
175

A Comprehensive Analysis of Proportional Intensity-based Software
Reliability Models with Covariates

Siqiao Li, Tadashi Dohi, Hiroyuki Okamura

Graduate School of Advanced Science and Engineering,

Hiroshima University

Higashi-Hiroshima 739-8527, Japan

{ rel-siqiao, dohi, okamu }@hiroshima-u.ac.jp

Abstract

The black-box approach based on stochastic software

reliability models is a simple methodology with only soft­

ware fault data in order to describe the temporal behav­

ior of fault-detection processes, but fails to incorporate

some significant development metrics data observed in

the development process. In this paper we develop pro­

portional intensity-based software reliability models with

time-dependent metrics, and propose a statistical frame­

work to assess the software reliability with the time­

dependent covariate as well as the software fault data. The

resulting models are similar to the usual proportional haz­

ard model, but possess somewhat different covariate struc­

ture from the existing one. We compare these metrics­

based software reliability models with eleven well-known

non-homogeneous Poisson process models, which are the

special cases of our models, and evaluate quantitatively the

goodness-of-fit and prediction. As an important result, the

accuracy on reliability assessment strongly depends on the

kind of software metrics used for analysis and can be im­

proved by incorporating the time-dependent metrics data in

modeling.

1. INTRODUCTION

During the last three decades, the stochastic models,

called software reliability models (SRMs) that analyze and

explain the software fault-detection phenomena, have been

extensively developed in the literature [24], [28], [35]. In

fact, till now, over 200 SRMs have been proposed from

various mathematical standpoints. The classical and the

most important SRMs may be the non-homogeneous Pois­

son process (NHPP) models that have gained popularity

for describing the stochastic behavior of the number of

software faults detected in the testing phase. The rep­

resentative NHPP-based SRMs are characterized by the

mean value functions, which are proportional to the cu­

mulative distribution functions (CDF) of software fault­

detection time. Since the seminal contribution by Goel

and Okumoto [11], many authors proposed NHPP-based

SRMs under different model assumptions. The represen­

tative NHPP-based SRMs assumed the exponential CDF

[11], the gamma CDF [43,44], the truncated-logistic CDF

[30], the log-logistic CDF [12], the Pareto CDF [1], the

truncated-normal CDF [33], the log-normal CDF [2, 33],

the extreme-value CDFs [31] including the Weibull CDF

[10]. These NHPP SRMs are based on different debug­

ging scenarios from each other, and can catch qualitatively

typical (but not general) reliability growth phenomena ob­

served in the testing phases of software products. In other

words, the black-box approach based on the NHPP-based

SRMs is a simple methodology with only software fault

data in order to describe the temporal behavior of fault­

detection processes, but fails to incorporate some signif­

icant development metrics data observed in the develop­

ment process.

On the other hand, much effort has been spent to clar­

ify the relationship between the software quality and some

kinds of software metrics. McCabe [25] proposes several

software engineering metrics which are units of measure­

ment to characterize software products, processes and hu­

man resources in the development. Halstead [13] points out

the significance of software science and derives determin­

istic equations to estimate the number of residual faults in

software with programming effort. Putnam [37] and Taka­

hashi and Kamayachi [42] show empirical relationships be­

tween the software fault characteristics and the so-called

environmental factors to characterize the software prod­

ucts, such as programmer skill, programming language,

coding techniques, reusability of existing code, etc. Pil­

lai and Nair [36] discuss an estimation problem of soft­

ware cost and development effort with several metrics data.

176

However, the approaches mentioned above are essentially

the deterministic ones and cannot represent uncertainty of

software fault-detection processes in testing. In general,

the software metrics can be classified into four categories:

product metrics, development metrics, deployment & us­

age metrics and software-hardware configurations metrics,

so that the utilization of these information as well as the

fault-detection data will lead to the accurate reliability as­

sessment of software products in practice.

The stochastic approach to incorporate the software de­

velopment metrics and/or environmental factors is taken

by Ascher [4], [5], Bendell [6], Evanco and Lacovara [9],

Evanco [8] and Nishio and Dohi (29] . They utilize the

proportional hazard model (PHM) or equivalently Cox

regression model [7], and formulate the software fault­

detection time distribution by regarding the time-series

metrics data as the covariate [21], [26]. Pham [35] de­

velops an enhanced proportional hazard SRM based on a

continuous-time Markov chain and considers a dynamic

version of PHM. However, if the cumulative effect of soft­

ware development/test effort reported in (27] is considered

for analysis, the above modeling approach based on the

PHMs loses their validation because the covariate to rep­

resent the development effort usually consists of 0-1 bi­

nary values. Shibata, Rinsaka and Dohi [41] introduced

the discrete proportional hazard model on a cumulative

Bernoulli trial process, and to represent a generalized fault­

detection processes having time-dependent covariate struc­

ture. Okamura et al. [34] proposed a discret-time multi­

factor SRM based on logistic regression and its effective

statistical parameter estimation method. Kuwa and Dohi

[19, 20] extended the existing logit regression-based SRM

and Cox proportional hazards regression-based SRM to

help them improve goodness-of-fit and predictive perfor­

mances. Khoshgoftaar and Munson (16] and Khoshgoftaar

et al. [14], [17], [18] develop the linear and non-linear re­

gression models to quantify the software quality with some

metrics data. Li et al. [23] discuss a metrics-based mod­

eling method to predict the field defect-occurrence rate

by using the classical moving average and the exponen­

tial smoothing. Khoshgoftaar et al. (15] apply the Pois­

son regression model and the zero-inflated Poisson regres­

sion model to predict the rank-order of software modules.

