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Geometric decomposition of entropy production in out-of-equilibrium systems
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Two qualitatively different ways of driving a physical system out of equilibrium, i.e., time-dependent and
nonconservative forcing, are reflected by the decomposition of the system’s entropy production into excess and
housekeeping parts. We show that the difference between these two types of driving gives rise to a geometric
formulation in terms of two orthogonal contributions to the currents in the system. This geometric picture
in a natural way leads to variational expressions for both the excess and housekeeping entropy, which allow
calculating both contributions independently from the trajectory data of the system. We demonstrate this by
calculating the excess and housekeeping entropy of a particle in a time-dependent, tilted periodic potential.
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A particle system in equilibrium with its environment may
be driven out of equilibrium in two qualitatively different
ways: One way is to vary the parameters of the system accord-
ing to a time-dependent protocol. In this case, if we imagine
suspending the protocol at any given instant, the system will
relax back to the equilibrium state corresponding to the in-
stantaneous values of the parameters. Alternatively, we can
also apply a time-independent, nonconservative force to the
system. In this case, even though the system will eventually
relax to a steady state, this steady state will be out of equilib-
rium due to persistent currents in the system. In both cases, the
degree to which the system is out of equilibrium at any given
time is characterized by a positive rate of entropy production,
σt > 0.

Generically, a system may be driven by time-dependent
and nonconservative forces at the same time. Then, a natural
question is whether the effects of both types of driving on
the entropy production can be separated [1–7]. For Brownian
particles, we may decompose the entropy production rate into
two non-negative contributions, σt = σ ex

t + σ hk
t , called the

excess and housekeeping entropy production rate, respectively
[3,7]. Here, σ ex

t is positive whenever the state of the system
depends on time and vanishes in a steady state. By contrast,
σ hk

t is positive whenever the system is driven by a nonconser-
vative force and vanishes if only conservative forces are acting
on the system. Somewhat surprisingly, this decomposition is
not unique; specifically, the decompositions due to Hatano and
Sasa [3] and due to Maes and Netočnỳ [7] both satisfy the
above properties but are generally distinct.

Such a decomposition of entropy production is very ap-
pealing from a theoretical point of view since it allows
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deriving extended forms of fundamental results such as the
fluctuation theorem [3] and the Clausius heat theorem [7].
However, the excess and housekeeping entropies are generally
difficult to obtain directly from experimental and numerical
data. The reason is that in the case of Ref. [3], we need
to determine the instantaneous steady state of the system,
whereas for Ref. [7], we need to construct a conservative
force with the same time evolution, both of which typically
require an analytic description of the system. This issue has
been addressed in Ref. [5] by defining the excess entropy in
terms of heat currents, with the downside that the result only
holds in linear response.

In this Letter, our first main result is a geometric formalism
for decomposing the entropy production rate into orthogonal
gradient and nongradient fields, which describes both the
Hatano-Sasa (HS) and the Maes-Netočnỳ (MN) decompo-
sitions. This unifying formalism also provides the relation
between the two decompositions: the MN decomposition is
the one that minimizes the housekeeping part, which is thus
always less than in the HS decomposition. Our second main
result is that in the case of the MN decomposition, the ge-
ometric formalism provides variational expressions that can
be used to calculate or estimate the excess and housekeeping
entropies from experimental or numerical trajectory data. This
implies that the latter decomposition can be used to identify
the contributions due to time-dependent and nonconservative
driving in practical applications, while retaining its favorable
theoretical properties. We demonstrate our results using a
particle in a time-dependent, tilted periodic potential.

Geometric decomposition of entropy production. The prob-
ability density pt of a system of Brownian particles with
coordinates x(t ) evolves according to the Fokker-Planck equa-
tion,

∂t pt (x) = −∇ · [νt (x)pt (x)] with (1a)

νt (x) = μ[Ft (x) − T ∇ ln pt (x)]. (1b)
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Here the time-dependent force Ft contains interactions
between the particles as well as conservative and noncon-
servative external forces, μ is the particle mobility, and T is
the temperature of the environment. In the following, we will
assume natural boundary conditions, that is, the probability
density and its derivatives vanish as ‖x‖ → ∞, where ‖x‖
denotes the Euclidean norm of x. The local mean velocity
νt is a vector field that describes the local average flows in
the system. Importantly, it also determines the rate of entropy
production,

σt = 〈νt , νt 〉, (2)

where we defined the inner product between two vector fields
(assuming u and v are such that it exists),

