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Abstract

In recent years, light detection and ranging technology has been applied to
tunnel engineering. Although more accurate than traditional measurement
techniques, estimating the tunnel deformation from the light detection and
ranging point cloud remains challenging. This paper proposes a deformation
estimation method using elliptic Fourier analysis, whereby the tunnel defor-
mation is estimated from the difference in the Fourier series representations
of the tunnel outline before and after deformation. The applicability of the
proposed method for a circular tunnel cross-section is theoretically consid-
ered. Numerical results show that there is almost no error in the estimation of
radial displacement, regardless of the measurement conditions. In contrast,
there is an error in the estimation of circumferential displacement because
this does not modify the circular tunnel outline. Therefore, tunnel deforma-
tion cannot be accurately estimated using point cloud data obtained only
from distance measurements. As a special case, when the full-slip condition
is imposed on the ground–lining interface and the estimated circumferential
displacement of the inner surface is regarded as that of the middle surface,
circumferential displacement can also be accurately estimated. Moreover,
the difference in the deformation patterns under the full-slip and no-slip con-
ditions decreases as the relative stiffness of the lining with respect to the
ground increases. As a result, the deformation estimation accuracy is ex-
pected to be high for tunnels with a high possibility of deformation. When
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the distance measurement error is considered, the estimation accuracy of the
displacement decreases, especially that of the circumferential displacement.
Smoothed data significantly improve the accuracy, and high-precision esti-
mation can be achieved when the measurement error is small compared with
the tunnel deformation. However, small displacement errors produce signifi-
cant stress errors in the higher-order terms of the Fourier series. Therefore,
only the lower-order terms can be used for stress estimations.
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1. Introduction

Displacement measurements have been used for many years to evaluate
the deformation of tunnels during their construction and operation phases.
Tape extensometers and total stations can monitor changes in relative dis-
placement between specified points, though it is difficult to estimate the
overall deformation of the tunnel structure accurately because only a limited
number of points can be monitored in a tunnel cross-section.

In recent years, light detection and ranging (LiDAR) technology has been
applied to tunnel engineering (Yoon et al., 2009; Fekete et al., 2010; Lato and
Diederichs, 2014; Nuttens et al., 2014; Puente et al., 2016; Farahani et al.,
2019; Xu et al., 2019; Jiang et al., 2020; Xie et al., 2021). The resulting point
cloud, which is the set of 3D coordinate data, can be used to estimate the
3D profile of the tunnel. Using LiDAR technology, the overall deformation
of the tunnel structure can be estimated with better accuracy than when
using traditional measurements. Nevertheless, forming accurate estimations
of the tunnel deformation from changes in the profiles obtained by the laser
measurements remains challenging, because the measurements do not track
the movement of points. The actual deformation cannot be estimated from
the changes in profiles without some additional assumptions.

Han et al. (2013b,a) proposed a minimum-distance projection (MDP)
algorithm to identify possible deformations. This method is intuitive and
straightforward, although the validity of the deformation estimated by the
MDP algorithm is unclear. Walton et al. (2014) developed an elliptical fitting
algorithm that offers improved change-detection capabilities when applied to
the deformation monitoring of a circular tunnel. Xie and Lu (2017) estab-
lished a 3D modeling algorithm that processes the point cloud of a circular
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tunnel and displays its relative deformation, including settlement, segment
dislocation, and cross-section convergence, while Cui et al. (2019) proposed a
stepwise ellipse fitting method for the cross-section of a non-perfect circular
tunnel. These methods focus on assessing the ovaling deformation, which is
the most typical tunnel deformation.

Elliptical Fourier analysis (EFA) is a mathematical tool developed by
Kuhl and Giardina (1982) to describe a closed outline quantitatively using a
Fourier series expansion. This method is considered to be a more generalized
method of ellipse fitting. Moreover, its theoretical applicability to tunnel
deformation modeling deserves consideration, because general elasticity so-
lutions are expressed in a similar series expansion (Timoshenko and Goodier,
1951; Einstein and Schwartz, 1979; Yasuda et al., 2017).

This paper proposes a deformation estimation method based on a set of
data points in space obtained on the lining surface using EFA. The applicabil-
ity of the proposed method for a circular tunnel cross-section is theoretically
considered, and the effect of distance measurement errors on the estimation
accuracy is investigated.