Schnieidewind (39], [40] also use the regression models to

evaluate the software maintenance process with measure­

ment. Amasaki et al. [3] classify the trend of fault data

with the rank correlation coefficient and apply the logistic

regression model to assess the software quality, which is

measured by the number of detected faults after shipment.

In this way, various regression approaches have been used

to develop the metrics-based SRMs.

Rinsaka et al. [38] developed a proportional intensity­

based SRM with both software fault data and testing met­

rics data. The proportional intensity model (PIM) is pro­

posed by Lawless [22] as a natural extension of the usual

PHM, where the proportional hazard function in the Cox

regression is used for the intensity function of the NHPP.

The most different point from the existing PHM is that

PIM is a dynamic SRM to describe the software relia­

bility growth phenomenon. That is, they introduce the

Cox regression to incorporate the time-dependent devel­

opment/test metrics instead of the linear and non-linear re­

gression with white noise or the logistic regression, and

still utilize the stochastic counting process to describe the

cumulative number of faults detected in the software test­

ing (note that the regression models in [3, 14-18,39,40] are

static models in time). In that sense, PIM proposed here

would possess both applicability to the actual software re­

liability assessment from the similarity to the NHPP-based

SRMs and flexibility to incorporate the time-dependent

metrics data observed in the testing phase.

In this paper, we develop 11 proportional intensity

NHPP-based SRMs with time-dependent software met­

rics, which could incorporate multiple time-dependent

cumulative/non-cumulative software development metrics

data. The baseline intensity functions of our SRMs are

consistent with the 11 existing NHPP-based SRMs [1,2, 11,

12,30,31, 33,43,44]. The rest part of this paper proceeds

as follows. In Section 2, we describe the basic NHPP­

based SRMs and refer to the statistical estimation methods

of model parameters. In Section 3 we introduce PIM and

give an additive cumulative intensity structure to model

the cumulative effect of software development/test effect.

Section 4 is devoted to present numerical examples with

real software fault data and the time-dependent test met­

rics, where test execution time (CPU hr), failure identifica­

tion work (person hr), computer time-failure identification

(CPU hr) are used as test metrics to compare our propor­

tional intensity-based SRMs with the existing NHPP-based

SRMs. We estimate the model parameters by utilizing the

maximum likelihood estimation and evaluate the perfor­

mance metrics in terms of goodness-of-fit and prediction.

As an important result, it is shown empirically that the ac­

curacy on reHability assessment strongly depends on the

kind of software metrics used for analysis and can be im­

proved by incorporating the time-dependent metrics data in

modeling. In fact, it is concluded that our proportional in­

tensity NHPP-based SRMs outperform the existing NHPP­

based SRMs in terms of information criteria and prediction

ability.

2. NHPP-Based Software Reliability Model

177

Let {N(t) , t 2 0} denote the number of software faults

detected by time t in the software testing and be a stochas­

tic counting process satisfying:

(i) N(O) = 0

(ii) { N (t), t 2 0} has independent increment

(iii) Pr{N(t + Llt) - N(t) 2 2} = o(Llt)

(iv) Pr{N(t + Llt) - N(t) = 1} = >.(t)Llt + o(Llt),

where >.(t) is an absolutely continuous (deterministic)

function of only time t , and o(Llt) is the higher order term

of infinitesimal time Llt, so that

Jim o(Llt) = 0.
Ll.t ---. o Llt

(1)

Then the counting process is said the non-homogeneous

Poisson process (NHPP) with intensity function >.(t).

Since this is a typical Markov process with time-dependent

transition rate, it is easily derived that

Pr{N(t) = n} = {H~W exp{- H(t)}, (2)

where

H(t) = E[N(t)] = l >-(x)dx, H(0) = 0 (3)

is said the mean value function and means the expected

cumulative number of faults detected by time t.
It is assumed that each software fault is detected at

independent and identically distributed (i.i.d.) random

time with a non-degenerate cumulative distribution func­

tion (CDF), F(t; a), having the parameter a, and that the

residual number of software faults at time t = 0 is a Pois­

son distributed random variable with parameter w (> 0).
Then the resulting software fault detection process obeys

the NHPP with mean value function H(t; 0) = wF(t; a)
with 0 = (w, a). In this way, the commonly used as­

sumption in software reliability engineering is that the

initial number of residual software faults in a software

system is expected to be finite, i.e., limt➔ oo H(t; 0) =
w (> 0). In the classical software reliability modeling, the

