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ABSTRACT In the field of unmanned aerial vehicles (UAVs), aerial manipulations are receiving con-
siderable attention because of their potential application to tasks such as pick and place, detection, and
inspection. However, short flight endurance times and concerns about the safety to surroundings during
interacting heavily limit the expansion of aerial manipulations in real implementations. To overcome these
challenges, this paper focuses on a system in which a quadrotor UAV is equipped with a lightweight and
flexible arm. Based on the infinite-dimensional dynamics, the mathematic model of system is described by
a hybrid partial differential equation-ordinary differential equation (PDE-ODE). An easily implementable
controller is derived from a Lyapunov functional construction related to the energy of the system. The
proposed controller ensures global Lyapunov stability for nonlinear system and local asymptotic stability
for the linearized system. Further, it is shown that the proposed controller realizes stable motion of the aerial
manipulator as well as vibration control of the flexible arm. Finally, numerical simulations are conducted to
investigate the validity of the proposed controller.

INDEX TERMS Unmanned aerial vehicle, aerial manipulation system, flexible arm, infinite-dimensional
system, tip-position control, vibration suppression.

I. INTRODUCTION
By virtue of their high degree of mobility, unmanned aerial
vehicles (UAVs) have been receiving considerable attention
from both research communities and industries worldwide
in the past decade. In particular, quadrotors have drawn
more attention because of their various advantages such as
simple structure, small size, and abilities including hover-
ing and vertical take-off and landing, enabling them to per-
form many tasks such as surveying roads, monitoring wild
animals, detecting small targets, and installing photovoltaic
modules [1]–[3].

These successful applications of quadrotor UAVs are
visual tasks that include aerial photography, remote sens-
ing, and so on. Quadrotor UVAs are expected to also
perform operating tasks such as pick and place, contact
inspection, and manipulation, to truly extend their capac-
ity in real environments [4]–[6]. Thus, quadrotor UAVs are
intended to be equipped with robotic arms and to function as
robotic workers and co-workers with manipulation skills [7].
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In [8], [9], inspired by the high-speed hunting skills of
birds of prey, grippers attached to a quadrotor to capture
an object enabled the extension of a UAV’s abilities from
surveillance to carrying a payload. A nonredundant quadrotor
manipulation system, in which a two degrees-of-freedom
(DOF) robotic arm is attached to the bottom center of a
quadrotor, is designed to perform pick-and-place missions
in [10]. Redundant multi-DOF systems have been experimen-
tally verified by indoor motion tracking and outdoor grasping
operations, and have been applied to pick-and-place, inser-
tion, and valve turning tasks in [11]–[14]. On the other hand,
through physical interaction with the objective environment,
aerial manipulators are available for industrial applications
such as inspecting bridges and painting [15], [16]. Related to
physical interaction by UAVs, we proposed a position/force
hybrid controller for quadrotor UAVs with a multi-DOF
manipulator in [17]. However, all those aerial manipulation
systems are constituted by rigid and heavy arms, which incur
crucial limitations.

One of the unavoidable issues is flight endurance time,
which is the primary limitation for practical scenarios
of aerial manipulation systems in potential industries.
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The weight of the arm further consumes battery power.
Another obvious issue is safety. A rigid arm can hurt the sur-
rounding environment or people when physically interacting
with them.

To overcome the challenge of short flight endurance time,
weight reduction is considered for the aerial manipulation
system. In [18]–[20], several aerial manipulation systems
with kinds of lightweight arms have been designed, but those
arms are theoretically considered as rigid arm. In [21]–[25],
aerial manipulation systems equip with compliant mecha-
nisms on lightweight arms at joints or at the end effector,
which the property of compliance might be friendly with the
surroundings. However, all above-mentioned aerial manipu-
lation systems do not take into account the deformation of
lightweight links as well as the dynamics of flexibility in
modeling and control.

Besides, a long-reach aerial manipulator consisting of a
UAV body, a long and flexible link, and a short and rigid
link connected with an end effector is proposed for inspec-
tion tasks considering flexibility [26]. However, the dynamic
model is built on the basis of a finite-dimensional approx-
imated model, and the internal stability of a system with
a flexible link has not been demonstrated. It is known that
the drawback of finite-dimensional approximation for a sys-
tem with flexibility might result in spillover instability [27].
Therefore, it is important to control both the vibration of a
flexible arm and the position of the end effector based on
the infinite-dimensional dynamics of an aerial manipulation
system.

In the field of tip-position control and vibration suppres-
sion for a flexible arm considering as an infinite-dimensional
system, there have been several studies based on PDE-OED
dynamics model. In [28], an exponential stabilization con-
troller is proposed for the flexible beam to suppress the vibra-
tion, but the velocity of beam vibration assumed known or
measurable which is rarely achieved during implementations.
By applying piezoelectric actuators and sensors, the vibration
of flexible beams can be asymptotically stabilized in [29].
Moreover, without using external assistant devices such as
piezoelectric actuators, and unnecessary to assume unknown
variables, the boundary controller has been investigated for
stabilizing infinite-dimensional systems [30]–[32]. On the
other hand, the strict stability of controller design is shown
for kinds of flexible structures [33]–[36]. However, to the best
of our knowledge, research on aerial manipulation system
equipped with a flexible arm by applying a controller based
on an infinite-dimensional model has not been reported.

To overcome these difficulties, in consideration of flight
endurance times and safety to surroundings, we focuses
on the aerial manipulation system that a quadrotor UAV
equipped with a lightweight and flexible arm, and address
on the modeling and control strategy of the system on
the basis of infinite-dimensional dynamics. In contrast to
finite-dimensional approximation for a system with flexibil-
ity, there is no issue of spillover instability when consid-
ering system based on the infinite-dimensional dynamics.

In this paper, a controller of the aerial manipulation system
is proposed for tracking the position of the end effector
and suppressing the vibration of the flexible beam at the
same time. The proposed controller does not need any hardly
measurable information of flexible beam during implemen-
tations. It is worth mentioning that the control strategy of an
aerial manipulation system considering infinite-dimensional
dynamics has not been reported yet.

The originality of this paper includes the following:
(1) Derivation of a model consisting of partial differ-

ential equations (PDEs) and ordinary differential equations
(ODEs), in consideration of infinite-dimensional dynamics
for an aerial manipulator comprised of a quadrotor UAV and
a flexible arm.

(2) Proposition of an easily implementable controller that
stabilizes system Lyapunov stability globally and asymptotic
stability locally.

(3) Presentation of the stability of the closed-loop system
and execution of the proposed controller by numerical imple-
mentations.

This paper is organized as follows. The mathematical
model of the controlled system and the control problem are
described in Sec. II. The proposed controller and Lyapunov
stability are then shown in Sec. III. The closed-loop system at
the neighbourhood of the desired state and asymptotic stabil-
ity are addressed in Sec. IV. Finally, numerical simulations
and our conclusions are presented in Sec. V and Sec. VI,
respectively.

