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1 Introduction 

In the literature, the Stirling numbers with higher level (level s) seem to have been 

firstly studied by Tweedie [21] in 1918. Namely, those of the first kind [~L and the 

second kind {{ ~ }} s appear as 

n 

x(x + l 8 )(x + 28 ) • • • (x + (n - 1)8
) = L [;] xk 

k=O 8 

and 

xn = t {{; }}. x(x - l8)(x - 28 ) ••• (x - (k - 1)•), 
k=O 

respectively. They satisfy the recurrence relations 

and 

{{; }} • = {{; = ~ }} s + k {{ n ~ l }} s (1) 

with [~]. ={{~}}.= 1 and[~].={{~}}.= 0 (n ?". 1). Recently, in [15, 16], the Stirling 

numbers with higher level have been rediscovered and studied more deeply, in particular, 

from the aspects of combinatorics. Whens = l, they are the original Stirling numbers of 

both kinds. When s = 2, they have been often studided as central factorial numbers of 

both kinds (see, e.g., [1]). 
Some typical values of Stirling numbers of the first kind with higher level are given as 

[~] s = ((n - 1)!)", 

[n] = (( _ l)l)s H(s) 2 s n . n-l, 
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(H(s) )2 H(2s) [n] = ((n _ l)!)" n-1 - n-1, 

3 s 2 

where H;.k) are the generalized harmonic numbers of order k defined by H;.k) = LJ=1 -fa (n 2 

0) and Hn = H;.1) are the classical harmonic numbers. More generally, 

Some typical values of Stirling numbers of the second kind with higher level are given 

as 

2 Stirling numbers with higher level 

Given a positive integers, let [;L denote the number of ordered s-tuples ( o-1, o-2, ... , a-8 ) E 

6cn,k) x 6cn,k) x · · · x 6cn,k) = 6(n,k)' such that 

min(a-1) = min(a-2) = · · · = min(a-s)-

For example, [;L = 9, the relevant 3-tuples being 

((1)(23), (1)(23), (1)(23))), ((1)(23), (1)(23), (13)(2)), ((1)(23), (13)(2), (1)(23)), 

( (1) (2 3), (13)(2), (13)(2)) ), ( (12)(3), (12)(3), (12) (3) ), ( (13) (2), (1) (2 3), (1)(2 3)), 

((13)(2), (1)(23), (13)(2))), ((13)(2), (13)(2), (1)(23)), ((13)(2), (13)(2), (13)(2)). 

(2) 

If n, k 2 0, then let II(n,k) denote the set of all partitions of [n] having exactly k non

empty blocks. Given a partition 1r in IIn, let min(1r) denote the set of the minimal elements 

in each block of 1r. Given a positive integer s, let {{; }L denote the number of ordered 

s-tuples (1r1, 7f2, ... , 'ifs) E IIcn,k) X II(n,k) X · • · X II(n,k) = II(n,k)' such that 

(3) 

This sequence is called Stirling numbers of the second kind with higher level. For example, 

{C }}s = 9, the relevant 3-tuples being 

(1/23, 1/23, 1/23), (1/23, 1/23, 13/2), (1/23, 13/2, 1/23), 
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(1/23, 13/2, 13/2), 

(13/2, 1/23, 13/2), 

(12/3, 12/3, 12/3), 

(13/2, 13/2, 1/23), 

(13/2, 1/23, 1/23), 

(13/2, 13/2, 13/2). 

The Stirling numbers of the second kind with higher level can be expressed in terms of 

iterated summations. 

Theorem 1. For 2 ~ k ~ n, 

The (ordinary) generating function of Stirling numbers of the second kind with higher 

level can be given as follows. 

Theorem 2. Fork 2'. 1, 

Corollary 1. We have the following rational explicit formula 

There exist orthogonality relationships of Stirling numbers of both kinds with higher 

level. 

Theorem 3. We have the relations 

max{n,m} 

~ (-lr-k [~]. {{~}}. =6n,m, (4) 

max{n,m} 

~ ( -1 t-m {{ ~ }L [ ~ l = 6n,m , (5) 

where bn,m is the Kronecker delta. 

