Triplet of Fibonacci Duals

— with or without constraint —

Seiichi Iwamoto Professor emeritus, Kyushu University

Yutaka Kimura Department of Management Science and Engineering Faculty of Systems Science and Technology Akita Prefectural University

Abstract

We consider a dual relation between minimization (primal) problem and maximization (dual) problem from a view point of complementarity. An identity

(CI)
$$\sum_{k=1}^{n-1} [(x_{k-1} - x_k)\mu_k + x_k(\mu_k - \mu_{k+1})] + (x_{n-1} - x_n)\mu_n + x_n\mu_n = x_0\mu_1$$

is called *complementary* [20,22]. We present three types of complementary identities, which take a fundamental role in analyzing respective pairs of primal and dual. Moreover, we show that a primal and its dual satisfy *Fibonacci Complementary Duality* [18, 19, 21, 22].

1 Introduction

A wide class of quadratic optimization problems has been discussed by Bellman and others [1–12,23]. Dynamic programming has solved its partial class [2,17,18,26]. Further a dual approach has been treated based upon convex-concavity [14,16,25].

Recently some new dual approaches — plus-minus method, extended Lagrangean method, inequality method and others — have been derived in [18–22]. In this paper, we propose a complementary duality based upon an identity.

2 Complementary identities

Let $x = \{x_k\}_0^n$, $\mu = \{\mu_k\}_1^n$ be any two sequences of real number with $x_0 = c$. Then an identity

(C₁)
$$c\mu_1 = \sum_{k=1}^{n-1} [(x_{k-1} - x_k)\mu_k + x_k(\mu_k - \mu_{k+1})] + (x_{n-1} - x_n)\mu_n + x_n\mu_n$$

holds true. This identity is called *complementary* [20,22]. Further we assume that $\mu_n = 0$. Then an identity

(C₂)
$$c\mu_1 = \sum_{k=1}^{n-1} [(x_{k-1} - x_k)\mu_k + x_k(\mu_k - \mu_{k+1})] + (x_{n-1} - x_n)\mu_n$$

holds true. This is a conditional complementarity.

On the other hand, we assume that $x_n = 0$. Then an identity

(C₃)
$$c\mu_1 = \sum_{k=1}^{n-1} [(x_{k-1} - x_k)\mu_k + x_k(\mu_k - \mu_{k+1})] + (x_{n-1} - x_n)\mu_n$$

holds true. This is also a *conditional complementarity*.

3 Three pairs

We consider three pairs of minimization (primal) problems and maximization (dual) problems, which are (P_1) vs (D_1) , (P_2) vs (D_2) and (P_3) vs (D_3) . It is shown that each pair is dual to each other. It turns out that the duality is based upon the complementary identity and an elementary inequality with equality

$$2xy \le x^2 + y^2$$
 on R^2 ; $x = y$. (1)

Both the primal (P₁) and the dual (D₁) are *unconditional*. The primal (P₂) is unconditional, while the dual (D₂) is *conditional* on μ_n . The primal (P₃) is conditional on x_n , while the dual (D₃) is unconditional.

3.1 (P₁) **vs** (D₁)

Let us consider the first pair:

(P₁) minimize
$$\sum_{k=1}^{n-1} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2 + x_n^2$$

subject to (i) $x \in \mathbb{R}^n$, (ii) $x_0 = c$,

(D₁) Maximize
$$2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] - \mu_n^2 - \mu_n^2$$

subject to (i) $\mu \in \mathbb{R}^n$.

An identity (C_1) with the elementary inequality (1) yields an inequality

$$2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2\right] - \mu_n^2 - \mu_n^2$$
$$\leq \sum_{k=1}^{n-1} \left[(x_{k-1} - x_k)^2 + x_k^2\right] + (x_{n-1} - x_n)^2 + x_n^2$$

for any feasible pair (x, μ) . Then it turns out that both are dual to each other. An equality condition is

(EC₁)
$$\begin{aligned} x_{k-1} - x_k &= \mu_k, \quad x_k = \mu_k - \mu_{k+1} \quad 1 \le k \le n-1 \\ x_{n-1} - x_n &= \mu_n, \quad x_n = \mu_n. \end{aligned}$$

The equality condition (EC₁) is a linear system of 2n-equation on 2n-variable (x, μ) . Let (x, μ) be a solution. Then both sides become a common value with five expressions.

$$\sum_{k=1}^{n-1} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2 + x_n^2$$

= $c(c - x_1)$
(5V₁) = $2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] - \mu_n^2 - \mu_n^2$
= $\sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] + \mu_n^2 + \mu_n^2$
= $c\mu_1$.

