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Abstract 

The black-box approach based on stochastic software 

reliability models is a simple methodology with only soft­

ware fault data in order to describe the temporal behav­

ior of fault-detection processes, but fails to incorporate 

some significant development metrics data observed in 

the development process. In this paper we develop pro­

portional intensity-based software reliability models with 

time-dependent metrics, and propose a statistical frame­

work to assess the software reliability with the time­

dependent covariate as well as the software fault data. The 

resulting models are similar to the usual proportional haz­

ard model, but possess somewhat different covariate struc­

ture from the existing one. We compare these metrics­

based software reliability models with eleven well-known 

non-homogeneous Poisson process models, which are the 

special cases of our models, and evaluate quantitatively the 

goodness-of-fit and prediction. As an important result, the 

accuracy on reliability assessment strongly depends on the 

kind of software metrics used for analysis and can be im­

proved by incorporating the time-dependent metrics data in 

modeling. 

1. INTRODUCTION 

During the last three decades, the stochastic models, 

called software reliability models (SRMs) that analyze and 

explain the software fault-detection phenomena, have been 

extensively developed in the literature [24], [28], [35]. In 

fact, till now, over 200 SRMs have been proposed from 

various mathematical standpoints. The classical and the 

most important SRMs may be the non-homogeneous Pois­

son process (NHPP) models that have gained popularity 

for describing the stochastic behavior of the number of 

software faults detected in the testing phase. The rep­

resentative NHPP-based SRMs are characterized by the 

mean value functions, which are proportional to the cu­

mulative distribution functions (CDF) of software fault­

detection time. Since the seminal contribution by Goel 

and Okumoto [11], many authors proposed NHPP-based 

SRMs under different model assumptions. The represen­

tative NHPP-based SRMs assumed the exponential CDF 

[11], the gamma CDF [43,44], the truncated-logistic CDF 

[30], the log-logistic CDF [12], the Pareto CDF [1], the 

truncated-normal CDF [33], the log-normal CDF [2, 33], 

the extreme-value CDFs [31] including the Weibull CDF 

[10]. These NHPP SRMs are based on different debug­

ging scenarios from each other, and can catch qualitatively 

typical (but not general) reliability growth phenomena ob­

served in the testing phases of software products. In other 

words, the black-box approach based on the NHPP-based 

SRMs is a simple methodology with only software fault 

data in order to describe the temporal behavior of fault­

detection processes, but fails to incorporate some signif­

icant development metrics data observed in the develop­

ment process. 

On the other hand, much effort has been spent to clar­

ify the relationship between the software quality and some 

kinds of software metrics. McCabe [25] proposes several 

software engineering metrics which are units of measure­

ment to characterize software products, processes and hu­

man resources in the development. Halstead [13] points out 

the significance of software science and derives determin­

istic equations to estimate the number of residual faults in 

software with programming effort. Putnam [37] and Taka­

hashi and Kamayachi [ 42] show empirical relationships be­

tween the software fault characteristics and the so-called 

environmental factors to characterize the software prod­

ucts, such as programmer skill, programming language, 

coding techniques, reusability of existing code, etc. Pil­

lai and Nair [36] discuss an estimation problem of soft­

ware cost and development effort with several metrics data. 
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However, the approaches mentioned above are essentially 

the deterministic ones and cannot represent uncertainty of 

software fault-detection processes in testing. In general, 

the software metrics can be classified into four categories: 

product metrics, development metrics, deployment & us­

age metrics and software-hardware configurations metrics, 

so that the utilization of these information as well as the 

fault-detection data will lead to the accurate reliability as­

sessment of software products in practice. 