main research issue was to determine the intensity function

>.(t; 0), or equivalently the mean value function H(t; 0)
so as to fit the software fault data. and Dohi [32] imple­

mented the existing NHPP-based SRMs with 11 software

fault-detection time CDFs in the software reliability assess­

ment tool on the spreadsheet (SRATS), which includes ex­

ponential (exp), gamma, Pareto, log-normal (!norm), log­

logistic (llogist), log-extreme-value minimum (lxvmin),

log-extreme-value maximum (lxvmax), truncated logis­

tic (tlogist), truncated normal (tnorm), truncated extreme­

value minimum (txvmin), truncated extreme-value maxi­

mum (txvmax) distributions. In Table 1, we summarize

Table I : The existing NHPP-based SRMs.

Models

Exponential dist.
(exp) [II]

Gamma dist.
(gamma) [43], [44]

Pareto dist.
(pareto) [I]

Truncated nonnal dist.
(tnorm) [33]

Log-aonnal dist.
(lnorm) [2] , [33]

Truncated logistic dist.
(tlogist) [30]

Log-logistic dist.
(llogist) [12]

Truncated extreme-value max dist.
(txvmax) [31]

Log-extreme-value max dist
(Ixvmax) [31]

Truncated extreme-value min dist
(txvmin) [31]

Log-extreme-value min dist.
(lxvmin) [10]

,\(t;O)&F(t;a)
-\(t;O) -wbe - 0 '

F(t;a) = 1 - e- "

,\(t• 0) = wboi *,; -
' c+t

F(t; a) = 1- (tl;;)'

,\(t;0)= (w:~)
bt e +l

F(t;a)= -d!'tf,,.

,\(t;O) wa-(!): (!} o '

F(t;a) = e- <¾)~"

(w>O, b>O, c>O)

these 11 NHPP-based SRMs with their baseline intensity

functions.

Let Yk (k = 1, 2, • • •, n) be the total number of soft­

ware faults detected by each testing time tk measured by

calendar time. For the parameter set 0 = (a, b), the mean

value function of the NHPP is represented by H(t; 0) . The

commonly used technique to estimate the model parameter

0 is the maximum likelihood method. For convenience, let

us define (to, y0) = (0, 0) without any loss of generality.

Since the likelihood function is given by

L(0)= Pr{N(t1) = Y1, · ~- ,N(tn) = Yn}

= exp[-H(tn; 0)] IT
k=l

{H(tk ; 0) - H(tk-I i 0)}Yk - Yk - l

X (yk-Yk-1)!
(4)

taking the logarithm of both sides ofEq.(4) yields the log-

arithmic likelibood function:

LLF(0) = L(Yk - Yk-1) ln[H(tk; 0)
k=l

- H,(tk-Ii 0)] - H(tn; 0)

178

- Lin[(Yk -Yk-1)!] . (5)

k=l

Hence the ML estimate 0 is given by the solution of

argmax9lnLLF(8).

3. Proportional Intensity Model

3.1. Model Description

Here we develop a novel SRM to incorporate the

multiple testing-effort parameters, which is consistent to

the maximum likelihood estimation. Suppose that l (:::>
1) kinds of software metrics data Xk = (xki, · · ·,
Xkt) (k = l, 2, • • •) are available at each testing time

tk (= 0, 1, 2, • • •). It is also assumed that each metrics

Xk depends on the cumulative testing time tk and can be

regarded as a function of time, say, Xk(tk)- In statistics,

this type of parameter is called the time-dependent covari­

ate [21], [26] and has been studied extensively in the con­

text of Cox PHM. For the NHPP in Eq.(2), we assume the

following intensity function:

(6)

where /3 = (/31, • • •, /31). In Eq.(6), the function

Ao(tk; 0) (> 0) is called the baseline intensity function

and is a function of only time. On the other hand, the func­

tion g(xk; /3) (> 0) is called the covariate function and is

a function of the software time-series metrics xk(tk) and

the coefficient parameter /3 = (/31 , • • • , /3i)T. Similar to

the usual Cox's PHM, an appropriate choice of the covari­

ate function would be given by the following exponential

form:

(7)

Actually this form is well known to be convenient for anal­

ysis and to be rather flexible to express the covariate srruc­

ture in many application [7], [21], [26]. Lawless [22] also

assumes the above exponential covariate structure and an­

alyzes the real statistical data in medical applications.

However, it is worth noting that the time-independent

covariate considered by Lawless [22] is also the 0-1 bi­

nary value and does not deal with the cumulative value like

test execution time (CPU hr), etc. In other words, a new

modeling framework is needed for analysis of time-series

metrics data. The simplest but reasonable model is to take

account of an effect of the cumulative number of faults in

an expression of the mean value function. Suppose:

1,,
Hp(t1;8,/3) =

0
Ao(u;0)exp(x1/3)du, (8)

Hp(t2; 0, /3) = Hp(ti; 0, /3)

Jt2

+ Ao(u;8)exp(x2/3)du, ,, (9)

Hp(tk;0,/3) = texp(x;,13) /'~, Ao(u;0)du

k

Lexp(x;,13)
i=l

x [H0 (t; ;0)- Ho{t;-1;0)),
(10)

where H0 (t;; 0) = J;' Ao(u; 0)du. Note that when /3i =
O for all j (= 1, 2, • • •, l), the above PIM can be reduced

to the existing NHPP-based SRM.

