Triplet of Fibonacci Duals

- with or without constraint -

Seiichi Iwamoto
Professor emeritus, Kyushu University

Yutaka Kimura
Department of Management Science and Engineering Faculty of Systems Science and Technology

Akita Prefectural University

Abstract

We consider a dual relation between minimization (primal) problem and maximization (dual) problem from a view point of complementarity. An identity (CI) $\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right) \mu_{k}+x_{k}\left(\mu_{k}-\mu_{k+1}\right)\right]+\left(x_{n-1}-x_{n}\right) \mu_{n}+x_{n} \mu_{n}=x_{0} \mu_{1}$ is called complementary $[20,22]$. We present three types of complementary identities, which take a fundamental role in analyzing respective pairs of primal and dual. Moreover, we show that a primal and its dual satisfy Fibonacci Complementary Duality [18, 19, 21, 22].

1 Introduction

A wide class of quadratic optimization problems has been discussed by Bellman and others $[1-12,23]$. Dynamic programming has solved its partial class [2,17,18,26]. Further a dual approach has been treated based upon convex-concavity [14, 16, 25].

Recently some new dual approaches - plus-minus method, extended Lagrangean method, ineqlualty method and others - have been derived in [18-22]. In this paper, we propose a complementary duality based upon an identity.

2 Complementary identities

Let $x=\left\{x_{k}\right\}_{0}^{n}, \mu=\left\{\mu_{k}\right\}_{1}^{n}$ be any two sequences of real number with $x_{0}=c$. Then an identity

$$
\left(\mathrm{C}_{1}\right) \quad c \mu_{1}=\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right) \mu_{k}+x_{k}\left(\mu_{k}-\mu_{k+1}\right)\right]+\left(x_{n-1}-x_{n}\right) \mu_{n}+x_{n} \mu_{n}
$$

holds true. This identity is called complementary [20,22]. Further we assume that $\mu_{n}=0$. Then an identity

$$
\left(\mathrm{C}_{2}\right) \quad c \mu_{1}=\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right) \mu_{k}+x_{k}\left(\mu_{k}-\mu_{k+1}\right)\right]+\left(x_{n-1}-x_{n}\right) \mu_{n}
$$

holds true. This is a conditional complementarity.
On the other hand, we assume that $x_{n}=0$. Then an identity

$$
\left(\mathrm{C}_{3}\right) \quad c \mu_{1}=\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right) \mu_{k}+x_{k}\left(\mu_{k}-\mu_{k+1}\right)\right]+\left(x_{n-1}-x_{n}\right) \mu_{n}
$$

holds true. This is also a conditional complementarity.

3 Three pairs

We consider three pairs of minimization (primal) problems and maximization (dual) problems, which are $\left(P_{1}\right)$ vs $\left(D_{1}\right),\left(P_{2}\right)$ vs $\left(D_{2}\right)$ and $\left(P_{3}\right)$ vs $\left(D_{3}\right)$. It is shown that each pair is dual to each other. It turns out that the duality is based upon the complementary identity and an elementary inequality with equality

$$
\begin{equation*}
2 x y \leq x^{2}+y^{2} \quad \text { on } R^{2} ; x=y \tag{1}
\end{equation*}
$$

Both the primal $\left(\mathrm{P}_{1}\right)$ and the dual $\left(\mathrm{D}_{1}\right)$ are unconditional. The primal $\left(\mathrm{P}_{2}\right)$ is unconditional, while the dual $\left(\mathrm{D}_{2}\right)$ is conditional on μ_{n}. The primal $\left(\mathrm{P}_{3}\right)$ is conditional on x_{n}, while the dual $\left(\mathrm{D}_{3}\right)$ is unconditional.

