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TWO INTEGRAL REPRESENTATIONS FOR APERY 
CONSTANT AND ITS APPLICATIONS TO MULTIPLE ZETA 

VALUES 

MASATO KOBAYASHI 

ABSTRACT. We generalize the proof of Basel problem by Boo Rim Choe (1987) 
to obtain two integral representations for Apery constant. As applications, we 
also show integral representations for multiple values ((3, 2, ... , 2) and t(3, 2, ... , 2). 
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1. INTRODUCTION 

1.1. Basel Problem: arcsin and ((2). Let ( denote the Riemann zeta function. 
Boo Rim Choe (1987) [2] gave evaluation of the integral 

~ = arcsm x dx = -((2) 2 11 . 3 

8 o Jl - x 2 4 

which provides another proof of Basel problem ((2) = ~2 (dating back to Euler 
around 1735). Actually, there is a counterpart of this: 

(2) ~ [1 arcsin2 x dx = !((2) 
7r lo 2! Jl - x2 4 

as the even part of ((2); we will explain why this equation involes 2/1r and 
arcsin2 x/2! later on. The aim of this article is to show analogous integral evalua
tion 

(3) [1 arcsin x arccos x dx = ~((3), 
lo x 8 

(4) ~ [1 arcsin2 x arccos x dx = !((3) 
1r lo 2! x 8 

and discuss its applications to central binomial series, multiple values shown as 
Theorems 2.8, 2.13. We also make two Conjectures 2.19 and 3.3. 

1.2. Central binomial sums. One of important topics in number theory is cen
tral binomial sums. Informally speaking, it is an infinite series involving (2:). 

Lehmer [10] discussed two types of such sums 

+00 (2 )-1 
II. ~an : 

Some examples are 

He also presented connection between such series and Maclaurin series of arcsin x 
and arcsin2 x. Other examples are 

00 1 1 
~ n 2 (2:) = 3 ((2), 

as they arise in the work of Apery [1] and van der Poorten [14] to prove irrationality 
of ((3). 
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Remark 1. 1. For a nonnegative integer n, let 

(2n - 1)!! = (2n - 1)(2n - 3) · · · 3 · 1, 

(2n)!! = 2n(2n - 2) · · · 4 · 2. 

We understand (-1)!! = O!! = 1. Notice that the following relation holds. 

( 2:) (2n - 1)!! 
22n (2n)!! · 

2. MAIN RESULTS 

2.1. Arcsin and ((3). Toward the proofs of (3), (4), we first setup some notation 
for convenience. 

Definition 2.1. Let R[[x]] denote the set of real power series. For f(x) E R[[x]], 
define W : R[[x]] ---+ R[[x]] by 

11 du 
Wf(x) = f(xu) vT="u2. 

o 1- u2 

In particular, 

Wf(x)lx=l = 11 
f(u) Aa· 

Fact 2.2. Recall from calculus that if f(x) = L~=O anxn (an ER) is a convergent 

power series with the radius of convergence R, then so is 1x f(u)du and moreover 

it is given by termwise integration 

1x oo 

f ( u) du = L ~ xn+ 1 . 
o n+ 1 n=O 

In the sequel, we will use this result without mentioning explicitly. 

Lemma 2.3. Let f (x) E R[[x]]. 
[ 1] Moreover, suppose it is odd in the form 

Then 

oo (2k) 
f (x) = ~ _k_ a x2k+1 

D 22k 2k+l ' 
k=O 

00 

Wf (x) = ~ ak2k+1 x2k+l_ 
L.....t2 +1 
k=O 

[ 2] Moreover, suppose it is even in the form 

oo 22k 

f (x) = L (2k) a2k x2k, a2k ER. 
k=O k 
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Then 
00 

( ) 7f ~ 2k W f X = 2 ~ a2k X . 
k=O 

Thus, by the opertator W we can "kill" ~2i) or (2:k) from coefficients and instead 

2k~l or i shows up, respectively. 