3.2. Maximum likelihood estimation

Both the model parameters 0 and /3 can be estimated

by a method of maximum likelihood. Suppose that n set

of fault-detection data (tk, Yk) (k = 0, 1, 2, · · ·, n) and

l x n software metrics data Xk = (xk1,···,Xkt) can

be observed for testing time interval (0, tk], where, Yk

is the cumulative number of detected software faults and

(xki , · · · , Xkt) are ! kinds of software metrics data con­

sumed until time tk. Under the above assumptions and the

property of independent increment of the NHPP, the likeli­

hood function for PIM with mean value function Hp(t) is

given by

L(0,/3) = Pr{N(t1)=y1,··· ,N(tn)=yn}
= exp [- Hp(tn; 0, /3)]

X TI (Yk - ~k-1)!
k=l

X {Hp(tk; 0 , /3)-Hp(tk- l ; 0,/3)}Yk--Ylo-l
(11)

where, (to , Yo) = (0, 0) and xo1 = 0 (j = 1, 2, · · · , l) .

Taking the logarithm of both sides ofEq.(11), we have

LLF(0, /3)
n

L(Yk - Yk-i)ln[Hp(tk;0,/3)
k= l
- Hp(lk-1; 0, /3)] - Hp(ln; 0, /3)

n

-L ln[(Yk - Yk-1)!]. (12)

k=l

Since the maximum likelihood estimates (0, /:3) can be ob­

tained via the direct maximization of the logarithmic like­

lihood LLF(0, /3) without applying the least squared sum

method, we can enjoy consistently the rich property of the

maximum likelihood estimation in the PIM framework.

4. Numerical Examples

179

In this section, we focus on four real data sets col­

lected in the actual software development projects for

the real time command and control systems [27] in Ta­

ble 2. In these four data sets, we perform goodness-of­

fit tests of PIM and evaluate the preilictive performances

with cumulative/non-cumulative time-dependent metrics

data as the covariates, say, Xk = (xk1, · · · , X ki)!xk =
(Xkl - X(k-1) 1, · · ·, Xkl - X (k- l) l). / is the number of
time-dependent metrics data in each data set and k =
0, 1, 2, · · · ,n .

4.1. Goodness-of-fit Performances

For PIM, we assume 11 kinds of baseline intensity func­

tions in Table 1. To investigate the effect of each time­

dependent metric data on the stochastic behavior of the cu­

mulative number of faults detected in the testing phase, we

calculate the maximum likelihood estimates (iJ, /3) of co­

variate equations g(xk; {3) = exp(xk/3) for every metrics

data combinations. Since, each data set presented in Table

2 contains three kinds of time-dependent metric data, so we

need to consider a total of 7 combinations as shown in Ta­

ble 3. By deriving the corresponding log likelihood (LLF),

we investigate the goodness-of-fit performance with two

measures: Akaike information criterion (AIC) and mean

squared error (MSE), where.

AIC = -2LLF(iJ, /3) + 21r, (13)

and

MSE =_!_
n

L(Yk - Hp(tk; 6 , /3)) 2 • (14)

k=l

1r is the number of free parameters. The smaller AIC/MSE

is the better SRM in terms of the goodness-of-fit to the

underlying fault count data.

Figure 1 illustrates the estimated mean value functions

and the cumulative number of software faults detected in

GDSl. The best SRMs with minimum AIC were selected

from the our 11 proportional intensity NHPP-based SRMs

with cumulative metric data (red curve), 11 proportional

intensity NHPP-based SRMs with non-cumulative metric

data (blue curve) and the existing NHPP-based SRMs in

SRATS (orange curve). At first glance, the three curves

exhibit almost similar behavior, but a closer look reveals

that our PIMs can represent more complex behaviors than

existing NHPP-based SRM. Then, in Figure 2, we also

plot the behavior of estimated number of detected fault

counts in each testing time interval for the best SRMs in

GDSl. The orange bar-chart represents the actual soft­

ware detected faults data in each time interval. This figure

PropotlonallntensltySRM
(tloglst)

(cumulallnmetrlcsdata)

Test time
Figure 1: Behavior of estimated cumulative number of
software faults in GDS 1.

20

15

10

Propotlonal lntamity SRM
--{nor,.c:umulatlvemetrtcsdata)

Propotlonal lntanslty SRM
fcumulati~m1b1csdata)

NHPP-bu1d SRM (doglst)
(no metrics data)

5 10 15 20
Figure 2: Behavior of estimated number of detected fault
counts during time interval in GDS 1.

clearly shows that our two proportional intensity NHPP­

based SRMs have the more better goodness-of-fit perfor­

mances then existing NHPP-based SRM.