2. Theory

2.1. Problem definition

Consider an infinitely long lined circular tunnel with the center O(0, 0),
as shown in Figure. A.1. The tunnel is assumed to be located sufficiently
deep below the ground surface and is under a far-field stress state defined
by the vertical component p and horizontal component kp, where k is the
coefficient of lateral pressure. Compression is taken to be positive, and it
is assumed that p and kp are imposed after the construction of the lining.
The surrounding ground is considered to be an infinite elastic, homogeneous,
isotropic medium. The lining is treated as an elastic, homogeneous, isotropic
medium with an inner radius of R and a thickness of h.

The measurement position is Oobs(xobs, yobs). Robs
i is the measured dis-

tance from the measurement position Oobs to the i-th measurement point
Pi(xi, yi). The first measurement point P1 is assumed to be on the positive
x-axis. The total number of measurement points is K, which is assumed
to be an odd number. θobs0 is the measured angle between the line segment
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Oobsyobs and OobsP1, and is expressed as follows:

θobs0 = tan−1
(
−yobs

R− xobs

)
. (1)

θobsi is the measured angle between the line segment OobsP1 and OobsPi, and
is given by

θobsi =
2π(i− 1)

K
. (2)

For simplicity, the angles are assumed to be evenly spaced, although θobsi can
be chosen arbitrarily.

2.2. Fourier series representation of a tunnel outline before deformation

The i-th measurement point Pi lies at the intersection of a circle and a
straight line. The equation of the circle is

x = R cos θ

y = R sin θ

}
, (3)

and the equation of the line is

y = tan
(
θobs0 + θobsi

) (
x− xobs

)
+ yobs. (4)

From Eqs. (3) and (4), the intersection points from P1 to PK can be derived
analytically. The difference in the x-direction, ∆xi, the difference in the y-
direction, ∆yi, and the distance between the two intersection points, ∆`i, are
given by

∆xi =

{
x1 − xK , (i = K)

xi+1 − xi, (otherwise)
(5)

∆yi =

{
y1 − yK , (i = K)

yi+1 − yi, (otherwise)
(6)

∆`i =
√

∆x2i + ∆y2i . (7)

In EFA, any two-dimensional outline is approximated with a polygon by
connecting the measurement points with straight lines. The sum of the line
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segments from measurement point P1 to Pi+1, `i, and the total length of the
outline, L, are

`i =

{
0, (i = 0)∑i

I=1 ∆`I , (otherwise)
(8)

L = `K =
K∑
i=1

∆`i. (9)

For a truncated harmonic series containing N terms, the coordinates of
the estimated outline can be expanded in parametric form as follows:

x(`) = A0 +
N∑
n=1

(
an cos

2nπ`

L
+ bn sin

2nπ`

L

)
, (10)

y(`) = C0 +
N∑
n=1

(
cn cos

2nπ`

L
+ dn sin

2nπ`

L

)
, (11)

with

N =
K − 1

2
, (12)

A0 = x1 −
N∑
n=1

an, (13)

C0 = y1 −
N∑
n=1

cn. (14)

The four coefficients of the n-th elliptic harmonic term (Kuhl and Giardina,
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1982; Lestrel, 1989) are obtained as

an =
L

2n2π2

K∑
i=1

∆xi
∆`i

(
cos

2nπ`i
L
− cos

2nπ`i−1
L

)
, (15)

bn =
L

2n2π2

K∑
i=1

∆xi
∆`i

(
sin

2nπ`i
L
− sin

2nπ`i−1
L

)
, (16)

cn =
L

2n2π2

K∑
i=1

∆yi
∆`i

(
cos

2nπ`i
L
− cos

2nπ`i−1
L

)
, (17)

dn =
L

2n2π2

K∑
i=1

∆yi
∆`i

(
sin

2nπ`i
L
− sin

2nπ`i−1
L

)
. (18)

As the total number of measurement points K approaches infinity, the
total length of the outline L and the variable representing the position on
the closed outline `i approach 2πR and Rθ, respectively. Thus, the variable
2nπ`i/L approaches nθ.