〈u, v〉 = 1

μT

∫
dx u(x) · v(x)pt (x). (3)

We then decompose the flows into two orthogonal compo-
nents,

νt (x) = ν
(1)
t (x) + ν

(2)
t (x) with

〈
ν

(1)
t , ν

(2)
t

〉 = 0. (4)

For any such decomposition of the flows, the Pythagorean
theorem immediately yields a decomposition of the entropy
production rate into two positive parts,

σt = 〈
ν

(1)
t , ν

(1)
t

〉 + 〈
ν

(2)
t , ν

(2)
t

〉
. (5)

The decomposition given by Eq. (4) is not unique; the goal is
to find a physically meaningful decomposition. We observe
that from the definition of the local mean velocity given
by Eq. (1), it can be written as a gradient field νt = −∇ψt

whenever the forces acting in the system are conservative,
Ft = −∇Ut , where Ut is the potential. Since in this case the
housekeeping entropy production should vanish, we make the
ansatz

νt (x) = −∇ψt (x) + ν̄t (x), (6)

that is, we decompose the local mean velocity into a gra-
dient field and the remainder. In the HS decomposition [3],
the central idea is to consider the instantaneous steady state
pst

t of the system, which is attained when fixing the force
Ft to its instantaneous value and letting the system relax to
the corresponding steady state (which we assume to exist).
This steady state is characterized by a steady-state local mean
velocity νst

t = μ(Ft − T ∇ ln pst
t ), which satisfies the steady-

state equation ∇ · (νst
t pst

t ) = 0. Further, we have νt − νst
t =

−T ∇ ln(pt/pst
t ), which suggests choosing ψt = T ln(pt/pst

t ).
By explicit computation (see the Supplemental Material [8]),
it can be verified that this choice indeed satisfies Eq. (4). We
thus obtain the HS decomposition,

σt = 〈
νt − νst

t , νt − νst
t

〉 + 〈
νst

t , νst
t

〉 = σ ex,HS
t + σ hk,HS

t . (7)

Another possibility is to demand that ν̄t should be orthogonal
to all gradient fields, i.e., 〈ν̄t ,∇φ〉 = 0 for all φ. As we discuss
below, this condition results in the MN decomposition [7],

σt = 〈
ν∗

t , ν
∗
t

〉 + 〈
νt − ν∗

t , νt − ν∗
t

〉 = σ ex,MN
t + σ hk,MN

t , (8)

where ν∗
t is the unique gradient field that satisfies ∇ · (ν∗

t pt ) =
∇ · (νt pt ). Thus, both the HS and MN decompositions can
be viewed as decompositions of the local mean velocity νt

Entropy production rate

Excess entropy production rate

Housekeeping entropy production rate(a)

(b)

FIG. 1. Geometric interpretations of the MN excess and house-
keeping entropy productions and their variational expressions.
(a) The velocity field νt is decomposed into a gradient field ν∗

t and
its orthogonal complement νt − ν∗

t ; the squared length of the two
components yields the excess and housekeeping entropy production
rate, respectively. (b) Since ν∗

t is the orthogonal projection of νt into
the space of gradient fields {∇φ}, it can be characterized either by
the gradient field ∇φ that maximizes the overlap with νt , leading to
Eq. (13), or by minimizing the length of the complement νt − ∇φ,
leading to Eq. (14).

into a gradient field and an orthogonal remainder, which is
our first main result. This geometrical intuition underlying the
MN decomposition is illustrated in Fig. 1(a).

Variational expressions. Since the vector fields ν
(1)
t and

ν
(2)
t in Eq. (4) are orthogonal, they define a decomposition of

the space V of all local mean velocities into two orthogonal
subspaces V (1) and V (2). Conversely, ν

(1)
t can be viewed as the

orthogonal projection of νt into the subspace V (1). Then, we
have two variational expressions for the square of the “length”
of ν

(1)
t ,

〈
ν

(1)
t , ν

(1)
t

〉 = sup
v∈V (1)

(
〈v, νt 〉2

〈v, v〉

)
(9a)

= inf
u∈V (2)

(〈νt − u, νt − u〉). (9b)

The first expression follows by noting 〈v, νt 〉 = 〈v, ν
(1)
t 〉

for all v ∈ V (1) and then considering the equality condition of
the Cauchy-Schwarz inequality 〈v, ν

(1)
t 〉2 � 〈v, v〉〈ν(1)

t , ν
(1)
t 〉.