We show identities which combine Stirling numbers with higher level and Bernoulli poly

nomials. The Bernoulli polynomials Bn(x) can be defined by the exponential generating 

function 
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Theorem 4. We have the relation 

Bsj+1(0) - Bsj+l(n) 
sj + 1 

Corollary 2. For n 2: k 2: 0, we have 

k [ n ] = :f)-l)j [ n .] Bsj+l(O)_- Bsj+1(n) 
n - k . n - k + J SJ + 1 

s J=l s 

2.1 Stirling numbers with level 2 

When s = 2, there is a convenient form to calculate Stirling numbers of the first kind 

with level 2 from the classical Stirling numbers of the first kind. 

Theorem 5. 

Whens= 2, there is a relation [:L = (-1r-mt(2n, 2m), where t(n, m) are the central 

factorial numbers of the first kind, defined by 
n 

x(x + ~ - 1) (x + ~ - 2) • • • (x - ~ + 1) = L t(n, m)xm. 
m=O 

When s = 2, we have an convenient identity for the Stirlin numbers of the second kind 

as 

{f n }} _ 2 ~ ( t-j ( 2k ) ·2n 
lk 2 - (2k)!ki-l k-j J . 

This is an analogous identity for the classical Stirling numbers of the second kind: 

However, no convenient form has not been found whens 2: 3. 

When s = 2, there is a relation {{ ;;-, }L = T(2n, 2m), where T( n, m) are the central 

factorial numbers of the second kind, defined by 
n 

xn = LT(n,m)x(x+ ;- l)(x+ ;-2) •·· (x-; +1). 
m=O 
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3 Poly-Cauchy numbers with level 2 

Poly-Cauchy numbers <!~k) with level 2 are defined by 

oo tn 
Lif2,k(arcsinht) = L <!~k) n! , 

n=O 

where arcsinht is the inverse hyperbolic sine function and 

(6) 

This function is an analogue of Polylogarithm factorial or Polyfactorial function Lifk(z) 

[7, 8], defined by 
oo m 

Lifk(z) = L '( z )k. 
m. m+l 

m=O 

Several initial values of <!~1) are as follows. 

(1) _ l ! _ 17 367 _ 27859 1295803 
{ (!2n }n?:O - ' 3' 15' 21 ' 45 ' 33 

5329242827 
1365 ' .... 

Note that the numerators of coefficients for numerical integration ([19]) are given as 

1,17,367,27859,1295803,5329242827,25198857127,11959712166949, ... 

([20, A002197]). From higher-order Bernoulli numbers, the denominators of D numbers 

D2n(2n) ([17, 18]) are given as 

1,3,15,21,45,33,1365,45, 765,1995,3465,1035,20475,189,435, 7161, ... 

([20, A261274]). Here, the D numbers (or cosecant numbers) D~~ may be defined by 

( _t _) k _ ~ n(k) _!::_ 
sinh t - ~ 2n (2n)! (1t1<7r). 

By using the polyfactorial function, poly-Cauchy numbers (of the first kind) ~k) are 

defined as 

(7) 

When k = l, by Lif1(z) = (ez - 1)/z, Cn = ~l) are the original Cauchy numbers defined 

by 
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The generating function of poly-Cauchy numbers c~k) in (7) can be written in the form 

of iterated integrals ( [7]): 

1 lx 1 lx 1 00 
Xn 

log(l + x) 0 (1 + x) log(l + x) · · · 0 (1 + x) log(l + x) xx~=~ c~k) n! · 
k-1 n-0 

k-1 

We can also write the generating function of the poly-Cauchy numbers with level 2 in (6) 

in the form of iterated integrals. 

Theorem 6. For k 2'. 1 we have 

1 lx 1 lx 1 ~ xn ------- • • • ------- xx dx • • • dx = ~ e:(k) _ 
arcsinhx O arcsinhx✓l + x 2 0 arcsinhx✓l + x 2 '---v---' n n! · 

k-1 n=O 

k-1 

3.1 Cauchy numbers with level 2 

When k = 1, Cauchy numbers 1t2n = It~~ with level 2 have a determinant expression. 