2.3. Fourier series representation of the tunnel outline after deformation
Tunnel surface deformation can be approximately expressed as follows:

ur(θ) = Ur,0 +
N∑
n=1

(
U c
r,n cosnθ + U s

r,n sinnθ
)
, (19)

uθ(θ) = Uθ,0 +
N∑
n=1

(
U c
θ,n cosnθ + U s

θ,n sinnθ
)
, (20)

where Ur,0, U
c
r,n, U s

r,n, Uθ,0, U
c
θ,n, and U s

θ,n are constants. The displacement
can be converted from polar to Cartesian coordinates using the transform(

ux
uy

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ur
uθ

)
. (21)

As a result, the displacement in Cartesian coordinates can be expressed as
follows:

ux(θ) = Ux,0 +
N∑
n=1

(
U c
x,n cosnθ + U s

x,n sinnθ
)
, (22)

uy(θ) = Uy,0 +
N∑
n=1

(
U c
y,n cosnθ + U s

y,n sinnθ
)
, (23)
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where Ux,0, U
c
x,n, U s

x,n, Uy,0, U
c
y,n, and U s

y,n are constants.
The i-th measurement point P ′i is defined as the intersection of the de-

formed circular tunnel and a straight line, where the prime is used to denote
variables after tunnel deformation. The equation of the deformed tunnel is

x′ = R cos θ + ux(θ)

y′ = R sin θ + uy(θ)

}
, (24)

and the equation of the line is

y′ = tan
(
θobs0 + θobsi

) (
x′ − xobs

)
+ yobs. (25)

From Eqs. (24) and (25), the intersection points from P ′1 to P ′K can be ob-
tained numerically.

The coordinates of the estimated outline after tunnel deformation can be
expanded in a similar form to Eqs. (10) and (11):

x′(`′) = A′0 +
N∑
n=1

(
a′n cos

2nπ`′

L′
+ b′n sin

2nπ`′

L′

)
, (26)

y′(`′) = C ′0 +
N∑
n=1

(
c′n cos

2nπ`′

L′
+ d′n sin

2nπ`′

L′

)
. (27)

2.4. Deformation estimation

The magnitude of tunnel deformation is considerably smaller than the
tunnel radius R. Assuming that the relative position on the closed line
does not change before and after tunnel deformation (that is, the assump-
tion `/L ≈ `′/L′ holds), the estimated deformation can be expressed by the
following equations:

uestx (`) ≈ (A′0 − A0) +
N∑
n=1

{
(a′n − an) cos

2nπ`

L
+ (b′n − bn) sin

2nπ`

L

}
, (28)

uesty (`) ≈ (C ′0 − C0) +
N∑
n=1

{
(c′n − cn) cos

2nπ`

L
+ (d′n − dn) sin

2nπ`

L

}
. (29)

In this paper, to enable comparisons with the theoretical solution, Eqs. (28)
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and (29) are further approximated as follows:

uestx (θ) = (A′0 − A0) +
N∑
n=1

{(a′n − an) cosnθ + (b′n − bn) sinnθ} , (30)

uesty (θ) = (C ′0 − C0) +
N∑
n=1

{(c′n − cn) cosnθ + (d′n − dn) sinnθ} . (31)

These expressions can be written in polar coordinates as

uestr (θ) = U est
r,0 +

N∑
n=1

(
U est,c
r,n cosnθ + U est,s

r,n sinnθ
)
, (32)

uestθ (θ) = U est
θ,0 +

N∑
n=1

(
U est,c
θ,n cosnθ + U est,s

θ,n sinnθ
)
, (33)

where U est
r,0 , U est,c

r,n , U est,s
r,n , U est

θ,0 , U est,c
θ,n , and U est,s

θ,n are constants.

2.5. Circumferential stress of the lining

For simplicity, the lining is treated as an elastic cylindrical shell of thick-
ness h. The mean radius of the lining Rmid is R + h/2. The conversion
from the displacement of the inner surface, which is obtained from the mea-
surements, to that of the middle surface is given by the following equation
(Flügge, 1973):

ur,mid = ur, (34)

uθ,mid =
2R + h

2R

(
uθ −

h

2R + h

dur
dθ

)
. (35)

The radial displacement does not change in the direction of the thickness of
the lining.

The axial thrust nθθ and the bending moment mθθ of the lining can be
calculated from the displacement of the middle surface. These quantities can
be expressed as follows (Flügge, 1973):

(
nθθ
mθθ

)
=

 D`

Rmid
+ K`

R3
mid

(
1 + d2

dθ2

)
D`

Rmid

d
dθ

K`

R2
mid

(
1 + d2

dθ2

)
0

(ur,mid

uθ,mid

)
, (36)
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with:

D` =
E`h

1− ν2`
, (37)

K` =
E`h

3

12(1− ν2` )
. (38)

D`, K` are the extensional rigidity and flexural rigidity of the lining, respec-
tively, and E`, ν` are the Young’s modulus and Poisson’s ratio of the lining,
respectively.