We present the best AIC results for four time-dependent

metrics data in Table 4 for more accurate comparisons.

By comparing our two types of proportional intensity

NHPP-based SRMs with the existing NHPP-based SRMs

in SRATS [32], the bold font is utilized to marks the

best SRM with minimum AIC in each data set. It can

be seen that in the all data sets, our proportional inten­

sity NHPP-based SRMs could provide the better goodness­

of-fit performances than the existing NHPP-based SRMs

in SRATS. Especially, the proportional intensity SRMs

with non-cumulative metrics data could give the smaller

AIC (GDS 1, GDS2, and GDS3) and smaller MSE (GDS2,

GDS3, and GDS4) in 3 cases. We can also notice that our

SRMs with combination II, III and IV covariate equations

could guarantee the better goodness-of-fit results in most

cases. Therefore, our conclusion is more inclined to think

that are our proportional intensity NHPP-based SRMs are

attractive in software reliability modeling and should be

competitors with the high potential ability for the exist­

ing NHPP-based SRMs. The execution time and failure

identification work can effectively help us to improve the

goodness-of-fit performances of our SRMs.

180

Table 2: Data sets.

Data No. faults Testing days Metrics data
GDSl 136 21 Execution time (CPU hr), failure identification work (person hr), computer time-failure identification (CPU hr)
GDS2 54 17 Execution time (CPU hr), failure identification work (person hr), computer time-failure identification (CPU hr)
GDS3 38 14 Execution time (CPU hr), failure identification work (person hr), computer time-failure identification (CPU hr)
GDS4 53 16 Execution time (CPU hr), failure identification work (person hr), computer time-failure identification (CPU hr)

Table 3: Combinations of covariate equation g(xk1; /3).

g(xk1; f3)(l = 1, 2, 3)
Combination I exp(/3o + Xk1/11)
Combination II exp(/3o + Xk2/12)

Combination ill exp(/3o + Xk3/3a)

Combination IV exp(/3o + Xk1/11 + Xk2/12)

Combination V exp(/3o + Xk1/11 + Xk3/13)

Combination VI exp(/3o + Xk2/12 + Xk3/33)

Combination VII exp(/3o + Xk1/11 + Xk2/12 + Xk3/33)

Xki : Execution time.
Xk2 : Failure identification work.
xk3 : Computer time-failure identification.

4.2. Predictive Performances

Next, we investigate the predictive ability of propor­

tional intensity NHPP-based SRMs. On the observation

point n' (1 :S n' < n) when 50% or 80% of all data are

available, we predict the future behavior of the cumulative

number of faults. To assess the predictive ability, we apply

the prediction squares error (PMSE) as predictive perfor­

mance measure, where

PMSE= - 1-,
n-n

L [Yk - Hp(tk; 0,/3)]2 .(15)
k=fi+l

tis obvious that the smaller PMSE indicates the better pre­

dictive performance.

In order to predict the future behavior of software fault­

detection process, it should be noted that estimates of de­

velopment/test metrics are required, since the mean value

functions of PIM depend on the covariates. In practice,

three cases are possible to consider.

Case I: All the test/development metrics data are com­

pletely known and fixed in advance, so that the soft­

ware testing expenditures are given before testing.

Case II: The test/development metrics data do not change

in the future.

Case ill: The test/development metrics data experienced

in future are random variables and can be predicted.

Especially, in the case III, we are requested to introduce

additional probability models on test/development metrics

data. In this paper, we made the two assumptions and em­

ploy the linear and exponential regression methods to pre­

dict the future test/development metrics data. Becasue the

exponential regression is not suitable for making predic­

tion on non-cumulative data (the variable may be 0, caus­

ing the correlation coefficient to not be calculated), so, we

totally consider 7 cases of estimated development/test met­

rics data in future phase under the above three assumptions,

to help us investigate the predictive performances of our

proportional intensity NHPP-based SRMs with observed

cumulative metrics data and non-cumulative metrics data.

Tables 5 and 6 present the comparison results on the

PMSE in four data sets at 50 % observation point and 80

% observation point, respectively, where we select the best

SRM with the smallest PMSE from the our proportional

intensity NHPP-based SRMs and the existing NHPP-based

SRMs. Bold font is utilized to marks the best SRMs with

minimum PMSE in each data set. From these two tables, it

can seen that our proportional intensity NHPP-based SRMs

can still outperform the existing NHPP-based SRMs in all

the data sets. We can also find that utilizing the estimated

metrics data under Case II (the test/development metrics

data do not change in the future) assumption in the fu­

ture phase tends to give the more better predictive perfor­

mances than the other two assumptions in more than half

data sets (GDSl 50%, GDS2 50%, GDS3 50%, GDS4 50%

and GDS4 80%). 5 out of 8 (GDS2 50%, GDS4 50%,

GDS2 80%, GDS3 80% and GDS4 80%) minimum PM­

SEs are given by our proportional intensity NHPP-based

SRMs with non-cumulative metrics data. The SRMs with

Combination II covariate function could provide the best

PMSEs in two (GDSl 50% and GDS2 50%) and three

(GDSl 80%, GDS3 80% and GDS4 80%) data sets, re­

spectively. The remaining three best PMSEs are given by

the SRMs with combinations V, VI and VII covariate func­

tions. Combining Table 4, we can find that failure iden­

tification work is the most important development metric

data, which can effectively improve the software faults pre­

diction accuracy of our SRM in the future phase.

