on the
DIRAC code as well.

The paper is organized as follows: In Sec. II, we review the
effective QED potentials that we have implemented. In Sec. III, we
discuss the numerical integration of these potentials. This is followed
by Sec. IV, which gives the computational details of our calcula-
tions. Our results are presented in Sec. V, followed by conclusions
in Sec. VI. We also provide an appendix with more extensive theory
and reading suggestions. SI units are used throughout this paper.

II. THEORY
The starting point for our work is an electronic Hamiltonian of

the generic form

H = VNN +∑
i

HD(xi) + 1
2∑i≠j

g(xi, xj), (1)

where VNN is the classical repulsion of fixed nuclei. The one-electron
part is the Dirac Hamiltonian

HD(xi) = (β − 𝟙4)mec2 − ih̵cα ⋅∇i − eφN(xi), (2)
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in the electric potential φN of the fixed nuclei and shifted by −mec2

to align energies with the nonrelativistic scale. In the present work,
the two-electron interaction g will be the instantaneous Coulomb
term supplemented with the Gaunt term.57 Further discussion of
the resulting Dirac–Coulomb–Gaunt (DCG) Hamiltonian is for
instance found in Ref. 3.

Our goal is to introduce QED effects, notably electron self-
energy (SE) and vacuum polarization (VP), by extending the
one-electron Hamiltonian by the corresponding effective QED
potentials, i.e.,

HD → HD − eφeffQED;

φeffQED = ∑
A
(φSE

A + φVP
A ). (3)

Note that the effective QED potentials are formulated as a sum over
atomic contributions due to their expected short-range nature (on
the order of a reduced Compton wavelength λ- = h/mec).44

In the following, we shall present the effective QED poten-
tials selected for our implementation with some remarks on their
construction, which may provide indications on their expected
performance. We shall proceed within the Ŝ-matrix (scattering
matrix) formalism of QED. Since we hope to address a wider audi-
ence than QED specialists, we provide a more extensive theoretical
background in the Appendix.

QED is the relativistic quantum field theory that describes
the interaction of electromagnetic radiation with relativistic matter
(Dirac electrons). The interaction between electrons and photons is
given by an interaction-Hamiltonian density

ĤI(x) = −ec ¯̂Ψ(x)γ μΨ̂(x)Âμ(x). (4)

Here, Ψ̂(x) and ¯̂Ψ(x) are the quantized Dirac field operator and its
corresponding adjoint, respectively, whereas Âμ(x) is the quantized
photon field operator. The job of these operators is to create and
annihilate, at the spacetime point x = (ct, x), electrons and photons,
respectively. This last expression accounts (explicitly) for the cou-
pling between electron and photon fields, and it is obtained through
minimal substitution of the four-gradient of the Dirac Lagrangian
density in accordance with the principle of minimal electromagnetic
interaction (term coined by Gell-Mann58). For detailed deriva-
tions and discussions, the reader may consult Schweber in Ref. 59
(Chap. 10), Peskin and Schroeder in Ref. 60 (Chap. 4), as well as
Greiner and Reinhardt in Ref. 61 (Sec. 8.6). The scattering matrix
is a special case of the time-evolution operator Û(t, t0), where the
initial t0 and final times t are at ∓∞, to ensure Lorentz invari-
ance. Upon expansion of the Ŝ-matrix operator in the fundamental
charge e, the nth-order term Ŝ (n) contains a time-ordered string of
n interaction-Hamiltonian densities HI , as seen in Eq. (A29). Using
Wick’s theorem,62 a time-ordered string is converted into a linear
combination of normal-ordered ones with all possible contractions,
which in turn can be translated into the iconic Feynman diagrams.63

We limit attention to systems of n electrons and zero photons
(photon vacuum). The latter implies that any string of normal-
ordered photon operators Âμ(x) that is not fully contracted will van-
ish upon taking expectation values, such that the Ŝ-matrix expansion
is effectively limited to even-ordered contributions, associated with
the fine-structure constant α = e2/4πε0hc as expansion parameter.

To lowest order in α appears five Feynman diagrams, shown in
Fig. 1: Two of them give state-independent energy-shifts and are
usually ignored within a perturbative setting, whereas the remain-
ing three represent electron self-energy, vacuum polarization, and
single-photon exchange. The latter diagram describes the relativistic
electron–electron interaction, mediated by photons, to lowest order
and is in line with the statement of Dirac:

Classical electrodynamics, in its accurate (restricted) rel-
ativistic form, teaches us that the idea of an interaction
energy between particles is only an approximation and
should be replaced by the idea of each particle emitting
waves, which travel outward with a finite velocity and
influence the other particles in passing over them.64

In the diagrams of Fig. 1, double electron lines appear to indicate
that we are working within the Bound-State QED (BSQED) frame-
work in which the Dirac field operators are expanded in solutions of
the Dirac equation in some external (contravariant) four-potential,
i.e., Ae = (φe/c, Ae) (Furry picture65), rather than free-particle ones.
In the atomic case, this provides us with a second perturbation
expansion parameter Zα, as will be seen in Sec. II A.

FIG. 1. The lowest-order QED corrections for a many-bound-electron system of
order α. (a)-(e).
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A. Effective QED potentials for vacuum polarization
The four-potential associated with the vacuum polarization

effect can be written as

φμVP(x1) = e
2πi∫CF

dz∫ d3x2
Tr[γμGAe(x2, x2; z)γ0]

4πϵ0∣x1 − x2∣ , (5)

where the complex z-integral is to be evaluated along the Feynman
contour CF that goes above and below positive- and negative-
energy poles, respectively, of the bound-electron Green’s function
GAe . This function is related to the bound-electron propagator SF

Ae

by Eq. (A42). This VP potential leads to the following vacuum
polarization energy-shifts:

ΔEα,2
VP = −e∑

i
∫ d3xψ̄i(x)γμψi(x)φμVP(x). (6)

From consideration of time-reversal symmetry, one can show
that in the case of a purely scalar external potential given by
Ae = (φe/c, 0), the vector components of the vacuum polarization
four-potential vanish,

φμVP(x) = 0 for μ = 1, 2, 3. (7)

The bound Green’s function GAe can be written in terms of the
free Green’s function G0 and expanded in powers of the time-
independent external potential Ae (hence, Zα in the atomic case) as
shown in Eq. (A44). As discussed in Subsection 6 b of the Appendix,
the first nonvanishing term of this expansion is the one that is linear
in the external potential Ae(x) (the one-potential term). The poten-
tial of Eq. (5) is divergent (as seen in Subsection 6 b of the Appendix)
and calls for regularization and renormalization (see Subsection 6 d
of the Appendix). After employing these techniques, one can extract
the physical contribution associated with this vacuum polarization
effect and, in the point nucleus problem, represent it by the following
scalar potential:23

φpoint
Ueh. (x) =

Ze
4πε0rx

2α
3π

K1(2rx

λ-
), (8)

which corrects the classical Coulomb potential. Here, rx ≡ ∣x∣ is the
radial distance and is expressed in terms of the function66

K1(x) = ∫
∞

1
dζe−xζ( 1

ζ2 +
1

2ζ4 )
√
ζ2 − 1 (9)

(see also Refs. 67 and 68). This potential is named after Uehling,
who first calculated it in 1935 for a point charge nuclear distribution
(as indicated by the superscript “point”). The corresponding poten-
tial for an arbitrary nuclear distribution ρnuc., normalized to one, is
obtained by the following convolution:66

φnuc.
Ueh.(x) = ∫ d3y ρnuc.(y)φpoint

Ueh. (x − y). (10)

In the case of a spherically symmetric nuclear charge distribu-
tion, one obtains, after angular integration,66

φnuc.
Ueh.(x) = Ze

4πε0rx
λ- 2α

3 ∫
∞

0
rydryρnuc.(ry)

× [K0( 2
λ-
∣rx − ry∣) − K0( 2

λ-
∣rx + ry∣)], (11)

where appears the function

K0(x) = ∫
∞

1
dζe−xζ( 1

ζ3 +
1

2ζ5 )
√
ζ2 − 1. (12)

The integral functions K0 and K1 are related through

K1(x) = − d
dx

K0(x). (13)

The Uehling potential generally represents the dominant vac-
uum polarization effect.19,69 The Feynman diagram associated with
this process is presented in Fig. 3(b) and is associated with the
α(Zα) perturbation order. The higher-order vacuum polarization
potentials, associated with the Wichmann–Kroll,70 α(Zα)3, and
Källén–Sabry,71 α2(Zα) , processes, are briefly discussed at the end
of Subsection 6 b of the Appendix.

B. Effective QED potentials for self-energy
The energy-shift associated with the self-energy process, in

which an electron emits and absorbs a virtual-photon, is given by
the following expression:

ΔEα,2
SE = −e∑

i
∫ d3x1 ∫ d3x2ψ†

i (x2)φSE(x2, x1; Ei)ψi(x1). (14)

This expression probably originated from the work of Baranger
et al.72 (Sec. II). Notice at this point that unlike the vacuum polar-
ization effect that is represented by a local scalar potential, the
self-energy effect is represented by a nonlocal matrix potential
given by

φSE(x2, x1; Ei) = − e
2πi∫CF

dzαμGAe(x2, x1; z)αμ

× exp(g(x2, x1; z − Ei))
4πϵ0∣x1 − x2∣ , (15)

g(x2, x1; z) = + i
h̵
∣x1 − x2∣

√
z2/c2 + iϵ.

Here, ϵ is a small positive number, and the z-integral is again
to be evaluated along the Feynman contour CF . This expression is
obtained using the covariant Feynman gauge photon propagator.
The corresponding expression obtained using Coulomb gauge pho-
ton propagator is given by Lindgren in Ref. 73 (Sec. 4.6.1.2) (see also
Malenfant in Ref. 74). As in the vacuum polarization case, the self-
energy potential of Eq. (15) is divergent (as seen in Subsection 6 c
of the Appendix) and calls for a regularization and renormaliza-
tion treatment in order to extract the physical (finite) correction; see
Subsection 6 d of the Appendix.

In the next two sections, we shall assume that the nonlocal
potential of Eq. (15) can be written in terms of a local effective
potential φSE(x1) as

φSE(x2, x1; Ei) ≈ φSE(x1)δ(x2 − x1), (16)
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and we discuss some choices of φSE(x1) that are designed to
reproduce some precise self-energy correction calculations and are
employed in our numerical calculations.

1. Pyykkö and Zhao SE potential
In Ref. 24, Pyykkö and Zhao (PZ) proposed a simple local self-

energy potential of the following form:

φSE(x) = Be−βr2
x . (17)

The parameters B and β are quadratic nuclear charge (Z) dependent
functions given by

B(Z) = −48.6116 + 1.536 66 Z + 0.030 112 9 Z2, (18)

β(Z) = −12 751.3 + 916.038 Z + 5.7797 Z2, (19)

where the six decimal numbers were chosen to fit precise 29 ≤ Z ≤ 83
atomic calculations of the renormalized self-energy correction in all
orders of (Zα)n≥0 to the

1. 2s energy-levels of the hydrogen-like systems, i.e., the renor-
malized version of Eq. (14), taken from calculations of (1)
Beier et al.69 with nuclear charges 26 ≤ Z ≤ 110, using a homo-
geneously charged sphere nuclear model, and (2) Indelicato
and Mohr75 with Coulombic nuclear charges of 5 ≤ Z ≤ 90
and

2. M1 hyperfine splitting for lithium-like atoms taken from
calculations76 of Boucard and Indelicato77 done on stable
isotopes with 3 ≤ Z ≤ 92.

2. Flambaum and Ginges SE potential
The starting point for the potential proposed by Flambaum

and Ginges (FG)25 is associated with the one-potential bound-state
self-energy process, of order α(Zα), given in Eqs. (A64) and (A68)
and represented by Fig. 4(b). However, further modeling, including
parametrization, is introduced such that the potential can account
for the full self-energy process to all orders in (Zα) and be used in
atomic calculations.