Let (x, μ) be a solution of (EC₁). Then the primal (P₁) has a minimum value

$$m_1 = \sum_{k=1}^{n-1} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2 + x_n^2$$

= $c(c - x_1)$

at x, while the dual (D_1) has a maximum value

$$M_{1} = 2c\mu_{1} - \sum_{k=1}^{n-1} \left[\mu_{k}^{2} + (\mu_{k} - \mu_{k+1})^{2} \right] - \mu_{n}^{2} - \mu_{n}^{2}$$
$$= \sum_{k=1}^{n-1} \left[\mu_{k}^{2} + (\mu_{k} - \mu_{k+1})^{2} \right] + \mu_{n}^{2} + \mu_{n}^{2}$$
$$= c\mu_{1}$$

at μ .

Lemma 1 (EC₁) has indeed a unique solution:

$$x = (x_1, x_2, \dots, x_k, \dots, x_{n-1}, x_n)$$

= $\frac{c}{F_{2n+1}}(F_{2n-1}, F_{2n-3}, \dots, F_{2n-2k+1}, \dots, F_3, F_1),$ (2)

$$\mu = (\mu_1, \ \mu_2, \ \dots, \ \mu_k, \ \dots, \ \mu_{n-1}, \ \mu_n)$$
$$= \frac{c}{F_{2n+1}} (F_{2n}, \ F_{2n-2}, \ \dots, F_{2n-2k+2}, \ \dots, \ F_4, \ F_2).$$
(3)

Proof. From (EC_1) , we have a pair of linear systems of *n*-variable on *n*-equation:

$$c = 3x_1 - x_2 \qquad c = 2\mu_1 - \mu_2$$

$$x_1 = 3x_2 - x_3 \qquad \mu_1 = 3\mu_2 - \mu_3$$

$$\vdots \qquad \vdots$$

$$x_{n-2} = 3x_{n-1} - x_n \qquad \mu_{n-2} = 3\mu_{n-1} - \mu_n$$

$$x_{n-1} = 2x_n \qquad \mu_{n-1} = 3\mu_n.$$

The left system has a solution x in (2), while the right has a solution μ in (3).

The primal (P₁) has a minimum value $m_1 = c(c - \hat{x}_1) = \frac{F_{2n}}{F_{2n+1}}c^2$ at a path $\hat{x} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_k, \dots, \hat{x}_{n-1}, \hat{x}_n)$

$$= \frac{c}{F_{2n+1}}(F_{2n-1}, F_{2n-3}, \dots, F_{2n-2k+1}, \dots, F_3, F_1).$$

The dual (D₁) has a maximum value $M_1 = c\mu_1^* = \frac{F_{2n}}{F_{2n+1}}c^2$ at a path

$$\mu^* = (\mu_1^*, \ \mu_2^*, \ \dots, \ \mu_k^*, \ \dots, \ \mu_{n-1}^*, \ \mu_n^*)$$
$$= \frac{c}{F_{2n+1}} (F_{2n}, \ F_{2n-2}, \ \dots, F_{2n-2k+2}, \ \dots, \ F_4, \ F_2)$$

where $\{F_n\}$ is the *Fibonacci sequence* [13,15,24,27]. This is defined as the solution to the second-order linear difference equation

$$x_{n+2} - x_{n+1} - x_n = 0, \qquad x_1 = 1, \ x_0 = 0.$$
 (4)

n	• • •	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	
F_n	• • •	-1	1	0	1	1	2	3	5	8	13	21	34	55	89	
n	12	13	14		15	16		17		18		19	19 2		0	
F_n	144	44 233 377 61		610	987		1597		2584		4181 67		65	• • •		