II. CONTROLLED SYSTEM
A. DESCRIPTION
Fig. 1 shows an aerial manipulation system consisting of
a one-link flexible arm and a rigid quadrotor UAV. One
end of the arm is clamped to the rotational motor, and
the other end has a tip mass. The quadrotor has a gen-
eral symmetric structure, where a rotational motor for the
flexible arm is mounted on the center of the body of the
UAV. In this work, we consider that the quadrotor moves in
the vertical plane and that the lightweight arm satisfies the
Euler-Bernoulli beam hypothesis, for which we can ignore
rotary-inertia and shear-deformation effects. In Fig. 2, Inertial
Frame (IF) denotes the inertial reference coordinate and Body
Frame (BF) is attached to the center of the symmetrical
quadrotor. In addition, an Arm Frame (AF) is located at the
revolute joint of the flexible arm connected to the quadrotor
UAV. α(t) denotes the rotational angle of the armmotor in BF,
and θ(t) is the orientational angle of the quadrotor UAV
in IF. w(r, t) is the transverse displacement of the flexible
arm at time t and at spatial point r(0 ≤ r ≤ L) in AF.
The physical parameters used in this paper are summarized
in Table 1.
We assume that the transverse displacement of the flexible

arm and the orientational angle of the quadrotor UAV are
small, i.e., the high-order nonlinear items of w(r, t) can be
ignored and sin θ = θ, cos θ = 1.

VOLUME 9, 2021 98477



T. Wang et al.: Modeling and Control of Quadrotor UAV Equipped With Flexible Arm

FIGURE 1. Structure diagram of quadrotor UAV equipped with a flexible
arm.

FIGURE 2. Schematic diagram of quadrotor UAV equipped with a flexible
arm.

TABLE 1. Physical parameters.

B. EQUATIONS OF MOTION
As the root of the flexible link is clamped to the vertical
shaft of the rotor of the arm motor, the geometric boundary
conditions are

w(0, t) = 0, w′(0, t) = 0, (1)

where the prime denotes the derivative with respect to the
spatial variable r . Let ζ (t) and pr (r, t) be the position of the
center of the quadrotor UAV and the flexible arm at a general
point r in IF, respectively. ζ (t) and pr (r, t) are defined as
follows:

ζ =
[
x z

]T
, pr =

[
prx prz

]T
, (2)

prx = x + rCβ + wSβ , prz = z− rSβ + wCβ , (3)

where C∗ = cos(∗), S∗ = sin(∗), β = θ + α. In order
to simplify the notation of equations, the time variable is
omitted and w,w0, and we denote w(r, t),w(0, t), and w(L, t)
respectively.

The total kinetic energy T is comprised of: translational
kinetic energy of quadrotor body KBt , rotational kinetic
energy of quadrotor body KBr , rotational kinetic energy of
arm rotor KM , kinetic energy of flexible arm KA, and kinetic

energy of tip mass KE , shown as follows:

T = KBt + KBr + KM + KA + KE , (4)

KBt =
1
2
mbζ̇ T ζ̇ , KBr =

1
2
Jbθ̇2, KM =

1
2
Jmβ̇2,

KA =
1
2

∫ L

0
ρṗTr ṗrdr, KE =

1
2
meṗTe ṗe, (5)

where a dot denotes the derivative with respect to time t and
pe = [pex pez]T means pr (L, t).
The potential energyU consists of two sources, the gravity

contributionUg and the elastic contributionUw, which can be
obtained in IF as follows:

U = Ug + Uw,

Ug = mbgz+
∫ L

0
ρgprgzdr + megpegz,

Uw =
∫ L

0
ρgprwzdr + megpewz +

1
2

∫ L

0
EI (w′′)2dr, (6)

where prgz = z − rSβ , prwz = wCβ , pegz = z − LSβ ,
pewz = weCβ .
Further, the virtual work δW of the system is given by

δW = Sθ fBδx + Cθ fBδz+ τBδθ + τmδα, (7)

where fB(> 0) and τB are the force and the torque, respec-
tively, produced by the quadrotor UAV in BF, and τm is the
torque of the arm motor. Then, Hamilton’s principle gives∫ t2

t1
(δT − δU + δW )dt

=

∫ t2

t1

[{
−mbẍ −

∫ L

0
ρp̈rxdr − mep̈ex + Sθ fB

}
δx

+

{
−mbz̈−

∫ L

0
ρp̈rzdr − mep̈ez − m0g+ Cθ fB

}
δz

+

{
−Jbθ̈ − Jmβ̈ +

∫ L

0
ρp̈rx

(
rSβ − wCβ

)
dr

+

∫ L

0
ρp̈rz

(
rCβ + wSβ

)
dr + mep̈ex

(
LSβ − weCβ

)
+ mep̈ez

(
LCβ + weSβ

)
− meg

(
−weSβ−LCβ

)
−

∫ L

0
ρg
(
−Sβw− rCβ

)
dr + τB

}
δθ

+

{
−Jmβ̈ +

∫ L

0
ρp̈rx

(
rSβ − wCβ

)
dr

+

∫ L

0
ρp̈rz

(
rCβ + wSβ

)
dr + mep̈ex

(
LSβ − weCβ

)
+ mep̈ez

(
LCβ + weSβ

)
− meg

(
−weSβ−LCβ

)
−

∫ L

0
ρg
(
−Sβw− rCβ

)
dr + τm

}
δα − EIw′′eδw

′
e

+
{
−mep̈exSβ − mep̈ezCβ −

(
megCβ − EIw′′′e

)}
δwe

+

∫ L

0

{
−ρp̈rxSβ − ρp̈rzCβ − ρgCβ − EIw′′′′

}
δwdr

]
dt

= 0, (8)
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where δ is a variation of the corresponding term and t1 and t2
are time. Since Eq. (8) exists for the arbitrary variations δx,
δz, δθ , δα, δw′e, δwe, and δw, under the assumption described
in Sec. II-A that sin θ = θ, cos θ = 1, a simple calculation of
this variational principle leads to the following equations of
motion:

m0ẍ + fx = θ fB,
m0z̈+ fz + m0g = fB,
Jbθ̈ = τB − τm,
Jmβ̈ + EIw′′0 − dτ = τm,
w(0, t) = 0, w′(0, t) = 0, w′′e = 0,