$3.1 \quad\left(\mathrm{P}_{1}\right)$ vs $\left(\mathrm{D}_{1}\right)$

Let us consider the first pair:
$\left(\mathrm{P}_{1}\right)$

$$
\operatorname{minimize} \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}+x_{n}^{2}
$$

subject to (i) $x \in R^{n}, \quad$ (ii) $x_{0}=c$,
$\left(\mathrm{D}_{1}\right)$
Maximize $2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2}-\mu_{n}^{2}$
subject to (i) $\mu \in R^{n}$.
An identity $\left(\mathrm{C}_{1}\right)$ with the elementary inequality (1) yields an inequality

$$
\begin{aligned}
& 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2}-\mu_{n}^{2} \\
\leq & \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}+x_{n}^{2}
\end{aligned}
$$

for any feasible pair (x, μ). Then it turns out that both are dual to each other. An equality condition is

$$
\begin{align*}
& x_{k-1}-x_{k}=\mu_{k}, \quad x_{k}=\mu_{k}-\mu_{k+1} \quad 1 \leq k \leq n-1 \tag{1}\\
& x_{n-1}-x_{n}=\mu_{n}, \quad x_{n}=\mu_{n} .
\end{align*}
$$

The equality condition $\left(\mathrm{EC}_{1}\right)$ is a linear system of $2 n$-equation on $2 n$-variable (x, μ). Let (x, μ) be a solution. Then both sides become a common value with five expressions.

$$
\begin{aligned}
& \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}+x_{n}^{2} \\
= & c\left(c-x_{1}\right) \\
\left(5 \mathrm{~V}_{1}\right)= & 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2}-\mu_{n}^{2} \\
= & \sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2}+\mu_{n}^{2} \\
= & c \mu_{1} .
\end{aligned}
$$

Let (x, μ) be a solution of $\left(\mathrm{EC}_{1}\right)$. Then the primal $\left(\mathrm{P}_{1}\right)$ has a minimum value

$$
\begin{aligned}
m_{1} & =\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}+x_{n}^{2} \\
& =c\left(c-x_{1}\right)
\end{aligned}
$$

at x, while the dual $\left(\mathrm{D}_{1}\right)$ has a maximum value

$$
\begin{aligned}
M_{1} & =2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2}-\mu_{n}^{2} \\
& =\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2}+\mu_{n}^{2} \\
& =c \mu_{1}
\end{aligned}
$$

at μ.
Lemma $1\left(\mathrm{EC}_{1}\right)$ has indeed a unique solution:

$$
\begin{gather*}
x=\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{n-1}, x_{n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n-1}, F_{2 n-3}, \ldots, F_{2 n-2 k+1}, \ldots, F_{3}, F_{1}\right), \tag{2}\\
\quad \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \ldots, \mu_{n-1}, \mu_{n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-2}, \ldots, F_{2 n-2 k+2}, \ldots, F_{4}, F_{2}\right) . \tag{3}
\end{gather*}
$$

Proof. From $\left(\mathrm{EC}_{1}\right)$, we have a pair of linear systems of n-variable on n-equation:

$$
\begin{array}{rlrl}
c & =3 x_{1}-x_{2} & c & =2 \mu_{1}-\mu_{2} \\
x_{1} & =3 x_{2}-x_{3} & \mu_{1} & =3 \mu_{2}-\mu_{3} \\
& \vdots & & \vdots \\
\left(\mathrm{EQ}_{1}\right) & & \mu_{n-2} & =3 \mu_{n-1}-\mu_{n} \\
x_{n-2} & =3 x_{n-1}-x_{n} & \mu_{n-1} & =3 \mu_{n} .
\end{array}
$$

The left system has a solution x in (2), while the right has a solution μ in (3).
The primal $\left(\mathrm{P}_{1}\right)$ has a minimum value $m_{1}=c\left(c-\hat{x}_{1}\right)=\frac{F_{2 n}}{F_{2 n+1}} c^{2}$ at a path

$$
\begin{gathered}
\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{k}, \ldots, \hat{x}_{n-1}, \hat{x}_{n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n-1}, F_{2 n-3}, \ldots, F_{2 n-2 k+1}, \ldots, F_{3}, F_{1}\right) .
\end{gathered}
$$

