

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab resource: Stem Cell Line

Human induced pluripotent stem cells generated from a patient with idiopathic basal ganglia calcification

Check for updates

Yuichiro Yada^{a,b}, Takayuki Kondo^{a,b,c}, Mika Suga^{a,b}, Kayoko Tsukita^{a,b}, Takako Enami^{b,c}, Ran Shibukawa^a, Yukako Sagara^a, Yasue Okanishi^a, Keiko Imamura^{a,b,c}, Takeshi Kihara^d, Haruhisa Inoue^{a,b,c,*}

^a iPSC-based Drug-Discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan

^b Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan

^c Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan

^d Kobe City Medical Center West Hospital, 2-4 Ichibancho, Nagata-ku, Kobe, Japan

ABSTRACT

Idiopathic basal ganglia calcification (IBGC) is a rare neurodegenerative disease, characterized by abnormal calcium deposits in basal ganglia of the brain. The affected individuals exhibit movement disorders, and progressive deterioration of cognitive and psychiatric ability. The genetic cause of the disease is mutation in one of several different genes, SLC20A2, PDGFB, PDGFRB, XPR1 or MYORG, which inheritably or sporadically occurs. Here we generated an induced pluripotent stem cell (iPSC) line from an IBGC patient, which is likely be a powerful tool for revealing the pathomechanisms and exploring potential therapeutic candidates of IBGC.

(continued)

1. Resource table

Unique stem cell line identifier	BRCi007-A	D
Alternative name of stem cell line	HPS3900	C
Institution	RIKEN BioResource Research Center (BRC), Kyoto,	Et
	Japan	
Contact information of	Haruhisa Inoue	
distributor	haruhisa.inoue@riken.jp	
Type of cell line	iPSC	
Origin	Human	
Additional origin	Age: 80	
information	Sex: male	
	Ethnicity: Japanese	•
Cell Source	Peripheral blood mononuclear cells (PBMCs)	2.
Clonality	Clonal	
Method of	Episomal vectors (Oct3/4, mp53DD, Sox2, KLF4, L-	
reprogramming	MYC, LIN28, EBNA1)	pat
Genetic Modification	No	ind
Type of Modification	Not available	
Associated disease	Idiopathic basal ganglia calcification (IBGC)	1nv
Gene/locus	Not identified	
Method of modification	Not available	3.
Name of transgene or	Not available	
resistance		
	Not available	

· · · · ·	
Inducible/constitutive system	
Date archived/stock date	June 2018
Cell line repository/bank	RIKEN BioResource Research Center, Japan
	https://web.brc.riken.jp/en/
Ethical approval	Ethics Committee of the Department of Medicine and
	Graduate School of Medicine, Kyoto University
	(approved No. = R0091, G259)
	Ethics Committee of the RIKEN BioResource Research
	Center (approved No. Tsukuba 29–1)

2. Resource utility

Abnormal calcification occurs in the brains of patients with in idiopathic basal ganglia calcification (IBGC). Development of human induced pluripotent stem cells (iPSCs) may offer a cell model for investigating IBGC and potential therapeutic approaches.

3. Resource details

IBGC, also referred to as primary familial brain calcification (PFBC), is characterized by abnormal deposits of calcium or hydroxyapatite typically in basal ganglia of the brain (Wang et al., 2012). The symptoms

* Corresponding author at: iPSC-based Drug-Discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan. *E-mail address:* haruhisa.inoue@riken.jp (H. Inoue).

(continued on next column)

