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INDEPENDENCE VS RANK 
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1. INTRODUCTION 

This text is based on my talk at the RIMS Model Theory Workshop 2021. The 
main goal of the talk was to provide a mild introduction to the results from my 
paper with Jan Dobrowolski [6], where we develop a new family of local ranks, 
initially aiming for applications in the NSOP1 context. In this text, I will recall a 
few basic facts about NSOP1 theories and then discuss our local ranks. 

I thank organizers of the RIMS Model Theory Workshop 2021. Moreover, I take 
the opportunity to express my gratitude to Hirotaka Kikyo for his support and 
kindness. 

2. WHERE ARE WE? 

There is a very good website presenting the universe of model theory, "forkingand
dividing.com" made by Gabe Conant, where you can find many first order theories 
categorized among the neo-stability hierarchy. We reproduce the arrangement of 
the dividing lines from this website in the following picture. 

NIP 

Stable Simple 

good notions of rank 

and independence 

Wild, wild ... 

As you can see, the stability was generalized into simplicity ( exposed nicely in 
[3], [11], [14]), and then into NSOP1 (No Strict Order Property of the first kind). 
Actually the lower half of the whole rectangular is the class of NSOP theories, 
and it contains also subclasses of theories of the form NSOP n, where n is a natural 
number, but we are mostly interested in transferring geometric ideas and techniques 
from stable theories into simple theories and then into NSOP1 theories, so we are 
not so much interested in other subclasses of the NSOP class here. The difficulties 
show up just after reaching the border between simple and NSOP1 sectors. 

tsDG. 
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At the core of pure model theory, we have stability, and at the core of stability 
there is geometric stability theory, which was used in several celebrated results and 
applications outside of the model theory (e.g. [8], [9]). One of the main geometric 
tools and techniques related to the model-theoretic stability theory is the notion of 
a ternary independence relation (cf. [1]), which plays a key role in the description 
of simple theories ( cf. [12]). More precisely, a theory is simple if and only if 
there is a ternary relation satisfying a collection of properties, and, in the case 
of a simple theory, this ternary relation turns out to be the forking independence 
relation ( denoted by "j/'). 

The second geometric tool in the model theory, which is in the scope of this paper, 
is the notion of a rank. A notion of rank may be used to characterize dividing lines 
in the stability hierarchy. A theory is simple if and only if the well-known local 
rank D(x = x, r.p, k) (definition will be recalled later) is finite for every choice of a 
formula r.p and every natural number k (cf. Proposition 3.13 in [3]). 

These two tools, independence and rank, are nicely related in the case of simple 
theories: the rank decreases in an extension of types if and only if this extension 
is a forking extension (Proposition 5.22 in [3]). The aforementioned local rank was 
also used to develop the theory of generics in simple theories ([13]). Let us see how 
much of this nice picture from simple theories survives in a more hostile NSOP1 

environment. 
Before moving to the definitions, we borrow one more picture. This time it is a 

table presented by Byunghan Kim in some of his talks on the NSOP1 theories. The 
table shows how we pass from a stable theory to its simple and NSOP1 counterparts. 
Very elegant. I added two arrows, expressing what is intuitively needed to be added 
to pass to the next column. 

Stable 

infinite set 

ACF 

vector spaces 

Simple 

random graph 

bounded PAC fields 

vectors spaces with 
bilinear form over finite 

field 

NSOP1 

generic binary function 

w-free PAC fields 

vector spaces with bilinear 
form over model of ACF 

~ ~ 
+ randomness + multi-structure 

3. SIMPLICITY 

In this very short section, we recall the main definitions and facts, which will be 
basis for their counterparts in the NSOP1 context. 

Consider an £-theory T and its monster model <t I= T. Take an £-formula 
r.p(x, y), parameters a E <tx and b E (tY, and small sets A, B <;;; <t. 
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Definition 3.1. (1) <p(x, b) divides over A if there exists an A-indiscernible 
sequence (bi)i<w, with bo = b, such that the set { <p(x, bi) I i < w} is 
inconsistent. 

(2) <p(x, b) forks over A if there are 1,V1 (x ), ... , 'l,Vn(x) E .C( lt) such that <p(x, b) f---

7,b1 (x) V ... V Wn(x) and each 'l,Vi(x) divides over A. 
(3) A collection of .C( lt)-formulas divides [forks] over A if it implies an .C( lt)

formula which divides [forks] over A. 
(4) (forking independence) a J, AB if tp(a/AB) does not fork over A. 