Proof. To show (1), recall that 

[1 u2k+l (2k)!! 22k 1 

lo Jl - u2 du= (2k + 1)!! = (2:) 2k + 1 · 

Then 

1
1 oo (2k) 2k+l 

Wf (x) = ~ _k_a x2k+1 u du 
~ 22k 2k+l . ~-2 

0 k=O V .1 - u-

oo (2k) 11 2k+l oo 
= ~ _k_a x2k+1 u du = ~ a2k+1 x2k+1. 
~ 22k 2k+1 ~-2 ~2k+l 
k=O O V .1 - u- k=O 

We can verify (2) likewise with 

u du= ~_k_ 1
1 2k (2k) 

0 Jl - u2 2 22k . 

□ 

Lemma 2.4. Let f(x) E R[[x]]. Suppose moreover f(0) = 0. Then 

(5) W (1x f~) dy) = 11 f(:u) arccosudu. 

In particular, for x = l, we have 

w ( r f(y) dy) I = r1 f(u) arccosudu. 
lo Y x=l lo u 

Proof. If x = 0, then both sides in (5) are 0. Suppose x =/- 0. Exchanging order of 
the double integral (Fubini's Theorem), we have 

(1x f(y) ) 111xu f(y) du W -dy = -dy---
o Y o o Y Jl - u2 

= r11 _f(_y)_l_dudy 
lo y/x Y Jl - u2 

= t f(y) arccos '#._ dy 
lo Y x 

= [1 f(xu) arccosudu. 
lo u 
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□ 

2.2. Multiple zeta, t-values. As a natural generalization of Riemann zeta func
tion, let us introduce the following sums. 

Definition 2.5. For positive integers i 1 , ... , ik such that i 1 2: 2, define the multiple 
zeta value and multiple t-value by 

mj even 

in contrast to t-values. 

Fact 2.6. Let {m}n denote the sequence (m,m, ... ,m). For a multi-index 
"--v---' 

n 

i = (a1 + 1, {l}b1- 1, a2 + 1, {l}br1, ... , ak + l, {l}bk-1), 

with integers k, aj, bi 2: 1, define its dual 

it = (bk+ 1, {1 }ak-1, bk-1 + 1, {1 }ak-1-l, ... 'b1 + 1, {1 }a1-l ). 

Duality formula for multiple zeta values claims that ((i) = ((it) for all indices 
such that the first argument is at least 2. Historically, Drinfeld and Kontsevich 
found iterated integral expressions for multiple zeta values and proved the duality in 
1990s. Afterward, Kaneko, Hoffman, Zagier and many other researchers developed 
the theory. 

Example 2.7. 
[ 1] the celebrated Euler-Goldbach theorem claims that 

((2, 1) = ((3). 

We can derive this relation from iterated integral expressions 

and 

((2, 1) = r1 dx3 {X3 ~ r2 ~ 
lo X3 lo 1 - x2 lo 1 - X1 

((3) = r1 dy3 fY3 dy2 fY2 ~ 
1 o Y3 1 o Y2 1 o 1 - Y1 

with changing variables by Yi = l - X4-j. 
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[ 2] Observe that 

t(2) = 1,(2), t(3) = f ((3) 

and Hoffman [7, p.4] shows that 

1 
t(2, 1) = - 2t(3) + t(2) log 2 (# t(3)). 

2.3. ((2, ... , 2) and t(2, ... , 2). 

Theorem 2.8. For n 2: 1, 

(( {2}n) = 1 (~)2n 
22n (2n+l)! 2 ' 

In fact, we can prove these by equating coefficients of x 2n in 

00 1 (7rx)2n sin 1rx 
00 

( x2 ) 
~ (2n + 1)! 2 = 1:/ = !] 1 - (2n)2 

and 
00 1 (7fx)2n 1rx 00 

( x2 ) ~ (2n)! 2 = cos 2 = !1 1 - (2n - 1)2 · 

However, we give a different proof here because it suggests the application to 
evaluation of ((3, 2, ... , 2) and t(3, 2, ... , 2) in the next subsection. For this pur
pose, we need a lemma. 

Lemma 2.9. For n 2: 1, lxl ~ 1, we have 

arcsin2n x ~ 22k 1 2k 

(2n)! ~ (2k) (2k)2(2mi)2 • • • (2mn_i)2x ' 
k>m1> .. ·>mn-1>D k 

arcsin2n-l x 

(2n - 1)! 