https://doi.org/10.1016/j.scr.2021.102274

Received 19 November 2020; Received in revised form 19 February 2021; Accepted 25 February 2021 Available online 3 March 2021 1873-5061/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). of the disease are movement disorders such as parkinsonism, which include slow movement (bradykinesia), muscle rigidity and tremors, and neuropsychiatric symptoms including dementia and psychosis. The disease is progressive and the symptoms worsen over time. Fundamental treatment for IBGC has not been established. The frequency of IBGC is fairly rare, although the expected number of patients is considerably more than the currently detected cases because detection of calcium deposit in the brain requires brain imaging. The genetic cause of IBGC is mutation in one of several disease-associated genes, which include SLC20A2, PDGFB, PDGFRB, XPR1 or MYORG (Yao et al., 2018). Of note is that some carriers remain asymptomatic (Nicolas et al., 2015). The mutation occurs both inheritably and sporadically. However, the molecular mechanism and pathology of IBGC are still unclear. In this report, human iPSCs were generated from peripheral blood cells of an IBGC patient for use as a substrate in modelling studies and for investigating the pathomechanisms of the disease (Table 1). Episomal vectors were used to transduce reprogramming factors (Okita et al., 2013) into peripheral blood mononuclear cells (PBMCs) from an IBGC patient, and IBGC-iPSCs that expressed the pluripotency markers NANOG, OCT3/4, and TRA1-60 were established (Fig. 1A). Flow cytometric analysis showed that 99.9% of the iPSCs were positive for SSEA-4 and 91.6% were positive for TRA1-60 (Fig. 1B). The differentiation capacity of the cell line was demonstrated by its ability to differentiate the three germ layers in vitro; immunostaining confirmed the presence of the

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology	Photography	Normal, human ESC-like morphology	Fig. 1 panel A
Phenotype	Immunocytochemistry	Assess staining of pluripotency markers: NANOG, Oct3/4, TRA1-60	Fig. 1 panel A
	Flow cytometry	SSEA-4 99.9% TRA1-60 91.6%	Fig. 1 panel B
Genotype	Karyotype (G-banding)	46XY Resolution 400 bands	Fig. 1 panel D
Identity	Microsatellite PCR (mPCR)	Not performed	Not performed
	STR analysis	16 loci, matched	Not shown but available with the authors
Mutation analysis	Sequencing	Not performed	Not performed
	Southern Blot OR WGS	Not performed	Not performed
Microbiology and virology	Mycoplasma	Mycoplasma testing by Vero- Hoechst method and nested-PCR. Negative	Not shown but available with the authors
Differentiation potential	Embryoid body formation OR Teratoma formation OR Scorecard	Describe expression of genes in embryonic bodies: SOX-17, AFP, αSMA, and βIII-Tubulin.	Fig. 1 panel C
Donor screening (OPTIONAL)	HIV, HTLV-1, Hepatitis B, Hepatitis C	Negative	Not shown but available with the authors
Genotype additional	Blood group genotyping	Not available	Not available
info	HLA tissue typing	Not available	Not available

mesodermal marker smooth muscle actin (SMA), the endodermal markers SOX17 and α -Fetoprotein (AFP), and the ectodermal marker β III-Tubulin (Fig. 1C). The cell line maintained a normal karyotype after the reprogramming process (Fig. 1D).

4. Materials and methods

4.1. Ethics statement

The generation and use of human iPSCs were approved by Ethics Committees of RIKEN BioResource Research Center, and the Department of Medicine and Graduate School of Medicine, Kyoto University. Formal informed consent was obtained from the patient. All experiments in this study were performed in accordance with the approved guidelines.

4.2. Establishment of iPSCs

Human complementary DNAs of reprogramming factors were transduced into peripheral blood mononuclear cells (PBMCs) using episomal vectors: pCE-hOCT3/4 (OCT3/4, 1.05 µg); pCE-hSK (SOX2 and KLF4, 1.05 µg); pCE-hUL (L-MYC and LIN28, 1.05 µg); pCEmp53DD (p53 carboxy-terminal dominant-negative fragment, 1.05 µg); and pCXB-EBNA1 (EBNA1, 0.8 µg). The vectors were transduced by using a 4D-Nucleofector X-unit with the program EO-117 (Lonza, Basel, Switzerland). In-house manufactured vectors were used in the reprogramming; these are also available from addgene (https://www.addgene. org/). After transduction, the generated iPSCs were cultured under feeder-free conditions (Nakagawa et al., 2014); the iPSCs were seeded onto laminin 511 E8 coated plates and maintained in StemFit medium (AK02N, Ajinomoto, Tokyo, Japan). Single cell isolates were passaged every 6-8 days with TrypLE Select (Thermo Fisher Scientific, Waltham, MA) diluted 1:1 with 0.5 mM EDTA solution. After the passaging, 10 µM Y-27632 (Nacalai Tesque, Kyoto, Japan) was added to the culture medium for one day and was then removed by replacing with the fresh medium on the next day. The cultures were maintained in a 5% CO2 incubator at 37 °C.