The second expression can be confirmed by writing, for u ∈
V (2),

〈νt − u, νt − u〉 = 〈
ν

(1)
t + ν

(2)
t − u, ν

(1)
t + ν

(2)
t − u

〉
= 〈

ν
(1)
t , ν

(1)
t

〉 + 〈ν(2)
t − u, ν

(2)
t − u〉, (10)

which is minimized for u = ν
(2)
t . Equation (9) allows us to

consider the inner product 〈ν(1)
t , ν

(1)
t 〉 either as a maximization

over the subspace V (1) or a minimization over the subspace
V (2). For the MN decomposition, this is illustrated graphically
in Fig. 1(b): The orthogonal projection can be obtained by
either maximizing the overlap between νt and some gradient
field, or minimizing the length of the complement.
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If V (1) is chosen as the space of gradient fields, then we
immediately have

σ ex,MN
t = inf

u⊥∇φ
(〈νt − u, νt − u〉). (11)

On the other hand, the orthogonality condition u ⊥ ∇φ ⇔
〈u,∇φ〉 = 0 explicitly reads, from Eq. (3),

0 =
∫

dx ∇φ(x)u(x)pt (x)

= −
∫

dx φ(x)∇ · [u(x)pt (x)], (12)

after integrating by parts. Since the condition should hold for
all φ, this implies ∇ · (upt ) = 0. Comparing this to Eq. (1),
the space V (2) can thus be characterized as all vector fields u
that can be added to νt without altering the time evolution of
pt . Since this is equivalent to changing the force Ft , Eq. (11)
implies a minimization of the entropy production rate with
respect to the force, while keeping the time evolution of pt

fixed. This is exactly the minimum entropy production princi-
ple of Ref. [7] and, thus, Eq. (8) is indeed the same as the MN
decomposition. In view of Eq. (9), the appealing feature of
the MN decomposition is that one of the two subspaces has a
simple mathematical characterization as the space of gradient
fields, which allows us to write

σ ex,MN
t = sup

φ

(
〈∇φ, νt 〉2

〈∇φ,∇φ〉

)
, (13)

σ hk,MN
t = inf

φ
(〈νt − ∇φ, νt − ∇φ〉). (14)

From Eq. (14), we see that we may obtain an upper bound
on the MN housekeeping entropy production rate by choos-
ing an arbitrary gradient field. For the particular choice φ =
−T ln(pt/pst

t ), the right-hand side is equal to the HS house-
keeping entropy production rate, so that we obtain the relation

σ hk,MN
t � σ hk,HS

t . (15)

Thus, while the HS and MN decompositions are generally
distinct, there exists a definite relation between the two. We
remark that, in principle, expressions similar to Eq. (13) and
Eq. (14) can be obtained for the HS decomposition; however,
the structure of the orthogonal spaces is more complicated,
and the resulting variational expressions are not convenient
for practical applications. These issues are discussed in more
detail in Ref. [9].

Excess entropy and Wasserstein distance. In the follow-
ing, we will focus on the MN decomposition and drop the
superscript MN from now on. Since the MN excess entropy
production is the minimal entropy for a given time evolution
of the probability density [7], we can also write it as

σ ex = inf
νt |∂t pt =−∇·(νt pt )

〈νt , νt 〉, (16)

where, on the right-hand side, we minimize over the vector
field νt under the constraint that it satisfies the continuity
equation given by Eq. (1a). This expression closely resembles
the Benamou-Brenier [10] formula from optimal transport
theory. In Refs. [11–13], it was found that the minimum
entropy production associated with changing the probability
density from an initial state pi to a finial state pf can be

expressed in terms of the Wasserstein distance W (pf, pi ) [14]
between the two states,

�Smin = 1

μT τ
W (pf, pi )

2, (17)

where τ is the duration of the process. For an arbitrary process
connecting the two states, the right-hand side is a lower bound
on the entropy production �S. For a given time evolution
connecting pi to pf, we can imagine minimizing the entropy
production rate at any instant of time. Since the result is
still a process connecting the same initial and final states, we
immediately have

�Sex � 1

μT τ
W (pf, pi )

2, (18)

where �Sex = ∫ τ

0 dt σ ex
t is the excess entropy production.