The circumferential stress at the surface of the lining, σθθ, can be approx-
imated from nθθ and mθθ as follows:

σθθ =
nθθ
h
± hmθθ

2I
, (39)

with:

I =
h3

12
, (40)

where I is the moment of inertia of the lining. The ± sign in Eq. (39) denotes
that the upper side is chosen for the inner surface and the lower side is chosen
for the outer surface.

3. Numerical results

The material properties used for the following calculations are given in
Table A.1. The tunnel radius is 5.0 m and the lining thickness is 10% of
that. As a basic case, soft ground is assumed because it often causes prob-
lems with the lining. The Young’s modulus of the ground Eg is assumed to be
0.30 GPa, which is 1% of that of the concrete lining. The i-th measurement
point P ′i , which is obtained by solving Eqs. (24) and (25) simultaneously, is
derived using a numerical solver (vpasolve) in MATLAB. Either the no-slip
(no relative shear displacement) or full-slip (no shear stress transmission)
condition is imposed on the ground–lining interface to derive the theoretical
deformation expressed by Eqs. (19) and (20). Details regarding the calcula-
tion of the deformation can be found in Yasuda et al. (2017). The first 51
terms of the series are used to obtain the following estimates (the upper limit
of summation N is assumed to be 50 in Eqs. (32) and (33)).
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Figure A.2 shows the estimated displacement distribution for two kinds of
measurement positions: Oobs(0, 0), at the center of the tunnel, andOobs(−3,−3),
which is close to the tunnel wall. The u is the given displacement vector ex-
pressed by Eqs. (22) and (23), and the uest is the estimated displacement
vector expressed by Eqs. (30) and (31). The displacement has been magni-
fied by a factor of 500. The Young’s modulus of the ground Eg, the vertical
pressure p, and the coefficient of lateral pressure k are 0.30 GPa, 0.10 MPa,
and 0.50, respectively. The total number of measurement points K is 1001.
The no-slip condition is imposed on the ground–lining interface. At measure-
ment position Oobs(0, 0), the given displacement vector u and the estimated
displacement vector uest are in good agreement. In contrast, in the case
of Oobs(−3,−3), uest is shifted in a counterclockwise direction. Figure A.3
presents the results of Fig. A.2 in terms of radial and circumferential dis-
placement. The ur and uθ are expressed by Eqs. (19) and (20), the uestr and
uestθ are expressed by Eqs. (32) and (33), and the uθ,mid are expressed by
Eq. (35). In addition, in the case of Oobs(−3,−3), a modified estimated cir-
cumferential displacement in which the rigid body rotation component U est

θ,0

is set to zero is plotted. In both cases, there is no difference in the distri-
bution of ur and uestr . In contrast, there is a difference in the distribution of
uθ and uestθ , especially at Oobs(−3,−3). At Oobs(0, 0), uestθ is closer to uθ,mid

than to uθ, although uestθ should be closer to uθ. The distribution of uestθ
at both measurement points is in agreement when U est

θ,0 is set to zero. Fig-
ure A.4 shows the estimated circumferential stress. σest

θθ , which is obtained
from Eqs. (34)–(39), is not consistent with σθθ. In contrast, σest,m

θθ , which is
obtained from Eqs. (36)–(39) with the estimated displacement regarded as
the displacement of the middle surface, is relatively consistent with σθθ. The
maximum value of σest,m

θθ is approximately 88% of that of σθθ.
Figure A.5 shows estimated solutions for Eg = 3.0 GPa, which is 10 times

that of the basic case. There is no difference in the distribution of ur and
uestr . The difference in the distributions of uθ and uestθ for Eg = 3.0 GPa is
greater than that for Eg = 0.3 GPa, and uestθ is closer to uθ,mid than to uθ.
The maximum value of σest,m

θθ is approximately 77% of that of σθθ, and the
estimation accuracy is lower than that for Eg = 0.3 GPa.

Figure A.6 shows estimated solutions under the full-slip condition. The
given solutions and the estimated solutions are in agreement when the esti-
mated circumferential displacement is regarded as that of the middle surface,
instead of that of the inner surface.