EI (
me
ρ
w′′′′e + w

′′′
e ) = 0,

ẅ+ ẍSβ + z̈Cβ − r β̈ + gCβ +
EI
ρ
w′′′′ = 0,

(9)

where m0 = mb + ma + me, and fx , fz, dτ are the coupling
nonlinear dynamic items relative to the rigid quadrotor UAV
and flexible arm shown as follows,

fx =
∫ L

0
ρ
(
−rCβ β̇2 − rSβ β̈ − wSβ β̇2 + wCβ β̈+2Cβ β̇ẇ

+ Sβ ẅ
)
dr − meLCβ β̇2 − meLSβ β̈ − wemeSβ β̇2

+wemeCβ β̈ + 2meCβ β̇ẇe + meSβ ẅe,

fz =
∫ L

0
ρ
(
rSβ β̇2 − rCβ β̈ − wCβ β̇2 − wSβ β̈ − 2Sβ β̇ẇ

+Cβ ẅ
)
dr + meLSβ β̇2 − meLCβ β̈ − wemeCβ β̇2

−wemeSβ β̈ − 2meSβ β̇ẇe + meCβ ẅe,

dτ =
∫ L

0
wρ

(
−ẍCβ + z̈Sβ + r β̇2 − 2β̇ẇ+ gSβ

)
dr

+mewe(−ẍCβ + z̈Sβ + Lβ̇2 − 2β̇ẇ+ gSβ ). (10)

Here, fx , fz, and dτ are coupling nonlinear dynamic terms
between the quadrotor UAV and the flexible arm, whose val-
ues are rarely known because of the difficulty of obtaining the
value of transverse displacement w and its time derivatives.
fx and fz can be canceled by the controller proposed in for-
mulation of the derivative of V in the proof of Theorem 1,
whereas dτ cannot be canceled. We consider dτ as the dis-
turbance of system and estimate dτ by using a disturbance
observer, which will be further explained in next section.

C. CONTROL OBJECTIVE
The aims of this paper are to control the position of the
end effector of an aerial manipulator and to suppress the
vibration of the flexible arm at the same time. Obviously,
the motion of the end effector can be achieved when both
the quadrotor UAV hovers at a desired position ζd and the
rotational angle of the arm motor converges to the desired
value αd simultaneously. Therefore, under this equilibrium,
the state of the aerial manipulation system holds

x = xd , z = zd , β = βd , θ = 0, ẋ = ż = β̇ = 0, ẇ = 0.

(11)

On the other hand, the flexible arm would have a deforma-
tion wε(r) at the equilibrium because of gravity. Substituting
states (11) into system (9), we have

wε=
gCβd
EI

(
1
6
(ma+me)r3−

1
2
(
1
2
ma + me)Lr2−

1
24
ρr4

)
.

(12)

On the basis of these results, the control objective is to
design a controller satisfying

ex → 0, ez→ 0, eβ → 0,
ẋ → 0, ż→ 0, β̇ → 0, θ̇ → 0, as t →∞
w(r, t)→ wε(r), ẇ(r, t)→ 0,

(13)

where ex = x − xd , ez = z− zd , eβ = β − βd .

III. PROPOSED CONTROLLER
In this section, we propose a controller to stabilize the aerial
manipulation system Lyapunov stability globally and asymp-
totic stability at the neighborhood of the desired state. This
control objective would be achieved by controlling the posi-
tion of the end effector and suppressing the vibration of the
flexible arm.

In our control strategy, we design the input of armmotor τm
to control the angle and suppress the vibration of the flexible
arm. At the same time, we design the inputs of the quadrotor
UAV fB and τB to control the position of the aerial base. That
is to say, on the level of torque, the inputs of torques τm and τB
respectively control the flexible arm and the quadrotor UAV.
On the other hand, on the level of force, the input of force fB
is in control of the whole aerial manipulation system.

Between the quadrotor UAV and the flexible arm, there are
coupling nonlinear dynamics terms, fx , fz, and dτ , as shown
in Eq. (10), whose values are rarely known because of the
difficulty of obtaining the value of transverse displacement
w and its time derivatives. In an aerial manipulation system,
the performance of coupling dynamics would be expressed
as force and torque, and can be viewed as the interaction
between the quadrotor UAV and the flexible arm, where fx , fz
show the coupling dynamics on the level of force while dτ
has same unit with the torque. Since the inputs of torques
are designed individually, we need to investigate and estimate
the coupling dynamics item dτ . Note that the estimation of
coupling dynamics terms fx , fz is unnecessary because the
quadrotor UAV and the flexible arm are considered simul-
taneously.

Here, we consider dτ as a disturbance in dynamics and use
a disturbance observer to estimate dτ . Thus, the control input
τm can be designed as

τm = τm0 + τm1, (14)

where τm1 denotes a disturbance observer feedback input for
the disturbance attenuation corresponding to an inner loop,
while τm0 is an input for stabilizing a disturbance-eliminated
system corresponding to an outer loop. According to the
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dynamics equation for a flexible arm in Eq. (9), we have

dτ = Jmβ̈ + EIw′′0 − τm0 − τm1, (15)

and the disturbance observer [37] is designed as

˙̂dτ = −d̂τ /T + (Jmβ̈ + EIw′′0 − τm0 − τm1)/T , (16)

using a first-order low-pass filter of (15), where T is a positive
constant. Although Eq. (16) includes state derivative β̈, it can
be transformed to the align β̇/T without the state derivative.
The disturbance observer feedback input τm1 is designed as

τm1 = −
k7

1+ k7
d̂τ . (17)

We suppose that the inner loop runs much faster than the
outer loop, the disturbance of which can be estimated well
enough and can be eliminated by (16), which means we have

d̂τ = dτ . (18)

Note that Eq. (18) only can be obtained under the assump-
tion that Eq. (16) quickly converges by selecting enough
small T .
Theorem 1: For the aerial manipulation system (9)

with (17), if the control inputs are designed as

τm = τm0 + τm1,

τm0 =
1

1+ k7

(
k7EIw′′0 − k8eβ − k9β̇ − G

)
,

τB = τm + Jb(φ̇1 − k4η1 − η0),
fB = (m0g− k5ez − k6ż),

(19)

then the system can be Lyapunov stable globally, where
G, φ0, η0, φ1 and η1 are shown as follows,

G = (
1
2
ma + me)gLCβ , (20)

φ0 = −
k1
fB
ex −

k2
fB
ẋ, (21)

η0 = θ − φ0, (22)

φ1 = φ̇0 − k3η0 − fBẋ, (23)

η1 = θ̇ − φ1, (24)

and ki > 0(i = 1, 2, · · · , 9).
Proof: Let us consider the candidate Lyapunov function

V = V1 + V2, (25)

where V1 is the energy part of the system while V2 is the state
variable part, shown as follows:

V1 = KBt + KM + KA + KE + Uw, (26)

V2 =
k1
2
e2x +

k5
2
e2z +

k7
2
Jmβ̇2 +

k8
2
e2β +

1
2
η20 +

1
2
η21. (27)

By differentiating Eq. (26) with respect to time, the follow-
ing identity is obtained:

V̇1 = ẋθ fB + ż(fB − m0g)+ β̇ (τm + G) , (28)

where the derivation can be found in Appendix A.