This implies that the right-hand side of Eq. (17) can estimate
only the excess part of the entropy production. Further, in
Ref. [15], it was shown that

σt �
1

μT
lim

�t→0

W (pt+�t , pt )2

�t2
, (19)

with equality when the dynamics is driven by a conservative
force. Since the excess entropy production rate represents a
process with the same time evolution and driven by a conser-
vative force, we immediately have the identification

σ ex
t = 1

μT
lim

�t→0

W (pt+�t , pt )2

�t2
, (20)

which shows that Eq. (18) becomes an equality in the
short-time limit. Conversely, Eq. (18) follows from Eq. (20)
by applying the triangle inequality W (p, q) � W (p, π ) +
W (π, q) for the Wasserstein distance. Thus, we can identify
the Maes-Netočnỳ excess entropy production rate with the
infinitesimal Wasserstein distance along the time evolution of
the probability density. Equation (20) generalizes the results
of Refs. [11–13] to the case where, instead of the initial and
final state, the time evolution of the probability density is
fixed.

Excess and housekeeping entropies from trajectory data.
In order to obtain expressions more suited to applications, we
use the explicit form of the inner product given by Eq. (3),

〈∇φ, νt 〉 = 1

μT

∫
dx ∇φ(x) · νt (x)pt (x)

= 1

μT

∫
dx φ(x)∂t pt (x) = 1

μT
dt 〈φ〉t , (21)

where we integrated by parts and used Eq. (1). Here, 〈φ〉t

denotes an average with respect to pt . This allows us to write
the excess entropy production rate as

σ ex
t = 1

μT
sup

φ

( (
dt 〈φ〉t

)2

〈‖∇φ‖2〉t

)
. (22)

Here, the supremum is taken over all scalar observables φ that
are functions of the positions x(t ) of the Brownian particles.
In practice, the maximization can be readily performed using
a suitable parametrization of φ. The maximizer φ∗ of Eq. (22)
yields the optimal local mean velocity up to a constant, ν∗

t =

L012034-3
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−c∇φ∗. This is the flow field that yields the same time evolu-
tion as Eq. (1), while minimizing the entropy production rate.
In contrast to directly minimizing the entropy production rate,
Eq. (22) does not require any additional constraints. Instead
of maximizing the right-hand side of Eq. (22) with respect to
φ, we can also choose an arbitrary scalar function and obtain
a lower bound. We remark that Eq. (13) is closely related
to the short-time version of the thermodynamic uncertainty
relation [16–18]: If the maximization is taken over all vector
fields, then the result is the total entropy production rate; by
restricting the maximization to gradient fields, the result is the
excess entropy production.

In order to obtain a similar expression for the housekeeping
entropy, we write the force acting on the system as Ft =
−∇Ut + Fnc

t , where Fnc
t is a nonconservative force. Since

in Eq. (14) the infimum is taken over all gradient fields, we
may absorb the gradient terms in the local mean velocity into
V = φ/μ + T ln pt + Ut and write

σ hk
t = μ

T
inf
V

〈∥∥Fnc
t − ∇V

∥∥2〉
t . (23)

In many physical settings, the nonconservative force is an
externally applied driving force and its functional form is
therefore known. In such cases, we can evaluate Eq. (23) by
minimizing over scalar observables V that depend on the po-
sition of the particles. We stress that Eq. (23) does not depend
explicitly on the potential Ut , which generally includes inter-
actions between particles and is therefore often not known
precisely in practice. Without minimizing, an arbitrary choice
of V yields an upper bound on the housekeeping entropy pro-
duction rate. One meaningful such choice is V = 〈Fnc

t 〉t · x,
which yields the upper bound

σ hk
t � μ

T

〈∥∥Fnc
t

∥∥2〉 − ∥∥〈
Fnc

t

〉
t

∥∥2 = μ

T
Var

(
Fnc

t

)
. (24)

Thus, the housekeeping entropy production rate is bounded
by the variance of the nonconservative force. In summary,
the variational expressions given by Eq. (22) and Eq. (23)
allow us to determine both the excess and the housekeep-
ing entropy production rates from the given trajectory data,
which is our second main result. Compared to other varia-
tional approaches for computing the entropy production from
trajectory data, which have been developed recently [16–19],
the present approach has two advantages. First, it allows one
to determine the excess and housekeeping entropies sepa-
rately, and thus provides more detailed information on the
origins of dissipation in the system. Second, in both Eq. (22)
and (23), the functional space over which the optimization is
performed consists only of scalar functions, while in other ap-
proaches, the larger space of vector fields has to be considered.
This greatly simplifies the task of constructing an appropriate
parametrization of the functional space when implementing
the optimization in practice.