Theorem 7. For n 2'. 1, 

1 0 

2i.3 (i) l 

0 

221.a (i) 1 
1 (2n) 

22n(2n+I) n 21.5 m ~(i) 

Remark. A determinant expression of the classical Cauchy numbers may be given as 

1 1 0 2 
1 1 1 3 2 

Cn = n! 0 
1 1 2 

1 1 1 
n+l 3 2 

([2, p.50]). 

By the inversion formula below (see, e.g., [14]1), we also have the following. 

1 The case where fn = 0 for all n 2 0 is considered in [14] 
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Corollary 3. For n 2: 1, 

1 (2n) 
22n(2n + 1) n -

Lemma 1 (Inversion formula). 
n 

(-l)n-1~ 
(2n)! 

I)-1r-kxn-kZk = fn with Xo = Zo = 1 
k=O 

1 

1 

-{==} Xn= 

Zn-1 Zn-2 

Zn - f n Zn-1 - f n-1 

Poly-Cauchy numbers have an expression of integrals 

1 0 

1 

0 

(k) r1 r1 (X1X2 · • • Xk) 
en = n! Jo · · · }0 n dx1dx2 ... dxk ..._,__.., 

k 

0 

([7]). Poly-Cauchy numbers with level 2 also have a similar expression (or a kind of 

definition). 

Corollary 4. For n 2: 0 and k 2: 1, we have 
1 1 X1X2 ' · · Xk X1X2 · · · Xk 

It~~ = (-4t(n!) 21 · · · 1 ( ~ ) (- n2 ) dx1dx2 ... dxk . 
..._,__.., 

k 

4 Poly-Bernoulli numbers with level 2 

As poly-Bernoulli numbers [6] and poly-Cauchy numbers are closely connected with 

each other ([12]), poly-Bernoulli numbers with level 2 can be naturally introduced ([11]) 
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in the connection with poly-Cauchy numbers with level 2. In fact, poly-Bernoulli numbers 

with level 2 have a good analogy of poly-Bernoulli numbers. 

For k 2 1, poly-Bernoulli numbers s.B~k) with level 2 are defined by 

Li2,k(2sin(x/2)) _ f (k)xn 

2sin(x/2) - n=O s.Bn n! ' 
(8) 

where 
00 z2n+l 

Li2,k(z) = ~ (2n + l)k 

is the polylogarithm function with level 2 ([11]). Such a concept is analogous of that of 

poly-Bernoulli numbers JIB~k), defined by 

with the polylogarithm function 

([6]). Then, Bernoulli numbers s.Bn = 23~1) with level 2 are given by the generating function 

1 log 1 + 2sin(x/2) = f s.Bn xn. 
4sin(x/2) 1- 2sin(x/2) n=D n! 

(9) 

First several values of Bernoulli numbers with level 2 are given by 

{SB } _ 1 ~ 62 1670 47102 6936718 29167388522 9208191626 
2n O<::n<::lO - ' 3' 15' 21 ' 15 ' 33 ' 1365 ' 3 ' 

150996747969694 58943788779804242 7637588708954836042 
255 399 165 

The generating function of the poly-Cauchy numbers with level 2 can be written in the 

form of iterated integrals ([13, Theorem 2.1]): 

------ • • • ------ xxdx • • • dx l 1x l 1x l 
arcsinhx O arcsinhx✓l + x2 0 arcsinhx✓l + x2 "-v--' 

k-1 
k-1 

oo n 

= "<t(k)~ (k 21). 
L.., n n! 
n=O 

We can also write the generating function of the poly-Bernoulli numbers with level 2 in 

the form of iterated integrals. 