Figure A.7 shows the normalized stress of the inner surface for various
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values of the Young’s modulus of the ground, Eg. The maximum value of
σest,m
θθ is divided by that of σθθ to evaluate the estimation accuracy. When the

no-slip condition is imposed on the ground–lining interface, the normalized
stress becomes less than 1 as Eg increases. In contrast, when the full-slip
condition is imposed, the normalized stress remains close to 1, regardless of
Eg.

Figure A.8 shows the normalized stress of the inner surface for various
lateral pressure coefficients k. When the no-slip condition is imposed, the
normalized stress decreases as the value of k deviates from 1. The minimum
stress occurs when k = −1. In contrast, when the full-slip condition is
imposed, the normalized stress remains close to 1 and is independent of k.

We have so far considered the deformation of the lining into an oval shape.
In the following, we consider the case where there is a void behind the lining,
which can produce more complex deformation under a far-field stress state
defined by the vertical component p and horizontal component kp. The void
is treated as a partially non-contact boundary between the lining and the
ground (Yasuda et al., 2017), and is assumed to range from θ = 60◦–120◦.
The first 51 terms of the series (the upper limit of summation N is assumed
to be 50 in Eqs. (19) and (20)) are used to obtain the converged theoretical
solutions.

Figure A.9 shows the estimated solutions when the no-slip condition is
imposed on the ground–lining interface. The accuracy and trends of the
estimated solutions when there is a void are basically the same as when there
is no void. It can be estimated well even when the complicated deformation
occurs. The estimated displacement vector is shifted in a clockwise direction,
despite being measured at the center of the tunnel. The estimation accuracy
of the circumferential displacement can be improved by ignoring the rigid
body rotation component.

Figure A.10 shows the estimated circumferential stress in the case of large
vertical loading p. The full-slip condition is imposed on the ground–lining
interface. An unrealistically large loading is applied for the purpose of this
example. There is almost no difference between σθθ for p = 0.10 MPa, σest,m

θθ

for p = 0.10 MPa, and σest,m
θθ /10 for p = 1.00 MPa. There is a slight difference

between σest,m
θθ for p = 0.10 MPa and σest,m

θθ /100 for p = 10.0 MPa.
Figure A.11 shows the estimated circumferential stress when the measure-

ment position Oobs is changed. The measurement position before deformation
is (0, 0) and that after deformation is (-3, -3). When the total number of
measurement points K is 1001, there is a slight difference between σθθ and
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σest,m
θθ . The estimation accuracy becomes lower when the measurement po-

sition is changed, as shown by a comparison with Fig. A.10. Nevertheless,
when the total number of measurement points K is 10001, the estimation
error is almost eliminated.

In the actual measurements, errors occur when measuring the distance
Robs. Figure A.12 shows an example of the measurement results after defor-
mation when considering the distance measurement error. The total number
of measurement points K is 10001. The measurement error is assumed to be
a random error following a normal distribution with a mean of zero and stan-
dard deviation σ of 0.3 (mm). Thus, the maximum distance measurement
error is approximately 1 mm. The deformation and the measurement error
are magnified by a factor of 500. The smoothed results of the moving average
are also plotted; each moving average result comes from the unweighted mean
of the previous 50 and next 50 points (i.e., a total of 101 points and equivalent
to 3.6◦ in the circumferential direction). Figure A.13 shows the estimated so-
lutions. The estimated stress series only includes 11 terms (N is assumed to
be 10 in Eqs. (32) and (33)) to prevent the solution from diverging. The max-
imum error without smoothing of the estimated radial displacement is less
than 1σ (=0.3 mm). In contrast, that of the estimated circumferential dis-
placement is considerably larger than 1σ. Smoothing significantly improves
the estimation accuracy of the circumferential displacement. The stress can
be estimated with a certain degree of accuracy when smoothing is applied.
Figure A.14 shows the magnitude of each term of the Fourier series, allowing
the contribution of each term to be estimated. Small errors in displacement
translate to large errors in stress, especially in the higher-order terms.

4. Discussion

There is almost no error in the estimation of radial displacement, regard-
less of the conditions, as shown in Figs. A.3, A.5, A.6, and A.9. In contrast,
there are persistent errors in the estimation of circumferential displacement.
Errors in the circumferential direction are inevitable because the circumferen-
tial displacement does not contribute to changes in the outline of a circular
tunnel. Basically, the tunnel deformation cannot be accurately estimated
using only the point cloud data obtained by distance measurements.