The above forking independence J, is the canonical independence relation in any 
simple theory. Now, we define the second geometric tool for the class of simple 
theories, namely the collection of local ranks depending on a finite collection of 
£-formulas~= {<p 1 (x,y), ... ,'Pn(x,y)} and a natural number k < w. For any 
collection of .C(lt)-formulas 1r(x), we set: 

Definition 3.2. • D(1r, ~, k) ;?: 0 if 1r(x) is consistent, 
• D(1r, ~, k) ;?: o: + 1 if for some j ,(; n there is a sequence (bi)i<w such that 

the set { 'P j ( x, bi) I i < w} is k-inconsistent and 

D(1r(x) U {'Pj(x,bi)},~,k);?: o: 

for every i < w. 
• for a limit cardinal >., we set D(1r, ~, k) ;?: >. if D(1r, ~, k) ;?: o: for every 

0: < >.. 

As we already mentioned, notions of independence and rank may be used to 
characterize dividing lines in the stability hierarchy. The following theorem shows 
that the above defined notions of independence and rank suit well for this purpose 
in the case of simple theories. 

Theorem 3.3. The following are equivalent. 

(1) T is simple. 
(2) J, is symmetric. 
(3) D({x = x}, {'P}, k) < w for all <p(x,y) E .C and k < w. 

Also in the case of simple theories, the relation between the independence and 
rank is very natural as we see in the following fact: 

Fact 3.4. If T is simple, then the following are equivalent: 

(1) aj,AB, 
(2) D(tp(a/AB), ~, k) = D(tp(a/A), ~, k) for every finite~ and k < w. 

Here, the main goal for us is to reproduce Theorem 3.3 and Fact 3.4 in the more 
general context of NSOP1 theories by introduction of new notions of independence 
and rank. 

4. NSOP1 

Byunghan Kim introduced a new notion of dividing, where the A-indiscernible 
sequence from Definition 3.1.(1) is also independent over A with respect to the 
forking independence. Actually, this will make this sequence a Morley sequence and 
it turns out that in the context of NSOP1 theories, passing to Morley sequences 
is the right move, as in an NSOP1 theory all the essential data is carried by the 
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Morley sequences. We will bring some evidence on that in a moment, but we need 
to clarify a few terms in the first place. 

The original idea of Kim was involving Morley sequences understood as in the 
following definition: 

Definition 4.1 (Morley sequence in a type). Let p(x) E S(A). We say that (bi)i<w 
is a Morley sequence in p if 

(1) bi p== p for every i < w, 
(2) (bi)i<w is A-indiscernible, 
(3) bi l, A b<i for every i < w. 

In the recent papers on Kim's notions of dividing and independence ([4], [7]), 
we observe that Kim-dividing is defined in accordance with the above definition of 
Morley sequences. However, in the milestone paper in the subject, [10], the notion 
of Kim-dividing was defined a bit different. More precisely, the following, stronger, 
notion of a Morley sequence was involved: 

Definition 4.2 (Morley sequence in a global type). Let q(y) E S(lt) be A-invariant. 
We say that (bi)i<w is a Morley sequence in q over A if (bi)i<w F q®wlA, i.e. if for 
every i < w we have that bi p== qi Ab«. 

To simplify things, we will use the second definition and just note that both no
tions of Kim-dividing ( depending on the two above notions of a Morley sequence) 
coincide over models in the NSOP1 context. Let us finally approach the aforemen
tioned definition of dividing relevant for the NSOP 1 . 

Definition 4.3. (1) 'P(x, b) Kim-divides over A if there exists an A-invariant 
q(y) E S(<t) and a sequence (bi)i<w F q®wlA, with bo = b, such that the 
set { 'P(x, bi) I i < w} is inconsistent. 

(2) 'P(x,b) Kim-forks over A if there are 'i/J 1(x), ... ,'1/Jn(x) E .C(lt) such that 
'P(x,b) f--'i/J1 (x) V ... V'i/Jn(x) and each '1/Ji(x) Kim-divides over A. 

(3) A collection of .C(lt)-formulas Kim-divides [Kim-forks] over A if it implies 
an .C(<t)-formula which Kim-divides [Kim-forks] over A. 

(4) (Kim-independence) al, 1 B if tp(a/AB) does not Kim-fork over A. 

The original definition of the Strict Order Property of the first kind is a bit 
technical and of a combinatorial nature. Instead of recalling the definition, we 
provide the following fact, partially a counterpart of Theorem 3.3 above, which 
describes the NSOP1 in an elegant way: 

Theorem 4.4. The following are equivalent. 

(l) Tis NSOPi (does not have the Strict Order Property of the first kind). 
(2) J, K is symmetric over models (i.e. for every a, b E It and M :::S It we have 

that al,~ b implies bl,~ a). 