The stochastic approach to incorporate the software de­

velopment metrics and/or environmental factors is taken 

by Ascher [4], [5], Bendell [6], Evanco and Lacovara [9], 

Evanco [8] and Nishio and Dohi (29] . They utilize the 

proportional hazard model (PHM) or equivalently Cox 

regression model [7], and formulate the software fault­

detection time distribution by regarding the time-series 

metrics data as the covariate [21], [26]. Pham [35] de­

velops an enhanced proportional hazard SRM based on a 

continuous-time Markov chain and considers a dynamic 

version of PHM. However, if the cumulative effect of soft­

ware development/test effort reported in (27] is considered 

for analysis, the above modeling approach based on the 

PHMs loses their validation because the covariate to rep­

resent the development effort usually consists of 0-1 bi­

nary values. Shibata, Rinsaka and Dohi [41] introduced 

the discrete proportional hazard model on a cumulative 

Bernoulli trial process, and to represent a generalized fault­

detection processes having time-dependent covariate struc­

ture. Okamura et al. [34] proposed a discret-time multi­

factor SRM based on logistic regression and its effective 

statistical parameter estimation method. Kuwa and Dohi 

[ 19, 20] extended the existing logit regression-based SRM 

and Cox proportional hazards regression-based SRM to 

help them improve goodness-of-fit and predictive perfor­

mances. Khoshgoftaar and Munson (16] and Khoshgoftaar 

et al. [14], [17], [18] develop the linear and non-linear re­

gression models to quantify the software quality with some 

metrics data. Li et al. [23] discuss a metrics-based mod­

eling method to predict the field defect-occurrence rate 

by using the classical moving average and the exponen­

tial smoothing. Khoshgoftaar et al. (15] apply the Pois­

son regression model and the zero-inflated Poisson regres­

sion model to predict the rank-order of software modules. 

Schnieidewind (39], [ 40] also use the regression models to 

evaluate the software maintenance process with measure­

ment. Amasaki et al. [3] classify the trend of fault data 

with the rank correlation coefficient and apply the logistic 

regression model to assess the software quality, which is 

measured by the number of detected faults after shipment. 

In this way, various regression approaches have been used 

to develop the metrics-based SRMs. 

Rinsaka et al. [38] developed a proportional intensity­

based SRM with both software fault data and testing met­

rics data. The proportional intensity model (PIM) is pro­

posed by Lawless [22] as a natural extension of the usual 

PHM, where the proportional hazard function in the Cox 

regression is used for the intensity function of the NHPP. 

The most different point from the existing PHM is that 

PIM is a dynamic SRM to describe the software relia­

bility growth phenomenon. That is, they introduce the 

Cox regression to incorporate the time-dependent devel­

opment/test metrics instead of the linear and non-linear re­

gression with white noise or the logistic regression, and 

still utilize the stochastic counting process to describe the 

cumulative number of faults detected in the software test­

ing (note that the regression models in [3, 14-18,39,40] are 

static models in time). In that sense, PIM proposed here 

would possess both applicability to the actual software re­

liability assessment from the similarity to the NHPP-based 

SRMs and flexibility to incorporate the time-dependent 

metrics data observed in the testing phase. 

In this paper, we develop 11 proportional intensity 

NHPP-based SRMs with time-dependent software met­

rics, which could incorporate multiple time-dependent 

cumulative/non-cumulative software development metrics 

data. The baseline intensity functions of our SRMs are 

consistent with the 11 existing NHPP-based SRMs [1,2, 11, 

12,30,31, 33,43,44]. The rest part of this paper proceeds 

as follows. In Section 2, we describe the basic NHPP­

based SRMs and refer to the statistical estimation methods 

of model parameters. In Section 3 we introduce PIM and 

give an additive cumulative intensity structure to model 

the cumulative effect of software development/test effect. 

Section 4 is devoted to present numerical examples with 

real software fault data and the time-dependent test met­

rics, where test execution time (CPU hr), failure identifica­

tion work (person hr), computer time-failure identification 

(CPU hr) are used as test metrics to compare our propor­

tional intensity-based SRMs with the existing NHPP-based 

SRMs. We estimate the model parameters by utilizing the 

maximum likelihood estimation and evaluate the perfor­

mance metrics in terms of goodness-of-fit and prediction. 

As an important result, it is shown empirically that the ac­

curacy on reHability assessment strongly depends on the 

kind of software metrics used for analysis and can be im­

proved by incorporating the time-dependent metrics data in 

modeling. In fact, it is concluded that our proportional in­

tensity NHPP-based SRMs outperform the existing NHPP­

based SRMs in terms of information criteria and prediction 

ability. 