In the evaluation of matrix elements over the operator of
Eq. (A68), Flambaum and Ginges employ free-particle solutions
rather than atomic bound orbitals. This replacement yields the
free-electron vertex-correction (VC) problem. This terminology
can be understood from consideration of the scattering of a free
electron due to the interaction with a classical external poten-
tial (the vertex process). In terms of momentum-space quanti-
ties [cf. Eq. (A65)], including free-electron field operators, the
corresponding (non-radiative) S-matrix is given by

Ŝ (1)scattering = −
e
ih̵ ∫

d4p2

(2πh̵)4 ∫
d4p1

(2πh̵)4 : ¯̂Ψ(p2)γμAe
μ(p2 − p1)Ψ̂(p1) :

(20)

(see for instance Sec. 8.7 in Ref. 78). This process is represented in
the left panel of Fig. 2, where the wiggly line ending with a cross
× describes an interaction of a free electron with the classical exter-
nal potential source through the exchange of a four-momentum
q = p2 − p1. We note that in general a factor (−eγμ) is associated with
each space-time point (vertex). The right panel of Fig. 2 represents

FIG. 2. Momentum-space Feynman diagrams for the lowest-order scattering
processes through (the exchange of) momentum-transfer q = p2 − p1. (a) and (b).

one of the four lowest-order radiative corrections to the left panel
process. The corresponding S-matrix can be combined with the one
of Eq. (20) through the substitution

γμ → Γμ = γμ +Λμ(p2, p1), (21)

where the vertex-correction function Λμ(p2, p1) is given by
Eq. (A69). After a careful treatment of the divergence when q = 0,
as done in Refs. 60 (Sec. 6.3) and 79 (Sec. 117), one obtains the
regularized (physical) vertex-correction function Λμ

R(p2, p1) . Fur-
thermore, using the fact that the vertex function is sandwiched
between free-electron (on-mass-shell) field operators, one can show
that this function can be written as

Λμ
R(q) = γμF1(q2) + i

2mec
σμνqνF2(q2), (22)

where σμν = i
2 [γμ, γν] , and F1 and F2 are known as the electric

and magnetic form factors, respectively [corresponding to f − 1 and
g in Eq. (116.6) of Ref. 79]. The term “form factor” comes from
diffraction physics; see for instance Ref. 80.

Since the free-electron vertex function of Eq. (22) only depends
on the momentum-transfer q = p2 − p1, it conveniently yields a local
potential in real space. This can be clearly seen from the following
relation:

∫ d4p2

(2πh̵)4 ∫
d4p1

(2πh̵)4
¯̂Ψ(p2)Λμ

R(q)Ae
μ(q)Ψ̂(p1)

= 1
c ∫ d4xΨ̂ †(x)φVC(x)Ψ̂(x). (23)

When the nucleus is described as a point charge, the corresponding
Coulomb potential,

Ae
0(q) = δ(q0)2πh̵3

cϵ0

Ze
q2 , (24)

generates a vertex-correction potential of the form

φpoint
VC (x) =

h̵2

ϵ0
∫ d3q
(2πh̵)3 e+

i
h̵ q⋅x Ze

q2 [F1(−q2) + 1
2mec

γ ⋅ qF2(−q2)]

= φpoint
elec (x) + φpoint

mag (x), (25)
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which splits into electric and magnetic scalar potentials. We note
that due to the time-independence of the Coulomb potential, the
time-like part of the four-momentum transfer q = p2 − p1 vanishes.
In terms of the variable t = q2 = −q2, the form factors are Hermitian
analytic functions,81 i.e.,

F(t) = F∗(t∗). (26)

This feature, combined with these functions being radial in terms
of q and the clever use of complex analysis techniques, allowed
Berestetskii et al. to express such functions in coordinate-space using
only their imaginary parts in momentum-space,

F(x) = 1
(2πh̵)2rx

∫
∞

4m2
e c2

dt I[F(t)] exp[− 1
h̵

rx
√

t] (27)

[see Eq. (114.4) of Ref. 79]. It may be noted that the lower limit
of integration over t is 4m2

e c2, corresponding to the threshold of
pair creation.82 Expressions for the imaginary part of the form fac-
tors can be found in Refs. 79 [Eqs. (117.14) and (117.15)] and 83
[Eq. (2.12)],

I[F1(t)] = α√
t(t − 4m2

e c2)[2m2
e c2 − 3t/4

+ (t/2 −m2
e c2) log( t − 4m2

e c2

λ2 )], (28)

I[F2(t)] = αm2c2
√

t(t − 4m2
e c2) . (29)

Building on the work of Berestetskii et al.,79 Flambaum and Ginges
have evaluated the integral of Eq. (25) and obtained the associated
real-space potentials. After the variable substitution t = 4m2

e c2ζ2, the
magnetic potential was found to be

φpoint
mag (x) = αh̵

4πmec
iγ ⋅∇x[ Ze

4πε0rx
(Km(2rx

λ-
) − 1)], (30)

where we have introduced the function

Km(x) = ∫
∞

1
dζ

e−xζ

ζ2
√
ζ2 − 1

, (31)

which can be recognized as the second Bickley–Naylor function Ki2
(cf. Ref. 68). Note that the same variable ζ is employed in the Uehling
potential [cf. Eqs. (9) and (12)]. The magnetic contribution gives the
first-order correction to the magnetic moment: the anomalous mag-
netic moment of the electron, first calculated by Schwinger, see for
instance Mandl and Shaw in Ref. 78 (Sec. 10.5).

On the other hand, the electric form factor yields the electric
effective potential given by

φpoint
elec (x, λ) = −α

π
Ze

4πε0rx
Ke(2rx

λ-
), (32)

where we have introduced the function

Ke(x) = ∫
∞

1
dζ

e−xζ
√
ζ2 − 1

{ − 3
2
+ 1
ζ2 + (1 − 1

2ζ2 )

× [ln(ζ2 − 1) + 2 ln(2mec2

λ
)]}. (33)

These self-energy effective potentials were first derived with respect
to a point nucleus (Coulomb potential), and the corresponding gen-
eralized expressions for an arbitrary normalized nuclear distribution
ρnuc. are obtained by convolution84 as in Eq. (10).

The potential of Eq. (32) is called the high-frequency (HF)
term because it contains an energy parameter λ, already present in
Eq. (28), that prevents the obtention of low-frequency (LF) con-
tributions. This parameter is associated with the introduction of
a small fictitious photon mass, which needs to be plugged in the
photon propagator denominator in order to make the divergent
(at small momenta) momentum-space integral—associated with the
vertex-correction—convergent. Details concerning this problem are
discussed by Greiner and Reinhardt in Ref. 85 [Eq. (5.91)] and
Itzykson and Zuber in Ref. 86 [Eq. (7.45)], in addition to Peskin
and Schroeder in Ref. 60 (pp. 195–196). We note that the remain-
ing divergence, occurring in the limit of zero photon mass, or lim

λ→0
, is

overcome by taking into account the differential cross section asso-
ciated with the Bremsstrahlung effect; detailed discussions are found
in Refs. 85 (pp. 311–313) and 60 (Sec. 6.4). Flambaum and Gin-
ges choose a somewhat different strategy, which furthermore allows
them to amend the fact that the used form factors are derived for the
free-electron vertex-correction of order (Zα)n=1 only and now take
into account complementary self-energy corrections (Zα)n, n ≠ 1
[diagrams of Figs. 4(a), 4(c), and 4(d), and higher orders]. They write
the high-frequency (HF) contribution as

φpoint
HF (x) = A(Z, x)φpoint

elec (x, λ), (34)

where A(Z, x) is a fitting function, and choose a λ-value that will
minimize the low-frequency contribution. They argue that λ should
be on the order of electron binding energies, that is, (Zα)2mec2. They
finally define it through

ln(2mec2

λ
) = 2 ln( 1

Zα
+ 1

2
), (35)

though, for better performance. Flambaum and Ginges next argue
that the low-frequency (LF) potential should have the range of a 1s
orbital of hydrogen-like atoms and, therefore, choose the functional
form

φpoint
LF (x) = −

B(Z)
e

Z4α5mec2e−Zrx/a0 , (36)

where a0 = λ-/α is the Bohr radius and

B(Z) = 0.074 + 0.35 × Zα (37)

is a second fitting function.
The fitting function of the high-frequency contribution is

written as

A(Z, x) = Θ(Z, x)(1.071 − 1.976y2 − 2.128y3 + 0.169y4) (38)
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in terms of the variable y = (Z − 80)α and a cutoff function of the
form

Θ(Z, x) = rx

rx + 0.07(Zα)2λ-
, (39)

which will dampen the contribution of φpoint
elec at short distances where

the locality of the effective SE potential breaks down. The coefficients
of the A and B fitting functions above were adjusted to reproduce
the self-energy corrections to high s- and p-states, respectively,
calculated accurately in Refs. 87 and 88 for Coulombic hydrogen-
like atoms of 5 ≤ Z ≤ 110. It should be added that Thierfelder and
Schwerdtfeger89 later modified the fitting function to An(Z, x) ,
making it dependent on the principal quantum number n. These
potentials with An(Z, x) instead of A(Z, x) were used by Pašteka
et al. to calculate the electron affinity and ionization potential of
gold.32 Ginges and Berengut,84 on the other hand, made both fit-
ting functions A and B dependent on the orbital angular momentum
ℓ and further suggested the introduction of a κ-dependence as well.
The downside of making the effective QED potentials dependent on
atomic orbital quantum numbers is that it complicates the exten-
sion of these potentials to the molecular regime. This is in fact what
motivated us to implement the effective SE potentials of Pyykkö and
Zhao24 and Flambaum and Ginges25 rather the one proposed by
Shabaev and co-workers.26,27,29

C. Atomic shift operator
With the above effective QED potentials available in an atomic

code (see Sec. III), we have investigated their extension to molecu-
lar calculations by adding to the electronic Hamiltonian, Eq. (1), an
operator of the form

VASHIFT = ∑
i
∣ψi⟩ωi⟨ψi∣,

ωi = ⟨ψi∣ − eφeffQED∣ψi⟩,
(40)

where {ωi} are expectation values of the effective QED potentials
taken from atomic calculations and {ψi} are precalculated atomic
orbitals, in practice limited to those that are occupied in the elec-
tronic ground state of the atoms constituting the molecule under
study, calculated in their proper basis. The import of atomic orbitals
into molecular calculations is straightforward in the case of the
DIRAC code since such functionality is already available through
projection analysis.90,91 There is some overlap between the spec-
tral representation of the self-energy proposed by Dyall92 as well
as the effective SE operator proposed by Shabaev et al.,26 but those
approaches are based on hydrogenic orbitals.

III. IMPLEMENTATION
Routines for the radiative potentials used in this work are

available in the GRASP atomic code.28 Routines for calculating the
Uehling potential were reported as early as 1980.93 McKenzie et al.
follow the approach suggested by Fullerton and Rinker.66 More pre-
cisely, they employ Eq. (11) for the inner grid points until a more
approximate form, Eq. (6) of Ref. 66, becomes numerically valid.
The latter form is then used until the magnitude of the potential falls
below a threshold value. The effective SE potential of Flambaum and
Ginges25 was implemented more recently89 as is also the case94 of

the effective SE potential of Pyykkö and Zhao.24 As already men-
tioned, the FG potential is in principle that associated with a point
nucleus, although fitting parameters have been optimized also to cal-
culations with finite nuclear charge distributions. Thierfelder and
Schwerdtfeger89 adapted these potentials to finite nuclei by replac-
ing the Coulomb potentials of Eqs. (30) and (32) by the potentials of
finite nuclear charge distributions, and we have so far followed this
approach which appears to be a reasonable approximation, as can be
inferred from Table IV of Ref. 84.

We have adapted the GRASP effective QED potential routines
to molecular calculations by using the numerical integration scheme
implemented for relativistic Kohn–Sham calculations in the DIRAC
molecular code.49 The scheme is based on the Becke partitioning95

of the molecular volume into atomic ones for which numerical inte-
gration is carried out in spherical coordinates. Specifically, we use
Lebedev angular quadrature,96 by default setting ℓ = 15, combined
with the basis set adaptive radial grid proposed by Lindh et al.97 It
may be noted that the effective QED potentials presented in Sec. II
are all radial, with the exception of the magnetic contribution to the
Flambaum–Ginges SE potential, Eq. (30).

Due to the very local nature of the effective QED potentials,44

one-electron integrals over a potential associated with atomic center
A can be well approximated by

VA
μν ≈ ∫

RA

0
drA∫

Ω
dΩA[χμvAχν](rA)r2

A, (41)

where {χμ} are Gaussian-type basis functions. The most delocal
potential is the low-frequency contribution to the electric form fac-
tor of the Flambaum–Ginges SE potential, Eq. (36), since it has
been designed to have the range of the 1s orbital of a hydrogen-
like atom. For low Z, the potential may thereby overlap significantly
with neighbor centers. By default, we therefore deactivate the effec-
tive QED potentials for Z < 19. We also determine the value of the
upper limit of radial integration RA based on the convergence of the
low-frequency term to a very conservative 10−50.

IV. COMPUTATIONAL DETAILS
For all calculations, we used a development version of the

DIRAC code;48,98 precise version and build information is found
in the output files, see Ref. 99. A Gaussian model100 for the
nuclear charge distribution was employed throughout our calcula-
tions. Unless otherwise stated, we applied the Uehling VP poten-
tial23 and the SE potential of Flambaum and Ginges,25 added to
the Dirac–Coulomb–Gaunt (DCG) Hamiltonian. For correlated
calculations, we employed the molecular mean-field approxima-
tion Hamiltonian (X2Cmmf)101 based on the DCG Hamiltonian,
which we denote as 2DCGM . In this approach, the converged Fock
matrix obtained with the DCG Hamiltonian, with the effective QED
potentials included, is exactly transformed to two-component form,
that is, without any picture-change errors.45–47 All basis sets were
employed in uncontracted form with the small component gener-
ated by restricted kinetic balance (see Ref. 48 for details). Electronic
structure analysis was carried out using projection analysis91 where
Pipek–Mezey localized MOs91,102 are expanded in intrinsic, hence
polarized, atomic orbitals.103 The analysis was done at the molecu-
lar geometries optimized with respect to the employed Hamiltonian,
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TABLE I. Calculated ns orbital energies in eV of group 1 and 11 elements from AOC-HF/dyall.v3z calculations based on the NR and DC Hamiltonians. The VP (Uehling) and
SE (Flambaum–Ginges) corrections have been calculated as expectation values.