Proof. This is a rephrasing of J.M.Borwein-Chamberland [4, (1.1)-(1.4)]. D 

Proof of Theorem 2.8. Lemma 2.9 asserts that 

arcsin2n x 

(2n)! 

so that 

( ·2n) 1 W arcsm x = ~ x 2k 

(2n)! 2 L (2k)2(2m1) 2 · · · (2mn_1) 2 · 
k>m1>· .. >mn-1>D 
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Let x = l. The left hand side becomes 

1
1 arcsin2n u du = [ arcsin2n+l u] 1 = 1 (~) 2n+1 

0 (2n)! ✓1 - u2 (2n + 1)! 0 (2n + 1)! 2 

while the right hand side turns to be ~ ((~;tl. Hence we proved 

(( {2}n) = 1 (~)2n 
22n (2n+ 1)! 2 · 

It is quite similar to show t( {2}n) = (2~)! (~) 2n using ar%i~~nl)!1 x and the operator 
W. 

2.4. ((3, 2, ... , 2) and t(3, 2, ... , 2). We just found ((2, ... , 2) and t(2, ... , 2) above. 
A natural subsequence is to evaluate ((3, 2, ... , 2) and t(3, 2, ... , 2) via integrals 
on powers of arcsin again. 

Definition 2.10. For n 2: 1, set 

l (n) = 11 arcsinn x dx. 
0 X 

Example 2.11. Observe the first several values. 

(6) 
7r 

1(1) = 2 log (2) 

(7) 
7f2 7 

1(2) = 4 log (2) - 8 ((3) 

(8) 
1[3 91r 

1(3) = 8 log (2) - 16 ((3) 

(9) 
1r4 91r2 93 

1(4) = 16 log (2) - 16 ((3) + 32 ((5) 

(10) 
1r5 151r3 2251r 

1(5) = 32 log (2) - 32 ((3) + 64 ((5) 

(11) 1(6) = ;: log (2) - 422~4 ((3) + 6;~;2 ((5) - 52751: ((7) 

Remark 2.12. 

[ 1] Indeed, Wolfram alpha [15] returns the algebraic expressions (6)-(11) for 
integrals 

17r/2 

l ( n) = 
0 

yn cot y dy 
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(12) 

(13) 

while she outputs only numerical values for 

[1 arcsinn x dx. 
lo x 

In fact, there is a precise formula for I(n) giving a Q-linear combination 
of log 2 and single Riemann zeta values. For the sake of completeness, we 
discuss it here although we do not need it in the sequel. Let 'T/ denote 
the Dirichlet eta function, that is, 'T/ (1) = log2 and 'T/ (j) = (1 - 21- 1) ((j) 
(j 2 2). Then, there holds 

(2n + 1)! n (-1)17r2n+l-2j . 
I(2n+l)= 22n+1 ~(2n+l-2j)!'TJ(2J+l), 

I(2n)= (2n)! (~(-l)11r2n-21 TJ(2j+l)+(-1t2(1-r2n-1)((2n+l)). 
22n ~ (2n - 2j)! 

1=0 

To see this, we remark that Buhler-Crandall [5, p.280] stated 

1112 
xn cot( 1rx) dx 

I ( l)(k-1)/2 (k) 1 4 1(1 2-n-l) 
=!!..:_ L - 'T/ +-((-1r+1) n. - ((n+l). 

2n l<k<n 7rk (n - k + 1)! 2 (21r)n+1 
kocid 

However, the sign ½( ( - 1 t + 1) must be cos nr ( for n = 2, the coefficient 
of ((3) is negative; see (7)). To correct this, set 

J(n) := 1112 xn cot(1rx) dx 

_ n! (" (-l){k-l)/2 TJ(k) ) n1r4n!(l - 2-n-l) 
- 2n ~ 7rk (n - k + 1)! + cos 2 (21r)n+l ((n + 1). 

l<k<n 
kodcl 

Then, with y = sin( 1rx), we find 

J(n) = _1_ [1 arcsinn(y) dy = _l_I(n). 
7rn+l lo y 7rn+l 

Thus, I(n) = 1rn+lJ(n). Writing down the cases for the index even and 
odd with k = 2j + 1, we get (12), (13) and hence justified (6)-(11). 