2. NHPP-Based Software Reliability Model 
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Let {N(t) , t 2 0} denote the number of software faults 

detected by time t in the software testing and be a stochas­

tic counting process satisfying: 

(i) N(O) = 0 

(ii) { N ( t), t 2 0} has independent increment 

(iii) Pr{N(t + Llt) - N(t) 2 2} = o(Llt) 

(iv) Pr{N(t + Llt) - N(t) = 1} = >.(t)Llt + o(Llt), 

where >.(t) is an absolutely continuous (deterministic) 

function of only time t , and o(Llt) is the higher order term 

of infinitesimal time Llt, so that 

Jim o(Llt) = 0. 
Ll.t ---. o Llt 

(1) 

Then the counting process is said the non-homogeneous 

Poisson process (NHPP) with intensity function >.(t). 

Since this is a typical Markov process with time-dependent 

transition rate, it is easily derived that 

Pr{N(t) = n} = {H~W exp{- H(t)}, (2) 

where 

H(t) = E[N(t)] = l >-(x)dx, H(0) = 0 (3) 

is said the mean value function and means the expected 

cumulative number of faults detected by time t. 
It is assumed that each software fault is detected at 

independent and identically distributed (i.i.d.) random 

time with a non-degenerate cumulative distribution func­

tion (CDF), F(t; a), having the parameter a, and that the 

residual number of software faults at time t = 0 is a Pois­

son distributed random variable with parameter w ( > 0). 
Then the resulting software fault detection process obeys 

the NHPP with mean value function H(t; 0) = wF(t; a) 
with 0 = (w, a). In this way, the commonly used as­

sumption in software reliability engineering is that the 

initial number of residual software faults in a software 

system is expected to be finite, i.e., limt➔ oo H(t; 0) = 
w ( > 0). In the classical software reliability modeling, the 

main research issue was to determine the intensity function 

>.(t; 0), or equivalently the mean value function H(t; 0) 
so as to fit the software fault data. and Dohi [32] imple­

mented the existing NHPP-based SRMs with 11 software 

fault-detection time CDFs in the software reliability assess­

ment tool on the spreadsheet (SRATS), which includes ex­

ponential (exp), gamma, Pareto, log-normal (!norm), log­

logistic (llogist), log-extreme-value minimum (lxvmin), 

log-extreme-value maximum (lxvmax), truncated logis­

tic (tlogist), truncated normal (tnorm), truncated extreme­

value minimum (txvmin), truncated extreme-value maxi­

mum (txvmax) distributions. In Table 1, we summarize 

Table I : The existing NHPP-based SRMs. 

Models 

Exponential dist. 
(exp) [II] 

Gamma dist. 
(gamma) [43], [44] 

Pareto dist. 
(pareto) [I] 

Truncated nonnal dist. 
(tnorm) [33] 

Log-aonnal dist. 
(lnorm) [2] , [33] 

Truncated logistic dist. 
(tlogist) [30] 

Log-logistic dist. 
(llogist) [12] 

Truncated extreme-value max dist. 
(txvmax) [31] 

Log-extreme-value max dist 
(Ixvmax) [31] 

Truncated extreme-value min dist 
(txvmin) [31] 

Log-extreme-value min dist. 
(lxvmin) [10] 

,\(t;O)&F(t;a) 
-\(t;O) -wbe - 0 ' 

F(t;a) = 1 - e- " 

,\(t• 0) = wboi *,; -
' c+t 

F(t; a) = 1- (tl;;)' 

,\(t;0)= (w:~) 
bt e +l 

F(t;a)= -d!'tf,,. 

,\(t;O) wa-(!): (!} o ' 

F(t;a) = e- <¾)~" 

(w>O, b>O, c>O) 

these 11 NHPP-based SRMs with their baseline intensity 

functions. 