NR DC VP SE ΔQED SE/VP SE/VP123 ΔQED/ΔR(%)

Li −5.342 −5.343 −1.373 × 10−6 4.092 × 10−5 3.955 × 10−5 −29.7949 −29.7058 −9.01
Na −4.955 −4.962 −1.536 × 10−5 2.950 × 10−4 2.796 × 10−4 −19.2057 −18.7963 −4.37
K −4.013 −4.028 −3.423 × 10−5 5.155 × 10−4 4.813 × 10−4 −15.0615 −14.7030 −3.19
Rb −3.752 −3.811 −1.309 × 10−4 1.361 × 10−3 1.231 × 10−3 −10.3981 −10.0783 −2.08
Cs −3.365 −3.490 −2.989 × 10−4 2.304 × 10−3 2.005 × 10−3 −7.7089 −7.4266 −1.61
Fr −1.740 −3.611 −1.438 × 10−3 6.333 × 10−3 4.895 × 10−3 −4.4038 −4.3351 −0.26
Uue −2.993 −4.327 −1.034 × 10−2 2.157 × 10−2 1.123 × 10−2 −2.0859 −4.3351 −0.84
Cu −6.480 −6.649 −2.355 × 10−4 2.840 × 10−3 2.604 × 10−3 −12.0606 −11.7316 −1.54
Ag −5.985 −6.452 −7.342 × 10−4 6.448 × 10−3 5.714 × 10−3 −8.7825 −8.4755 −1.22
Au −6.003 −7.923 −4.635 × 10−3 2.374 × 10−2 1.910 × 10−2 −5.1219 −4.9912 −1.00
Rg −5.441 −11.425 −3.251 × 10−2 8.408 × 10−2 5.157 × 10−2 −2.5863 −2.7223 −0.86

except for DCG with effQED, where the DCG structures were
employed.

For the atomic calculations reported in Table I we employed
Dyall v3z basis sets;104–109 the basis set for Uue was specially
optimized by Dyall for this work.110

For van der Waals dimers, the following orbitals were corre-
lated: 5d6s for Hg, 5d6s6p for Rn, 6d7s for Cn, and 6d7s7p for Og.
We used a virtual energy cutoff of 40 Eh. Dyall cv3z basis sets,106–108

designed for core-valence correlation, were employed for the Hg
and Cn species, whereas Dyall acv3z basis sets,111–113 where the
Dyall cv3z basis sets have been augmented by diffuse functions,
were employed for Rn and Og species. Electronic structure calcu-
lations were done at the level of coupled-cluster singles-and-doubles
with approximate triples correction [CCSD(T)] using the RELCCSD
module.114 We used the counterpoise correction115 to minimize
basis set superposition errors (BSSEs).

For the calculations of gold cyanide, we used the CCSD(T)
method for comparison with experiment. In the CCSD(T) calcula-
tion, 4 f 5s5p5d6s for Au and all electrons of C and N were correlated,
which is the same level as the previous work.116 Dyall ae3z and
ae4z basis sets,106,107,109 designed for correlation of all electrons, were
employed in the calculations. We employed a virtual energy cutoff
of about 50 Eh and 80 Eh for dyall.ae3z and dyall.ae4z, respectively,
which ensures that the correlating h and i orbitals, respectively, are
included. Effective QED potentials for C and N atoms were not used,
as explained in Sec. III. The potential energy surface (PES) was cal-
culated in the vicinity of the equilibrium structure with a total of 49
points for each basis set, using internal coordinates r1 (Au–C dis-
tance), r2 (C–N distance). The bond angle was fixed at θ = 180○. The
step size for bond distances was 0.1 a0. The surface fitting and deter-
mination of the equilibrium structure were carried out using the
SURFIT program,117 with convergence 3.2 × 10−10 or better on the
gradient. In addition, to estimate the relativistic effects, we employed
the two-component nonrelativistic (by using .NONREL keyword),
4c-scalar relativistic,118,119 and the Dirac–Coulomb Hamiltonians
at the density functional theory (DFT) level. In these calculations,
we employed the B3LYP functional120,121 and the dyall.3zp basis
sets.106,107,109

For the calculation of Pb and Fl hydrides, the DCG Hamil-
tonian with and without effective QED potentials, as well as the
Lévy-Leblond (LL)119,122 Hamiltonian were employed. The dyall.3zp
basis sets were used for all the elements. The B3LYP functional was
used for both the projection analysis and the geometry optimization.

V. RESULTS
A. Atomic calculations

In Table I, we show the results of atomic calculations using
average-of-configuration (AOC) HF,124,125 which can be directly
compared with Table I of Ref. 17 and which provide estimates
for the valence-level Lamb shift for group 1 and 11 metal atoms.
Pyykkö et al. focused on ns1/2 orbital energies for estimating
ionization energies, albeit, as pointed out by Thierfelder and
Schwerdtfeger,89 for Roentgenium (Z = 111), the first ionization is
out of the 6d5/2 orbital. The VP and SE contributions come with
opposite sign and are dominated by the latter.123 However, the
ratio SE/VP decreases significantly with increasing nuclear charge
and, indeed, VP is predicted to eventually overtake SE at very high
nuclear charges.89 Pyykkö et al. calculated the SE contribution as
⟨VU⟩ ∗ (SE/VP), where (SE/VP) is the ratio for 2s1/2 of the corre-
sponding hydrogen-like systems, including the nuclear-size effect,
tabulated for 1 ≤ Z ≤ 100 by Johnson and Soff123 (a more recent
compilation is provided by Yerokhin and Shabaev126). As confirmed
by later calculations127 and the numbers in Table I, this is a rather
reasonable approximation.

Comparing relativistic and QED effects, one sees that the latter
corrects the former by about −1% for the heavier atoms. For the gold
atom, it is exactly so. In Table II, we show the effect of relativity and
QED on all orbital energies of the gold atom. Two combinations of
effective QED potentials have been used in variational calculations:
The Uehling (U) VP potential has been combined either with the
Flambaum–Ginges (FG) or Pyykkö–Zhao SE potentials. One sees
that for both combinations of effective QED potentials, the relativis-
tic effects are, with very few exceptions, reduced with a few percent.
For s1/2 orbitals, the difference in QED shift between the U+FG
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TABLE II. Relativistic and QED effects on the orbital energies ε(Eh) of the Au atom at the B3LYP/dyall.3zp level. The Uehling VP potential has been combined with two
different SE potentials: FG (Flambaum–Ginges) and PZ (Pyykkö–Zhao) in variational calculations. Numbers in parentheses show the percentage-wise ratio ΔQED/ΔR for each
combination of effective QED potentials.

NR DCG Δ(U+FG) Δ(U+PZ)

1s1/2 −2689.451 −2955.841 6.377 × 1000 (−2.39) 6.243 × 1000 (−2.34)
2s1/2 −449.932 −523.020 8.448 × 10−1 (−1.16) 8.586 × 10−1 (−1.17)
2p1/2 −432.492 −500.523 5.895 × 10−2 (−0.09) 5.955 × 10−2 (−0.09)
2p3/2 −432.492 −433.755 1.194 × 10−1 (−9.45) −3.055 × 10−2 (2.42)
3s1/2 −105.753 −123.999 1.862 × 10−1 (−1.02) 1.924 × 10−1 (−1.05)
3p1/2 −97.515 −114.096 7.320 × 10−3 (−0.04) 1.462 × 10−2 (−0.09)
3p3/2 −97.515 −99.311 2.213 × 10−2 (−1.23) −8.516 × 10−3 (0.47)
3d3/2 −82.165 −83.236 −1.430 × 10−2 (1.34) −9.090 × 10−3 (0.85)
3d5/2 −82.165 −80.090 −5.817 × 10−3 (−0.28) −8.587 × 10−3 (−0.41)
4s1/2 −22.559 −27.178 4.650 × 10−2 (−1.01) 4.833 × 10−2 (−1.05)
4p1/2 −18.993 −22.979 1.124 × 10−3 (−0.03) 3.336 × 10−3 (−0.08)
4p3/2 −18.993 −19.424 4.651 × 10−3 (−1.08) −2.427 × 10−3 (0.56)
4d3/2 −12.440 −12.630 −3.439 × 10−3 (1.82) −2.307 × 10−3 (1.22)
4d5/2 −12.440 −11.971 −1.648 × 10−3 (−0.35) −2.185 × 10−3 (−0.47)
4f5/2 −3.648 −3.228 −2.383 × 10−3 (−0.57) −1.461 × 10−3 (−0.35)
4f7/2 −3.648 −3.091 −1.824 × 10−3 (−0.33) −1.425 × 10−3 (−0.26)
5s1/2 −3.253 −4.116 9.003 × 10−3 (−1.04) 9.430 × 10−3 (−1.09)
5p1/2 −2.108 −2.745 −4.569 × 10−5 (0.01) 4.105 × 10−4 (−0.06)
5p3/2 −2.108 −2.139 5.619 × 10−4 (−1.82) −5.703 × 10−4 (1.85)
5d3/2 −0.346 −0.333 −4.662 × 10−4 (−3.61) −3.486 × 10−4 (−2.70)
5d5/2 −0.346 −0.276 −2.881 × 10−4 (−0.41) −3.206 × 10−4 (−0.46)
6s1/2 −0.148 −0.205 6.519 × 10−4 (−1.14) 6.726 × 10−4 (−1.18)

and U+PZ combinations is below 5%; for other orbitals, the differ-
ence is generally larger. We note in particular that the shifts have
systematically opposite sign for p3/2 orbitals. Not surprisingly, the
largest absolute shifts are observed for inner core orbitals, whereas
the largest relative shift—0.33%—is seen for the 6s1/2 orbital.

In Table III, we show QED shifts of orbital energies, this
time obtained perturbatively as expectation values. Compared to
the shifts obtained from variational inclusion of the effective QED
potentials, the largest absolute deviations concern the inner core
orbitals. The smallest relative deviations are observed for s1/2 orbitals
and decreasing toward core. The larger relative deviations, on the
other hand, are seen for p orbitals; the largest relative deviation con-
cerns 5p1/2, but this can probably be attributed to noise since the
QED shift on the energy of this orbital is particularly small with both
combinations of effective QED potentials.

Table III also shows perturbative QED shifts of orbital ener-
gies obtained with the X2C Hamiltonian. When the effective QED
potentials have been correctly picture-change transformed, devia-
tions from the parent 4c calculation are below 3%, which clearly
validates the use of these potentials in two-component relativistic
calculations. On the other hand, without picture-change, significant
errors are observed; the average unsigned error for U+FG and U+PZ
is 130% and 47%, respectively. This is possibly worrisome since the
U+PZ combination, expressed in terms of Gaussians, have been used
without picture-change in scalar DKH calculations by Peterson and
co-workers.33–36

B. Gold cyanide

In 2008, Zaleski-Ejgierd et al. reported CCSD(T)/cc-pVQZ cal-
culations on the noble metal cyanides (MCN, M = Cu, Ag, Au).128

Small-core scalar relativistic effective core potentials (SRECPs)131

were used for the metal atoms and spin–orbit corrections added at
the PBE-ZORA/QZ4P level. In 2013, Hill et al. reported CCSD(T)-
F12/cc-pV5Z calculations on the same compounds by using the
same SRECPs as the previous authors and adding a number of cor-
rections.116 As seen from Table IV, the newer calculations brought
the M–C bond lengths of CuCN and AgCN in better agreement with
experiment, but they increased the gap between theory and experi-
ment for AuCN. This led Pyykkö to conjecture that this could be the
first evidence of the effect of QED on molecular structure.50

To possibly verify this conjecture, we first carried out
exploratory calculations at the B3LYP/dyall.3zp level. Table V shows
the effects of relativity and QED on orbital sizes of the gold atom. For
the valence 6s1/2, we observe an impressive relativistic contraction of
28.53 pm, whereas QED leads to an orbital expansion of 0.25 pm,
roughly −1% of the relativistic effect.

We next turn to the AuCN molecule. We first, in Table VI,
report bonding analysis in localized orbitals.91 One finds a single
σ-type Au–C bond, dominated by carbon 2s1/2 and gold 6s1/2,
as well as a triple C–N bond. Equilibrium bond lengths re with
respect to different Hamiltonians are reported in Table VII. We
see a very significant scalar relativistic bond length contraction
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TABLE III. First-order QED effects on the orbital energies ε(Eh) of the Au atom at the B3LYP/dyall.3zp level using the DCG Hamiltonian or the X2C Hamiltonian, the latter with
or without picture-change (PC) transformation. The Uehling VP potential has been combined with two different SE potentials: FG (Flambaum–Ginges) and PZ (Pyykkö–Zhao).
Numbers in parentheses shows the percentage-wise ratio ΔQED/Δ for each combination of effective QED potentials.