[ 2] We can also view I ( n) as a log-sine integral: 

11 arcsinn x 11 arcsinn-l x 
I(n) = ---dx = [log x(arcsinn x)]~ -n log x v'f=x2 dx 

0 X '---...,,,----' O 1 - X 2 
0 
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r /2 
= -n lo yn-1 log(siny)dy. 

See J.M.Borwein-Broadhurst-Kamnitzer [3] for relation of such integrals 
and central binomial series, for example. 

Theorem 2.13. For n 2". 0, 

((3, {2}n) = ~ [1 arcsin2n+2 x arccos x dx 
22n+3 7r lo (2n + 2)! x ' 

rl · 2n+l 
t(3, {2}n) = lo a~~:n+ l)!x arc~os x dx. 

The proof is quite same to the one for Theorem 2.8. Hence we omit it. 

Remark 2.14. Recently, Lupu [11], Murakami [12] and Zagier [18] obtained sim
ilar results. Each of their proofs is different from ours. 

Example 2.15. For n = 0, we have 

( 14) [1 arcsin x arccos x dx = ~ ( ( 3), 
lo x 8 

(15) ~ [1 arcsin x arccos x dx = ! ( ( 3) 
1r lo 2! x 8 

as we mentioned in Introduction. For n 2". 1, with arccos x = ~ - arcsin x, we see 
that 

t(3, 2) = 11 arc~~3 x arc~osx dx = ;, (~1(3) - 1(4)) = 6\ (31r2((3) - 31((5))' 

((3, 2) = ~ I_ (~ l( 4) - 1(5)) = _!_ (1r2((3) - 11((5)) 
25 1r 4! 2 64 ' 

t(3, 2, 2) = ;, (~1(5) - 1(6)) = 20
1
48 (21r4((3) - 601r2((5) + 381((7)) 

and so on. 

Corollary 2.16. Let Q [1r, ((3), ((5), ... , ((2n + 3)]2n+3 denote the set of allele
ments of degree 2n+3 in the rational polynomial ring in 1r, ((3), ((5), ... , ((2n+3) 
with grading deg1r = 1 and deg((2j + 1) = 2j + 1. Then 

((~~!:t), t(3, {2}n) E Q [1r, ((3), ((5), ... , ((2n + 3)]2n+3 • 

Remark 2.17. Not all multiple values satisfy such a property. For example, as 
mentioned before, 

7r2 7 
t(2,1) = 8 log2- 16 ((3) 

involves a rational multiple of 1r2 log 2. 
9 
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2.5. Conjecture on central binomial sums. Keeping iterated integrals in mind, 
now we discuss powers of log x as certain operator; at the end, we make one con
jecture. 

For f(x) E R[[x]] such that f(0) = 0, it is the technique to consider 

1Y f(x) dx 
0 X 

to construct another series as we often encountered. 
We can generalize this little more by changing the part "f ¾" with the iterated 

integral 

J dx J dx ... J dx = J logr x. 
X X X r!x 

r+l 

Fact 2.18 ([13, p.l, 57-58]). For integers n 2 1, r 2 0, we have 

11 nlogr X - (-lY 
x I dx- +1. 

o r.x nr 

Let us see what if we apply this idea to arcsin integrals. Again, recall that 

. ~ (2;) x2k+l 

arcsm x = ~ 22k 2k + 1 . 
k=O 

We now see another central binomial series 

-11 . logx d _ ~ (2;) _1_ 11 2k+1 logx d _ ~ (2;) 1 
o arcsmx x x - ~ 22k 2k + 1 o x x x - ~ 22k (2k + 1)3 

k=O k=O 

and similarly 

11 . log2 x 00 (2;) 1 
arcsmx-1- dx = L ~ ( k )4 • 

0 2.x 2 2 + 1 
k=O 

Wolfram alpha [15] says that 

11 logx 1 
- arcsinx-- dx = -(1r3 + 121r log2 2). 