32

Theorem 8. Fork 2". 1, we have 

1 1x 1 1x 1 1 1 + 2 sin "'- 00 xn -- -- • • • -- x - log 2 dx • • • dx = L s:i,(k) _ 
2 sin"'- 0 2 tan "'- 0 2 tan"'- 2 1 - 2 sin"'- ...______....., n n! · 

2 2 2 2 k-1 n=O 

k-1 

Poly-Cauchy numbers with level 2 can be expressed explicitly in terms of the Stirling 

numbers of the second kind with level 2. Poly-Bernoulli numbers with level 2 can be 

expressed explicitly in terms of the Stirling numbers of the second kind with level 2. 

Theorem 9. For n 2". 0, 

(k) ~ [n] (-4r-m 
(t2n = ~ m 2 (2m + l)k' 

s:5(k) = ~ {{ n }} (-1r-m(2m)! 
2n ~ m 2 (2m + l)k 

4.1 Relations with poly-Cauchy numbers with level 2 

Poly-Cauchy numbers with level 2 can be expressed in terms of poly-Bernoulli numbers 

with level 2. 

Theorem 10. For integers n and k with n 2". 1, 

(t(k) = ~ ~ (-4r-m [ n] [m] s:5(k) 
2n ~ ~ (2m) ! m 2 l 2 21 · 

m=l l=l 

Remark. Poly-Cauchy numbers can be expressed in terms of poly-Bernoulli numbers ([12, 

Theorem 2.2]): 

On the contrary, poly-Bernoulli numbers can be expressed in terms of poly-Cauchy 

numbers: 

Similarly, poly-Bernoulli numbers with level 2 can be expressed in terms of poly-Cauchy 

numbers with level 2. 
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Theorem 11. For integers n and k with n 2'. 1, 

Other relations with Stirling numbers with level 2 are given as follows. 

Theorem 12. For n 2'. 1, 

1 ~ [n] (k) 1 
(2n)! ~ m 2 s:B2m = (2n + l)k' 

~ {{ n }} 4n-me:(k) 1 
~ m 2 2m = (2n + l)k · (11) 

Remark. For poly-Bernoulli and poly-Cauchy numbers ([7, Theorem 3]), we have 

_!_ ~ [ n] B(k) = 1 
n!~ m m (n+l)k' 

~ { n} (k) _ 1 
~ m cm -(n+l)k' 

Since the Stirling numbers with level 2 have an explicit expression ([1, Proposition 2.4 

(xiii)], [11, (7)]): 

{{ n }} _ 2 ~( )k-j ( 2k ) ·2n 
k 2 - (2k)! ~ -l k - j J ' 

, we have an explicit expression of poly-Bernoulli numbers with level 2. 

Proposition 1. For n 2'. 1, 

!E(k) = ~~2(-1r-jJ2n( 2m). 
2n ~ ~ (2m + l)k m - j 

m=O J=O 

In particular, Bernoulli numbers with level 2 can be expressed explicitly as 

IE2n - ~ ~ ---'------'-- . - n m 2(-1r-j12n( 2m) 
~~ 2m+l m-j 
m=O j=O 

Remark. Note that poly-Bernoulli numbers Rn can be expressed as 

]IB(k) = ~~ (-1r-jjn( m ) 
n ~ ~ (m + l)k m - j 

m=O J=O 

(12) 
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and the classical Bernoulli numbers Bn with B 1 = -1/2 can be expressed as 

5 Bernoulli numbers with level 2 

Bernoulli numbers !Bn = SB~1) with level 2 are given by the generating function 

1 l 1+2sin(x/2) -fsi, xn 
4sin(x/2) og 1- 2sin(x/2) - n=O n n! · 

(13) 

First several values of Bernoulli numbers with level 2 are given by 

{SB } _ 1 ~ 62 1670 47102 6936718 29167388522 9208191626 
2n o::;n:;IO - ' 3' 15' 21 ' 15 ' 33 ' 1365 ' 3 ' 

150996747969694 58943788779804242 7637588708954836042 

255 399 165 

Though this definition may be strange, we shall show some meaningful relations with 

some classical numbers. 