DCG X2C - PC X2C - noPC

Δ(U+FG) Δ(U+PZ) Δ(U+FG) Δ(U+PZ) Δ(U+FG) Δ(U+PZ)

1s1/2 6.620 × 1000 6.465 × 1000 6.632 × 1000 6.477 × 1000 7.522 × 1000 8.253 × 1000

2s1/2 9.003 × 10−1 9.022 × 10−1 9.012 × 10−1 9.030 × 10−1 1.079 × 1000 1.175 × 1000

2p1/2 1.184 × 10−1 1.051 × 10−1 1.187 × 10−1 1.047 × 10−1 1.971 × 10−1 3.608 × 10−2

2p3/2 1.671 × 10−1 4.922 × 10−3 1.682 × 10−1 5.005 × 10−3 1.279 × 10−1 6.342 × 10−3

3s1/2 2.016 × 10−1 2.040 × 10−1 2.020 × 10−1 2.043 × 10−1 2.441 × 10−1 2.665 × 10−1

3p1/2 2.357 × 10−2 2.674 × 10−2 2.359 × 10−2 2.665 × 10−3 3.939 × 10−2 9.351 × 10−3

3p3/2 3.554 × 10−2 1.335 × 10−3 3.574 × 10−2 1.357 × 10−3 2.671 × 10−2 1.727 × 10−3

3d3/2 −1.234 × 10−3 1.064 × 10−5 −1.220 × 10−3 1.066 × 10−5 3.906 × 10−3 3.605 × 10−7

3d5/2 6.494 × 10−3 −1.680 × 10−7 6.528 × 10−3 −1.675 × 10−7 3.296 × 10−3 −1.132 × 10−7

4s1/2 5.082 × 10−2 5.151 × 10−2 5.097 × 10−2 5.166 × 10−2 6.173 × 10−2 6.741 × 10−2

4p1/2 5.631 × 10−3 6.658 × 10−3 5.638 × 10−3 6.637 × 10−3 9.363 × 10−3 2.339 × 10−3

4p3/2 8.392 × 10−3 3.315 × 10−4 8.444 × 10−3 3.370 × 10−4 6.292 × 10−3 4.295 × 10−4

4d3/2 −1.331 × 10−4 2.846 × 10−6 −1.299 × 10−4 2.851 × 10−6 9.447 × 10−4 9.962 × 10−8

4d5/2 1.461 × 10−3 −4.294 × 10−8 1.468 × 10−3 −4.277 × 10−8 7.944 × 10−4 −2.822 × 10−8

4f5/2 −2.785 × 10−4 −1.968 × 10−10 −2.782 × 10−4 −1.974 × 10−10 1.089 × 10−5 −1.184 × 10−10

4f7/2 2.190 × 10−4 −9.047 × 10−11 2.194 × 10−4 −9.111 × 10−11 9.735 × 10−6 −9.557 × 10−11

5s1/2 1.001 × 10−2 1.015 × 10−2 1.004 × 10−2 1.018 × 10−2 1.217 × 10−2 1.329 × 10−2

5p1/2 9.658 × 10−4 1.152 × 10−3 9.668 × 10−4 1.149 × 10−3 1.605 × 10−3 4.052 × 10−4

5p3/2 1.373 × 10−3 5.478 × 10−5 1.382 × 10−3 5.572 × 10−5 1.029 × 10−3 7.103 × 10−5

5d3/2 −1.078 × 10−5 2.580 × 10−7 −1.048 × 10−5 2.582 × 10−7 8.410 × 10−5 9.077 × 10−9

5d5/2 1.216 × 10−4 −3.635 × 10−9 1.222 × 10−4 −3.618 × 10−9 6.669 × 10−5 −2.375 × 10−9

6s1/2 7.888 × 10−4 8.001 × 10−4 7.908 × 10−4 8.020 × 10−4 9.586 × 10−4 1.047 × 10−3

of 25.31 pm, which is on par with the 6s1/2 orbital contraction
observed in Table V. When going from a spin-free (SF) Hamilto-
nian to the Dirac–Coulomb one, one finds a further contraction of
0.29 pm, which agrees very well with the spin–orbit correction of
−0.28 pm obtained by Hill et al. taking the same difference, albeit at
the CCSD(T) level.116 However, this contraction is almost canceled
when adding the Gaunt term, which brings spin-other-orbit inter-
action3 and which was not considered by Hill et al.116 At this level
of theory, the total relativistic effect on the bond length is thereby
−25.38 pm; in a future work, we hope to assert the effect of replacing
the Gaunt term by the full Breit one. Finally, adding QED effects,

TABLE IV. M–C bond lengths (in pm) in MCN (M = Cu, Ag, Au) from microwave (MW)
spectroscopy and calculations.

CuCN AgCN AuCN

r0 183.231(7) 203.324(45) 191.251(16) MWa

rs 183.284(4) 203.4182(27) 191.225 19(84) MWa

re 182.36 202.42 191.05 Calc.128

re 182.65 202.99 190.71 Calc.116

aCuCN: Ref. 129. AgCN, AuCN: Ref. 130.

we observe a bond length extension of 0.19 pm, −0.75% of the rela-
tivistic effect. One may note that the QED effect is of the same order
as the effect of adding the Gaunt term.89 In passing, we note from
Table VII that incorporation of QED effects through the atomic
shift operator (ASHIFT) described in Sec. II C also leads to a bond
extension, albeit only capturing half of the full QED effect.

To obtain more accurate bond lengths, we proceeded as indi-
cated in Table VIII: 2DCGM-CCSD(T) calculations were carried out
in the Dyall ae3z and ae4z basis sets and then extrapolated to the

TABLE V. Relativistic and QED effects on the rms radius ⟨r2⟩1/2(pm) of the
Au atom at the B3LYP/dyall.3zp level. Effective QED potentials: VP(Uehling)
+ SE(Flambaum–Ginges).

NR DCG DCG+QED ΔR ΔQED
ΔQED/
ΔR (%)

5s1/2 57.71 52.23 52.28 −5.48 0.05 −0.86
5p1/2 63.16 56.78 56.78 −6.38 0.00 −0.02
5p3/2 63.16 62.37 62.38 −0.80 0.01 −1.04
5d3/2 91.07 90.81 90.78 −0.26 −0.03 10.46
5d5/2 91.07 95.75 95.73 4.68 −0.02 −0.36
6s1/2 196.07 167.54 167.79 −28.53 0.25 −0.88
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TABLE VI. Gross populations obtained by projection analysis using Pipek–Mezey localized orbitals at the
DCG/B3LYP/dyall.3zp level. ⟨ε⟩ is the expectation value in Eh with respect to the Kohn–Sham Hamiltonian.

Au C N

ω ⟨ε⟩ 5d5/2 6s1/2 2s1/2 2p1/2 2p3/2 2s1/2 2p1/2 2p3/2

3/2 −0.342 −0.01 0.00 0.00 0.00 0.92 0.00 0.00 1.09
1/2 −0.345 0.00 0.00 0.00 0.65 0.28 0.00 0.64 0.43
1/2 −0.586 0.15 0.39 0.92 0.17 0.34 0.01 −0.01 −0.02
1/2 −0.781 0.00 0.01 0.24 0.12 0.38 0.15 0.44 0.65

TABLE VII. Equilibrium bond lengths re (in pm) of AuCN calculated at the
B3LYP/dyall.3zp level using various Hamiltonians. Numbers in parentheses indicate
the change with respect to the previous line, except ASHIFT, which refers to DCG. SF
refers to a spin-free four-component relativistic Hamiltonian.

Hamiltonian Au–C C–N

NR 218.54 115.71
SF 193.23 (−25.31) 115.54 (−0.17)
DC 192.94 (−0.29) 115.56 (+0.02)
DCG 193.16 (+0.22) 115.58 (+0.01)
QED 193.35 (+0.19) 115.57 (+0.00)
ASHIFT 193.25 (+0.09) 115.58 (+0.00)

basis set limit,132 indicated by “ae∞z.” We then added the triples
ΔT and quadruples ΔQ corrections reported by Hill et al.116 to
obtain a Au–C bond length of 190.75 pm, very close to the value
190.71 pm reported by Peterson and co-workers. Finally, we add
a QED correction of 0.19 pm, identical to what we obtained at the
B3LYP/dyall.3zp level, to obtain our final value of 190.99 pm.

The devil is, however, in the details: Our Born–Oppenheimer
equilibrium bond lengths re are not directly comparable to the struc-
tural parameters extracted from the rotational spectra recorded by
Okabayashi et al.130 Experiment gives access to rotational constants
Bν for individual vibrational states. For a linear molecule like AuCN,
the rotational constant, in units of frequency, is expressed as

B = h̵
4πI�

; I� = Ixx = Iyy = ∑
A

mAz2
A, (42)

TABLE VIII. Final, recommended equilibrium Au–C bond length re (pm) at the
2DCGM -CCSD(T) level for the AuCN molecule. ΔQED is the difference between the
extrapolated basis set limit ae∞z with QED and without QED.

Au–C C–N

ae3z 190.89 116.66
ae4z 190.70 116.28
ae∞z 190.58 116.07
ΔT116 0.26 −0.10
ΔQ116 −0.09 0.19
Final w/o QED 190.75 116.16
ΔQED 0.19 0.00
Final 190.94 116.16

when the molecular axis is aligned with the z-axis. zA is the distance
of atom A from the center of mass. Both the effective r0 and substi-
tution rs structures are obtained by assuming identical structures for
all isotopomers of the target molecule observed in experiment.133,134

Effective structures r0 are obtained by least-square fitting of
experimental ground-state inertial moments, whereas substitution
structures rs are obtained from observation of how rotational con-
stants (and center of mass) change upon single isotope substitution
A→ A′. For a linear molecule, one has

∣zA∣ =
√

h̵
4πμ
( 1

BA′ −
1

BA );
1
μ
= 1

M
+ 1
ΔmA

, (43)

where M is the total mass of the parent isotopomer. In the case of
AuCN, ∣zC∣ and ∣zN ∣ could be estimated from corresponding sin-
gle isotope substitutions. However, since gold has a single naturally
occurring isotope, 197Au, ∣zAu∣ was obtained from the definition of
center of mass.135

Empirically, one typically finds r0 ≥ rs ≥ re,134 which suggests
that we should rather compare our recommended re = 190.99 pm
for Au–C with the corresponding substitution bond length
rs = 191.225 19(84) pm reported by Okabayashi et al.130 However, a
better comparison is provided by calculating the ground-state rota-
tional constant B0 from Be. From perturbation theory, excluding
Fermi resonances, the rotational constant for a given vibrational
state ν of a general molecule is related to Be as follows:134

Bξ
ν = Bξ

e −∑
i
αξi (νi + di

2
) + 1

2∑i,j
γξi,j(νi + di

2
)(νj + dj

2
) + ⋅ ⋅ ⋅ . (44)

Here, ξ is the axis of rotation, αξ and γξ are vibration and rotation
interaction constants of different orders, and di is the degeneracy
of vibration mode i. The series generally converges rapidly, and for
AuCN, a suitable expression is therefore given by

B0 ≈ Be − 1
2
[α100 + α001 + 2α0110], (45)

using the notation αν1ν2ν3 , where ν1 corresponds to the C–N stretch,
ν2 to the doubly degenerate bending mode, and ν3 to the Au–C
stretch.

Hill et al.116 carried out both perturbative and variational rovi-
brational calculations. Using their calculated potential surfaces,136

we have extracted vibration–rotation interaction constants αν1ν2ν3 .
Combined with our best equilibrium structures from Table VIII,

J. Chem. Phys. 157, 164101 (2022); doi: 10.1063/5.0116140 157, 164101-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE IX. Calculated and experimental rotational constants (in MHz) for AuCN.

197Au12C14N 197Au13C14N 197Au12C15N

α1 14.55 13.53 14.06
α2 −10.98 −10.25 −10.59
α3 12.17 11.91 11.30

w/o QED

Be 3237.5 3184.5 3086.4
B0 3235.1 3182.1 3084.3

With QED

Be 3232.8 3179.9 3082.0
B0 3230.4 3177.5 3079.9
B0 (expt.)130 3230.211 15(18) 3177.207 93(13) 3079.735 40(12)

we have calculated the rotational constants of the ground vibra-
tional state of the three isotopomers of AuCN studied by Okabayashi
et al.130 As can be seen from Table IX, the inclusion of QED
corrections brings about a dramatic improvement with respect to
experiment. Not surprisingly then, extraction of substitution struc-
tures by the same procedure as Okabayashi et al.,130 correcting
for Lamb shift effects, brings our calculated substitution bond
lengths within 0.05 pm of the experimental ones (cf. Table X).
We expect further refinement of the potential surface to improve
agreement with experiment; we note for instance that our calcu-
lated vibration–rotation interaction constant associated with bend-
ing for the most abundant isotopomer 197Au12C14N is −10.98 MHz,
compared to −11.9781 MHz when extracted from experiment.116

C. van der Waals dimers
As a second molecular application of our implementation, we

consider spectroscopic constants of dimers with van der Waals
bonding (M2, M = Hg, Rn, Cn, Og). In Table XI, we report our
calculated equilibrium bond lengths re, harmonic frequencies ωe,
anharmonic constants ωexe, and dissociation energies De for these
species. We see that the QED effect on bond length is on the order of
0.15 pm for row-6 dimers and approximately doubles when going to
the superheavy elements; for Og2, the QED bond length extension is
in line with what was reported by Hangele and Dolg using relativistic
effective core potentials.40 The QED effect on dissociation energies
is rather small: on the order of 0.4% for the superheavy dimers.