4.3. In vitro differentiation into the three germ layer cell types

For differentiation of the three germ layer cell types, the generated iPSCs were collected by TrypLE select (Thermo Fisher Scientific) and transferred to a V-bottom 96-well plate (Sumitomo Bakelite, Tokyo, Japan). The cells were cultured in DMEM/F12 with GlutaMAX (Thermo Fisher Scientific) supplemented with 20% Knockout Serum Replacement (KSR; Thermo Fisher Scientific), 1 mM Non-Essential Amid Acid (NEAA; Thermo Fisher Scientific), penicillin/streptomycin (PS; Thermo Fisher Scientific) and 10 μ M Y-27632 (Nacalai Tesque, Kyoto, Japan); embryonic bodies (EBs) were generated in culture. On day 8, EBs were collected and moved to a Matrigel-coated plate. The EBs were induced to differentiate into the three germ layers by culturing in DMEM/F12 with GlutaMAX containing 10% fetal bovine serum (FBS; Thermo Fisher Scientific) for an additional 7 days.

4.4. Immunocytochemistry

Cells were fixed with 4% paraformaldehyde/PBS and then incubated in blocking buffer (5% Blocking One/PBS, Nacalai Tesque) with 0.2% Triton X-100 (Nacalai Tesque)/PBS. The cells were kept overnight in blocking buffer containing primary antibodies and subsequently secondary antibodies. The antibodies used in the experiments are listed in Table 2. Cell nuclei were stained with DAPI (Thermo Fisher Scientific). Phase contrast and fluorescence images were obtained using a BZ-X710 microscope (Keyence, Osaka, Japan). Scale bars indicate 100 µm.

Fig. 1. Characterization of the iPSC line.

4.5. Karyotype analysis

iPSCs at passage 6 were karyotyped; 80–90% confluent cells were treated with colcemid solution for at least 2 h at 37 $^{\circ}$ C and then harvested. The cells were given a hypotonic treatment and then fixed. Twenty G-banded metaphase plates were karyotyped by LSI Medience (Tokyo, Japan).

4.6. Flow cytometric analysis

iPSCs were dissociated into single cells using Accumax (Innovative Cell Technology). The dissociated cells were suspended at 1.0×10^6 cells/ml in PBS containing 2% FBS and stained with Alexa-647 conjugated SSEA-4 monoclonal antibody or with Alexa-488 conjugated TRA1-60 monoclonal antibody (BD Biosciences, San Jose, CA) for 30 min at

4 °C. Alexa-647 conjugated isotype control or Alexa-488 conjugated isotype control was used as a negative control. After staining with the antibody, the cells were washed twice in PBS with 2% FBS and analyzed using FACS Aria (BD Biosciences).

4.7. DNA fingerprinting

Short tandem repeat (STR) analysis was performed using a Power-Plex 16 HS system (Promega, Madison, WI, US) and 3500xL Genetic Analyzer. PowerPlex 4C Matrix Standard (Promega) was used for calibration of the system.