Let Yk (k = 1, 2, • • •, n) be the total number of soft­

ware faults detected by each testing time tk measured by 

calendar time. For the parameter set 0 = ( a, b), the mean 

value function of the NHPP is represented by H(t; 0) . The 

commonly used technique to estimate the model parameter 

0 is the maximum likelihood method. For convenience, let 

us define (to, y0 ) = (0, 0) without any loss of generality. 

Since the likelihood function is given by 

L(0)= Pr{N(t1) = Y1, · ~- ,N(tn) = Yn} 

= exp[-H(tn; 0)] IT 
k=l 

{H(tk ; 0) - H(tk-I i 0)}Yk - Yk - l 

X (yk-Yk-1)! 
(4) 

taking the logarithm of both sides ofEq.(4) yields the log-

arithmic likelibood function: 

LLF(0) = L(Yk - Yk-1) ln[H(tk; 0) 
k=l 

- H,(tk-Ii 0)] - H(tn; 0) 
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- Lin[(Yk -Yk-1)!] . (5) 

k=l 

Hence the ML estimate 0 is given by the solution of 

argmax9lnLLF(8). 

3. Proportional Intensity Model 

3.1. Model Description 

Here we develop a novel SRM to incorporate the 

multiple testing-effort parameters, which is consistent to 

the maximum likelihood estimation. Suppose that l (:::> 
1) kinds of software metrics data Xk = (xki, · · ·, 
Xkt) (k = l, 2, • • •) are available at each testing time 

tk (= 0, 1, 2, • • •). It is also assumed that each metrics 

Xk depends on the cumulative testing time tk and can be 

regarded as a function of time, say, Xk(tk)- In statistics, 

this type of parameter is called the time-dependent covari­

ate [21], [26] and has been studied extensively in the con­

text of Cox PHM. For the NHPP in Eq.(2), we assume the 

following intensity function: 

(6) 

where /3 = (/31, • • •, /31). In Eq.(6), the function 

Ao(tk; 0) (> 0) is called the baseline intensity function 

and is a function of only time. On the other hand, the func­

tion g(xk; /3) (> 0) is called the covariate function and is 

a function of the software time-series metrics xk( tk) and 

the coefficient parameter /3 = (/31 , • • • , /3i)T. Similar to 

the usual Cox's PHM, an appropriate choice of the covari­

ate function would be given by the following exponential 

form: 

(7) 

Actually this form is well known to be convenient for anal­

ysis and to be rather flexible to express the covariate srruc­

ture in many application [7], [21], [26]. Lawless [22] also 

assumes the above exponential covariate structure and an­

alyzes the real statistical data in medical applications. 

However, it is worth noting that the time-independent 

covariate considered by Lawless [22] is also the 0-1 bi­

nary value and does not deal with the cumulative value like 

test execution time (CPU hr), etc. In other words, a new 

modeling framework is needed for analysis of time-series 

metrics data. The simplest but reasonable model is to take 

account of an effect of the cumulative number of faults in 

an expression of the mean value function. Suppose: 

1,, 
Hp(t1;8,/3) = 

0 
Ao(u;0)exp(x1/3)du, (8) 

Hp(t2; 0, /3) = Hp(ti; 0, /3) 

Jt2 

+ Ao(u;8)exp(x2/3)du, ,, (9) 

Hp(tk;0,/3) = texp(x;,13) /'~, Ao(u;0)du 

k 

Lexp(x;,13) 
i=l 

x [H0 (t; ;0)- Ho{t;-1;0)), 
(10) 

where H0 (t;; 0) = J;' Ao(u; 0)du. Note that when /3i = 
O for all j ( = 1, 2, • • •, l), the above PIM can be reduced 

to the existing NHPP-based SRM. 