Table 1 Fibonacci sequence $\{F_n\}$

Hence both optimal values are identical:

$$m_1 = M_1 = \frac{F_{2n}}{F_{2n+1}}c^2.$$

An alternate contexture of both optimal points μ^*, \hat{x} is Fibonacci backward:

$$(\mu_1^*, \ \hat{x}_1, \ \mu_2^*, \ \hat{x}_2, \ \dots, \ \mu_k^*, \ \hat{x}_k \ \dots, \ \mu_{n-1}^*, \ \hat{x}_{n-1}, \ \mu_n^*, \ \hat{x}_n)$$

$$= \frac{c}{F_{2n+1}} (F_{2n}, \ F_{2n-1}, \ F_{2n-2}, \ F_{2n-3}, \ \dots, F_{2n-2k+2}, \ F_{2n-2k+1}, \ \dots, \ F_4, \ F_3, \ F_2, \ F_1).$$

Thus Fibonacci Complementary Duality (FCD) [18, 19, 21, 22] holds between (P_1) and (D_1) .

$\mathbf{3.2} \quad (P_2) \ \mathbf{vs} \ (D_2)$

Let us consider the second:

(P₂) minimize
$$\sum_{k=1}^{n-1} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2$$

subject to (i) $x \in \mathbb{R}^n$, (ii) $x_0 = c$

(D₂) Maximize
$$2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] - \mu_n^2$$

subject to (i) $\mu \in \mathbb{R}^n$, (ii) $\mu_n = 0$.

An identity (C_2) with the elementary inequality (1) yields an inequality

$$2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2\right] - \mu_n^2$$

$$\leq \sum_{k=1}^{n-1} \left[(x_{k-1} - x_k)^2 + x_k^2\right] + (x_{n-1} - x_n)^2$$

for any feasible pair (x, μ) . Then both are dual to each other. An equality condition is

(EC₂)
$$\begin{aligned} x_{k-1} - x_k &= \mu_k, \quad x_k = \mu_k - \mu_{k+1} \quad 1 \le k \le n-1 \\ x_{n-1} - x_n &= \mu_n. \end{aligned}$$

The equality condition (EC₂) is a linear system of (2n - 1)-equation on 2*n*-variable (x, μ) . Let (EC'₂) be an augmentation of the system (EC₂) with the additional constraint (ii) $\mu_n = 0$:

(EC'_2)
$$\begin{aligned} x_{k-1} - x_k &= \mu_k, \quad x_k = \mu_k - \mu_{k+1} \quad 1 \le k \le n-1 \\ x_{n-1} - x_n &= \mu_n, \quad \underline{\mu_n = 0}. \end{aligned}$$

Then (EC'_2) is of 2*n*-equation on 2*n*-variable.

Let (x, μ) be a solution of (EC'_2) . Then both sides become a common value with five expressions.

$$\sum_{k=1}^{n} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2$$

= $c(c - x_1)$
(5V₂) = $2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] - \mu_n^2$
= $\sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] + \mu_n^2$
= $c\mu_1$.

61

The primal (P_2) has a minimum value

$$m_2 = \sum_{k=1}^{n} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2$$
$$= c(c - x_1)$$

at x, while the dual (D₂) has a maximum value

$$M_{2} = 2c\mu_{1} - \sum_{k=1}^{n-1} \left[\mu_{k}^{2} + (\mu_{k} - \mu_{k+1})^{2} \right] - \mu_{n}^{2}$$
$$= \sum_{k=1}^{n-1} \left[\mu_{k}^{2} + (\mu_{k} - \mu_{k+1})^{2} \right] + \mu_{n}^{2}$$
$$= c\mu_{1}$$

at μ .