The errors produced by clockwise or counterclockwise rigid body rotation
are noticeable because we have assumed that the tunnel cross-section is cir-
cular. Generally, the tunnel is surrounded by the ground, and no rigid body
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rotation occurs. Therefore, the component that contributes to the rigid body
rotation U est

θ,0 should be set to zero when estimating the deformation. Indeed,
this works well, as shown in Figs. A.3 and A.9.

As a special case, when the full-slip condition is imposed and the esti-
mated circumferential displacement of the inner surface is regarded as that
of the middle surface, there is almost no error in the estimation, including
that of the circumferential stress, as shown in Fig. A.6. This is because
the assumptions of the proposed estimation method and that of the full-slip
condition are compatible. The proposed estimation method assumes that
the relative position on the closed line is the same before and after tunnel
deformation, as mentioned in Section 2.4. In the case of the full-slip condi-
tion, the same condition holds on the middle surface, as shown in Section
Appendix A. In addition, the radial displacement does not change in the
thickness direction, as shown by Eq. (34), and the radial displacement of
the inner surface and that of the middle surface are the same and can be
estimated accurately. These facts explain why there is almost no error in the
estimation under the full-slip condition.

When the no-slip condition is imposed, lower values of the Young’s modu-
lus of the ground produce more accurate circumferential stress estimations, as
shown in Fig. A.7. This is because the difference in the deformation patterns
under the no-slip and full-slip conditions becomes smaller as the Young’s
modulus of the ground decreases, as shown in Fig. A.15. The U c

r,2 and U s
θ,2

are defined by Eqs. (19) and (20). Specifically, the difference becomes smaller
as the relative stiffness of the lining with respect to the ground increases. This
can be confirmed from the numerical results shown in Fig. A.16 for a thin
lining. Considering the influence of the lateral pressure coefficient k, as this
parameter becomes closer to 1, the estimation accuracy improves, as shown
in Figs. A.8 and A.16. This is because only radial displacement occurs, and
there is no estimation error when k = 1.

In general, when there is a high possibility of tunnel deformation, the
surrounding ground tends to be soft. In such cases, the lateral pressure
coefficient is expected to be close to one, and the relative stiffness of the
lining with respect to the ground is high. Therefore, the estimated tunnel
deformation is expected to be highly accurate.

The magnitude of tunnel deformation is less sensitive to the estimation
accuracy, although the estimation accuracy decreases slightly under large
loading magnitudes, as shown in Fig. A.10. In addition, the measurement
position and the number of measurement points are less sensitive to the

13



accuracy, as shown in Figs. A.3 and A.11. Sufficient accuracy can be obtained
even with 1001 measurement points at irregular intervals.

When errors in the distance measurements are considered, the estimate
accuracy decreases, as shown in Figs. A.13 and A.14. This is especially
noticeable in the estimation of the circumferential displacement. As the cir-
cumferential displacement is not actually measured, the error is likely to be
greater than that of the radial displacement. The estimation accuracy de-
creases as the ratio of the measurement error to the distance between two
adjacent measurement points increases, as predicted by Eqs. (26) and (27).
Hence, increasing the number of measurement points does not always improve
the estimation accuracy. Deformation estimation accuracy may be improved
by reducing the number of data used. In this example, the standard deviation
of the error is 0.3 mm and the distance between the two points is approxi-
mately 3 mm. When considering the distance measurement errors, methods
of reducing the size of the error, such as smoothing, should be considered.
The estimation accuracy of the displacement can be significantly improved
by smoothing, and high accuracy can be achieved when the measurement
error is small compared with the tunnel deformation. However, small errors
in displacement correspond to significant errors in stress in the higher-order
terms of the Fourier series. Therefore, only the lower-order terms can be used
for the circumferential stress estimation when considering the measurement
error.

Based on the above considerations, the applicability of the proposed
method for a circular tunnel has been demonstrated. The advantage of this
method is its wide applicability and high accuracy. The proposed method
can handle more complicated deformations compared with other deforma-
tion evaluation methods, where the ovaling deformation is assumed (Walton
et al., 2014; Xie and Lu, 2017; Cui et al., 2019). Moreover, compared with
the minimum-distance projection algorithm (Han et al., 2013b,a), which as-
sumed the measurement point after deformation has moved in the normal
direction from the estimated surface, this method can estimate the defor-
mation more accurately, as can be predicted from the tunnel deformation in
Fig. A.2.