On the other hand, from Eqns. (22),(23), and (24), we have

η̇0 = η1 − k3η0 − fBẋ. (29)

From Eq. (24), and employing the equation of motion in
Eq. (9), we obtain

η̇1 = θ̈ − φ̇1 =
1
Jb
(τB − τm)− φ̇1. (30)

By differentiating Eq. (27) with respect to time, and by
substituting (22), (29), and (30), we have

V̇2 = k1ẋex + k5żez + k7β̇(τm − EIw′′0 + dτ )

+ k8β̇eβ + η0(η1 − k3η0)− (θ − φ0)fBẋ

+ η1

(
1
Jb
(τB − τm)− φ̇1

)
. (31)

Combining (28) and (31), and substituting control inputs
Eq. (19) with (17), we get

V̇ = V̇1 + V̇2
= β̇

{
(1+ k7)τm − k7EIw′′0 + k7dτ + k8eβ + G

}
+ ż(fB − m0g+ k5ez)+ ẋ(φ0fB + k1ex)

+ η0(η1 − k3η0)+ η1

(
1
Jb
(τB − τm)− φ̇1

)
= β̇ {(1+ k7)τm1 + k7dτ }

+ β̇
{
(1+ k7)τm0 − k7EIw′′0 + k8eβ + G

}
+ ż(fB − m0g+ k5ez)+ ẋ(−k2ẋ)− k3η20 − k4η

2
1

= −k9β̇2 − k6ż2 − k2ẋ2 − k3η20 − k4η
2
1

≤ 0.

Now, from the Lyapunov method, we know that the system
becomes Lyapunov stable. �

Note that Theorem 1 only indicates the global Lyapunov
stability of the closed-loop system and cannot ensure the con-
trol objective in Section II-C. In next section, wewill show the
local asymptotic stability of the linearized closed-loop system
with the proposed controller to confirm achievement of the
control objective in Section II-C.
For the control input τm0 in Eq. (19), designed for

the flexible arm, the second and third terms are the
proportional-derivative (PD) control of the angle, and the first
term is the feedback of the strain (S) at the root of the flexible
arm. Thus, the controller of the flexible arm is called PDS
control. The fourth term is the gravity compensation term.
In the proposed controller (19), the states of the quadrotor
UAV can be obtained from sensors and filters, α is the other
component of β(β = α+θ) besides the quadrotor’s attitude θ
and is measured by the encoder, β̇ is obtained by the numer-
ical difference method, and w′′0 is measured by the strain
gauges. Therefore, the proposed design with PDS control is
easily implemented.

IV. STABILITY AT THE NEIGHBORED OF THE DESIRED
STATE
In this section, we prove that the proposed controller (19)
with (17) can ensure the asymptotic stability of the

98480 VOLUME 9, 2021



T. Wang et al.: Modeling and Control of Quadrotor UAV Equipped With Flexible Arm

closed-loop system at the neighborhood of the desired
state. The sketch of the proof is as follows: first we show
that LaSalle’s invariance principle can be applied to this
infinite-dimensional aerial manipulation system, then we
derive the solution of the system that satisfies the condi-
tions for the invariant set, and finally we use this solution
to show that the invariant set has only the desired state.
Besides, in order to apply LaSalle’s invariance principle to
infinite-dimensional systems, the closed-loop systemmust be
formulated in a functional space such as a Hilbert space.

A. LINEARIZED EQUATIONS OF MOTION IN A HILBER
SPACE
In the neighborhood of the desired state, the quadro-
tor UAV hovers at the equilibrium point and the flexible
arm hangs around the assigned angle. If we let x(t) =
xd + ∆x(t), z(t) = zd + ∆z(t), β(t) = βd + ∆β(t),
∆β(t) = ∆α(t) + θ(t), w(r, t) = wε(r) + ∆w(r, t), then
variables ∆x(t),∆z(t), θ(t),∆w(t), ∆β(t), ∆ẋ(t), ∆ż(t) and
∆β̇(t) would be small. Besides, from the equations as shown
in Eq. (9): w(0, t) = 0, w′(0, t) = 0, w′′e = 0, and Eq. (12),
we can know that

∆w(0, t) = 0, ∆w′(0, t) = 0, ∆w′′(L, t) = 0. (32)

Let us introduce the following new variable,

∆wβ (r, t) = Sβd∆x(t)+ Cβd∆z(t)− r∆β(t)+∆w(r, t),

(33)

by substituting Eqns. (17) and (19) into Eq. (9), then the
closed-loop system can be linearized as follows:

∆ẍ = −
k1
m0
∆x −

k2
m0
∆ẋ,

∆z̈ = −
k5
m0
∆z−

k6
m0
∆ż,

∆β̈ =
−k8∆β − k9∆β̇ − EI∆w′′β (0)

Jm(1+ k7)
,

θ̈ = −(k3k4 + 1)θ − (k3 + k4)θ̇ ,

∆ẅβ (L) =
EI
me
∆w′′′β (L),

∆ẅβ = −
EI
ρ
∆w′′′′β ,

(34)

and the boundary conditions are shown as

∆wβ (0) = Sβd∆x + Cβd∆z,

∆w′β (0) = −∆β, ∆w′′β (L) = 0, (35)

where the time variable is omitted and ∆wβ (0), ∆w′β (0), and
∆w′′β (L) denote∆wβ (0, t),∆w

′
β (0, t), and∆w

′′
β (L, t) respec-

tively. On the other hand, the following functional space H is
introduced as the state space:

H =
{
y : uw ∈ H2(0,L), vw ∈ L2(0,L), ve ∈ R,

u′w(0) = −u3, uw(0) = Sβd u1 + Cβd u2,

ui ∈ R, vi ∈ R, i = 1, · · · , 4
}
, (36)

where y = [u1, v1, u2, v2, u3, v3, u4, v4, ve, uw, vw]T , H2

denotes a second-order Sobolev space, and L2 is the square
integrable space. In H we define the following inner product:

〈y, ŷ〉H =
1
2
m0(v1v̂1 + v2v̂2)+

1+ k7
2

Jmv3v̂3 +
1
2
v4v̂4

+
1
2

∫ L

0
ρvwv̂wdr +

1
2

∫ L

0
EIu′′wû

′′
wdr +

1
2
mevev̂e

+
k1
2
u1û1 +

k5
2
u2û2 +

k8
2
u3û3 +

k3k4 + 1
2

u4û4,

(37)

where

y =
[
u1 v1 · · · u4 v4 ve uw vw

]T
, (38)

ŷ =
[
û1 v̂1 · · · û4 v̂4 v̂e ûw v̂w

]T
. (39)

Lemma 1: The space H together with the inner product
given by (37) becomes a Hilbert space.