The dual $\left(\mathrm{D}_{1}\right)$ has a maximum value $M_{1}=c \mu_{1}^{*}=\frac{F_{2 n}}{F_{2 n+1}} c^{2}$ at a path

$$
\begin{gathered}
\mu^{*}=\left(\mu_{1}^{*}, \mu_{2}^{*}, \ldots, \mu_{k}^{*}, \ldots, \mu_{n-1}^{*}, \mu_{n}^{*}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-2}, \ldots, F_{2 n-2 k+2}, \ldots, F_{4}, F_{2}\right)
\end{gathered}
$$

where $\left\{F_{n}\right\}$ is the Fibonacci sequence $[13,15,24,27]$. This is defined as the solution to the second-order linear difference equation

$$
\begin{equation*}
x_{n+2}-x_{n+1}-x_{n}=0, \quad x_{1}=1, x_{0}=0 . \tag{4}
\end{equation*}
$$

n	\cdots	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11			
F_{n}	\cdots	-1	1	0	1	1	2	3	5	8	13	21	34	55	89			
n	12	13	14	15	16	17	18	19	20	\cdots								
F_{n}	144	233	377	610	987	1597	2584	4181	6765	\cdots								

Table 1 Fibonacci sequence $\left\{F_{n}\right\}$
Hence both optimal values are identical:

$$
m_{1}=M_{1}=\frac{F_{2 n}}{F_{2 n+1}} c^{2}
$$

An alternate contexture of both optimal points μ^{*}, \hat{x} is Fibonacci backward:

$$
\begin{aligned}
& \left(\mu_{1}^{*}, \hat{x}_{1}, \mu_{2}^{*}, \hat{x}_{2}, \ldots, \mu_{k}^{*}, \hat{x}_{k} \ldots, \mu_{n-1}^{*}, \hat{x}_{n-1}, \mu_{n}^{*}, \hat{x}_{n}\right) \\
= & \frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-1}, F_{2 n-2}, F_{2 n-3}, \ldots, F_{2 n-2 k+2}, F_{2 n-2 k+1}, \ldots, F_{4}, F_{3}, F_{2}, F_{1}\right) .
\end{aligned}
$$

Thus Fibonacci Complementary Duality (FCD) $[18,19,21,22]$ holds between $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{D}_{1}\right)$.

$3.2 \quad\left(\mathrm{P}_{2}\right)$ vs $\left(\mathrm{D}_{2}\right)$

Let us consider the second:
$\left(\mathrm{P}_{2}\right)$
$\operatorname{minimize} \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}$
subject to (i) $x \in R^{n}, \quad$ (ii) $x_{0}=c$
Maximize $2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2}$ $\left(\mathrm{D}_{2}\right)$

$$
\text { subject to (i) } \mu \in R^{n}, \quad \text { (ii) } \underline{\mu_{n}=0}
$$

An identity $\left(\mathrm{C}_{2}\right)$ with the elementary inequality (1) yields an inequality

$$
\begin{aligned}
& 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2} \\
\leq & \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}
\end{aligned}
$$

for any feasible pair (x, μ). Then both are dual to each other. An equality condition is

$$
\begin{equation*}
x_{k-1}-x_{k}=\mu_{k}, \quad x_{k}=\mu_{k}-\mu_{k+1} \quad 1 \leq k \leq n-1 \tag{2}
\end{equation*}
$$

$$
x_{n-1}-x_{n}=\mu_{n}
$$

The equality condition $\left(\mathrm{EC}_{2}\right)$ is a linear system of $(2 n-1)$-equation on $2 n$-variable (x, μ). Let $\left(\mathrm{EC}_{2}^{\prime}\right)$ be an augmentation of the system $\left(\mathrm{EC}_{2}\right)$ with the additional constraint (ii) $\underline{\mu_{n}=0}$:

$$
\begin{aligned}
& x_{k-1}-x_{k}=\mu_{k}, \quad x_{k}=\mu_{k}-\mu_{k+1} \quad 1 \leq k \leq n-1 \\
& x_{n-1}-x_{n}=\mu_{n}, \quad \underline{\mu_{n}}=0 .
\end{aligned}
$$