D. Reaction energies: Pb and Fl hydrides
As a final case study, we consider the reaction energy of

XH4 Ð→ XH2 +H2 to which Dyall et al. proposed that the Lamb

TABLE X. Calculated and experimental substitution structure (in pm) for AuCN.

rs(Au–C) rs(C–N)

w/o QED 190.991 115.910
With QED 191.184 115.909
Expt.130 191.225 19(84) 115.865 45(97)

TABLE XI. Spectroscopic constants of heavy group 12 and 18 dimers obtained at
the 2DCGM -CCSD(T) level using the U+FG combination of effective QED poten-
tials and either dyall.cv3z (Hg2,Cn2) or dyall.acv3z (Rn2,Og2) basis sets. Numbers
in parentheses indicate the QED effect.

re (pm) ωe (cm−1) ωexe (cm−1) De (cm−1)

Hg2 385.71 16.65 0.232 277.7
(0.15) (−0.03) (−0.002) (−0.02)

Cn2 354.75 22.95 0.255 532.7
(0.36) (−0.11) (0.001) (−2.78)

Rn2 463.60 13.79 0.286 174.9
(0.14) (−0.02) (−1.0 × 10−04) (−0.41)

Og2 449.97 17.10 0.210 391.1
(0.28) (−0.04) (0.001) (−1.32)

TABLE XII. Optimized equilibrium structures of Pb and Fl hydrides at the
B3LYP/dyall.3zp level based on the DCG Hamiltonian. re and αe refer to the X–H
bond length (Å) and H–X–H angle (deg), respectively.

PbH2 FlH2 PbH4 FlH4

re αe re αe re re

NR 1.879 90.83 2.017 90.85 1.816 1.959
DCG 1.845 91.18 1.920 93.35 1.756 1.825

shift could make a chemically significant contribution.53 Their argu-
ment was based on the observation that QED effects are most
important for s orbitals, as seen in Tables II and V, and that this
is a reaction with a significant change of the valence s population of
a heavy element. We have investigated this at the B3LYP/dyall.3zp
level and also included the corresponding reaction involving the
heavier homologue flerovium. Optimized equilibrium structures are
given in Table XII. For the tetrahydrides, we assumed Td symme-
try, in line with experiment137 (PbH4) and previous calculation138

(FlH4).
To monitor valence s populations, we carried out bonding

analysis in Pipek–Mezey localized MOs.91,102 From Table XIII, the
change of the valence s population from XH4 to XH2 is 0.45 and
0.30 for Pb and Fl systems, respectively. From Table XIV, one sees
that in the tetrahydrides, the valence s population is contained in the
four σXH bonds. In contrast, in the dihydrides, the two σXH bonds
are mediated by the valence p orbitals of the metals, and most of the
valence s population is found in a nonbonding (nb) orbital.

TABLE XIII. Charge Q and electronic configurations of Pb and Fl atoms in the title
compounds obtained by projection analysis at the B3LYP/dyall.3zp level.

Q Atomic configuration

PbH2 0.39 5d4.00
3/2 5d5.99

5/2 6s1.86
1/2 6p0.90

1/2 6p0.86
3/2

PbH4 0.66 5d3.99
3/2 5d5.98

5/2 6s1.41
1/2 6p0.85

1/2 6p1.10
3/2

FlH2 0.32 6d3.99
3/2 6d5.97

5/2 7s1.91
1/2 7p1.26

1/2 7p0.55
3/2

FlH4 0.46 6d3.98
3/2 6d5.94

5/2 7s1.61
1/2 7p1.17

1/2 7p0.84
3/2
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TABLE XIV. Gross population obtained by projection analysis of the localized bonding orbitals in the title compounds at the B3LYP level based on the DCG Hamiltonian. ⟨ε⟩
refers to the expectation value with respect to the Kohn–Sham Hamiltonian (in Eh).

X Hi

⟨ε⟩ 5s1/2 5d3/2 5d5/2 6s1/2 6p1/2 6p3/2 1s1/2

PbH4 σXHi −0.4192 0.00 0.00 0.35 0.21 0.27 1.19
PbH2 σXHi −0.3384 0.00 0.00 0.00 0.03 0.37 0.37 1.24

nb −1.0182 0.13 0.00 0.00 1.62 0.14 0.11 −0.03

⟨ε⟩ 6s1/2 6d3/2 6d5/2 7s1/2 7p1/2 7p3/2 1s1/2

FlH4 σXHi −0.4524 0.00 0.01 0.40 0.27 0.20 1.11
FlH2 σXHi −0.3469 0.00 0.00 0.01 0.03 0.52 0.25 1.18

nb −1.2235 0.11 0.04 0.06 1.57 0.15 0.04 −0.03

TABLE XV. Reaction energy of PbH4 → PbH2 + H2 (in kcal/mol). ΔDCG refers to
the difference between DCG and NR. Other Δ refers to the difference from the DCG
value.

QED effect Reac. energy Δ (kcal/mol) Δ (%)

NR None 16.47
DCG None −8.99 −25.46

VP −9.09 −0.10 0.41
SE −8.56 0.42 −1.67

VP+SE −8.66 0.32 −1.27
VP+SE(ASHIFTa) −8.97 0.02 −0.07
VP+SE(ASHIFTb) −9.06 −0.08 0.31

aOccupation of atomic fragment was 6s26p2 .
bUsing the occupations of Table XIII.

Turning next to Tables XV and XVI, we see that both reactions
are endothermic at the nonrelativistic level, but they become clearly
exothermic with the addition of relativistic effects. For Pb, QED
reduces the relativistic effect by 1.25%. Its value is 0.32 kcal/mol,
which is at the lower end of the perturbation estimate of Dyall et al.53

For Fl, QED reduces the relativistic effect by 0.50%. Interestingly, its
value is very close to that for the Pb reaction, despite Fl being a much
heavier atom. The reason for this unexpected result is the cancela-

TABLE XVI. Reaction energy of FlH4 → FlH2 + H2 (in kcal/mol). ΔDCG refers to the
difference between DCG and NR. Other Δ refers to the difference from the DCG
value.

QED effect Reac. Energy Δ (kcal/mol) Δ (%)

NR None 9.52
DCG None −60.02 −69.54

VP −60.43 −0.41 0.59
SE −59.27 0.75 −1.08

VP+SE −59.67 0.35 −0.50
VP+SE(ASHIFTa) −60.10 −0.07 0.10
VP+SE(ASHIFTb) −60.23 −0.21 0.30

aOccupation of the atomic fragment was 7s27p2 .
bUsing the occupations of Table XIII.

tion between the SE and VP effects. From Tables XV and XVI, the
ratio of VP and SE is ∼1:−4.2 for the Pb system, while it is ∼1:−1.8
for the Fl system. Discussion along these lines is also found in Refs.
55 and 89. Finally, we note from Tables XV and XVI that the atomic
shift operator (ASHIFT), either using atomic ground-state occupa-
tions or the effective atomic configuration in the molecules given in
Table XIII, is not reliable for describing QED effects in molecules.

VI. CONCLUSIONS

We have implemented effective QED potentials for relativistic
molecular calculations by grafting code from the numerical atomic
code GRASP onto the DFT grid of DIRAC. A general disadvantage
of numerical integration is a higher computational cost than that
involved in analytical evaluation, to the extent that such expressions
are available, although the implementation itself is easier and con-
siderable savings are achieved by the locality of the effective QED
potentials.

We report several applications of the new code, mostly using
the molecular mean-field approximation Hamiltonian (X2Cmmf).
We demonstrate (Table II) that with proper picture-change trans-
formation of the effective QED potentials, our two-component
relativistic results reproduce the four-component reference data
remarkably well. On the other hand, this transformation is manda-
tory since the picture-change errors are sizable.

We confirm that the discrepancy between the accurate cal-
culations of Hill et al.116 and experiment130 is due to QED by
directly calculating the ground-state rotational constants B0 for the
isotopomers investigated in the MW experiment. We then find
that QED reduces the discrepancy of the corresponding substitu-
tion Au–C bond length rs from 0.23 to 0.04 pm with respect to
experiment.

For the rare-gas dimers Hg2 and Rn2, we find that QED
increases bond lengths by about 0.15 pm. For the superheavy homo-
logues, the bond length increase is on the order of 0.30 pm; the effect
on dissociation energies is rather small (∼0.4%).

We have also investigated the effect of QED on the reaction
energy of XH4 Ð→ XH2 +H2 (X = Pb, Fl). From projection analysis,
we do find that there is a significant change of valence s population
of the metals during the reaction, in line with the proposition of
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Dyall et al.53 Interestingly, though, we also find that the valence
s population essentially resides in bonding orbitals in the tetrahy-
drides, but it resides in nonbonding ones in the case of dihydrides.
We find for the dissociation of lead tetrahydride that QED reduces
the magnitude of the reaction energy by 0.32 kcal/mol (−1.27%);
for the superheavy homologue, the magnitude of the QED effect is
basically the same (0.35 kcal/mol). This possibly surprising observa-
tion is explained by the reduction of the (negative) SE/VP ratio with
increasing nuclear charge.

For these metal hydrides, and also AuCN, we have also tried a
simpler approach for the incorporation of QED effects in molecular
calculations in the form of an atomic shift operator, but we find that
this is not a reliable approach.

We would like to stress that our implementation of effective
QED potential is general in the sense that they are available in all
parts of the code. A natural continuation of our project will therefore
be to explore the impact of these potentials on molecular properties
by probing electron density in the vicinity of nuclei, where the QED
effects are generated. Our results so far indicate that QED effects
may be more important than for the valence properties reported in
the present work. For instance, the QED effect on the parity viola-
tion energy of H2Po2 is 2.38%, although it depends on the choice of
effective QED potentials.139
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APPENDIX: THEORY BACKGROUND

Since we hope to reach a wider audience than QED specialists,
we provide in this Appendix a compact, yet accessible, introduc-
tion (crash course) to QED that would otherwise have necessitated
consulting disparate sources. More precisely, in this Appendix, we
shall discuss the lowest-order BSQED corrections, and show how
the effective potentials associated with these QED processes can be
derived within the scattering matrix (S-matrix) formalism. These
effective potentials are to be used in practical relativistic calculations
in order to account for the physics that is missing from the Dirac the-
ory. In “conventional” QED, one studies how the free-electron field
interacts with the free quantized electromagnetic field and/or with
an potential source (the scattering problem). On the other hand,
BSQED theory studies the same problem but with electrons that are
already interacting with some time-independent external field, i.e.,
their wavefunctions are solutions to the bound-state Dirac equa-
tion instead of the free one. This is known as the Furry picture of
quantum mechanics; see for instance Refs. 65 and 59 (Sec. 15g).

We shall use unbold symbols for four-quantities, such as space-
time points (events): x = (ct, x) , here in contravariant coordinates,
where x is the spatial position vector and the contravariant metric
tensor gμν = diag(+1,−1,−1,−1) . The gamma matrices are defined
through their anti-commutation relation

γμγν + γνγμ = 2gμν𝟙4. (A1)

In Dirac basis, they are represented by γ0 = β and γ = βα. Following
Lindgren,73 we shall complement the Dirac α matrices with α0 = 𝟙4
to form a pseudo-4-vector. We finally note that we put hats (̂)
on quantities that contain creation/annihilation operators acting on
occupation number states. Contrary to conventional QED sources,
we have decided to express the formalism in full SI units.

1. Electron field operator
The electron field operator is given by the following annihila-

tion expansion over all solutions of the Dirac equation:

Ψ̂(x) = ∑
i
ψi(x)ci, with ψi(x) = ψi(x)e− i

h̵ Eit. (A2)

In this expression, ci is the electron annihilation operator obeying
the fermionic algebra relations,

{ci, c†j } = δij, and {ci, cj} = {c†i , c†j } = 0, (A3)

and associated with the i-th spatial wavefunction ψi(x) and
energy-level Ei that solve the time-independent Dirac equation
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in the presence of a time-independent external four-potential
Ae = (φe/c, Ae),

HDψi (x) = Eiψi (x),
with

HD = cα ⋅ (−ih̵∇ + eAe(x)) − eφe(x) + βmec2. (A4)

The electron vacuum state is defined to be the one that vanishes after
any annihilation,

ci∣0e⟩ = 0, ∀i. (A5)

In order to forbid the transition of positive-energy electrons
to the negative-energy continuum by the Pauli exclusion princi-
ple and to obtain a stable atomic theory, Dirac140 postulated that
this continuum should be totally filled with electrons that are not
observed (Dirac sea). This means that the vacuum state is redefined
to be the state containing no positive-energy electrons and a fully
occupied negative-energy electron sea. Dirac then argued that when
a negative-energy electron absorbs enough energy (E ≥ 2mec2),
it becomes real (observable) and leaves, for mass- and charge-
conservation reasons, a positron behind (Dirac hole theory).141 This
last reasoning allows one to define142

ci = ai, for Ei > 0,

ci = b†
i , for Ei < 0.