Proof: See Appendix B �
Then we define the unbounded linear operator A : D(A) ⊂

H → H as follows:

Ay =



v1

−
k1
m0

u1 −
k2
m0

v1

v2

−
k5
m0

u2 −
k6
m0

v2

v3
1

Jm(1+ k7)

(
−k8u3 − k9 v3 − EIu′′w(0)

)
v4

−(k3k4 + 1)u4 − (k3 + k4)v4
EI
me

u′′′w (L)

vw

−
EI
ρ
u′′′′w



, (40)

where the domain of the operator A is defined as

D(A) =
{
y ∈ H : uw ∈ H4(0,L), vw ∈ H2(0,L),

uw(0) = Sβd u1 + Cβd u2, u
′
w(0) = −u3,

u′′w(L) = 0, vw(0) = 0, v′w(0) = −v3,

vw(L) = ve, ui ∈ R, vi ∈ R, i = 1, · · · , 4} . (41)

Then the closed-loop system under the Hilbert spaceH can
be written as the first-order evolution equation

ẏ = Ay, (42)

where

y = [∆x,∆ẋ,∆z,∆ż,∆β,∆β̇, θ, θ̇ , ∆ẇβ (L),∆wβ ,∆ẇβ ]T .
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B. APPLICATION OF LaSalle’s INVARIANCE PRINCIPLE
To apply LaSalle’s invariance principle, we need to investi-
gate whether the properties of the closed-loop system (42)
satisfy the following lemma:
Lemma 2: The operator A generates a C0-semigroup of

contractions. Furthermore, the operator A−1 is compact.
Proof: To prove that the operator A generates a

C0-semigroup of contractions, from the Lumer-Phillips theo-
rem [38], we need to show that 1) operatorA is dissipative and
2) 0 ∈ ρA(A), where ρA(A) is the resolvent set of the operator
A. First, we show that the operator A is dissipative. For any
given y = [u1, v1, u2, v2, u3, v3, u4, v4, ve, uw, vw]T ∈ D(A),
the result of inner product satisfies

〈Ay, y〉H = −
k2
2
v21−

k6
2
v22−

k9
2
v23−

k3
2
u24 −

k3 + k4
2

v24≤0,

(43)

where the derivation details can be found in Appendix C.
Thus, the operator A is dissipative.

Next, we show that 0 ∈ ρA(A). In order to prove
0 ∈ ρA(A), we can show that the operator A−1 exists
and is bounded. That is to say, for any given ψ =

[l1, h1, l2, h2, l3, h3, l4, h4, he, lw, hw]T ∈ H , we have to find
φ = [u1, v1, u2, v2, u3, v3, u4, v4, ve, uw, vw]T ∈ D(A) that
satisfies Aφ = ψ . By directly solving Aφ = ψ , we obtain

u1 = −
m0

k1
(h1 +

k2
m0

l1),

v1 = l1,

u2 = −
m0

k5
(h2 +

k6
m0

l2),

v2 = l2,
u3 = −

(
Jm(1+ k7)h3 + k9 l3 + EIu′′w(0)

)
/k8,

v3 = l3,

u4 = −
1

k3k4 + 1
(h4 + (k3 + k4)l4),

v4 = l4,
ve = vw(L) = lw(L),

uw = cw0 + cw1r +
cw2
2
r2 +

cw3
6
r3

+
ρ

EI

∫ r

0

∫ r1

0

∫ r2

0

∫ r3

0
hw(r4)dr4 dr3dr2dr1,

vw = lw(r),

(44)

where cwj (j = 0, 1, 2, 3) are constants determined by the
boundary conditions, including cw3 +

ρ
EI

∫ L
0 hw(r)dr =

−
me
EI he. Then we find that the operator A−1 exists, and φ =

A−1ψ . It is can be shown that there exists a positive constant
K that satisfies

‖ φ ‖H=‖ A−1ψ ‖H≤ K ‖ ψ ‖H , (45)

where the derivation can be found in Appendix D. Therefore,
the operator A−1 is bounded, and thus 0 ∈ ρA(A) is obtained.
Finally, the following estimation can be obtained using the
same procedure we used for the derivation of Eq. (45):

‖ φ ‖H2≤ K
′
‖ ψ ‖H ,

where H2 = H4(0,L)× H2(0,L)× R9, ‖ · ‖Hm is the usual
norm in the Sobolev space Hm, and K ′ is a positive constant.
This means the operator A−1 maps the bounded sets ofH into
the bounded sets ofH2. According to the Sobolev embedding
theorem [39], the embedding ofH2 inH is compact, and thus
the operator A−1 is compact. �

C. ASYMPTOTIC STABILITY
From LaSalle’s invariance principle [40], all solutions of
Eq. (42) asymptotically converge to the maximal invariant
subset of the following set

� =
{
y ∈ H | Ẇ = 0

}
, (46)

whereW = 〈y, y〉H =‖ y ‖2H is the Lyapunov function. Here,
it is shown that � ∈ H contains only the zero solution.
Lemma 3: For the invariant set �, we find that it contains

only ∆x = 0, ∆z = 0, ∆β = 0, θ = 0,∆w = 0, ∆ẋ =
0, ∆ż = 0, ∆β̇ = 0, θ̇ = 0,∆ẇ = 0.

Proof: Under the conditions for the invariant set,
dW/dt = 0 gives us

−k2∆ẋ2−k6∆ż2−k9∆β̇2−k3θ2 − (k3 + k4)θ̇2 = 0, (47)

which implies that

∆ẋ = 0, ∆ż = 0, ∆β̇ = 0, θ = 0, θ̇ = 0, (48)

∆ẍ = 0, ∆z̈ = 0, ∆β̈ = 0. (49)

Substituting (48), (49) into Eq. (34) yields

∆x = 0, ∆z = 0, ∆β = 0, (50)

∆w′′0 = c0, (51)

EI (
me
ρ
∆w′′′′e +∆w

′′′
e ) = 0, (52)

∆ẅ+
EI
ρ
∆w′′′′ = 0, (53)

where c0 is a constant. From Eq. (53), we know that the
solution would be

∆w(r, t) = ∆w1(t)∆w2(r), (54)

Substituting (54) into (53), we have

∆ẅ1

∆w1
= −

EI
ρ

∆w′′′′2
∆w2

, (55)

and then we know that (55) equals a constant. Suppose that
∆w′′′′2
∆w2
= λw, where λw is a constant, and thus we obtain

∆w1(t) = c1 sin

(√
λw
EI
ρ
t + ψ0

)
, (56)

∆w2(r) = c2e−
4√λwr + c4e

4√λwr

+ c3 sin(
4
√
λwr)+ c5 cos(

4
√
λwr), (57)

where ci(i = 1, 2, · · · , 5) andψ0 are constants. Now, we con-
sider the following two cases: λw = 0 and λw 6= 0.