Lemma 2 The system (EC'_2) has indeed a unique solution:

$$x = (x_1, x_2, \dots, x_k, \dots, x_{n-1}, x_n)$$

= $\frac{c}{F_{2n-1}} (F_{2n-3}, F_{2n-5}, \dots, F_{2n-2k-1}, \dots, F_1, F_{-1}),$ (5)
 $\mu = (\mu_1, \mu_2, \dots, \mu_k, \dots, \mu_{n-1}, \mu_n)$
= $\frac{c}{F_{2n-1}} (F_{2n-2}, F_{2n-4}, \dots, F_{2n-2k}, \dots, F_2, F_0).$ (6)

Proof. From (EC'_2) , we have a pair of linear systems of *n*-variable on *n*-equation:

$$c = 3x_1 - x_2 \qquad c = 2\mu_1 - \mu_2$$

$$x_1 = 3x_2 - x_3 \qquad \mu_1 = 3\mu_2 - \mu_3$$

$$\vdots \qquad \vdots$$

$$(EQ_2) \qquad x_{n-3} = 3x_{n-2} - x_{n-1} \qquad \mu_{n-3} = 3\mu_{n-2} - \mu_{n-1}$$

$$x_{n-2} = 3x_{n-1} - x_n \qquad \mu_{n-2} = 3\mu_{n-1} - \mu_n$$

$$x_{n-1} = x_n \qquad \underline{\mu_n = 0}.$$

The left system has a solution x in (5), while the right has a solution μ in (6).

The primal (P₂) has a minimum value $m_2 = c(c - \hat{x}_1) = \frac{F_{2n-2}}{F_{2n-1}}c^2$ at a path $\hat{x} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_k, \dots, \hat{x}_{n-1}, \hat{x}_n)$

$$= \frac{c}{F_{2n-1}}(F_{2n-3}, F_{2n-5}, \dots, F_{2n-2k-1}, \dots, F_1, F_{-1}).$$

The dual (D₂) has a maximum value $M_2 = c\mu_1^* = \frac{F_{2n-2}}{F_{2n-1}}c^2$ at a path

$$\mu^* = (\mu_1^*, \ \mu_2^*, \ \dots, \ \mu_k^*, \ \dots, \ \mu_{n-1}^*, \ \mu_n^*)$$
$$= \frac{c}{F_{2n-1}} (F_{2n-2}, \ F_{2n-4}, \ \dots, F_{2n-2k}, \ \dots, \ F_2, \ F_0).$$

Hence both optimal values are identical:

$$m_2 = M_2 = \frac{F_{2n-2}}{F_{2n-1}}c^2$$

An alternate contexture of both optimal points μ^*, \hat{x} is Fibonacci backward:

$$(\mu_1^*, \hat{x}_1, \mu_2^*, \hat{x}_2, \dots, \mu_k^*, \hat{x}_k \dots, \mu_{n-1}^*, \hat{x}_{n-1}, \mu_n^*, \hat{x}_n) = \frac{c}{F_{2n-1}} (F_{2n-2}, F_{2n-3}, F_{2n-4}, F_{2n-5}, \dots, F_{2n-2k}, F_{2n-2k-1}, \dots, F_2, F_1, F_0, F_{-1}).$$

Thus FCD holds between (P_2) and (D_2) .

$\textbf{3.3} \quad (P_3) \ \textbf{vs} \ (D_3)$

Let us consider the third:

(P₃) minimize
$$\sum_{k=1}^{n-1} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2$$

subject to (i) $x \in \mathbb{R}^n$, (ii) $x_0 = c$, $\underline{x_n = 0}$

(D₃) Maximize
$$2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2\right] - \mu_n^2$$

subject to (i) $\mu \in \mathbb{R}^n$.

An identity (C_3) with the elementary inequality (1) yields an inequality

$$2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] - \mu_n^2$$
$$\leq \sum_{k=1}^{n-1} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2$$

for any feasible pair (x, μ) . Then both are dual to each other. An equality condition is

(EC₃)
$$\begin{aligned} x_{k-1} - x_k &= \mu_k, \quad x_k = \mu_k - \mu_{k+1} \quad 1 \le k \le n-1 \\ x_{n-1} - x_n &= \mu_n. \end{aligned}$$

The equality condition (EC₃) is a linear system of (2n - 1)-equation on 2*n*-variable (x, μ) . Let (EC'₃) be an augmentation of the system (EC₃) with the additional constraint (ii) $\underline{x_n = 0}$:

(EC'₃)
$$\begin{aligned} x_{k-1} - x_k &= \mu_k, \quad x_k = \mu_k - \mu_{k+1} \quad 1 \le k \le n-1 \\ x_{n-1} - x_n &= \mu_n, \quad \underline{x_n = 0}. \end{aligned}$$

Then (EC'_3) is of 2*n*-equation on 2*n*-variable.