3.2. Maximum likelihood estimation 

Both the model parameters 0 and /3 can be estimated 

by a method of maximum likelihood. Suppose that n set 

of fault-detection data (tk, Yk) (k = 0, 1, 2, · · ·, n) and 

l x n software metrics data Xk = (xk1,···,Xkt) can 

be observed for testing time interval (0, tk], where, Yk 

is the cumulative number of detected software faults and 

(xki , · · · , Xkt) are ! kinds of software metrics data con­

sumed until time tk. Under the above assumptions and the 

property of independent increment of the NHPP, the likeli­

hood function for PIM with mean value function Hp(t) is 

given by 

L(0,/3) = Pr{N(t1)=y1,··· ,N(tn)=yn} 
= exp [- Hp(tn; 0, /3)] 

X TI (Yk - ~k-1)! 
k=l 

X {Hp(tk; 0 , /3)-Hp(tk- l ; 0,/3)}Yk--Ylo-l 
(11) 

where, (to , Yo) = (0, 0) and xo1 = 0 (j = 1, 2, · · · , l) . 

Taking the logarithm of both sides ofEq.(11), we have 

LLF(0, /3) 
n 

L(Yk - Yk-i)ln[Hp(tk;0,/3) 
k= l 
- Hp(lk-1; 0, /3)] - Hp(ln; 0, /3) 

n 

-L ln[(Yk - Yk-1)!]. (12) 

k=l 

Since the maximum likelihood estimates ( 0, /:3) can be ob­

tained via the direct maximization of the logarithmic like­

lihood LLF( 0, /3) without applying the least squared sum 

method, we can enjoy consistently the rich property of the 

maximum likelihood estimation in the PIM framework. 

4. Numerical Examples 
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In this section, we focus on four real data sets col­

lected in the actual software development projects for 

the real time command and control systems [27] in Ta­

ble 2. In these four data sets, we perform goodness-of­

fit tests of PIM and evaluate the preilictive performances 

with cumulative/non-cumulative time-dependent metrics 

data as the covariates, say, Xk = (xk1, · · · , X ki)!xk = 
( Xkl - X(k-1 ) 1, · · ·, Xkl - X (k- l) l). / is the number of 
time-dependent metrics data in each data set and k = 
0, 1, 2, · · · ,n . 

4.1. Goodness-of-fit Performances 

For PIM, we assume 11 kinds of baseline intensity func­

tions in Table 1. To investigate the effect of each time­

dependent metric data on the stochastic behavior of the cu­

mulative number of faults detected in the testing phase, we 

calculate the maximum likelihood estimates ( iJ, /3) of co­

variate equations g(xk; {3) = exp(xk/3) for every metrics 

data combinations. Since, each data set presented in Table 

2 contains three kinds of time-dependent metric data, so we 

need to consider a total of 7 combinations as shown in Ta­

ble 3. By deriving the corresponding log likelihood (LLF), 

we investigate the goodness-of-fit performance with two 

measures: Akaike information criterion (AIC) and mean 

squared error (MSE), where. 

AIC = -2LLF(iJ, /3) + 21r, (13) 

and 

MSE =_!_ 
n 

L(Yk - Hp(tk; 6 , /3)) 2 • (14) 

k=l 

1r is the number of free parameters. The smaller AIC/MSE 

is the better SRM in terms of the goodness-of-fit to the 

underlying fault count data. 

Figure 1 illustrates the estimated mean value functions 

and the cumulative number of software faults detected in 

GDSl. The best SRMs with minimum AIC were selected 

from the our 11 proportional intensity NHPP-based SRMs 

with cumulative metric data (red curve), 11 proportional 

intensity NHPP-based SRMs with non-cumulative metric 

data (blue curve) and the existing NHPP-based SRMs in 

SRATS ( orange curve). At first glance, the three curves 

exhibit almost similar behavior, but a closer look reveals 

that our PIMs can represent more complex behaviors than 

existing NHPP-based SRM. Then, in Figure 2, we also 

plot the behavior of estimated number of detected fault 

counts in each testing time interval for the best SRMs in 

GDSl. The orange bar-chart represents the actual soft­

ware detected faults data in each time interval. This figure 

PropotlonallntensltySRM 
(tloglst) 

(cumulallnmetrlcsdata) 

Test time 
Figure 1: Behavior of estimated cumulative number of 
software faults in GDS 1. 