5. Conclusions

In this paper, we have developed the proportional in­

tensity NHPP-based SRMs with 11 well-known underline

181

Table 4: Goodness-of-fit performances based on AIC.

(i) Best proportional intensity model (cumulative metrics data)

Model AIC MSE f3

GDSl tlogist-VI 110.114 0.470 {30 = -2.5903, /32 = -0.0805, {33 = 0.0277
GDS2 tlogist-III 69.785 0.282 f3o = 1.7326, /33 = 0.1406
GDS3 txvmin-II 57.281 0.289 {30 = -3.7048, /32 = 1.2197
GDS4 exp-I 81.059 0.612 /30 = 4.6132, /31 = -0.1659

(ii) Best proportional intensity model (non-cumulative metrics data)
GDSl txvmin-II 109.015 0.721 (30 = 2.9503, /32 = 0.0206
GDS2 llogist-II 67.352 0.261 f3o = -0.4155, /32 = 0.0447
GDS3 gamma-II 50.696 0.221 {30 = 0.6061, /32 = 1.1493
GDS4 exp-VI 81.131 0.450 {30 = 3.8840, /32 = -0.2963, {33 = 0.8060

(iii) Best SRATS (no metrics data)
GDSl tlogist 116.891 0.820
GDS2 llogist 73.053 0.501
GDS3 txvmin 63.208 0.553
GDS4 txvmin 79.761 0.530

intensity functions, which could incorporate multiple time­

dependent cumulative/non-cumulative software develop­

ment/test metrics data. In our numerical experiments, by

regarding three types of time-dependent metrics data as

the covariates in totally four data sets, we compared our

proportional intensity NHPP-based SRMs with the exist­

ing SRMs in the past literature in terms of goodness-of­

fit and predictive performances. We have confirmed that

our proportional intensity NHPP-based SRMs could show

the better performances in all the cases than the existing

11 NHPP-based SRMs in SRATS. We also confirmed that

failure identification work is the most important develop­

ment/test metric that can help us improve the accuracy of

our SRMs, both in terms of goodness-of-fit and software

failure prediction in future phase.

References

[l] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood.
Evaluation of competing software reliability predic­
tions. IEEE Transactions on Software Engineering,
SE-12(9):950-967, 1986.

[2] J. A. Achcar, D. K. Dey, and M. Nivertbi. A Bayesian
approach using nonhomogeneous Poisson processes
for software reliability models. In Frontiers in Relia­
bility, pages 1-18. World Scientific, 1998.

[3] S. Amasaki, T. Yoshitomi, 0. Mizuno, Y. Takagi, and
T. Kiku:no. A new challenge for applying time series
metrics data to software quality estimation. Software
Quality Journal, 13(2):177-193, 2005.

-
-
-
-

[4] H. Ascher. Proportional hazards modelling of soft­
ware failure data. Software Reliability; State of the
Art Report (A. Bendell and P. Mellor, eds.), pages
229-263, 1986.

[5] H. Ascher. The use of regression techniques for
matching reliability models to the real world. Soft­
ware System Design Methods, NATO AS/ Series (J.
K. Skwirzynski, ed.), F22:366-378, 1986.

[6] A. Bendell. The use of exploratory data analysis tech-
niques for software reliability assessment and predic­
tion. Software System Design Methods, NATO AS!
Series (J. K. Skwirzynski, ed.), F22:337-351, 1986.

[7] D. R. Cox. Regression models and life-tables. Jour-
nal of the Royal Statistical Society, B-34:187-220,
1972.

[8] W. M. Evanco. Using a proportional hazards model
to analyze software reliability. In Proc. 9th Int' l Conf
Software Technology & Engineering Practice, pages
134-141. IEEE CS Press, 1999.

[9] W. M. Evanco and R. Lacovara. A model-based
framework for the integration of software metrics.
Journal of Systems and Software, 26:75-84, 1995.

[10] A. L. Goel. Software reliability models: assumptions,
limitations, and applicability. IEEE Transactions on
Software Engineering, SE-11(12):1411-1423, 1985.

[11] A. L. Goel and K. Okumoto. Time-dependent error-
detection rate model for software reliability and other
performance measures. IEEE Transactions on Relia­
bility, R-28(3):206-211, 1979.

[12] S. S. Gokhale and K. S. Trivedi. Log-logistic
software reliability growth model. In Proceedings
Third IEEE International High-Assurance Systems
Engineering Symposium (HASE 1998), pages 34-41,
1998.

[13] M. H. Halstead. Elements of Software Science. Else-
vier, New York, 1977.