As you can see, in Theorem 3.3, there was one more way of describing simple 
theories. Namely, by finiteness of a family of local ranks. One could ask whether 
there is a family of local ranks such that finiteness of these ranks corresponds exactly 
to being an NSOP1 theory? The answer is positive, and such a family of ranks was 
defined in [4]. More precisely, it was shown in [4] that if the theory is NSOP1 and 
satisfies the existence axiom for the forking independence, then each rank from the 
family of local ranks from [4] is finite. The counterpart, i.e. if the theory satisfies 
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the existence axiom for the forking independence and each of the ranks defined 
in [4] is finite then the theory is NSOP1 , was discussed with Byunghan Kim in a 
private communication. 

Therefore to some extent, we can recover Theorem 3.3 in the NSOP1 context for 
the family of ranks from [4]. The next natural question is about translating Fact 3.4 
into the NSOP1 context for the ranks defined in [4]. However, here things are quite 
open and a counterpart for Fact 3.4 is unknown (cf. Question 4.9 in [4]). One of 
the reasons for the rank, which will be introduced in a moment, is to approximate 
Fact 3.4 for NSOP1 theories. Let us see how it works and what is needed. 

5. RANK 

The idea for the following rank was in some way motivated by Hans Adler's 
doctoral dissertation ( [1]). Adler defines so called dividing patterns and then defines 
a local rank measuring the length of a maximal dividing pattern. We adapt his idea 
to the context of Kim-dividing, in other words we propose our own variation on 
Kim-dividing patterns. The main difference is that every sequence (horizontal and 
vertical in the picture below) behind our notion ofrank must be a Morley sequence. 
As we are working with the stronger notion of a Morley sequence, we need to start 
with fixing some global types. Let 

where r.po, ... , 'Pn-1 E .C and qo, ... , qn-1 are global types. 

Definition 5.1. We define a local rank, called Q-mnk, 

DQ( ·) : { sets of formulae} ---+ Ord U{ oo }. 

For any set of £-formulae 1r(x) we have DQ(1r(x)) ): .A if and only if there exists 
'T) E n>. and (ba, Ma)a<>. such that 

(1) dom(1r(x)) <;;; M 0 , 

(2) qo, ... , qn-1 are M 0-invariant, 
(3) Ma ::S It for each a<>., (M"')a<>. is continuous, and each M°'+l is IM"'l+-

saturated and strongly IM°' I+ -homogeneous. 
(4) b°'Ma <;;; M"'+1 for each a+ l < >., 
(5) b°' F qry(a) I Ma for each a < A, 
(6) 1r(x) U {'P,,,(a)(x; b"') I a<>.} is consistent, 
(7) each 'Pry(a) (x; b°') Kim-divides over M°', i.e.: for each a < >. there ex

ists an M°'-invariant global type ra(Y,,,(a)) extending tp(b°' /M°') and b°' = 
(b't)i<w F r~WIMa such that bo = b°' and {'Pry(a)(x;b't) Ii< w} is incon
sistent. 

If DQ(1r) ): .A for each .A E Ord, then we set DQ(1r) = oo. Otherwise DQ(1r) is the 
maximal .A E Ord such that DQ(1r) ): >.. 

The above, quite complicated, definition can explained as constructing a tree 
build with instances of formulas 'Pi 's along proper Morley sequences. Let us explain 
this concept. For simplicity we assume that Q = ((r.p,q)). Then the witnesses from 
the definition of DQ ( 1r) ): >., (M°', b't)a<>.,i<w, from the last point of this definition, 
may be used to draw the following tree ([6]): 
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cp(x; b5) cp(x; bi) cp(x; b~) 

7r(x) 

Each horizontal sequence of bf 'sis a Morley sequence in some global M°'-invariant 
type and so witnesses Kim-dividing of cp(x; bg) over M°'. Such an approach was 
also present in the local ranks from [4] and this is standard. 

The first new ingredient in our rank is that we require that also the leftmost 
branch in our tree forms a Morley sequence ( and then via automorphisms we can 
extend all branches of the tree and notice that they will be also based on Morley 
sequences), this time in the previously fixed global type q (which is M 0-invariant). 
In other words, we focus only on Morley sequences - and that is in accordance with 
the intuition that all the essential data in a NSOP1 theory is coded by Morley 
sequences. This intuition is based on the following fundamental theorem: 

Theorem 5.2 (Theorem 8.1 in [10]). The following are equivalent. 

(1) Tis NSOPi. 
(2) Kim's lemma for Kim-dividing: For any M ~ It and any cp(x; b), if cp(x; b) 

Kim-divides over M with respect to some M -invariant q(y) E S( It) with 
tp(b/M) <:;; q(y), then cp(x; b) Kim-divides over M with respect to any M
invariant q(y) E S(lt) with tp(b/M) <:;; q(y). 