4.8. Mycoplasma test

Confirmation that the generated iPSCs were mycoplasma negative

Table 2

Antibodies used i	for immunocytoche	emistry/flow	-cytometry
	Antibody	Dilution	Company Cat # and RRID
Pluripotency	Rabbit anti-	1:500	Cosmo Bio Co
markers	NANOG		Cat# RCAB0003P,
			RRID: AB_1962353
Pluripotency	Mouse anti-	1:200	Cell Signaling Technology
markers	TRA1-60		Cat# 4746S,
			RRID: AB_2119059
Pluripotency	Mouse anti-	1:1000	SantaCruz
markers	OCT3/4		Cat# sc5279,
			RRID: AB_628051
Ectoderm	Mouse anti-βIII-	1:1000	Millipore
differentiation	tubulin		Cat# MAB1637,
markers			RRID: AB_2210524
Mesoderm	Mouse anti-	1:500	DAKO
differentiation	αSMA		Cat# M0851.
markers			RRID: AB 2223500
Endoderm	Goat anti-	1.1000	R&D Systems
differentiation	SOX17	1.1000	Cat# AF1024
marker	30A17		DDD: AP 255060
	M	1. 400	Ciama Alduich
Endoderm	Mouse anti-	1:400	Sigma-Aldrich
differentiation	α-retoprotein		Cat# A8452,
marker	(AFP) Clone C3		RRID: AB_258392
Secondary	Donkey anti-	1:1000	Molecular Probes
antibody	Goat IgG Alexa		Cat# A-11055,
	Fluor 488		RRID: AB_142672
Secondary	Goat anti-	1:1000	Thermo Fisher Scientific
antibody	Mouse IgG		Cat# A-11030,
	Alexa Fluor 546		RRID: AB_2534089
Secondary	Goat anti-	1:1000	Thermo Fisher Scientific
antibody	Mouse IgG		Cat# A-32723
5	Alexa Fluor 488		RRID: AB 2633275
Secondary	Goat anti-	1:1000	Thermo Fisher Scientific
antibody	Rabbit IgG	111000	Cat# A-11010
unubody	Alexa Eluor 546		PPID: AB 2534077
Divrington	Alexa Fluor 647	1 ug/tost	RRID. AD_2334077
Pluripotency	Alexa Fluor 04/	1 μg/test	BD BIOSCIEIICES
marker	Mouse anti-		Cat# 560/96
	SSEA4		RRID: AB_2033991
lsotype control	Alexa Fluor 647	1 μg/test	BD Biosciences
	Mouse IgG3, k		Cat# 560803
	Isotype Control		RRID: AB_2034029
Pluripotency	Alexa Fluor 488	1 μg/test	BD Biosciences
marker	Mouse anti-		Cat# 560173,
	TRA1-60		RRID: AB_1645379
Isotype control	Alexa Fluor 488	1 μg/test	BD Biosciences
	Mouse IgM, k		Cat# 562,409
	Isotype Control		RRID: AB 11153124
Primers			
	Target	Forward/I	Reverse primer (5'-3')
Nested-PCR, 1st	mycoplasma	ACACCATO	GGGAG(C/T)TGGTAAT/
step	detection	CTTC(A/T)TCGACTT(C/T)
•		CAGACCC	AAGGCAT
Nested-PCR, 2nd	mycoplasma	GTG(C/G)GG(A/C)TGGATCACCTCCT/	
sten	detection	GCATCCACCA(A/T)A(A/T)AC(C/T)CTT	
Episomal	OriP	TTCCACGAGGGTAGTGAACC/	
nlasmids	2111	TCGGGGGG	TGTTAGAGACAAC
integration PCR		100000	
Endogenous	human Fbx15	GCCAGGA	GGTCTTCGCTGTA/
allele		AATGCAC	GGCTAGGGTCAAA
dotootice DCD		AATGUAU	JOUIAGOULAAA
uetection PCR	1	0000100	00000
qPCR, numan	numan OCT3/4	CCCCAGG	GUUCCATTTIGGTACC/
pluripotent	(CDS)	ACCTCAG	ITTGAATGCATGGGAGAGC
gene			
expression			
pCR, transgene	human OCT3/4	CATTCAAA	ACTGAGGTAAGGG/
1 , 0			
expression	(Tg)	TAGCGTA	AAAGGAGCAACATAG

(CDS)

(Tg)

human SOX2

pluripotent

qPCR, transgene

expression

gene expression

Table 2	(continued)
Table 2	continuea)

Antibodies used for immunocytochemistry/flow-cytometry			
	Antibody	Dilution	Company Cat # and RRID
qPCR, human	human KLF4	ACCCATCC	ITCCTGCCCGATCAGA/
pluripotent	(CDS)	TTGGTAATO	GGAGCGGCGGGGACTTG
gene			
expression			
qPCR, transgene	human KLF4	CCACCTCG	CCTTACACATGAAGA/
expression	(Tg)	TAGCGTAA	AAGGAGCAACATAG
qPCR, human	human L-MYC	GCGAACCC	AAGACCCAGGCCTGCTCC/
pluripotent	(CDS)	CAGGGGGT	CTGCTCGCACCGTGATG
gene			
expression			
qPCR, transgene	human L-MYC	GGCTGAGA	AGAGGATGGCTAC/
expression	(Tg)	TTTGTTTGA	CAGGAGCGACAAT
qPCR, human	human LIN28	AGCCATAT	GGTAGCCTCATGTCCGC/
pluripotent	(CDS)	TCAATTCTC	GTGCCTCCGGGAGCAGGGTAGG
gene			
expression			
qPCR, transgene	human LIN28	AGCCATAT	GGTAGCCTCATGTCCGC/
expression	(Tg)	TAGCGTAA	AAGGAGCAACATAG