Let (x, μ) be a solution of (EC'_3) . Then both sides become a common value with five expressions.

$$\sum_{k=1}^{n} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2$$

= $c(c - x_1)$
(5V₃) = $2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] - \mu_n^2$
= $\sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] + \mu_n^2$
= $c\mu_1$.

The primal (P_3) has a minimum value

$$m_3 = \sum_{k=1}^{n} \left[(x_{k-1} - x_k)^2 + x_k^2 \right] + (x_{n-1} - x_n)^2$$
$$= c(c - x_1)$$

at x, while the dual (D₃) has a maximum value

$$M_3 = 2c\mu_1 - \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] - \mu_n^2$$
$$= \sum_{k=1}^{n-1} \left[\mu_k^2 + (\mu_k - \mu_{k+1})^2 \right] + \mu_n^2$$
$$= c\mu_1$$

at μ .

Lemma 3 The system (EC'_3) has indeed a unique solution:

$$x = (x_1, x_2, \dots, x_k, \dots, x_{n-1}, x_n)$$

= $\frac{c}{F_{2n}}(F_{2n-2}, F_{2n-4}, \dots, F_{2n-2k}, \dots, F_2, F_0),$ (7)
 $\mu = (\mu_1, \mu_2, \dots, \mu_k, \dots, \mu_{n-1}, \mu_n)$

Proof. From (EC'_3) , we have a pair of linear systems of *n*-variable on *n*-equation:

$$c = 3x_1 - x_2 \qquad c = 2\mu_1 - \mu_2$$

$$x_1 = 3x_2 - x_3 \qquad \mu_1 = 3\mu_2 - \mu_3$$

$$\vdots \qquad \vdots$$

$$(EQ_3) \qquad x_{n-3} = 3x_{n-2} - x_{n-1} \qquad \mu_{n-3} = 3\mu_{n-2} - \mu_{n-1}$$

$$x_{n-2} = 3x_{n-1} - x_n \qquad \mu_{n-2} = 3\mu_{n-1} - \mu_n$$

$$\underline{x_n = 0} \qquad \mu_{n-1} = 2\mu_n.$$

The left system has a solution x in (7), while the right has a solution μ in (8).

The primal (P₃) has a minimum value $m_3 = c(c - \hat{x}_1) = \frac{F_{2n-1}}{F_{2n}}c^2$ at a path

$$\hat{x} = (\hat{x}_1, \ \hat{x}_2, \ \dots, \ \hat{x}_k, \ \dots, \ \hat{x}_{n-1}, \ \hat{x}_n)$$
$$= \frac{c}{F_{2n}} (F_{2n-2}, \ F_{2n-4}, \ \dots, F_{2n-2k}, \ \dots, \ F_2, \ F_0).$$

The dual (D₃) has a maximum value $M_3 = c\mu_1^* = \frac{F_{2n-1}}{F_{2n}}c^2$ at a path

$$\mu^* = (\mu_1^*, \ \mu_2^*, \ \dots, \ \mu_k^*, \ \dots, \ \mu_{n-1}^*, \ \mu_n^*)$$
$$= \frac{c}{F_{2n}} (F_{2n-1}, \ F_{2n-3}, \ \dots, F_{2n-2k+1}, \ \dots, \ F_3, \ F_1)$$

Hence both optimal values are identical:

$$m_3 = M_3 = \frac{F_{2n-1}}{F_{2n}}c^2.$$

An alternate contexture of both optimal points μ^*, \hat{x} is Fibonacci backward:

$$(\mu_1^*, \hat{x}_1, \mu_2^*, \hat{x}_2, \dots, \mu_k^*, \hat{x}_k \dots, \mu_{n-1}^*, \hat{x}_{n-1}, \mu_n^*, \hat{x}_n)$$

$$= \frac{c}{F_{2n}} (F_{2n-1}, F_{2n-2}, F_{2n-3}, F_{2n-4}, \dots, F_{2n-2k+1}, F_{2n-2k}, \dots, F_3, F_2, F_1, F_0).$$

Thus FCD holds between (P_3) and (D_3) .