[14] T. M. Khoshgoftaar, B. B. Bhattacharyya, and G.D.
Richardson. Predicting software errors, during devel-

182

Table 5: Predictive performances based on PMSE at 50%
observation point.

GDSI
Best model PMSE

Case I (cumulative) tlogist-III 6.409
Case I (non-cumulative) tlogist-II 4.014
Case II (cumulative) lxvmax-11 2.160
Case II (non-cumulative) txvmax-IV 4.931
Case III (cumulative):

exp-IV 4.146
Linear regression
Case III (cumulative):

txvmin-V 19.213
Exponential regression
Case III (non-cumulative):

txvmax-II 3.916
Linear regression
SRATS tnorm 3.408

GDS2
Best model PMSE

Case I (cumulative) tlogist-II 0.816
Case I (non-cumulative) tnorm-III 0.799
Case II (cumulative) gamma-II 0.742
Case II (non-cumulative) txvmax-II 0.407
Case III (cumulative):

tlogist-IV 0.616
Linear regression
Case III (cumulative):

tnorm-III 1.644
Exponential regression
Case III (non-cumulative):

tlogist-IV 0.780
Linear regression
SRATS tlogist 1.769

GDS3
Best model PMSE

Case I (cumulative) tlogist-II 2.676
Case I (non-cumulative) txvmax-III 0.481
Case II (cumulative) exp-VII 0.467
Case II (non-cumulative) pareto-VI 1.506
Case III (cumulative):

llogist-II 0.748
Linear regression
Case III (cumulative):

lxvmax-VI 1.842
Exponential regression
Case III (non-cumulative):

lxvmax-VII 1.769
Linear regression
SRATS exp 1.836

GDS4
Best model PMSE

Case I (cumulative) tlogist-III 2.088
Case I (non-cumulative) pareto-II 1.506
Case II (cumulative) exp-I 0.495
Case II (non-cumulative) tnorm-VI 0.425
Case III (cumulative):

txvmax-VI 1.139
Linear regression
Case III (cumulative):

exp-II 0.688
Exponential regression
Case III (non-cumulative):

lxvmin-I 0.703
Linear regression
SRATS tlogist 1.754

Table 6: Predictive performances based on PMSE at 80%
observation point.

GDSl
Best model PMSE

Case I (cumulative) tnorm-II 2.482
Case I (non-cumulative) txvmax-III 1.768
Case II (cumulative) txvmax-VII 2.142
Case II (non-cumulative) txvmax-V 2.903
Case III (cumulative):

tnorm-11 1.033
Linear regression
Case III (cumulative):

tlogist-VII 3.159
Exponential regression
Case III (non-cumulative):

txvmax-VII 3.916
Linear regression
SRATS txvmin 1.218

GDS2
Best model PMSE

Case I (cumulative) pareto-IV 0.488
Case I (non-cumulative) gamma-V 0.277
Case II (cumulative) !norm-VII 0.399
Case II (non-cumulative) pareto-I 0.466
Case III (cumulative):

exp-IV 0.455
Linear regression
Case III (cumulative):

llogist-VI 0.499
Exponential regression
Case III (non-cumulative):

llogist-IV 0.508
Linear regression
SRATS !norm 0.531

GDS3
Best model PMSE

Case I (cumulative) tnorm-II 0.326
Case I (non-cumulative) txvmax-11 0.150
Case II (cumulative) txvmax-IV 0.330
Case II (non-cumulative) lxvmax-II 0.982
Case III (cumulative):

lxvmin-I 0.340
Linear regression
Case III (cumulative):

txvmin-VI 1.484
Exponential regression
Case III (non-cumulative):

pareto-III 0.293
Linear regression
SRATS exp 0.295

GDS4
Best model PMSE

Case I (cumulative) exp-I 0.213
Case I (non-cumulative) lxvmin-V 0.227
Case II (cumulative) tnorm-IV 0.220
Case II (non-cumulative) tnorm-II 0.206
Case III (cumulative):

tlogist-II 0.207
Linear regression
Case III (cumulative):

lxvmax-III 0.273
Exponential regression
Case III (non-cumulative):

tlogist-VII 0.220
Linear regression
SRATS gamma 0.230

183

opment, using nonlinear regression models: a com­
parative study. IEEE Transactions on Reliability,
41(3):390-395, 1992.

[15] T. M. Khoshgoftaar, K. Gao, and R. Szabo. Com­
paring software fault predictions of pure and zero­
inflated Poisson regression models. International
Journal of Systems Science, 36(11):705-715, 2005.

[16] T. M. Khoshgoftaar and J. C. Munson. Predict-
ing software development errors using software com­
plexity metrics. IEEE Journal of Selected Areas in
Communications, 8(2):253-261, 1990.

[17] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhat-
tacharyya, and G. D. Richardson. Predictive mod­
eling techniques of software quality from software
measures. IEEE Transactions on Software Engineer­
ing, 18(11):979-987, 1992.

[18] T. M. Khoshgoftaar, A. Pandya, and D. Lanning. Ap-
plication of neural networks for predicting program
fault. Annals of Software Engineering., 1(1):141-
154, 1995.