Then $\left(\mathrm{EC}_{2}^{\prime}\right)$ is of $2 n$-equation on $2 n$-variable.
Let (x, μ) be a solution of $\left(\mathrm{EC}_{2}^{\prime}\right)$. Then both sides become a common value with five expressions.

$$
\begin{aligned}
& \sum_{k=1}^{n}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2} \\
= & c\left(c-x_{1}\right) \\
\left(5 \mathrm{~V}_{2}\right)= & 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2} \\
= & \sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2} \\
= & c \mu_{1} .
\end{aligned}
$$

The primal $\left(\mathrm{P}_{2}\right)$ has a minimum value

$$
\begin{aligned}
m_{2} & =\sum_{k=1}^{n}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2} \\
& =c\left(c-x_{1}\right)
\end{aligned}
$$

at x, while the dual $\left(\mathrm{D}_{2}\right)$ has a maximum value

$$
\begin{aligned}
M_{2} & =2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2} \\
& =\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2} \\
& =c \mu_{1}
\end{aligned}
$$

at μ.
Lemma 2 The system (EC_{2}^{\prime}) has indeed a unique solution:

$$
\begin{align*}
& x=\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{n-1}, x_{n}\right) \\
& =\frac{c}{F_{2 n-1}}\left(F_{2 n-3}, F_{2 n-5}, \ldots, F_{2 n-2 k-1}, \ldots, F_{1}, F_{-1}\right), \tag{5}\\
& \quad \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \ldots, \mu_{n-1}, \mu_{n}\right) \\
& =\frac{c}{F_{2 n-1}}\left(F_{2 n-2}, F_{2 n-4}, \ldots, F_{2 n-2 k}, \ldots, F_{2}, F_{0}\right) . \tag{6}
\end{align*}
$$

Proof. From $\left(\mathrm{EC}_{2}^{\prime}\right)$, we have a pair of linear systems of n-variable on n-equation:

$$
\begin{array}{rlrl}
c & =3 x_{1}-x_{2} & c & =2 \mu_{1}-\mu_{2} \\
x_{1} & =3 x_{2}-x_{3} & \mu_{1} & =3 \mu_{2}-\mu_{3} \\
& \vdots & & \vdots \\
\left(\mathrm{EQ}_{2}\right) & & \mu_{n-3} & =3 \mu_{n-2}-\mu_{n-1} \\
x_{n-3} & =3 x_{n-2}-x_{n-1} & \mu_{n-2} & =3 \mu_{n-1}-\mu_{n} \\
x_{n-2} & =3 x_{n-1}-x_{n} & \underline{\mu_{n}} & =0 .
\end{array}
$$

The left system has a solution x in (5), while the right has a solution μ in (6).
The primal $\left(\mathrm{P}_{2}\right)$ has a minimum value $m_{2}=c\left(c-\hat{x}_{1}\right)=\frac{F_{2 n-2}}{F_{2 n-1}} c^{2}$ at a path

$$
\begin{gathered}
\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{k}, \ldots, \hat{x}_{n-1}, \hat{x}_{n}\right) \\
=\frac{c}{F_{2 n-1}}\left(F_{2 n-3}, F_{2 n-5}, \ldots, F_{2 n-2 k-1}, \ldots, F_{1}, F_{-1}\right) .
\end{gathered}
$$

The dual $\left(\mathrm{D}_{2}\right)$ has a maximum value $M_{2}=c \mu_{1}^{*}=\frac{F_{2 n-2}}{F_{2 n-1}} c^{2}$ at a path

$$
\begin{gathered}
\mu^{*}=\left(\mu_{1}^{*}, \mu_{2}^{*}, \ldots, \mu_{k}^{*}, \ldots, \mu_{n-1}^{*}, \mu_{n}^{*}\right) \\
=\frac{c}{F_{2 n-1}}\left(F_{2 n-2}, F_{2 n-4}, \ldots, F_{2 n-2 k}, \ldots, F_{2}, F_{0}\right) .
\end{gathered}
$$