5. Conclusions

This paper has proposed a deformation estimation method from point
cloud using EFA. The applicability of the method for a circular tunnel cross-
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section was demonstrated under several theoretical considerations. The fol-
lowing conclusions can be drawn from this study:

(1) When considering no error in the distance measurements, there is al-
most no error in the estimation of radial displacement, regardless of
the measurement conditions. In contrast, there is some inherent error
in the estimation of circumferential displacement because this does not
contribute to the change in the outline of a circular tunnel.

(2) The estimation accuracy of the tunnel deformation is expected to be
high in tunnels where there is a high possibility of deformation.

(3) When considering errors in the distance measurements, the estimation
accuracy of the displacement can be significantly improved by smooth-
ing, and highly accurate estimates can be achieved when the measure-
ment error is small compared with the tunnel deformation.

(4) Only the lower-order terms of the Fourier series can be used for the
circumferential stress estimation when considering the measurement
error.

Appendix A. Lining deformation when the full-slip condition is
imposed on the ground–lining interface

Consider the change in distance between two points on the middle surface
of the lining before and after tunnel deformation, as shown in Figure (A.17).
∆`1 is defined as the distance between two points (Rmid cos θ, Rmid sin θ) and
(Rmid cos(θ + dθ), Rmid sin(θ + dθ)), and can be expressed as follows:

∆`1 ≈ Rmiddθ. (A.1)

∆`2 is defined as the distance between the two points (Rmid cos θ + ux(θ),
Rmid sin θ + uy(θ)) and (Rmid cos(θ + dθ) + ux(θ + dθ), Rmid sin(θ + dθ) +
uy(θ + dθ)), and can be expressed as follows:

∆`2 ≈ Rmiddθ

{
1 +

1

Rmid

(
−dux
dθ

sin θ +
duy
dθ

cos θ

)}
. (A.2)
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For simplicity, consider only the deformation components of the n-th term
that are symmetric to the y-axis, expressed as follows:

ur,mid = Ur,n cosnθ, (A.3)

uθ,mid = Uθ,n sinnθ. (A.4)

After transforming the coordinates, the following equations can be obtained:

ux,mid =

(
Ur,n

2
+
Uθ,n

2

)
cos(n+ 1)θ +

(
Ur,n

2
− Uθ,n

2

)
cos(n− 1)θ, (A.5)

uy,mid =

(
Ur,n

2
+
Uθ,n

2

)
sin(n+ 1)θ −

(
Ur,n

2
− Uθ,n

2

)
sin(n− 1)θ. (A.6)

Substituting Eqs. (A.5) and (A.6) into Eq. (A.2) and rearranging, ∆`2 can
be expressed as follows:

∆`2 ≈ Rmiddθ

{
1 +

1

Rmid

(Ur,n + nUθ,n) cosnθ

}
. (A.7)

The surface loading acting on the lining can be expressed as follows:

fr = Fr,n cosnθ, (A.8)

fθ = Fθ,n sinnθ. (A.9)

The coefficients Ur,n, Uθ,n and Fr,n, Fθ,n have the relationship (Yasuda et al.,
2017): (

Fr,n
Fθ,n

)
=

( D`

R2
mid

+ K`

R4
mid

(n2 − 1)2 n D`

R2
mid

n D`

R2
mid

n2 D`

R2
mid

)(
Ur,n
Uθ,n

)
. (A.10)

When the full-slip condition is imposed on the ground–lining interface,
Fθ,n must be equal to zero. Thus, the following equation holds:

Ur,n + nUθ,n = 0. (A.11)

From a comparison of Eqs. (A.1), (A.7), and (A.11), it is clear that ∆`1
and ∆`2 are equal and the relative position on the closed line is the same be-
fore and after the tunnel deformation when the full-slip condition is imposed
on the ground–lining interface.

16



Declaration of Competing Interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

References

Cui, H., Ren, X., Mao, Q., Hu, Q., Wang, W., 2019. Shield subway tunnel
deformation detection based on mobile laser scanning. Automation in
Construction 106, 102889.

Einstein, H.H., Schwartz, C.W., 1979. Simplified analysis for tunnel supports.
Journal of the geotechnical engineering division 105, 499–518.