(A6)

Here, operators ai and bi are introduced to distinguish between
the particle (electron) and its hole (positron), and the second line
indicates that the annihilation of a negative-energy electron with ci
is equivalent to the creation of a (positive-energy) hole (positron)
with b†

i . The electron field operator of Eq. (A2) can be written, with
respect to these definitions, as

Ψ̂(x) = ∑
Ei>0

ψi(x)ai + ∑
Ei<0

ψi(x)b†
i . (A7)

Despite its experimental success in predicting the existence of the
positron,143 the hole theory (its physical implications) was, shortly
after its introduction, abandoned. Many physicists including Pauli,
Bohr, Weisskopf, Heisenberg, and Majorana opposed this theory, as
clearly indicated in Refs. 144 (Sec. 1.6), 145, 146 (Sec. 4.4), and 147.
This opposition came mainly from the following flaws of the Dirac
hole theory: (1) the existence of a non-observable infinite negative
energy and charge and (2) the fact that for massive boson systems,
whose wavefunctions satisfy the Klein–Gordon equation, the Dirac
argument would not hold and that the existence of these bosons is
not justified. Modern quantum field theory reached the same math-
ematical expressions derived with respect to Dirac’s hole theory but
provided a more symmetric picture between electrons and positrons,
in which (1) one only sees electrons and positrons with positive ener-
gies, (2) the infinite negative-energy electron sea assumption is no
longer necessary, and (3) operators, such as the Hamiltonian, and
charge are replaced by their normal-ordered forms. This physical
interpretation leads to the modern definition of the vacuum state,
one that obeys

ai∣0e⟩ = bi∣0e⟩ = 0, ∀i (A8)

and contains zero positive-energy electrons and positrons. To get a
wider and more detailed vision of the historical development of the
quantum field theory, the reader may consult Weinberg in Ref. 148
(Sec. 1.2 and Chap. 5) and Ref. 149, Mehra in Ref. 150 (Chap. 29),
Schweber in Ref. 144, Kragh in Ref. 151, and Weisskopf in Ref. 152.

2. Photon field operator
The photon field operator is written as a sum over positive and

negative plane-wave Fourier modes,

Âμ(x) = Â+μ (x) + Â−μ (x), (A9)

Â+μ (x) =
3

∑
r=0
∑

k
Nka(k, r)εμ(k, r)e−ik⋅x, (A10)

Â−μ (x) =
3

∑
r=0
∑

k
Nka†(k, r)εμ(k, r)e+ik⋅x, (A11)

where Nk =
√

h̵/(2ϵ0ωkV) is the normalization constant, the zeroth
component four-wave vector is k0 = ∣k∣ = ωk/c, εμ(k, r) are the
four polarization vectors, and a(k, r) [and a†(k, r) ] is the anni-
hilation (creation) operator that annihilates (creates) a photon
with wave vector k and polarization r, respectively {see Refs. 78
[Eqs. (5.16a)–(5.16c)] and 153 (Sec. 8.4)}. The choice of k0 is
imposed by the fact that the photon field operator must satisfy the
Maxwell equation

◻ Âμ(x) = 0, with ◻ = 1
c2

∂2

∂t2 −∇
2, (A12)

obtained after setting the Lorenz gauge condition (∂μÂμ = 0) . This
equation leads to the (massless) photon energy–momentum relation

k2 = 0. (A13)

The boson creation and annihilation operators do satisfy the
following bosonic commutation relations:

[a(k, r), a†(k′, s)] = δrsζrδk,k′ , (A14)

[a†(k, r), a†(k′, s)] = [a(k, r), a(k′, s)] = 0. (A15)

Here, ζr is a function defined by the following relation:

ζr =
⎧⎪⎪⎨⎪⎪⎩
+1, r = 0,

−1, r = 1, 2, 3,
(A16)

and the polarization vectors satisfy the following completeness
relation:

3

∑
r=0

ζrϵμ(k, r)ϵν(k, r) = −gμν. (A17)

Finally, we note that the photon vacuum state is defined to be the
state that satisfies the following relation:

a(k, r)∣0p⟩ = 0, ∀ k, r,

→ Â+μ (x)∣0p⟩ = 0, ∀ μ, x.
(A18)
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We shall now consider the interaction between the noninteract-
ing electron and photon fields and show how one can derive QED
corrections using perturbation theory.

3. Perturbation theory
As in conventional perturbation theory, one wants to get the

eigen solutions of the following total Hamiltonian:

ĤS = Ĥ0
S + λĤ1

S. (A19)

The zeroth-order Hamiltonian

Ĥ0
S = Ĥ0

electron + Ĥ0
photon (A20)

represents the free-electron and free photon fields. The electronic
part is given by a spatial integral over the normal-ordered Dirac
Hamiltonian density,

Ĥ0
electron = ∫ d3x : Ψ̂ †(x)HD(x)Ψ̂(x) :

= ∑
Ei>0

Eia†
i ai − ∑

Ei<0
Eib†

i bi, (A21)

where in BSQED, HD is the Dirac Hamiltonian in the presence of
the external four-potential Ae = (φe/c, Ae), given in Eq. (A4), and
where normal-ordering is indicated by double dots. The free pho-
ton Hamiltonian is written as an integral of the electromagnetic
Hamiltonian density,

Ĥ0
photon = 1

μ0
∫ d3x : [ − (∂0Â μ(x))(∂0Âμ(x))

+ 1
2
(∂νÂ μ(x))(∂νÂμ(x))] :

= ∑
k

3

∑
r=0

h̵ωkζra†(k, r)a(k, r). (A22)

For further details and discussions on the photon Hamiltonian, the
reader may consult Greiner and Reinhardt in Ref. 61 (Sec. 7.3) and
Mandl and Shaw in Ref. 78 (Chap. 5).

The perturbation Hamiltonian Ĥ1
S complicates the problem

and prevents us from obtaining eigen solutions of the full Hamilto-
nian ĤS. λ is a dimensionless parameter that can be varied between
0 and 1 and which keeps track of the perturbation order. This
parameter is to be taken to be 1 in order to account for the full per-
turbation by the end of the calculation. Notice that so far, our Hamil-
tonians have an S subscript; this is made to indicate that they are
in the Schrödinger picture of quantum mechanics. Assuming that
we know the eigen solutions of the unperturbed time-independent
problem equation

Ĥ0
S∣Φα

0⟩S = Eα0 ∣Φα
0⟩S,

∣Φα
0(t)⟩S = e−iEα0 t/h̵∣Φα

0⟩S,
(A23)

where the α superscript labels solutions (states and associated
energy-levels), the ultimate goal is to find eigen solutions of the
perturbed problem

ĤS∣Φα⟩
S
= Eα∣Φα⟩

S
,

∣Φα(t)⟩
S
= e−iEαt/h̵∣Φα⟩

S
.

(A24)

Gell-Mann and Low provided a closed form of the per-
turbed eigen solutions (Eα, ∣Φα⟩S) in terms of the unperturbed ones
(Eα0 , ∣Φα

0⟩S) and the time-evolution operator;154 see also Refs. 155
(pp. 61–64) and 59 (Sec. 11f). A few years later, Sucher156 pro-
vided an expression of the perturbation energy-shift that is more
symmetric in time,

ΔEα = Eα − Eα0

= lim
ϵ→0
λ→1

iϵλ
2

∂

∂λ
log⟨Φα

0 ∣Ŝ(ϵ, λ)∣Φα
0⟩, (A25)

where ϵ is an energy parameter, to be shortly discussed. This energy-
shift expression contains the S-matrix operator that is defined to be
the time-evolution operator that takes the interaction state from the
very past, t = −∞, to the very future, t = +∞, and it can be written
as [see Dyson in Ref. 157, Eq. (4)]

Ŝ(ϵ, λ) = T[exp( λ
ih̵c ∫ d4xe−

ϵ
h̵ ∣t∣ĤI(x))]. (A26)

In this expression, T stands for time-ordering, i.e., it reorders
the inside operators such that those associated with earlier times
act first. In the simplest case of two operators, the time-ordering
operation is defined to be

T[Â(x1)B̂(x2)] ≡ Θ(t1 − t2)Â(x1)B̂(x2)
±Θ(t2 − t1)B̂(x2)Â(x1), (A27)

where the minus sign applies when both operators Â and B̂ are of
fermionic nature. Furthermore, the S-matrix in Eq. (A26) is a func-
tional of the interaction-Hamiltonian density ĤI(x) related to the
interaction Hamiltonian Ĥ1

I (t) by the following integral:

Ĥ1
I (t) = ∫ d3xĤI(x). (A28)

Recall that Ĥ1
I (t) is the interaction-picture version of the

Schrödinger-picture interaction-Hamiltonian Ĥ1
S of Eq. (A19).

We shall note that the interaction density is multiplied by a
damping factor e−

ϵ
h̵ ∣t∣, cf. Eq. (A26), where ϵ is a small positive quan-

tity that has energy dimensions. This term is known as the “adiabatic
switch” that allows the interpolation between the perturbed and
unperturbed problems (t = 0,±∞), and it was first introduced by
Gell-Mann and Low in Ref. 154 (Appendix) while extending the
S-matrix formalism to cover the bound-electron problem [see also
Ref. 158 (Sec. 1.3)]. The scattering matrix of Eq. (A26) may be
expanded in powers of the perturbation parameter λ as

Ŝ(ϵ, λ) =
∞

∑
n=0

Ŝ (n)(ϵ, λ),

Ŝ (n)(ϵ, λ) = 1
n!
( λ

ih̵c
)

n

∫ d4x1 . . .

×∫ d4xne−
ϵ
h̵ (∣t1 ∣+⋅⋅⋅+∣tn ∣)T[ĤI(x1) . . . ĤI(xn)]. (A29)

This form of the Ŝ-matrix expansion is known as the
Dyson series, and it originated from the works of Dyson157,159

and Schwinger.160 Detailed derivations of the time-evolution and
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Ŝ-matrix operators can be found in the works of Fetter and
Walecka,155 (pp. 54–58), Mandl and Shaw,78 (Sec. 6.2), as well
as Bjorken and Drell161 (Sec. 17.2). In QED, the (perturbation)
interaction-Hamiltonian density is given by

ĤI(x) = Ĵμ(x)Â μ(x),

with

Ĵμ(x) = −ec ¯̂Ψ(x)γμΨ̂(x), (A30)

which explicitly couples the quantized electron-current field opera-
tor Ĵμ to the photon field operator Â μ. Some authors, starting with
Schwinger in Ref. 160 [Eq. (1.14)], use the symmetrized form

Ĵμ(x) = − ec
2
[ ¯̂Ψα(x), Ψ̂β(x)][γμ]αβ (A31)

for the electron-current field operator, but the two forms are equiva-
lent under time-ordering [see Eq. (29) of Ref. 162]. We recall that the
electron and photon field operators are given in Eqs. (A7) and (A9),
respectively. We note that the Dirac field operator with a bar on the
top represents the Dirac adjoint field: ¯̂Ψ(x) = Ψ̂ †(x)γ0. At this point,
the reader can see, from the last two equations, that the QED theory
treats the electron-photon field (interaction) coupling perturbatively
in powers of the elementary charge e.

We next consider how to expand the time-ordered product of
the Ŝ-matrix and assign each of the obtained normal-ordered terms
to a specific Feynman diagram.

4. Wick’s theorem, field contractions, and propagators
Wick’s theorem62 allows writing the time-ordered products

of Eq. (A29) in terms of normal-ordered products of all possible
contractions, as given in the following equation:

(A32)

Contracted operators are moved next to each other, noting that
under normal-ordering (fermionic), bosonic operators can be per-
muted as if they (anti)commuted. A contraction is represented by
a line that links two operators and is defined to be the vacuum
expectation value of the time-ordered product given by

(A33)

Since our QED interaction-Hamiltonian density contains electron
and photon operators, the time-ordered product in our S-matrix
of Eq. (A29) will be expanded with two types of contractions: elec-
tronic and photonic. The contraction of two electron field operators
[of Eq. (A7)] components α and β is defined with respect to the last
formula by

(A34)

where [SF
Ae(x, y)]αβ is the α,β matrix component of the Feynman

electron propagator, which in turn satisfies the Dirac propagator
equation

[γμ(ih̵∂μ + eAe
μ(x)) −mec]SF

Ae(x, y) = 𝟙4δ(x − y), (A35)

cf. Eq. (A4). Furthermore, one can show that the following identities
hold:

(A36)

These relations show that the only nonzero contractions are between
electron field operators and their adjoints. The free Feynman elec-
tron propagator SF

0(x, y) , corresponding to the case Aμ(x) = 0, can
be written as

SF
0(y, x) = lim

ϵ→0 ∫
d4p
(2πh̵)4 e−

i
h̵ p⋅(y−x)SF

0(p),

with

SF
0(p) = γμpμ +mec

p2 −me2c2 + iϵ
, (A37)

where SF
0(p) is the Fourier transformed free-electron propagator.