O X 48 

11 log2 x 1 
arcsin x-1 - dx = -(61r((3) + 41r log3 2 + 1r3 log 2). 

0 2.x 48 

This is only computer calculation. Hence let us state it as a conjecture. 

Conjecture 2.19. 

oo (2k) l l L 2~k (2k+1)3 = 48(1r3+121rlog22), 
k=O 

10 
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oo (2k) l l L 2~k (2k + 1)4 = 48 (67r((3) + 41r log3 2 + n3 log 2). 
k=O 

Remark 2.20. Jianqiang Zhao pointed out (e-mail) to the author that we can 
prove these with Xu-Zhao [17, Theorem 8.12] (for m = 4, k = 0) without much 
trouble. 

3. OTHER MULTIPLE SUMS 

3.1. Multiple T, S-values. Following Xu-Zhao [16], let us introduce more general 
multiple sums here. 

Definition 3.1. For a multi-index (ik,···,i1) with ik 2 2, define a multiple T
value (MTV) and a multiple S-value (MSV) by 

We understand that the empty index 0 has weight 0 and 

((0) = t(0) = T(0) = 8(0) = 1. 

TABLE 1. Conjectural dim sequences 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Zn 1 0 1 1 1 2 2 3 4 5 7 9 12 16 

tn 1 0 1 2 3 5 8 13 21 34 55 89 144 233 

Tn 1 0 1 1 2 2 4 5 9 10 19 23 42 49 

Sn 1 0 1 2 3 4 6 10 15 22 32 52 76 ? 

For n 2 0, let MZVn, MtVn, MTVn, MSVn denote the set of Q-span of all 
MZVs, Mt Vs, MTVs, MSVs of weight n, respectively. Moreover, let 

Zn= dimqMZVn, tn = dimqMtVn, 

Tn = dimq MTV n, Sn = dimq MSV n· 

By (dn)n-;;,_o and Un)n-;;,_o, we mean Padovan and Fibonacci sequences; to be more 
precise, they are ones satisfying 

do= 1, d1 = 0, d2 = 1 and dn = dn-2 + dn-3 for n 2 3, 

Jo = 0, Ji = 1 and fn = fn-l + f n-2 for n 2 2. 
11 
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Conjecture 3.2. 

[ 1] (Zagier) Zn= dn for n 2: 1. 
[ 2] (Hoffman) tn = fn for n 2: 2. 

What about Tn, Sn? Kaneko-Tsumura [8], Xu-Zhao [16] observed that the con
jectural sequence (Tn)o<n<i 3 satisfies restricted Fibonacci relation 

T2k = T2k-l + T2k-2, 1 s k s 6. 

Here we also observe that the conjectural (Sn)o<n<i3 satisfies restricted Padovan
like relation 

S2k+1 = S2k-l + 2S2k-2, 1 s ks 5. 

Thus, S13 is conjecturally equal to 

52 * 2 X 32 = 116. 

There might exist such relations for all (Tn)n>O, (Sn)n>O throughout. We are plan-
- -

ning to pursure these details at another opportunity. 

3.2. Conjecture on t( {2}n+l, 1). We evaluated ((3, {2}n), t(3, {2}n) together in 
Theorem 2.13. Notice that 

so that MZV duality implies 

((3, {2}n)t = (( {2}n+1, 1). 

It is now natural to ask what t( {2}n+l, 1) is. 
With (7), (9), (11) and [7, Appendix], we observe that 

1 (7r2 7 ) 1(2) t(2, 1) = 2 4 log2 - 8((3) = 2!' 

1 (1r4 9 2 93 ) l( 4) t(2, 2, 1) = 24 16 log 2 - 161r ((3) + 32 ((5) = 4!' 

1 (7r6 451r4 6751r2 5715 ) 1(6) 
t(2, 2' 2' l) = 720 64 log (2) - 128 ((3) + 128 ((5) - 256 ((7) = 51· 

It would be nice if we can generalize this. 

Conjecture 3.3 ([6]). For n 2: 0, 

t ( { 2} n+ 1 , 1) = arcsm x __:'._ . 11 . 2n+2 d 

o (2n + 2)! X 
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