20 

15 

10 

Propotlonal lntamity SRM 
--{nor,.c:umulatlvemetrtcsdata) 

Propotlonal lntanslty SRM 
fcumulati~m1b1csdata) 

NHPP-bu1d SRM (doglst) 
(no metrics data) 

5 10 15 20 
Figure 2: Behavior of estimated number of detected fault 
counts during time interval in GDS 1. 

clearly shows that our two proportional intensity NHPP­

based SRMs have the more better goodness-of-fit perfor­

mances then existing NHPP-based SRM. 

We present the best AIC results for four time-dependent 

metrics data in Table 4 for more accurate comparisons. 

By comparing our two types of proportional intensity 

NHPP-based SRMs with the existing NHPP-based SRMs 

in SRATS [32], the bold font is utilized to marks the 

best SRM with minimum AIC in each data set. It can 

be seen that in the all data sets, our proportional inten­

sity NHPP-based SRMs could provide the better goodness­

of-fit performances than the existing NHPP-based SRMs 

in SRATS. Especially, the proportional intensity SRMs 

with non-cumulative metrics data could give the smaller 

AIC (GDS 1, GDS2, and GDS3) and smaller MSE (GDS2, 

GDS3, and GDS4) in 3 cases. We can also notice that our 

SRMs with combination II, III and IV covariate equations 

could guarantee the better goodness-of-fit results in most 

cases. Therefore, our conclusion is more inclined to think 

that are our proportional intensity NHPP-based SRMs are 

attractive in software reliability modeling and should be 

competitors with the high potential ability for the exist­

ing NHPP-based SRMs. The execution time and failure 

identification work can effectively help us to improve the 

goodness-of-fit performances of our SRMs. 
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Table 2: Data sets. 

Data No. faults Testing days Metrics data 
GDSl 136 21 Execution time (CPU hr), failure identification work (person hr), computer time-failure identification (CPU hr) 
GDS2 54 17 Execution time (CPU hr), failure identification work (person hr), computer time-failure identification (CPU hr) 
GDS3 38 14 Execution time (CPU hr), failure identification work (person hr), computer time-failure identification (CPU hr) 
GDS4 53 16 Execution time (CPU hr), failure identification work (person hr), computer time-failure identification (CPU hr) 

Table 3: Combinations of covariate equation g(xk1; /3). 

g(xk1; f3)(l = 1, 2, 3) 
Combination I exp(/3o + Xk1/11) 
Combination II exp(/3o + Xk2/12) 

Combination ill exp(/3o + Xk3/3a) 

Combination IV exp(/3o + Xk1/11 + Xk2/12) 

Combination V exp(/3o + Xk1/11 + Xk3/13) 

Combination VI exp(/3o + Xk2/12 + Xk3/33) 

Combination VII exp(/3o + Xk1/11 + Xk2/12 + Xk3/33) 

Xki : Execution time. 
Xk2 : Failure identification work. 
xk3 : Computer time-failure identification. 

4.2. Predictive Performances 

Next, we investigate the predictive ability of propor­

tional intensity NHPP-based SRMs. On the observation 

point n' (1 :S n' < n) when 50% or 80% of all data are 

available, we predict the future behavior of the cumulative 

number of faults. To assess the predictive ability, we apply 

the prediction squares error (PMSE) as predictive perfor­

mance measure, where 

PMSE= - 1-, 
n-n 

L [Yk - Hp(tk; 0,/3)]2 .(15) 
k=fi+l 

tis obvious that the smaller PMSE indicates the better pre­

dictive performance. 

In order to predict the future behavior of software fault­

detection process, it should be noted that estimates of de­

velopment/test metrics are required, since the mean value 

functions of PIM depend on the covariates. In practice, 

three cases are possible to consider. 

Case I: All the test/development metrics data are com­

pletely known and fixed in advance, so that the soft­

ware testing expenditures are given before testing. 

Case II: The test/development metrics data do not change 

in the future. 

Case ill: The test/development metrics data experienced 

in future are random variables and can be predicted. 