The role of the small positive number ϵ is to shift energy-poles
(at the energy–momentum relation) with respect to the Feynman
prescription.

Similarly, the contraction of two photon operators [of Eq. (A9)]
is defined by the following expression:

(A38)

where DF
μν(x, y) , the photon propagator in the Feynman gauge, is

given by the expression

DF
μν(x, y) = lim

ϵ→0 ∫
d4p
(2πh̵)4 e−

i
h̵ p⋅(x−y)DF

μν(p),

with

DF
μν(p) = gμνDF(p) = − h̵2

cϵ0

gμν
p2 + iϵ

, (A39)

and it satisfies the Maxwell Green’s-type equation

∂σ∂
σDF

νθ(x, y) = gνθ
ϵ0c

δ(x − y). (A40)

This equation is obtained after imposing the Lorenz gauge condi-
tion, otherwise this propagator will not be invertible; see Schwartz
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in Ref. 163 (Sec. 8.5). We should finally note that the F superscript
on both propagators is added to indicate that these are Feyn-
man propagators. This means that when writing the propagators as
Fourier transforms, the energy-integrals are to be taken along the
Feynman contour. Different choices of paths (contours) lead to dif-
ferent propagators (retarded and advanced), but they all satisfy the
corresponding Dirac and Maxwell equations.

5. Bound-electron propagator expansion
The bound Feynman propagator SF

Ae(x2, x1) of Eq. (A34) can
be expanded in powers of the external potential as [Refs. 86,
Eqs. (2)–(119) and 164, Eq. (16)]

SF
Ae(x2, x1) = SF

0(x2, x1)− ∫ d4x3SF
0(x2, x3)eAe

μ(x3)γμSF
0(x3, x1)+ ⋅ ⋅ ⋅

(A41)

and written in terms of the free-electron propagator SF
0(x2, x1) of

Eq. (A37). It is worth noting that the bound Feynman propaga-
tor can be related to the bound Dirac Green’s function GAe by the
relation of Ref. 162 [Eq. (32)]

SF
Ae(x2, x1) = 1

ih̵
1

2πi∫CF

dz GAe(x2, x1; z)γ0e−
i
h̵ z(t2−t1). (A42)

This Green’s function satisfies

[HD(x2) − z]GAe(x2, x1; z) = 𝟙4δ(x2 − x1), (A43)

cf. Eqs. (A4) and (A35). Using Eqs. (A41) and (A42), and integrating
over time variables, one obtains the potential expansion associated
with the Green’s function given by

GAe(x2, x1; z) = G0(x2, x1; z) + ec∫ d3x3G0(x2, x3; z)
× Ae

μ(x3)αμG0(x3, x1; z) + ⋅ ⋅ ⋅ , (A44)

where the free Dirac Green’s function is given by G0 = limAe→0 GAe .
These two expansions are known as the potential expansion, where
consecutive terms are known as the zero-, one-, and many-potential
terms. The main utility of this expansion is that it allows the isola-
tion of ultraviolet divergent integrals encountered when evaluating
loop integrals as done by Baranger et al.,72 and later by many authors
working within the BSQED theory.

6. No-photon BSQED energy-shifts
Using the S-matrix expansion of Eq. (A29), one can expand

Sucher’s energy-shift expression of Eq. (A25) in powers of the

interaction-Hamiltonian density and write, following Mohr in
Ref. 165 [Eqs. (18) and (31)],

ΔEα = lim
ϵ→0
λ→1

iϵλ
2
[⟨Φα

0 ∣Ŝ (1)(ϵ, λ)∣Φα
0⟩ + 2⟨Φα

0 ∣Ŝ (2)(ϵ, λ)∣Φα
0⟩

− ⟨Φα
0 ∣Ŝ (1)(ϵ, λ)∣Φα

0⟩
2 +O(λ3)], (A45)

where Ŝ (n) is given in Eq. (A29). We shall now consider a system of
n electrons and zero photons (photon vacuum), represented by the
following electron-photon state, labeled by α:

∣Φα
0⟩ = ∣nαe , 0αp⟩. (A46)

We remind the reader that the electron field operators entering
in our expressions describe noninteracting electrons, in the presence
of an external potential, as also seen in the zeroth-order electron
Hamiltonian of Eq. (A21). As already pointed out in Sec. II, the
electron–electron interaction arises from terms describing exchange
of virtual photons between bound electrons.

Since the photon state is chosen to be the vacuum one, this
means that any string of photon operators that is not fully con-
tracted will vanish under the photon vacuum expectation value
of Eq. (A25). Following this reasoning, one concludes that the
first non-vanishing QED correction comes from the second-order
Ŝ (2) -matrix

Ŝ (2)(ϵ, λ) = − λ2

2h̵2c2 ∫ d4x1 ∫ d4x2 e−
ϵ
h̵ (∣t1 ∣+∣t2 ∣)T[ĤI(x1)ĤI(x2)].

(A47)
Using Wick’s theorem, we expand the electron and photon

time-ordered products and then replace operator contractions by
their corresponding propagators, following the contraction defini-
tions of Eqs. (A34) and (A38). Furthermore, using the symmetry
properties of the photon propagator of Eq. (A39),

DF
μν(x, y) = DF

μν(y, x) = DF
νμ(x, y), (A48)

the second-order S-matrix of Eq. (A47) can be shown to reduce to
the following expression:

Ŝ (2)(ϵ, λ) = −λ
2e2

2h̵2 ∫ d4x1 ∫ d4x2e−
ϵ
h̵ (∣t1 ∣+∣t2 ∣)F̂(x1, x2), (A49)

where the operator F̂(x1, x2) contains the following five QED
corrections to the noninteracting problem:

F̂(x1, x2) = ih̵ DF
μ1μ2(x1, x2) : ¯̂Ψ(x1)γμ1 Ψ̂(x1) ¯̂Ψ(x2)γμ2 Ψ̂(x2) : SP

+ 2h̵2DF
μ1μ2(x1, x2)Tr[SF

Ae(x2, x2)γμ2] : ¯̂Ψ(x1)γμ1 Ψ̂(x1) : VP

− 2h̵2DF
μ1μ2(x1, x2) : ¯̂Ψ(x1)γμ1 SF

Ae(x1, x2)γμ2 Ψ̂(x2) : SE

− ih̵3 DF
μ1μ2(x1, x2)Tr[SF

Ae(x1, x1)γμ1]Tr[SF
Ae(x2, x2)γμ2] D1

+ ih̵3 DF
μ1μ2(x1, x2)Tr[SF

Ae(x2, x1)γμ1 SF
Ae(x1, x2)γμ2] D2. (A50)
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Finally, using Sucher’s energy expression of Eq. (A45), the
second-order energy-shift becomes

ΔEα,2 = lim
ϵ→0
λ→1

iϵλ⟨Φα
0 ∣Ŝ (2)(ϵ, λ)∣Φα

0⟩

= ΔEα,2
SP + ΔEα,2

VP + ΔEα,2
SE + ΔEα,2

D1 + ΔEα,2
D2. (A51)

Each of these terms will be discussed in the next sections and is
represented by a Feynman diagram in Fig. 1. The elements of these
diagrams are the following:

1. Double external lines represent bound electrons, i.e., with
wavefunctions and energies satisfying the interacting Dirac
equation of Eq. (A4), in the presence of a classical time-
independent external potential Ae(x) .

2. Double internal lines represent a virtual bound-electron prop-
agation between the two vertices SF

Ae(x2, x1) and arise from a
single contraction of two electron field operators.

3. Internal wiggly lines connecting two vertices represent prop-
agations of virtual-photons DF

μ2μ1(x2, x1) and come from a
single contraction of two photon field operators.

The last two contributions from Eq. (A50) correspond to fully con-
tracted products, and they are thus free of creation and annihilation
operators. This means that their corresponding energy-shifts ΔEα,2

D1
and ΔEα,2

D2 are state-independent and hence do not contribute to
energy-differences. They are therefore discarded from further con-
sideration; see for instance Mohr in Ref. 165. On the other hand, the
first three contributions correspond to partially contracted products,
associated with the following physical processes:

a. SP: Single-photon exchange
This process, coming from the SP term in Eq. (A50) and rep-

resented in Fig. 1(a), describes electron–electron interaction in its
lowest order, where an electron feels the existence of the other
electron through the exchange of a single virtual-photon. After inte-
grating over times t1 and t2 in Eq. (A49), and taking limits in
Eq. (A51), this correction yields an instantaneous direct interaction-
term, in addition to a retarded exchange interaction-term, analogous
to the direct and exchange terms in the Hartree–Fock theory,

ΔEα,2
SP =

e2

2∑i,j ∫
d3x1 ∫ d3x2ψ̄i(x1)γμψi(x1)

× 1
4πϵ0∣x1 − x2∣ ψ̄j(x2)γμψj(x2) Direct

− e2

2∑i,j ∫
d3x1 ∫ d3x2ψ̄i(x1)γμψj(x1)

× e+
i

ch̵ ∣Ei−Ej∣∣x1−x2 ∣

4πϵ0∣x1 − x2∣ ψ̄j(x2)γμψi(x2) Exchange, (A52)

as noted by Mohr in Ref. 166 (Sec. IV). Notice that for μ = 0 and
μ = 1, 2, 3, these integrals account for the Coulomb and Gaunt inter-
action, respectively. On the other hand, if we used the Coulomb
gauge photon propagator instead of the Feynman one, we would
get the retarded Breit interaction, as noted by Lindgren in Ref. 167
(p. 262).

b. VP: Vacuum polarization
This process, presented in Fig. 1(b), accounts for the instan-

taneous interaction of a bound electron with the electron–positron
pair cloud polarized by the presence of a classical potential source.
After plugging the VP term of Eq. (A50) in the second-order scatter-
ing matrix expression, one can use Sucher’s formula of Eq. (A45)
to write the energy-shift associated with the vacuum polarization
process as Ref. 59 [Chap. 15, Eq. (205)],

ΔEαVP = −e∑
i
∫ d3x1ψ̄i(x1)γμψi(x1)φμVP(x1). (A53)

We note that the vacuum polarization effect is local, i.e., it can
be written as an expectation value of a local vacuum polarization
four-potential given by

φμVP(x1) = ieh̵∫ d3x2
Tr[γμSF

Ae(x2, x2)]
4πϵ0∣x1 − x2∣ . (A54)

The energy expression of Eq. (A53) (as well as the last potential)
is divergent due to the fact that

lim
x1→x2

SF
Ae(x2, x1) = ∞, (A55)

as mentioned in Ref. 168. The isolation of the divergent terms in this
expression can be done by expanding the propagator inside the trace
using Eq. (A41), and the energy can be written as

ΔEα,2
VP = ΔEα,2

VP,0 + ΔEα,2
VP,1 + ΔEα,2

VP,2 + ⋅ ⋅ ⋅ (A56)

where ΔEα,2
VP,i represents the term that corresponds to an i num-

ber of interactions with the external potential (Zα)i. The first four
terms are presented in Figs. 3(a)–3(d). Notice that the double-line
loop is replaced by a single-line one. This is made to indicate that
the propagators between these vertices are the free ones SF

0 instead
of the bound ones SF

Ae . Using Furry’s theorem,169 which is based
on a charge conjugation symmetry argument, one can show that
diagrams containing a free-electron loop with an odd number of ver-
tices do not contribute. This means that the above energy expression
reduces to

ΔEα,2
VP = ΔEα,2

VP,1 + ΔEα,2
VP,3 + ⋅ ⋅ ⋅ (A57)

A naive estimation of the degree of divergence of a QED inte-
gral can be done by calculating the superficial degree of divergence
S that simply counts overall momentum powers of the integral in
question (in momentum-space),

S ≡ 4 −Ne − 2Np, (A58)

where four is the spacetime dimension and Ne and Np are the num-
ber of electron and photon propagators, respectively, in the loop in
question; see for instance Refs. 60 (Sec. 10.1) and 86 (Secs. 7-1-4 and
8-1-3). The integral is said to be superficially divergent if S ≥ 0. The
possible cases are

S ≤ 0 : convergence,
S = 0 : logarithmic divergence,
S = 1 : linear divergence,
S = 2 : quadratic divergence.

(A59)
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FIG. 3. First four bound-state vacuum polarization processes, obtained after
expanding the bound propagator in powers of the external potential. A wiggly line
ending with a cross × indicates an interaction with the external field. (a) α(Zα)0,
(b) α(Zα)1, (c) α(Zα)2, and (d) α(Zα)3.