Hence both optimal values are identical:

$$
m_{2}=M_{2}=\frac{F_{2 n-2}}{F_{2 n-1}} c^{2} .
$$

An alternate contexture of both optimal points μ^{*}, \hat{x} is Fibonacci backward:

$$
\begin{aligned}
& \left(\mu_{1}^{*}, \hat{x}_{1}, \mu_{2}^{*}, \hat{x}_{2}, \ldots, \mu_{k}^{*}, \hat{x}_{k} \ldots, \mu_{n-1}^{*}, \hat{x}_{n-1}, \mu_{n}^{*}, \hat{x}_{n}\right) \\
= & \frac{c}{F_{2 n-1}}\left(F_{2 n-2}, F_{2 n-3}, F_{2 n-4}, F_{2 n-5}, \ldots, F_{2 n-2 k}, F_{2 n-2 k-1}, \ldots, F_{2}, F_{1}, F_{0}, F_{-1}\right) .
\end{aligned}
$$

Thus FCD holds between $\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{D}_{2}\right)$.

$3.3 \quad\left(\mathrm{P}_{3}\right)$ vs $\left(\mathrm{D}_{3}\right)$

Let us consider the third:

$$
\begin{align*}
& \operatorname{minimize} \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2} \\
& \text { subject to } \quad \text { (i) } x \in R^{n}, \quad \text { (ii) } x_{0}=c, \underline{x_{n}=0} \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \text { Maximize } 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2} \\
& \text { subject to (i) } \quad \mu \in R^{n} \tag{3}
\end{align*}
$$

An identity $\left(\mathrm{C}_{3}\right)$ with the elementary inequality (1) yields an inequality

$$
\begin{aligned}
& 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2} \\
\leq & \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}
\end{aligned}
$$

for any feasible pair (x, μ). Then both are dual to each other. An equality condition is

$$
\begin{align*}
& x_{k-1}-x_{k}=\mu_{k}, \quad x_{k}=\mu_{k}-\mu_{k+1} \quad 1 \leq k \leq n-1 \tag{3}\\
& x_{n-1}-x_{n}=\mu_{n} .
\end{align*}
$$

The equality condition $\left(\mathrm{EC}_{3}\right)$ is a linear system of $(2 n-1)$-equation on $2 n$-variable (x, μ). Let $\left(\mathrm{EC}_{3}^{\prime}\right)$ be an augmentation of the system $\left(\mathrm{EC}_{3}\right)$ with the additional constraint (ii) $x_{n}=0$:

$$
\begin{array}{ll}
\left(\mathrm{EC}_{3}^{\prime}\right) & x_{k-1}-x_{k}=\mu_{k}, \quad x_{k}=\mu_{k}-\mu_{k+1} \quad 1 \leq k \leq n-1 \\
& x_{n-1}-x_{n}=\mu_{n}, \quad \underline{x_{n}}=0 .
\end{array}
$$

Then $\left(\mathrm{EC}_{3}^{\prime}\right)$ is of $2 n$-equation on $2 n$-variable.
Let (x, μ) be a solution of $\left(\mathrm{EC}_{3}^{\prime}\right)$. Then both sides become a common value with five expressions.

$$
\begin{aligned}
& \sum_{k=1}^{n}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2} \\
= & c\left(c-x_{1}\right) \\
\left(5 \mathrm{~V}_{3}\right)= & 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2} \\
= & \sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2} \\
= & c \mu_{1} .
\end{aligned}
$$