Especially, in the case III, we are requested to introduce 

additional probability models on test/development metrics 

data. In this paper, we made the two assumptions and em­

ploy the linear and exponential regression methods to pre­

dict the future test/development metrics data. Becasue the 

exponential regression is not suitable for making predic­

tion on non-cumulative data (the variable may be 0, caus­

ing the correlation coefficient to not be calculated), so, we 

totally consider 7 cases of estimated development/test met­

rics data in future phase under the above three assumptions, 

to help us investigate the predictive performances of our 

proportional intensity NHPP-based SRMs with observed 

cumulative metrics data and non-cumulative metrics data. 

Tables 5 and 6 present the comparison results on the 

PMSE in four data sets at 50 % observation point and 80 

% observation point, respectively, where we select the best 

SRM with the smallest PMSE from the our proportional 

intensity NHPP-based SRMs and the existing NHPP-based 

SRMs. Bold font is utilized to marks the best SRMs with 

minimum PMSE in each data set. From these two tables, it 

can seen that our proportional intensity NHPP-based SRMs 

can still outperform the existing NHPP-based SRMs in all 

the data sets. We can also find that utilizing the estimated 

metrics data under Case II (the test/development metrics 

data do not change in the future) assumption in the fu­

ture phase tends to give the more better predictive perfor­

mances than the other two assumptions in more than half 

data sets (GDSl 50%, GDS2 50%, GDS3 50%, GDS4 50% 

and GDS4 80%). 5 out of 8 (GDS2 50%, GDS4 50%, 

GDS2 80%, GDS3 80% and GDS4 80%) minimum PM­

SEs are given by our proportional intensity NHPP-based 

SRMs with non-cumulative metrics data. The SRMs with 

Combination II covariate function could provide the best 

PMSEs in two (GDSl 50% and GDS2 50%) and three 

(GDSl 80%, GDS3 80% and GDS4 80%) data sets, re­

spectively. The remaining three best PMSEs are given by 

the SRMs with combinations V, VI and VII covariate func­

tions. Combining Table 4, we can find that failure iden­

tification work is the most important development metric 

data, which can effectively improve the software faults pre­

diction accuracy of our SRM in the future phase. 

5. Conclusions 

In this paper, we have developed the proportional in­

tensity NHPP-based SRMs with 11 well-known underline 
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Table 4: Goodness-of-fit performances based on AIC. 

(i) Best proportional intensity model ( cumulative metrics data) 

Model AIC MSE f3 

GDSl tlogist-VI 110.114 0.470 {30 = -2.5903, /32 = -0.0805, {33 = 0.0277 
GDS2 tlogist-III 69.785 0.282 f3o = 1.7326, /33 = 0.1406 
GDS3 txvmin-II 57.281 0.289 {30 = -3.7048, /32 = 1.2197 
GDS4 exp-I 81.059 0.612 /30 = 4.6132, /31 = -0.1659 

(ii) Best proportional intensity model (non-cumulative metrics data) 
GDSl txvmin-II 109.015 0.721 (30 = 2.9503, /32 = 0.0206 
GDS2 llogist-II 67.352 0.261 f3o = -0.4155, /32 = 0.0447 
GDS3 gamma-II 50.696 0.221 {30 = 0.6061, /32 = 1.1493 
GDS4 exp-VI 81.131 0.450 {30 = 3.8840, /32 = -0.2963, {33 = 0.8060 

(iii) Best SRATS (no metrics data) 
GDSl tlogist 116.891 0.820 
GDS2 llogist 73.053 0.501 
GDS3 txvmin 63.208 0.553 
GDS4 txvmin 79.761 0.530 

intensity functions, which could incorporate multiple time­

dependent cumulative/non-cumulative software develop­

ment/test metrics data. In our numerical experiments, by 

regarding three types of time-dependent metrics data as 

the covariates in totally four data sets, we compared our 

proportional intensity NHPP-based SRMs with the exist­

ing SRMs in the past literature in terms of goodness-of­

fit and predictive performances. We have confirmed that 

our proportional intensity NHPP-based SRMs could show 

the better performances in all the cases than the existing 

11 NHPP-based SRMs in SRATS. We also confirmed that 

failure identification work is the most important develop­

ment/test metric that can help us improve the accuracy of 

our SRMs, both in terms of goodness-of-fit and software 

failure prediction in future phase. 
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