References

- E.F. Beckenbach and R.E. Bellman, Inequalities, Springer-Verlag, Ergebnisse 30, 1961.
- [2] R.E. Bellman, Dynamic Programming, Princeton Univ. Press, NJ, 1957.
- [3] R.E. Bellman, Introduction to the Mathematical Theory of Control Processes, Vol.I, Linear Equations and Quadratic Criteria, Academic Press, NY, 1967.

- [4] R.E. Bellman, Introduction to the Mathematical Theory of Control Processes, Vol.II, Nonlinear Processes, Academic Press, NY, 1971.
- [5] R.E. Bellman, Methods of Nonlinear Analysis, Vol.I, Nonlinear Processes, Academic Press, NY, 1972.
- [6] R.E. Bellman, Methods of Nonlinear Analysis, Vol.II, Nonlinear Processes, Academic Press, NY, 1972.
- [7] R.E. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, NY, 1970 (Second Edition is a SIAM edition 1997).
- [8] R.E. Bellman and Wm. Karush, On a new functional transform in analysis : the maximum transform, Bull. Amer. Math. Soc., 67(1961), 501-503.
- [9] R.E. Bellman and Wm. Karush, Mathematical programming and the maximum transform, J. SIAM Appl. Math., 10(1962), 550-567.
- [10] R.E. Bellman and Wm. Karush, On the maximum transform and semigroups of transformations, Bull. Amer. Math. Soc., 68(1962), 516-518.
- [11] R.E. Bellman and Wm. Karush, Functional equations in the theory of dynamic programming-XII: an application of the maximum transform, J. Math. Anal. Appl., 6(1963), 155-157.
- [12] R.E. Bellman and Wm. Karush, On the maximum transform, J. Math. Anal. Appl., 6(1963), 57-74.
- [13] A. Beutelspacher and B. Petri, Der Goldene Schnitt 2, überarbeitete und erweiterte Auflange, Elsevier GmbH, Spectrum Akademischer Verlag, Heidelberg, 1996.
- [14] J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization Theory and Examples, Springer-Verlag, New York, 2000.
- [15] R.A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing Co.Pte.Ltd., 1977.
- [16] W. Fenchel, Convex Cones, Sets and Functions, Princeton Univ. Dept. of Math, NJ, 1953.
- [17] S. Iwamoto, Theory of Dynamic Program, Kyushu Univ. Press, Fukuoka, 1987 (in Japanese).
- [18] S. Iwamoto, Mathematics for Optimization II Bellman Equation, Chisen Shokan, Tokyo, 2013 (in Japanese).
- [19] S. Iwamoto and Y. Kimura, Semi-Fibonacci programming odd-variable , RIMS Kokyuroku, Vol.2158, pp.30–37, 2020.

- [20] S. Iwamoto and Y. Kimura, Identical Duals Gap Function , RIMS Kokyuroku, Vol.2194, pp.56–67, 2021.
- [21] S. Iwamoto, Y. Kimura and T. Fujita, Complementary versus shift dualities, J. Nonlinear Convex Anal., 17(2016), 1547–1555.
- [22] S. Iwamoto, Y. Kimura and T. Fujita, On complementary duals both fixed points –, Bull. Kyushu Inst. Tech. Pure Appl. Math., 67(2020), 1–28.
- [23] E.S. Lee, Quasilinearization and Invariant Imbedding, Academic Press, New York, 1968.
- [24] S. Nakamura, A Microcosmos of Fibonacci Numbers Fibonacci Numbers, Lucas Numbers, and Golden Section (Revised), Nippon Hyoronsha, 2008 (*in Japanese*).
- [25] R.T. Rockafeller, Conjugate Duality and Optimization, SIAM, Philadelphia, 1974.
- [26] M. Sniedovich, Dynamic Programming: foundations and principles, 2nd ed., CRC Press 2010.
- [27] H. Walser, DER GOLDENE SCHNITT, B.G. Teubner, Leibzig, 1996.