Demonstration. As an explicit demonstration of our previ-
ous results, we study the motion of a Brownian particle in a
time-dependent periodic potential Ut (x + L) = Ut (x), which
is driven by a constant bias F nc

0 ,

ẋ(t ) = μ
{ − ∂xUt [x(t )] + F nc

0

} +
√

2μT ξ (t ). (25)

FIG. 2. The excess and housekeeping entropy production rates
for the dynamics given by Eq. (25) with the potential given by
Eq. (27). Parameters used for the simulation are U0 = 1, T = 0.25,
μ = 1, L = 1, and F nc

0 = 0.25. We used a total of 50 periods
for 10 000 trajectories and K = 10 modes for the minimization
in Eq. (26). (a) The time-averaged entropy production rates σ̄ =∫ τ

0 dt σt/τ as a function of the driving period τ . (b) The instan-
taneous entropy production rates as a function of time for τ = 2.
We also show the lower bound σ ex

est,t obtained by choosing φ(x) =
cos(λx) in Eq. (22).

Such a situation is common in experimental systems to study
the dynamics of colloidal particles [20,21]. For simplicity, we
modulate the potential in a time-periodic manner, Ut+τ (x) =
Ut (x). For long times, the probability density is then periodic
in both space and time, pt+τ (x) = pt (x) = pt (x + L). We per-
form numerical simulations of Eq. (25), from which we obtain
a set of trajectories, which we then use to compute the ex-
cess and housekeeping entropy production rates according to
Eq. (22) and (23). Note that for periodic boundary conditions,
only forces that can be written as the gradient of a periodic
scalar function are conservative. Thus, we parametrize the
scalar functions V (x) and φ(x) as

V (x) =
K∑

k=0

[ak sin(kλx) + bk cos(kλx)], (26)

with λ = 2π/L, and evaluate Eq. (22) and (23). Then, we
numerically optimize the resulting expressions with respect
to the parameters ak and bk using the MATHEMATICA NMaxi-
mize and NMinimize routines. We stress that determining σ ex

t
and σ hk

t in this manner requires only the trajectories and the
value of the bias F0. As a concrete example, we choose the

L012034-4
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space-time periodic potential,

Ut (x) = U0[sin(λx) + A sin(λx − ωt )], (27)

which corresponds to a sine-shaped potential with a time-
dependent component of amplitude A and period τ = 2π/ω.
The resulting excess and housekeeping entropy rates averaged
over one period are shown as a function of the driving period τ

in Fig. 2(a). First, we note that the sum σ ex
t + σ hk

t precisely re-
produces the entropy production rate, calculated according to
the stochastic thermodynamics result σt = 〈Ft ◦ ẋ〉/T [22,23].
As expected, the entropy is dominated by the excess contribu-
tion for fast driving, while for slow driving, the housekeeping
part from the constant bias is dominant. For the present ex-
ample, the housekeeping entropy rate is almost independent
of the driving speed, reflecting that to a good approximation,
the time-dependent probability density depends on τ only via
a rescaling of time. However, unlike in a steady state, the
housekeeping entropy production rate strongly depends on
time, as can be seen from Fig. 2(b): The main contribution
to the entropy production stems from times t ≈ τ/2, where
the total depth of the potential is minimal.

Discussion. In this work, we decomposed the entropy
production using the geometric formalism of orthogonal
projections. While the extension to diffusion matrices and
multiplicative noise is possible, a more serious challenge is
to find a similar interpretation for other classes of stochastic

dynamics, notably underdamped Langevin and Markov jump
dynamics [24]. In both cases, it has been recently shown
that entropy production is bounded from below by an appro-
priately defined Wasserstein distance [13,25,26]; in light of
Eq. (20), we may thus speculate that the latter can be identified
with an excess entropy similar to the MN decomposition also
in these cases.

Generally, variational principles and geometry are often
intimately connected, be it in classical mechanics [27] or opti-
mal transport theory [14]. The geometric decomposition given
by Eq. (6) implies the variational formulas given by Eq. (9)
for the individual contributions to the entropy production
rate. Recently, the partial entropy production of subsystems
was also shown to follow from a variational principle [28],
based on the projection theorem of information geometry [29].
While the maximum entropy principle of equilibrium statisti-
cal mechanics [30] can be recast in a geometric formalism in-
volving an orthogonal decomposition of the underlying space
[31], the above results suggest that a viable alternative for ob-
taining minimum entropy production principles [32] may be
starting from a suitable geometric decomposition of the space.
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