was provided using the Vero-Hoechst and nested-PCR (polymerase chain reaction) methods. For the Vero-Hoechst method, the culture medium was stained using Hoechst33258 (Thermo Fisher Scientific) after coculture with VERO cells (RCB0001, RIKEN BRC Cell Bank). Primers used in the nested-PCR are listed in Table 2.

4.9. Detection of transgenes

Loss of transgene expression and lack of integration were validated at passage 10 by quantitative PCR (qPCR) and PCR analyses, respectively (Supplementary Fig. 2, Okita et al., 2013). Total RNA was purified from iPSCs with QIAzol (Qiagen, Hilden, Germany) and an miRNA mini kit (Qiagen); 1 µg total RNA was reverse transcribed with SuperscriptIII (Thermo Fisher Scientific) and dT20 primer, according to the manufacturer's instructions. qPCR was performed with TB Green Premix Ex Taq™ II (Takara Bio, Kusatsu, Japan) and analyzed with the Quant-Studio™ 12 K Flex Real-Time PCR System (Applied Biosystems, Foster City, CA). Genomic DNA was isolated from iPSCs using protenase K (Takara Bio). Amplification was carried out using ExTaq (Takara Bio). Primers are listed in Table 2.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported in part by grants from the Core Center for iPS Cell Research of Research Center Network for Realization of Regenerative Medicine of the Japan Agency for Medical Research and Development (AMED) to H.I. There is no financial relationship with the work described in this manuscript. We would like to express our sincere gratitude to Kazuma Kamata and all our coworkers and collaborators. and to Makiko Yasui and Mikie Iijima for their administrative support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.scr.2021.102274.

References

TCACATGTGTGAGAGGGGGCAGTGTGC

TTCACATGTCCCAGCACTACCAGA/

TTTGTTTGACAGGAGCGACAAT

Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T.,

Y. Yada et al.

Stem Cell Research 53 (2021) 102274

Osafune, K., Sekiguchi, K., Yamanaka, S., 2014. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594.

- Nicolas, G., Charbonnier, C., de Lemos, R.R., Richard, A.-C., Guillin, O., Wallon, D., Legati, A., Geschwind, D., Coppola, G., Frebourg, T., Campion, D., de Oliveira, J.R. M., Hannequin, D., collaborators from the French IBGC study Group, 2015. Brain calcification process and phenotypes according to age and sex: Lessons from SLC20A2, PDGFB, and PDGFRB mutation carriers. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168, 586–594.
- Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., Goshima, N., Yamanaka, S., 2013. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458–466.
- Wang, C., Li, Y., Shi, L., Ren, J., Patti, M., Wang, T., de Oliveira, J.R.M., Sobrido, M.-J., Quintáns, B., Baquero, M., Cui, X., Zhang, X.-Y., Wang, L., Xu, H., Wang, J., Yao, J., Dai, X., Liu, J., Zhang, L., Ma, H., Gao, Y., Ma, X., Feng, S., Liu, M., Wang, Q.K., Forster, I.C., Zhang, X., Liu, J.-Y., 2012. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat. Genet. 44, 254–256.
- Yao, X.-P., Cheng, X., Wang, C., Zhao, M., Guo, X.-X., Su, H.-Z., Lai, L.-L., Zou, X.-H., Chen, X.-J., Zhao, Y., Dong, E.-L., Lu, Y.-Q., Wu, S., Li, X., Fan, G., Yu, H., Xu, J., Wang, N., Xiong, Z.-Q., Chen, W.-J., 2018. Biallelic mutations in MYORG cause autosomal recessive primary familial brain calcification. Neuron 98, 1116–1123.e5.