1) λw = 0
From Eq. (57), we know that ∆w2(r) = ∆w2(0), and
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from Eq. (54) and ∆w(0, t) = 0 as shown in Eq. (32),
then we have

∆w(r, t) = ∆w1(t)∆w2(0) = ∆w(0, t) = 0. (58)

2) λw 6= 0
Now, we consider the following two cases: c1 = 0 and
c1 6= 0.
• c1 = 0 :
From Eq. (56) we know that∆w1(t) = 0, and then
we have

∆w(r, t) = ∆w1(t)∆w2(r) = 0. (59)

• c1 6= 0 :
From Eq. (32), we obtain that

∆w2(0) = 0, ∆w′2(0) = 0, ∆w′′2(L) = 0, (60)

In addition, from Eqns. (51) and (52), we have

w′′2(0) = 0,
me
ρ
∆w′′′′2 (L)+∆w′′′2 (L) = 0. (61)

From (60) and (61), then we can derive that ci(i =
2, 3, · · · , 5) = 0,∆w2(r) = 0, and thus we have

∆w(r, t) = ∆w1(t)∆w2(r) = 0. (62)

In summary, under all cases as shown in Eqns. (58), (59)
and (62), we can obtain

∆w = 0. (63)

And further,

∆ẇ = 0. (64)

Therefore, we know Lemma 3 is proved. �
Finally, the following theorem for the asymptotic stability

of the closed-loop system is obtained:
Theorem 2: The closed-loop system (42) is asymptotically

stable.
Proof: From Lemma 2, it is easy to see that 0 ∈

range(A). Further, from Theorem 6.29 in [41] and the fact
that the operator A−1 is compact, the operator (λI − A)−1

is compact for every λ ∈ ρA(A). This implies the precom-
pactness of the solution trajectory by Theorem 3.65 in [40].
Therefore, from Lemma 3 and LaSalle’s invariant principle
(Theorem 3.64 in [40]), the closed-loop system (42) is asymp-
totically stable. �

Therefore, we have ∆x = ∆z = ∆β = θ = ∆w = 0 and
∆ẋ = ∆ż = ∆β̇ = θ̇ = ∆ẇ = 0 as t →∞ from Lemma 3.
Further, the control objective (13) is achieved.

V. NUMERICAL SIMULATION
A. SIMULATION SETUP
To evaluate the performance of the proposed control strat-
egy, we carried out numerical simulations. For these sim-
ulations, the finite-dimensional approximated model was
derived by the Galerkin approximations considering the
first seven vibration modes. More details can be found in
reference [42].

The arm is considered a thin stainless steel plate 1m length,
0.002m thickness, and 0.04m width. From the physical con-
stants and the geometric shape of the arm, we have

L = 1m, ρ = 0.45kg/m, ma = 0.45kg,

E = 2.06× 1011N/m2, I = 1.944× 10−11m4. (65)

Plant parameters of the quadrotor UAV and arm motor are

mb = 1.2kg, Jb = 0.004kg ·m2,

me = 0.2kg, Jm = 0.0006kg ·m2. (66)

In this simulation, we investigate the response when both
the quadrotor UAV and the flexible arm moving toward
desired positions. The initial state was set as x(0) = z(0) =
θ (0) = β(0) = 0 and ẋ(0) = ż(0) = θ̇ (0) = β̇(0) = 0,
while the desired state was xd = 3, zd = 2, βd = π/10;
thus, the static deformation would be wε(L) = −0.21m
according to Eq. (12). Besides, the feedback gains were set
as k1 = 10, k2 = 3, k3 = 18, k4 = 6, k5 = 5, k6 =
3, k7 = 5.5, k8 = 25, k9 = 3.5. The parameter tuning is
performed by trial and error. We set the controller’s sampling
time ∆t = 0.005s, and the disturbance observer was set to
run 50 times faster than the controller.

To the best of our knowledge, a controller for an
aerial manipulation system considering infinite-dimensional
dynamics has not been reported before. Therefore, there are
few controllers for comparison. In order to investigate the
validation of the proposed control strategy, we conducted
a comparison of the controller for the flexible arm in the
proposed design (19), which is the PDS controller

τm0 =
1

1+ k7

(
k7EIw′′0 − k8eβ − k9β̇ − G

)
(67)

comparing with the PD controller

τm0 =
1

1+ k7

(
−k8eβ − k9β̇ − G

)
. (68)

B. SIMULATION 1
We implemante the simulation without disturbance or noise
at first, and the comparison results are shown as Fig. 3-Fig. 6.
In Fig. 3 and Fig. 4, the solid lines show the responses of the
controller with PDS flexible arm control, while the stippled
lines show the response of the controller with PD flexible arm
control.

In Fig. 3, (a)(c)(e) on the left side are the states’ responses
of the quadrotor UAV while (g) shows the sum of the orienta-
tional angle of the quadorotor UAV and the rotational angle of
the armmotor. In Fig. 3, (b)(d) are the needed force and torque
of the quadrotor UAV,while (f) is the needed torque of the arm
motor. These values are reasonable for real actuators. From
(a)(c) in Fig. 3, error values of the positions of the quadrotor
UAV converged to 0 because they were governed by the
same controller, while the responses of angles shown in (e)(g)
were different because of the coupling dynamics with the
flexible arm where the controller was different. Specifically,
the controller with PDS flexible arm control stabilized system
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FIGURE 3. Comparison of responses of states and needed inputs.

in 10 seconds and the error of rotational angle becomed 0,
while the error of rotational angle was larger than 0.07rad
after 10 seconds for the controller with PD flexible arm
control. In fact, the root mean squared error value of eβ in the
response of the controller with PDS flexible arm control was
Eeβ = ‖eβ‖ = 0.0518, while this value in the controller with
PD flexible arm control was Eeβ = ‖eβ‖ = 0.0776, where

‖ · ‖ =

√
1
N6

N
1 (·)

2 and N is the total number of samples.
Apparently, the PDS control of the flexible arm performed

better, which is clearly shown in Fig. 4 and Fig. 5. Fig. 4
shows the time responses of the flexible arm, where w(L, t)
in 4(a) is the transverse displacement of the end effector at
the flexible arm, (b) is the rotational angle velocity, (c) is
the bending moment at the root of the arm, and (d) is the
vibration velocity of the end effector. Fig. 5 shows the whole
beam deformation along time and displacement, where (a) is
under the controller with PDS while (b) is with PD. From
Fig. 4 and Fig. 5, we find that the vibration was suppressed
in 10 seconds by the proposed controller. In contrast to the
proposed controller with PDS, the response of the controller
with PD left some vibrations. After 10 seconds by conducting
the controller with PD, the vibration amplitude is larger than
0.2m from Fig. 4(a), and the vibration velocity is faster
0.8m/s from Fig. 4(d). The root mean squared error value
of w(L, t) in the response of the controller with PDS was
Ew(L,t) = ‖w(L, t) − wε(L)‖ = 0.1073, while this value
in the controller with PD flexible arm control was Ew(L,t) =
‖w(L, t) − wε(L)‖ = 0.1736. These results indicate that the
proposed controller with PDS flexible arm control had higher
performance than the controller with PD flexible arm control.