This naive estimation usually overestimates the effective degree
of divergence, which we shall call E, and this can be seen after fur-
ther analysis of the integral in question. As a consequence, some
superficially divergent integrals can be effectively less divergent, or
hopefully convergent. In Table XVII, we list the superficial and
effective divergences of the first vacuum polarization terms. The
reader should notice that with higher-order terms, more propagators
are included in the momentum-space integral, meaning that more
denominator powers are added, and as a consequence, the integral
becomes less divergent.

We shall now focus on the first non-vanishing vacuum polar-
ization contribution ΔEαVP,1. As seen in Table XVII, this term is of
superficial quadratic divergence, but it is effectively only logarith-
mic. This can be shown using the Ward identity, as mentioned by
Peskin and Schroeder in Ref. 60 (Sec. 7.5). After the employment

TABLE XVII. Superficial and effective degrees of divergence for the bound-state
vacuum polarization contributions.

Terms S E

α(Zα)1 2 0
α(Zα)3 0 <0
α(Zα)5 <0 <0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

of regularization, followed by renormalization (discussed in Subsec-
tion 6 d of the Appendix), one may extract the physical contribution
out of the divergent ΔEα,2

VP,1. In the case where the Hamiltonian is
invariant under time-reversal symmetry, i.e., if the external vector
potential Ae(x) vanishes, cf. Greiner in Ref. 170 [Eqs. (12.52) and
(12.53)], then only the time-component potential φ0

VP,1 survives, and
one obtains the Uehling potential,23 given in Eq. (8).

For detailed discussions and derivations of the one-potential
bound-state vacuum polarization correction, the reader may consult
the calculation of Greiner and Reinhardt in Ref. 85 (Sec. 5.2) where
the authors used Pauli–Villars regularization in addition to that of
Peskin and Schroeder in Ref. 60 (Sec. 7.5) who used dimensional
regularization to treat the occurring divergences; see also the work
of Mandl and Shaw in Ref. 78 (Sec. 10.4), in addition to Schwartz
in Ref. 163 (Sec. 16.2.2). Contrary to the conventional momentum-
space approach to evaluate QED corrections, Indelicato and Mohr
in Ref. 168 (Sec. B) considered the vacuum polarization problem
in coordinate-space and derived the physical Uehling contribution
using coordinate-space Pauli–Villars regularization.

The second non-vanishing vacuum polarization effect, asso-
ciated with ΔEα,2

VP,3 and presented in Fig. 3(d), is known as the
Wichmann–Kroll effect.70 As seen in Table XVII and noted by Gyu-
lassy,171 this contribution is free of divergences. Wichmann and
Kroll calculated the effective potential associated with the ΔEα,2

VP,3
correction in Laplace space. On the other hand, in Ref. 172 (Sec. 4),
Blomqvist has evaluated the inverse Laplace-transform and obtained
the real-space potential expression for a point nuclear charge dis-
tribution. The last reference presents a relatively complex analytical
expression for this α(Zα)3 potential, and this motivated Fainshtein
et al.173 to provide an approximation that facilitates the numerical
computation while conserving precision.

We finally note that in the fourth-order BSQED correction,
one finds the Källén–Sabry potentials71 of order α2(Zα) that can be
obtained by expanding the bound propagators of Ref. 162 [Fig. 25
diagrams (b) and (c) VPVP]. In order to make this momentum-
space potential useable in practical calculations, in Ref. 172 (Sec. 3),
Blomqvist derived its real-space version for a point nucleus distribu-
tion, whereas Fullerton and Rinker generalized this result to account
for an extended nuclear charge distribution; see Ref. 66 [Eq. (9)].
We finally note that the latter authors provided a good approxima-
tion of the corresponding potential in order to render the numerical
evaluation more practical.

c. SE: Self-energy
The self-energy process, presented in Fig. 1(c), is the domi-

nant radiative QED correction in electronic atoms, as seen in the
work of Johnson and Soff of Ref. 123 (Fig. 2). This process describes
the interaction of the bound electron with itself by emitting and
absorbing a virtual-photon. The first calculation for this correction
was made in 1947 by Bethe in a purely nonrelativistic framework,174

where he used a renormalization technique (by subtracting the free
self-energy) to render the integral less divergent and introduced
a reasonable virtual-photon energy cutoff at E = mec2. This sim-
ple calculation gave hope in digging for the physical Lamb shift in
the frustrating nonphysical divergences in the QED theory. Using
Sucher’s energy formula of Eq. (A45), the SE term of Eq. (A50) leads
to the following energy-shift:
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ΔEα,2
SE = −e∑

i
∫ d3x1 ∫ d3x2ψ†

i (x2)φSE(x2, x1; Ei)ψi(x1), (A60)

where the self-energy potential is given by

φSE(x2, x1; Ei) = − e
2πi∫CF

dzαμGAe(x2, x1; z)αμ

×
exp(+ i

h̵ ∣x1 − x2∣
√
(z − Ei)2/c2 + iϵ)

4πϵ0∣x1 − x2∣ . (A61)

Similar forms of this equation are provided by Schweber in
Ref. 59 [Eq. (205)] and Mohr in Ref. 175 [Eq. (2.6)]. Notice at this
point that unlike the vacuum polarization case, the self-energy is a
nonlocal effect, as seen from Eq. (A60), and this is the reason behind
the complexity of its analytical and numerical evaluation. As in the
vacuum polarization case, the self-energy potential is a divergent
quantity and needs to be regularized. In order to isolate divergent
terms, one can use the Green’s function (propagator) expansion of
Eq. (A44) and write the total energy-shift as

ΔEα,2
SE = ΔEα,2

SE,0 + ΔEα,2
SE,1 + ΔEα,2

SE,2 + ⋅ ⋅ ⋅ , (A62)

where ΔEα,2
SE,i represents the process in which the internal electron

interacts i times with the external potential, it is thus associated
with the α(Zα)i order. The first four terms of the last expansion
are represented in Figs. 4(a)–4(d). The zero- and one-potential
terms, ΔEα,2

SE,0 and ΔEα,2
SE,1, are known as the (free) self-energy and

the vertex-correction processes. These two contributions are loga-
rithmically divergent (in momentum-space), while all higher-order
ones are convergent, as presented in Table XVIII. A coordinate-
space treatment of these quantities has been provided by Indeli-
cato and Mohr.75,168,175 Using the bound propagator expansion of
Eq. (A41), one obtains the scattering matrices associated with these
two processes:

Ŝ (2)SE,0(ϵ, λ) = λ2e2 ∫ d4x1 ∫ d4x2e−
ϵ
h̵ (∣t1 ∣+∣t2 ∣)DF

μ1μ2(x1, x2) :

× ¯̂Ψ(x1)γμ2 SF
0(x1, x2)γμ1 Ψ̂(x2) :, (A63)

Ŝ (2)SE,1(ϵ, λ) = −λ2e2 ∫ d4x1 ∫ d4x2e−
ϵ
h̵ (∣t1 ∣+∣t2 ∣)DF

μ1μ2(x1, x2) :

× ¯̂Ψ(x1)γμ1 ∫ d4x3SF
0(x1, x3)eAe

μ(x3)
× γμSF

0(x3, x2)γμ2 Ψ̂(x2) : . (A64)

The next step is to transform these two real-space integral
S-matrices into Fourier-space ones. We first use the electron and
photon propagators of Eqs. (A37) and (A39) and write elec-
tron field operators and the external (classical) potential in their
Fourier-integral forms,

Ψ̂(x) = ∫ d4p
(2πh̵)4 e−

i
h̵ p⋅xΨ̂(p),

Ae(x) = ∫ d4p
(2πh̵)4 e−

i
h̵ p⋅xAe(p).

(A65)

We finally note that variable dependence indicates in which space
the corresponding physical quantity is: We use x variables for

FIG. 4. First four bound-state self-energy processes, obtained after expanding the
bound propagator in powers of the external potential. (a) α(Zα)0, (b) α(Zα)1,
(c) α(Zα)2, and (d) α(Zα)3.

space-time points (coordinate-space) and p and q variables for
four-momentum points (in momentum-space). The first S-matrix
Ŝ (2)SE,0(ϵ, λ) (the zero-potential bound-state self-energy) becomes

Ŝ (2)SE,0(0, 1) = ∫ d4q
(2πh̵)4 : ¯̂Ψ(q)γμΣ(q)γμΨ̂(q) :, (A66)

Σ(q) = e2 ∫ d4p
(2πh̵)4 SF

0(q − p)DF(p). (A67)

Here, Σ(q) is the so-called self-energy matrix function {see, for
instance, Mandl and Shaw in Ref. 78 [Eq. (9.20)]}. Notice that in the
limit of large momentum p, the integrand behaves as ∝ 1

γμ(q−p)μ
1
p3 ,

TABLE XVIII. Superficial and effective degrees of divergence for the bound-state self-
energy contributions.

Terms S E

α(Zα)0 1 0
α(Zα)1 0 0
α(Zα)2 <0 <0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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which indicates a superficial linear divergence. However, with fur-
ther investigation, one can show that this divergence is reduced by
one degree, as noted by Schweber in Ref. 59 (Sec. 15a), and presented
in Table XVIII. Following the same steps, one can show that the sec-
ond scattering matrix, associated with the one-potential bound-state
self-energy process Ŝ (2)SE,0(0, 1), can be written as

Ŝ (2)SE,1(0, 1) = − e
ih̵ ∫

d4p2

(2πh̵)4 ∫
d4p1

(2πh̵)4 Ae
μ(p2 − p1) : ,

× ¯̂Ψ(p2)Λμ(p2, p1)Ψ̂(p1) : , (A68)

Λμ(p2, p1) = ih̵e2γν ∫ d4q
(2πh̵)4 DF(q)SF

0(p2 − q)γμSF
0(p1 − q)γν,

(A69)
where in the last equation, Λμ(p2, p1) is the so-called vertex-
correction function; see, for instance, the work by Mandl and Shaw78

[Eq. (9.48)]. A detailed study of these momentum-space expressions
and associated energy-shifts in the bound-electron problem was first
considered by Snyderman in Ref. 176 (Sec. 4) (see also the work by
Yerokhin and Shabaev177).

d. Regularization and renormalization
When computing integrals associated with QED corrections,

one finds (as already seen) that some of these integrals are diver-
gent. How can one extract the meaningful finite (physical) from
the meaningless infinite? This is done through regularization and
renormalization.

Regularization is a technique for rendering a divergent integral
convergent, albeit still dependent on the regularization-parameter.
The main regularization techniques are sharp momentum-cutoff,
Pauli–Villars,178 dimensional-regularization,179 and analytic contin-
uation180 regularization. The reader may also consult the work of
Zeidler in Ref. 181 (Chap. 2) for a general conceptual formulation of
regularization schemes. The sharp momentum-cutoff regularization
consists of cutting off momentum contributions higher than a some
pmax = Λ≫ mec. Unfortunately, this intuitive regularization breaks
Lorentz- and gauge-invariance and the solution is to use the other
regularization schemes. The Pauli–Villars regularization consists of
modifying the photon and electron propagators by introducing new
propagators, associated with auxiliary masses (entering in propaga-
tors), for the self-energy and vacuum polarization processes. Finally,
one can use dimensional regularization, which is based on the fact
that logarithmically divergent integrals (as for the divergences asso-
ciated basic QED processes) are convergent if one modifies the
space-time dimensions through d = 4→ d = 4 − ϵ, where ϵ is a small
positive number. In all cases, after regularization, the divergent inte-
grals are parameterized by the regularization parameters and are still
divergent in the limit Λ→∞ or ϵ→ 0, for instance. This is where
renormalization comes into play.

Renormalization is a mathematical technique that consists of
redefining the electron mass and charge (in addition to fields) such
that the divergences, coming from including the QED corrections,
are eliminated: absorbed by the bare physical quantities. It should
be noted at this point that the experimentally observed mass and
charge, mexp and eexp, are results of experiments that already include
QED corrections. On the other hand, one can imagine a world in

which the QED interaction is switched off; in this world, one would
measure what is known as bare mass and charge: m0 and e0. This
distinction clearly shows that the electron mass and charge that we
start with (before switching QED on: before taking it into consider-
ation) should be the bare ones instead of the measured ones. This
awareness played a crucial role in formulating the renormalization
theory. Since we do not have access to bare quantities, and since
infinity is not natural (not measurable), the renormalization theory
says that we are allowed to redefine our physical constants such that
the bare ones absorb the emerging divergences and lead to overall
values of the physical constants that correspond to the experimen-
tally observed ones. Detailed discussions on renormalization in the
quantum field theory are provided by Collins in Ref. 182, Greiner
and Reinhardt in Ref. 85 (Chap. 5), Peskin and Schroeder in Ref. 60
(Chap. 7), Itzykson and Zuber in Ref. 86 (Sec. 7.1), and Huang in
Refs. 183 (Chap. 13) and 184.
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