[19] D. Kuwa and T. Dohi. Generalized logit regression-
based software reliability modeling with metrics data.
In 2013 IEEE 37th Annual Computer Software and
Applications Conference, pages 246--255, 2013.

[20] D. Kuwa, T. Dohi, and H. Okamura. Generalized cox
proportional hazards regression-based software relia­
bility modeling with metrics data. In 2013 IEEE 19th
Paci.fie Rim International Symposium on Dependable
Computing, pages 328-337, 2013.

[21] D. Z. L. Tian and L. J. Wei. On the Cox model with
time-varying regression coefficient. Journal of the
American Statistical Association, 100(469): 172-183,
2005.

[22] J. F. L. Lawless. Regression methods for Poisson pro-
cess data. Journal of the American Statistical Associ­
ation, 82(399):808-815, 1987.

[23] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. San-
thanam. Empirical evaluation of defect projection
models for widely-deployed production software sys­
tems. In Proc. 12th ACM SIGSOFT Sympo. on
Foundations of Software Eng., pages 263-272. ACM,
2004.

[24] M. Lyu (ed.). Handbook of Software Reliability En-
gineering. McGraw Hill, New York, 1996.

[25] T. J. McCabe. A complexity measure. IEEE Trans-
actions on Software Engineering, SE-2(4):308-320,
1976.

[26] S. Murphy and P. Sen. Time-dependent coefficients
in a Cox type regression model. Stochastic Processes
and Their Applications, 39(1):153-180, 1991.

[27] J. D. Musa. Software Reliability Data, Technical Re-
port, Data and Analysis Center for Software. Rome
Air Development Center, New York, 1979.

[28] J. D. Musa, A. Iannino, and K. Okumoto. Soft-
ware Reliability Measurement, Prediction, Applica­
tion.McGraw-Hill, New York, 1987.

[29] Y. Nishio and T. Dohi. Determination of the optimal
software release time based on proportional hazards
software reliability growth models. Journal of Qual­
ity in Maintenance Engineering, 9(1):48-65, 2003.

[30] M. Ohba. Inflection s-shaped software reliability
growth model. In Stochastic Models in Reliability
Theory, pages 144-162. Springer, 1984.

[31] K. Ohishi, H. Okamura, and T. Dohi. Gompertz soft­
ware reliability model: estimation algorithm and em­
pirical validation. Journal of Systems and Software,
82(3):535-543, 2009.

[32] H. Okamura and T. Dohi. SRATS: software relia­
bility assessment tool on spreadsheet (Experience re­
port). In 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE 2013),
pages 100-107,2013.

[33] H. Okamura, T. Dohi, and S. Osaki. Software reli­
ability growth models with normal failure time dis­
tributions. Reliability Engineering & System Safety,
116:135-141, 2013.

[34] H. Okamura, Y. Etani, and T. Dohi. A multi-factor
software reliability model based on logistic regres­
sion. In20J0 IEEE 21st International Symposium on
Software Reliability Engineering, pages 31-40, 2010.

[35] H. Pham. Software Reliability. Springer-Verlag, Lon­
don, 2000.

[36] K. Pillai and V. S. S. Nait. A model for software de­
velopment effort and cost estimation. IEEE Transac­
tions on Software Engineering, 23(8):485-497, 1997.

[37] L. H. Putnam. A general empitical solution to the
macro software sizing and estimating problem. IEEE
Transactions on Software Engineering, SE-4(4):345-
367, 1978.

[38] K. Rinsaka, K. Shibata, and T. Dohi. Propor-
tional intensity-based software reliability modeling
with time-dependent metrics. In 30th Annual Inter­
national Computer Software and Applications Con­
ference (COMPSAC'06), volume I, pages 369-376,
2006.

[39] N. F. Schneidewind. Measuring and evaluating main-
tenance process using reliability, risk, and test met­
rics. IEEE Transactions on Software Engineering,
25(6):768-781, 1999.

[40] N. F. Schnieidewind. Software metrics model for in-
tegrating quality control and prediction. In Proc. 8th
Int'l Sympo. on Software Reliab. Eng., pages 402-
415, 1997.

[41] K. Shibata, K. Rinsaka, and T. Dohi. Metrics-based
software reliability models using non-homogeneous
poisson processes. In 2006 17th International Sym­
posium on Software Reliability Engineering, pages
52-61, 2006.

[42] M. Takahashi and Y. Kamayachi. An empirical study
of a model for program error prediction. In Proc.
8th Int'l Conf on Software Eng., pages 330--336.
ACM/IEEE CS Press, 1985.

[43] S. Yamada, M. Ohba, and S. Osaki. S-shaped relia-
bility growth modeling for software error detection.
IEEE Transactions on Reliability, R-32(5):475-478,
1983.

[44] M. Zhao and M. Xie. On maximum likelihood esti-
mation for a general non-homogeneous Poisson pro­
cess. Scandinavian Journal of Statistics, 23(4):597-
607, 1996.