Fig. 6 shows the evaluation of nonlinear coupling item dτ
that is considered a disturbance, where the dashed line shows
the real value while the solid line is the evaluation. It shows

FIGURE 4. Comparison of deformation of end effector.

FIGURE 5. Deformation of the flexible arm. (a) is under the controller
with PDS while (b) is with PD.

that the disturbance observer workedwell in both PDS control
and PD control.

C. SIMULATION 2
In order to investigate the response of the proposed controller
under the conditions closed to the real world, we conducted
numerical simulations with input disturbances and measure-
ment noises to the quadrotor UAV as follows:
(1) Adding 0.5 sin(t)N and 0.02 sin(t)Nm into fB and τB
respectively.
(2) Adding random noise to state variables x and z with
maximum amplitude 0.005m.
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FIGURE 6. Evaluations by disturbance observer. (a) is under the controller
with PDS while (b) is with PD.

FIGURE 7. Responses of states and needed inputs under input
disturbances and measurement noises.

The feedback gains, initial state, and desired positions are
same with the simulations in Section V-B.

Simulation results are shown in Fig. 7-Fig. 10. In Fig. 7
and Fig. 8,same with simulation 1, the solid lines show the
responses of the controller with PDS flexible arm control,
while the stippled lines show the response of the controller
with PD flexible arm control.

From the states’ responses in Fig. 7(a)(c)(e)(g), Fig. 8,
and Fig. 9, we can find that there are obvious oscillation
phenomena comparing with the case without disturbance and
noise in Section V.B. In Fig. 7, (b)(d) show the required
force and torque of the quadrotor UAV, and (f) shows the
required torque of the arm motor as the control input. These
values are reasonable for real actuators. Fig. 10 shows that the
disturbance observer in presence of input disturbances and
measurement noises also worked well in both PDS control
and PD control, where the dashed line shows the real value
while the solid line is the evaluation.

FIGURE 8. Deformation of end effector under input disturbances and
measurement noises.

FIGURE 9. Deformation of the flexible arm under input disturbances and
measurement noises.

Under the input disturbances and measurement noises,
the proposed controller with PDS flexible arm control had
higher performance than the controller with PD flexible arm
control, which is indicated by the angle error eβ and trans-
verse displacement w(L, t). The root mean squared error
value of eβ in the response of the controller with PDS flexible
arm control was Eeβ = ‖eβ‖ = 0.0519, while this value
in the controller with PD flexible arm control was Eeβ =

‖eβ‖ = 0.0778, where ‖ · ‖ =
√

1
N6

N
1 (·)

2 and N is the
total number of samples. The root mean squared error value
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FIGURE 10. Evaluations by disturbance observer under input
disturbances and measurement noises. (a) is under the controller with
PDS while (b) is with PD.

of w(L, t) in the response of the controller with PDS was
Ew(L,t) = ‖w(L, t) − wε(L)‖ = 0.1074, while this value
in the controller with PD flexible arm control was Ew(L,t) =
‖w(L, t)− wε(L)‖ = 0.1738.

VI. CONCLUSION
In this paper, the control problem for a quadrotor UAV
equipped with a one-link Euler-Bernoulli arm was consid-
ered based on a hybrid PDE-ODE model. First, the dynamic
model was derived usingHamilton’s principle. Then, a simple
controller with a disturbance observer was proposed based
on the Lyapunov method. The proposed controller achieved
motion control of the aerial manipulation system and sup-
pressed the vibration of the flexible arm at the same time.
Specifically, the asymptotic stability of the closed-loop sys-
tem was proved by LaSalle’s invariance principle applied
to infinite-dimensional systems in the neighborhood of the
desired state. Finally, through numerical simulations, we con-
firmed that the proposed controller works well during both
hovering and motion.

In this paper, a motion in the vertical plane was considered.
In future research, it would be desirable to investigate the
control problem in a 3D environment and to conduct an
experimental implementation.

APPENDIX A
CALCULATION OF V̇1
According to Eqns. (5) and (6), we can obtain time derivative
equations as follows:

K̇Bt = mbẋẍ + mbżz̈, K̇M = Jmβ̇β̈, (69)

K̇A = ρ
∫ L

0
(ṗrx p̈rx + ṗrzp̈rz)dr

= β̇

(∫ L

0
−ρp̈rx(rSβ − Cβw)dr

−

∫ L

0
ρp̈rz(rCβ + Sβw)dr

)
+

∫ L

0
ρ
(
ẇ(Sβ p̈rx + Cβ p̈rz)+ ẋp̈rx + żp̈rz

)
dr, (70)

K̇E = me(ṗex p̈ex + ṗezp̈ez)

= β̇
(
−mep̈ex

(
LSβ − Cβwe

)
− mep̈ez

(
LCβ + Sβwe

))
+meẇe

(
Sβ p̈ex + Cβ p̈ez

)
+ me(ẋp̈ex + żp̈ez), (71)

U̇w =
∫ L

0
ρg
(
ẇCβ − wβ̇Sβ

)
dr + meg

(
ẇeCβ − weβ̇Sβ

)
+

∫ L

0
EIw′′ ˙(w′′)dr . (72)

Using integration by parts and the boundary conditions
w(0, t) = 0, w′(0, t) = 0, and w′′e = 0 in Eq. (9), we know
that ∫ L

0
EIw′′ ˙(w′′)dr

= EIw′′ ˙(w′) |L0 −
∫ L

0
EIw′′′ ˙(w′)dr

= EIw′′ ˙(w′) |L0 −EIw
′′′ẇ |L0 +

∫ L

0
EIw′′′′ẇdr

= −EIw′′′e ẇe +
∫ L

0
EIw′′′′ẇdr . (73)

By combining above Eqns. (69)-(73), we have

V̇1 = K̇Bt + K̇M + K̇A + K̇E + U̇w

=

(
mbẍ +

∫ L

0
ρp̈rxdr + mep̈ex

)
ẋ

+

(
mbz̈+

∫ L

0
ρp̈rzdr + mep̈ez

)
ż

+

{
−

∫ L

0
ρp̈rx

(
rSβ − wCβ

)
dr

−

∫ L

0
ρp̈rz

(
rCβ + wSβ

)
dr

−mep̈ex
(
LSβ − weCβ

)
− mep̈ez

(
LCβ + weSβ

)
−

∫ L

0
ρgSβwdr − megweSβ + Jmβ̈

}
β̇

+
(
mep̈exSβ + mep̈ezCβ + megCβ − EIw′′′e

)
ẇe

+

∫ L

0

(
ρp̈rxSβ+ρp̈rzCβ+ρgCβ + EIw′′′′

)
ẇdr, (74)

and from the derivation procedure of Eq. (8) to Eq. (9), we can
know

mbẍ +
∫ L

0
ρp̈rxdr + mep̈ex = θ fB,

mbz̈+
∫ L

0
ρp̈rzdr + mep̈ez = fB − m0g,

−

∫ L

0
ρp̈rx

(
rSβ−wCβ

)
dr−

∫ L

0
ρp̈rz

(
rCβ+wSβ

)
dr

−mep̈ex
(
LSβ − weCβ

)
− mep̈ez

(
LCβ + weSβ

)
−

∫ L

0
ρgSβwdr − megweSβ + Jmβ̈ = τm + G,

mep̈exSβ + mep̈ezCβ + megCβ − EIw′′′e = 0,
ρp̈rxSβ + ρp̈rzCβ + ρgCβ + EIw′′′′ = 0,

(75)
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where G =
∫ L
0 ρgrCβdr + megLCβ = ( 12ma + me)gLCβ .