For Bernoulli numbers, the von Staudt-Clausen theorem holds. That is, for every n > 0, 

1 
B2n+ L -

p 
(p-l)l2n 

is an integer. The sum extends over all primes p for which p - l divides 2n. For Bernoulli 

numbers with level 2, a similar formula holds ([11, Theorem 14]): for every n > 0, 

(-1r-is-1 
SB2n + L 

(p-l)l2n p 

is an integer. The sum extends over all odd primes p for which p - l divides 2n. 

5.1 Glaisher's R numbers 

In 1898, Glaisher introduced and studied several numbers related to Bernoulli numbers. 

In order to get several relations about Bernoulli numbers with level 2, first we use the 

numbers Rn, studied in [3, §132-138] and [4, p.51].The generating functions ([3, p.71]) of 

R numbers are given by 

cosh x = l + cosh 2x = f _ 1 n Rn x 2n 

2 cosh 2x - 1 2 cosh 3x n=O ( ) ( 2n) ! · 
(14) 
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The first several values of numbers Rn are given by 

{Rn}n>O = 1, 7,305,33367,6815585,2237423527,1077270776465, 

715153093789687,626055764653322945,698774745485355051847, ... 

([20, A002437,A000364]). In [3, p.71], it is shown that 

32n+l + 1 
Rn= 4 (-ltE2n, (15) 

where Euler numbers En are defined by 

1 oo xn 

coshx = LEnn! · 
n=O 

Theorem 13. For n 2'. 0, we have 

t (2n2; 1}-4tSB2k = (-lt R,,. 

From Theorem 13, we have a determinant expression of Bernoulli numbers with level 2. 

Theorem 14. For n 2'. 1, we have 

1 
3! 
1 
5! 

1 
1 
3! 

1 1 
(2n-1)! (2n-3)! 

I+(-I)n-lRn l+(-l)nRn-1 
(2n+l)! (2n-1)! 

where Rn are Glaisher's R numbers, given in (15). 

Remark. Euler numbers of the second kind En, defined by 

0 

1 
l+R1 -3,-

have a similar determinant expression ([9, Corollary 2.2],[10, (1.7)]). 

_!_ 
3! 

1 
5! 

1 
1 
3! 

0 

1 1 1 1 
(2n-1)! (2n-3)! 3! 

1 1 1 1 
(2n+l)! (2n-1)! 5! 3! 

By using the inversion formula, we have the determinant expression of 1/(2n + 1)! in 

terms of SBn, 
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Corollary 5. For n 2: 1, we have 

1 

(2n + 1)! 4n-l~2n-2 

(2n-2)! 
4n'B2n Rn 
(2n)! - (2n+l)! 

6 Glaisher's H' numbers 

1 
4'l32 
2! 

4n- 2 ~2n-4 

(2n-4)! 
4n-l'B2n-2 Rn-1 

(2n-2)! - (2n-1)! 

Glaisher's H' numbers Hn ([5, §34])2 are defined by 

1 

1 oo x2n 
--- = 1 + "2Hn-
2cosx -1 ~ (2n)! 

and given by 

2n k l(i-1)/2J (k) ( .) 
Hn=~~ ~ j ~ (-1r-j2k-j(j-2i) 2n 

( Cf. [20, A002114]). The first several values of Hn are 

{Hn}n>I = 1,11,301,15371,1261501,151846331, 

0 

1 

(16) 

(n 2: 1). (17) 

25201039501, 5515342166891, 1538993024478301, .... 

Notice that the value for n = 0 may be recognized as H0 = 1/2. In the next section, 

we shall see a nice relation with poly-Bernoulli numbers with level 2 for index 0, yielding 

a simper expression than the known identity (17). In fact, Glaisher's H' numbers are 

closely related to poly-Bernoulli numbers with level 2 with index 0. 

By Proposition 1, when the index is 0, we can find a simpler relation about Glaisher's 

H' numbers. 

Theorem 15. For n 2: 1, 

2 Here we use the notation 1in to avoid confusion with differentiation. In fact, Hn = Hn/3, where Hn are Glaisher's H 
numbers ([5, §25],[20, A002114]). 
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