The second new ingredient in our rank is that we allow "jumps" in the extension 
of the base parameters between levels. More precisely, instead of the sequence 
dom(7r) <:;; M 0 ~ M 1 ~ ... ,we could consider a more standard sequence dom(7r) <:;; 
dom(7r)b8 <:;; dom(7r)b8b6 <:;; ..•• However, let us recall that J, K does not necessarily 
satisfy the base monotonicity axiom (which is one of the main obstacles showing 
up after passing from simple to NSOP1 theories), thus we allow in our rank some 
freedom in choosing the parameters over which each next level Kim-divides. 

Coming back to the general NSOP1 situation, the above rank has the standard 
properties expected from a rank. It is also finite for any NSOP 1 theory, but it might 
be also finite outside of the NSOP1 context. This is somehow unpredicted, but we 
obtained that a smooth modification of the above defined rank (cf. [6]) is bounded 
by the inp-rank (i.e. the burden) and the dp-rank. This makes it more interesting. 
Recall that the inp-rank is well-defined if and only if the theory is NTP2 , and the 
dp-rank is well-defined if and only if the theory is NIP. Thus we wonder what is 
the class of theories corresponding to well-definedeness of the aforementioned slight 
modification of our rank. One could conjecture that it is related to the class of 
NATP theories appearing in [2]. 
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Now, let us evoke two lemmas, which are in the spirit of Fact 3.4, this time for 
NSOP1 theories and our notion of rank. 

Lemma 5.3. Assume that T is NSOP1 and M .::s N .::s <t. If for every Q = 
((cp, q)) with q being M-invariant we have that DQ(tp(a/M)) = DQ(tp(a/N)), then 

aj,~N. 

Lemma 5.4. Now, assume that T is NSOP1 with existence and that M .::s N .::s <t. 
Consider Q = ( ( cp, q)) with q being M -invariant and such that q®w IM is Kim
stationary (i.e. has a unique Kim-nonforking extension over every overs et). If 

a J, ~ N then DQ(tp(a/M)) = DQ(tp(a/N)). 

Moreover, we know that the assumption about Kim-stationarity in the above lemma 
is crucial and can not be relaxed. 

6. GENERICS 

The idea of generic elements in model theory has its origins in the algebraic 
geometry. Roughly speaking, we try to find one point in a given affine variety, 
which locus is equal to the variety itself. Proving existence of such elements usually 
involves an argument on the maximality of the dimension. In model theory, generics 
are mostly considered if there is a definable group. Recall that T is an L-theory 
with monster model <t, let A s;; B s;; <t be small subsets, and let G be an A-definable 
group in <t. As we already mentioned, the natural way of defining generics may 
involve dimension. However, this is not always possible due to the lackness of 
the canonical notion of dimension in some first order theories. Another notion 
measuring objects in model theory is the notion of dividing and related notion of 
the forking independence, or in general any canonical notion of independence. 

Definition 6.1. Assume that J, * is an invariant ternary relation. We say that 
g E G(<t) is (left) j,*-generic over B if for each h E G(<t), gj,~h implies that 

h · g J,: BU {h}. We say that p(x) E S(B) is (left) J, *-generic if there exists 
g F p, g E G ( <t), such that g is (left) J, * -generic over B. 

The main issue with generics related to a notion of an independence is that they 
may not exist for a given first order theory. That is the case for J, K -generics in the 
theory of infinitely dimensional vector space with bilinear form over an algebraically 
closed field (cf. [5]). On the other hand, in this theory there is a good notion of 
dimension and arising from it r-independence, denoted by J, r, and related J, r -
generics exist. Following this intuition, we would like to have - in a general NSOP1 

theory - a notion of rank (a substitute of the notion of dimension) which is related 
to J, K. Then we could reprove existence of J, K -generics under extra assumption 
required by the rank. In this way, existence of J,-generics was proved for arbitrary 
simple theory in [13]. More precisely, Fact 3. 7 there lists three crucial properties 
of a rank, which are enough to proceed with the proof: the local ranks need to be 
finite, related to the notion of independence and in some sense invariant under the 
shifts by elements of G. In the case of the local ranks from [4] and the theory of 
infinite dimensional vectors spaces with bilinear form over an algebraically closed 
field, the first two properties hold (cf. [6]), but this is still not enough to obtain 
generics. We hope that the rank introduced above will put more light on how to 
modify the proof of existence of generics for the simple theories and obtain a proof 
for NSOP1 theories enjoying additional assumptions obtained by studying our rank. 
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