The primal $\left(\mathrm{P}_{3}\right)$ has a minimum value

$$
\begin{aligned}
m_{3} & =\sum_{k=1}^{n}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2} \\
& =c\left(c-x_{1}\right)
\end{aligned}
$$

at x, while the dual $\left(\mathrm{D}_{3}\right)$ has a maximum value

$$
\begin{aligned}
M_{3} & =2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2} \\
& =\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2} \\
& =c \mu_{1}
\end{aligned}
$$

at μ.
Lemma 3 The system (EC_{3}^{\prime}) has indeed a unique solution:

$$
\begin{gather*}
x=\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{n-1}, x_{n}\right) \\
=\frac{c}{F_{2 n}}\left(F_{2 n-2}, F_{2 n-4}, \ldots, F_{2 n-2 k}, \ldots, F_{2}, F_{0}\right), \tag{7}\\
\quad \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \ldots, \mu_{n-1}, \mu_{n}\right) \\
=\frac{c}{F_{2 n}}\left(F_{2 n-1}, F_{2 n-3}, \ldots, F_{2 n-2 k+1}, \ldots, F_{3}, F_{1}\right) . \tag{8}
\end{gather*}
$$

Proof. From (EC_{3}^{\prime}), we have a pair of linear systems of n-variable on n-equation:

$$
\begin{array}{rlrl}
c & =3 x_{1}-x_{2} & c & =2 \mu_{1}-\mu_{2} \\
x_{1} & =3 x_{2}-x_{3} & \mu_{1} & =3 \mu_{2}-\mu_{3} \\
\vdots & & \vdots \\
\left(\mathrm{EQ}_{3}\right) & & \mu_{n-3} & =3 \mu_{n-2}-\mu_{n-1} \\
x_{n-3} & =3 x_{n-2}-x_{n-1} & \mu_{n-2} & =3 \mu_{n-1}-\mu_{n} \\
x_{n-2} & =3 x_{n-1}-x_{n} & \mu_{n-1} & =2 \mu_{n} .
\end{array}
$$

The left system has a solution x in (7), while the right has a solution μ in (8).
The primal $\left(\mathrm{P}_{3}\right)$ has a minimum value $m_{3}=c\left(c-\hat{x}_{1}\right)=\frac{F_{2 n-1}}{F_{2 n}} c^{2}$ at a path

$$
\begin{gathered}
\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{k}, \ldots, \hat{x}_{n-1}, \hat{x}_{n}\right) \\
=\frac{c}{F_{2 n}}\left(F_{2 n-2}, F_{2 n-4}, \ldots, F_{2 n-2 k}, \ldots, F_{2}, F_{0}\right) .
\end{gathered}
$$

The dual $\left(\mathrm{D}_{3}\right)$ has a maximum value $M_{3}=c \mu_{1}^{*}=\frac{F_{2 n-1}}{F_{2 n}} c^{2}$ at a path

$$
\begin{gathered}
\mu^{*}=\left(\mu_{1}^{*}, \mu_{2}^{*}, \ldots, \mu_{k}^{*}, \ldots, \mu_{n-1}^{*}, \mu_{n}^{*}\right) \\
=\frac{c}{F_{2 n}}\left(F_{2 n-1}, F_{2 n-3}, \ldots, F_{2 n-2 k+1}, \ldots, F_{3}, F_{1}\right) .
\end{gathered}
$$

Hence both optimal values are identical:

$$
m_{3}=M_{3}=\frac{F_{2 n-1}}{F_{2 n}} c^{2}
$$

An alternate contexture of both optimal points μ^{*}, \hat{x} is Fibonacci backward:

$$
\begin{aligned}
& \left(\mu_{1}^{*}, \hat{x}_{1}, \mu_{2}^{*}, \hat{x}_{2}, \ldots, \mu_{k}^{*}, \hat{x}_{k} \ldots, \mu_{n-1}^{*}, \hat{x}_{n-1}, \mu_{n}^{*}, \hat{x}_{n}\right) \\
= & \frac{c}{F_{2 n}}\left(F_{2 n-1}, F_{2 n-2}, F_{2 n-3}, F_{2 n-4}, \ldots, F_{2 n-2 k+1}, F_{2 n-2 k}, \ldots, F_{3}, F_{2}, F_{1}, F_{0}\right) .
\end{aligned}
$$

Thus FCD holds between $\left(\mathrm{P}_{3}\right)$ and $\left(\mathrm{D}_{3}\right)$.