Farahani, B.V., Barros, F., Sousa, P.J., Cacciari, P.P., Tavares, P.J., Futai,
M.M., Moreira, P., 2019. A coupled 3d laser scanning and digital image
correlation system for geometry acquisition and deformation monitoring
of a railway tunnel. Tunnelling and Underground Space Technology 91,
102995.

Fekete, S., Diederichs, M., Lato, M., 2010. Geotechnical and operational
applications for 3-dimensional laser scanning in drill and blast tunnels.
Tunnelling and underground space technology 25, 614–628.
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Table A.1: Material properties.

Parameters Ground Lining

Young’s modulus (GPa) 0.01-10 30
Poisson’s ratio 0.30 0.20
Inner radius R (m) 5.0
Lining thickness h (m) 0.50
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Figure A.1: Problem geometry with measurement points.
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Figure A.2: Estimated displacement distribution for (a) Oobs(0, 0) and (b) Oobs(−3,−3)
(with Eg = 0.30 GPa, p = 0.10 MPa, k = 0.50, K = 1001, and the no-slip condition). The
displacement is magnified by a factor of 500.
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Figure A.3: Estimated radial and circumferential displacement for (a) Oobs(0, 0) and (b)
Oobs(−3,−3).
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Figure A.4: Estimated circumferential stress of the inner surface for Oobs(−3,−3).
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Figure A.5: Estimated solutions for Eg = 3.0 GPa (with p = 0.10 MPa, k = 0.50,
K = 1001, Oobs(0, 0), and the no-slip condition): (a) displacement distribution, where the
displacement is magnified by a factor of 5000, (b) radial and circumferential displacement,
and (c) circumferential stress of the inner surface.
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Figure A.6: Estimated solutions under the full-slip condition (with Eg = 3.0 GPa, p =
0.10 MPa, k = 0.50, K = 1001, and Oobs(0, 0)): (a) displacement distribution, where the
displacement is magnified by a factor of 5000, (b) radial and circumferential displacement,
and (c) circumferential stress of the inner surface.
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Figure A.7: Normalized stress of the inner surface for various values of Young’s modulus
of the ground Eg (with p = 0.10 MPa, k = 0.50, Oobs(0, 0), and K = 1001).
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Figure A.8: Normalized stress of the inner surface stress for various lateral pressure coef-
ficients k (with p = 0.10 MPa, K = 1001, and Oobs(0, 0)).
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Figure A.9: Estimated solutions when there is a void behind the lining (with Eg = 0.3 GPa,
p = 0.10 MPa, k = 1.00, K = 1001, Oobs(0, 0), and the no-slip condition): (a) displace-
ment distribution, where the displacement is magnified by a factor of 500, (b) radial and
circumferential displacement, and (c) circumferential stress of the inner surface.
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Figure A.10: Estimated circumferential stress of the inner surface for large vertical loading
(with Eg = 0.3 GPa, k = 1.00, K = 1001, Oobs(0, 0), the full-slip condition, and a void
behind the lining).
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Figure A.11: Estimated circumferential stress of the inner surface when the measurement
position Oobs is (0, 0) before the deformation and (-3, -3) after the deformation (with
Eg = 0.30 GPa, p = 0.10 MPa, k = 1.00, the full-slip condition, and a void behind the
lining).
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Figure A.12: Example of measurement results after deformation when considering the
distance measurement error (with Eg = 0.30 GPa, p = 0.10 MPa, k = 1.00, K = 10001,
Oobs(0, 0), the full-slip condition, and a void behind the lining). The measurement error
follows a normal distribution with a mean of zero and standard deviation of 0.3 (mm).
The deformation and the measurement error are magnified by a factor of 500.
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Figure A.13: Estimated solutions when considering the distance measurement error: (a)
radial and circumferential displacement and (b) circumferential stress of the inner surface.
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Figure A.14: Magnitude of each term of the Fourier series when considering the distance
measurement error: (a) radial displacement, (b) circumferential displacement, and (c)
circumferential stress of the inner surface.
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Figure A.15: Relative value of U c
r,2 for Us

θ,2 for various values of the Young’s modulus of
the ground Eg.
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Figure A.16: Normalized stress of the inner surface for a thin lining (with p = 0.10 MPa,
K = 1001, Oobs(0, 0), the no-slip condition, and no void behind the lining).
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Figure A.17: Schematic diagram of the change in distance between two points on the
middle surface of the lining before and after tunnel deformation.
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