Substituting (75) into (74), then we obtain Eq. (28) as follow:

V̇1 = ẋθ fB + ż(fB − m0g)+ β̇ (τm + G) .

APPENDIX B
PROOF OF LEMMA 1
Since H together with the standard inner product would be a
Hilbert space, we would like to show that the norm induced
by the inner product (37) is equivalent to that of the standard
one. In other words, we show that the norm,

‖ u ‖21 =
1
2
m0(v21 + v

2
2)+

1+ k7
2

Jmv23

+
1
2

∫ L

0
ρv2wdr +

1
2

∫ L

0
EI (u′′w)

2dr +
1
2
mev2e

+
k1
2
u21+

k5
2
u22+

k8
2
u23+

k3k4 + 1
2

u24 +
1
2
v24, (76)

is equivalent to the norm,

‖ u ‖22=
∫ L

0

(
u2w + (u′w)

2
+ (u′′w)

2
)
dr +

∫ L

0
v2wdr + v

2
e

+ u21 + u
2
2 + u

2
3 + u

2
4 + v

2
1 + v

2
2 + v

2
3 + v

2
4. (77)

Next, we show that there exist positive constants α1 and α2
satisfying with

α1 ‖ u ‖22 ≤ ‖ u ‖
2
1, (78)

‖ u ‖21 ≤ α2 ‖ u ‖
2
2 . (79)

Here, we note that

uw =
∫ r

0
u′wdr + uw(0),

by using the inequality

| a+ b |2≤ (| a | + | b |)2 ≤ 2(| a |2 + | b |2), (80)

and boundary condition uw(0) = Sβd u1+Cβd u2, thus we have

u2w ≤ 2
(∫ L

0
u′wdr

)2

+ 2u2w(0)

≤ 2
(∫ L

0
u′wdr

)2

+ 4u21 + 4u22. (81)

And from Cauchy-Schwarz inequality{∫ b

a
h(x)ĥ(x)dx

}2
≤

∫ b

a
h2(x)dx

∫ b

a
ĥ2(x)dx, (82)

then we know that Eq. (81) satisfy with

u2w ≤ 2L
∫ L

0
(u′w)

2dr + 4u21 + 4u22.

Integrating above relation derives∫ L

0
u2wdr ≤ 2L2

∫ L

0
(u′w)

2dr + 4Lu21 + 4Lu22. (83)

Similarly, for u′w =
∫ r
0 u′′wdr + u

′
w(0), we have∫ L

0
(u′w)

2dr ≤ 2L2
∫ L

0
(u′′w)

2dr + 2Lu23. (84)

Therefore,

‖ u ‖22 =
∫ L
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0
(u′w)

2dr +
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0
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2dr +
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2
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2
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where we used Eq. (83) and (84). Defining the set

ϒ = {EI , ρ,me, k1, k5, k8, (k3k4 + 1),m0, (1+ k7)Jm, 1},

and letting

α1 ≤
minϒ

2(1+ 2L2 + 4L4)
,

α2 ≥
maxϒ

2(1+ 2L2 + 4L4)
,

then Eqns. (78) and (79) hold. Thus, the norm ‖ u ‖21 is
equivalent to the norm ‖ u ‖22 from Eqns. (78) and (79).

APPENDIX C
DERIVATION DETAILS OF INNER PRODUCT CALCULATION
For any given y = [u1, v1, u2, v2, u3, v3, u4, v4, ve, uw, vw]T ∈
D(A), according to Eqns. (37) and (40), we have

〈Ay, y〉H

=

〈
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2
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1
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(
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Using integration by parts and the boundary conditions
vw(L) = ve, vw(0) = 0, u′′w(L) = 0, v′w(0) = −v3 in Eq. (41),
then we know that∫ L

0
u′′′′w vwdr = u′′′w vw |

L
0 −

∫ L

0
u′′′w v
′
wdr

= u′′′w (L)vw(L)− u
′′′
w (0)vw(0)−
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0
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0
u′′wv
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wdr . (86)

Therefore, Eq. (85) can be rewritten as

〈Ay, y〉H = −
k2
2
v21 −

k6
2
v22 −

k9
2
v23 −

k3
2
u24 −

k3 + k4
2

v24,

which is shown in Eq. (43).

APPENDIX D
PROOF OF EXISTENCE OF K
The main concern is whether ‖ uw ‖2=

∫ L
0 u2wdr is upper

bounded or not. According to the Cauchy-Schwarz inequality
Eq. (82), we have

uw = cw0 + cw1r +
cw2
2
r2 +

cw3
6
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0
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0
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} 1
2

. (87)

Besides, from boundary conditions, we can get

cw0 = uw(0) = Sβd u1 + Cβd u2,

cw1 = u′w(0) = −u3,

cw2 = u′′w(0) = −cw3L −
ρ

EI

∫ L

0
(r − r4)hw(r4)dr4,

cw3 = −
ρ

EI

∫ L

0
hw(r)dr −

me
EI
he.

By using the inequality Eq. (80), then we have

c2w0 ≤ K0

{
h21 + l

2
1 + h

2
2 + l

2
2

}
,

c2w1 ≤ K1

{
h23 + l

2
3 + ‖hw‖

2
+ h2e

}
,

c2w2 ≤ K2

{
‖hw‖2 + h2e

}
,

c2w3 ≤ K3

{
‖hw‖2 + h2e
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. (88)

And thus, we can obtain∫ L

0
u2wdr ≤ K4

{
‖hw‖2+h2e+h

2
1+h

2
2+h

2
3 + l

2
1 + l

2
2 + l

2
3

}
.

(89)

Therefore, we now know that ‖ uw ‖2=
∫ L
0 u2wdr is upper

bounded. Please note that ‖ ∗ ‖2 =
∫ L
0 ∗

2dr in this work, and
Kj > 0(j = 0, 1, · · · , 4).
By applying this procedure with other variables, then we

can prove Eq.(45) is available:

‖ φ ‖H=‖ A−1ψ ‖H≤ K ‖ ψ ‖H .
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