References

[1] E.F. Beckenbach and R.E. Bellman, Inequalities, Springer-Verlag, Ergebnisse 30, 1961.
[2] R.E. Bellman, Dynamic Programming, Princeton Univ. Press, NJ, 1957.
[3] R.E. Bellman, Introduction to the Mathematical Theory of Control Processes, Vol.I, Linear Equations and Quadratic Criteria, Academic Press, NY, 1967.
[4] R.E. Bellman, Introduction to the Mathematical Theory of Control Processes, Vol.II, Nonlinear Processes, Academic Press, NY, 1971.
[5] R.E. Bellman, Methods of Nonlinear Analysis, Vol.I, Nonlinear Processes, Academic Press, NY, 1972.
[6] R.E. Bellman, Methods of Nonlinear Analysis, Vol.II, Nonlinear Processes, Academic Press, NY, 1972.
[7] R.E. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, NY, 1970 (Second Edition is a SIAM edition 1997).
[8] R.E. Bellman and Wm. Karush, On a new functional transform in analysis : the maximum transform, Bull. Amer. Math. Soc., 67(1961), 501-503.
[9] R.E. Bellman and Wm. Karush, Mathematical programming and the maximum transform, J. SIAM Appl. Math., 10(1962), 550-567.
[10] R.E. Bellman and Wm. Karush, On the maximum transform and semigroups of transformations, Bull. Amer. Math. Soc., 68(1962), 516-518.
[11] R.E. Bellman and Wm. Karush, Functional equations in the theory of dynamic programming-XII : an application of the maximum transform, J. Math. Anal. Appl., 6(1963), 155-157.
[12] R.E. Bellman and Wm. Karush, On the maximum transform, J. Math. Anal. Appl., 6(1963), 57-74.
[13] A. Beutelspacher and B. Petri, Der Goldene Schnitt 2, überarbeitete und erweiterte Auflange, Elsevier GmbH, Spectrum Akademischer Verlag, Heidelberg, 1996.
[14] J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization Theory and Examples, Springer-Verlag, New York, 2000.
[15] R.A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing Co.Pte.Ltd., 1977.
[16] W. Fenchel, Convex Cones, Sets and Functions, Princeton Univ. Dept. of Math, NJ, 1953.
[17] S. Iwamoto, Theory of Dynamic Program, Kyushu Univ. Press, Fukuoka, 1987 (in Japanese).
[18] S. Iwamoto, Mathematics for Optimization II Bellman Equation, Chisen Shokan, Tokyo, 2013 (in Japanese).
[19] S. Iwamoto and Y. Kimura, Semi-Fibonacci programming - odd-variable - , RIMS Kokyuroku, Vol.2158, pp.30-37, 2020.
[20] S. Iwamoto and Y. Kimura, Identical Duals - Gap Function - , RIMS Kokyuroku, Vol.2194, pp.56-67, 2021.
[21] S. Iwamoto, Y. Kimura and T. Fujita, Complementary versus shift dualities, J. Nonlinear Convex Anal., 17(2016), 1547-1555.
[22] S. Iwamoto, Y. Kimura and T. Fujita, On complementary duals - both fixed points -, Bull. Kyushu Inst. Tech. Pure Appl. Math., 67(2020), 1-28.
[23] E.S. Lee, Quasilinearization and Invariant Imbedding, Academic Press, New York, 1968.
[24] S. Nakamura, A Microcosmos of Fibonacci Numbers - Fibonacci Numbers, Lucas Numbers, and Golden Section - (Revised), Nippon Hyoronsha, 2008 (in Japanese).
[25] R.T. Rockafeller, Conjugate Duality and Optimization, SIAM, Philadelphia, 1974.
[26] M. Sniedovich, Dynamic Programming: foundations and principles, 2nd ed., CRC Press 2010.
[27] H. Walser, DER GOLDENE SCHNITT, B.G. Teubner, Leibzig, 1996.

