Bernoulli and Cauchy numbers with level 2 associated with Stirling numbers with level 2

Takao Komatsu
School of Science, Zhejiang Sci-Tech University

1 Introduction

In the literature, the Stirling numbers with higher level (level s) seem to have been firstly studied by Tweedie [21] in 1918. Namely, those of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]_{s}$ and the second kind $\left\{\left\{\begin{array}{l}n \\ k\end{array}\right\}\right\}_{s}$ appear as

$$
x\left(x+1^{s}\right)\left(x+2^{s}\right) \cdots\left(x+(n-1)^{s}\right)=\sum_{k=0}^{n} \llbracket \begin{aligned}
& n \\
& k
\end{aligned} \rrbracket_{s} x^{k}
$$

and

$$
x^{n}=\sum_{k=0}^{n}\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{s} x\left(x-1^{s}\right)\left(x-2^{s}\right) \cdots\left(x-(k-1)^{s}\right),
$$

respectively. They satisfy the recurrence relations

$$
\llbracket \begin{aligned}
& n \\
& k
\end{aligned} \rrbracket_{s}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{s}+(n-1)^{s} \llbracket \begin{gathered}
n-1 \\
k
\end{gathered} \rrbracket_{s}
$$

and

$$
\left\{\left\{\begin{array}{l}
n \tag{1}\\
k
\end{array}\right\}\right\}_{s}=\left\{\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}\right\}_{s}+k\left\{\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}\right\}_{s}
$$

with $\left[\begin{array}{l}0 \\ 0\end{array}\right]_{s}=\left\{\left\{\begin{array}{l}0 \\ 0\end{array}\right\}\right\}_{s}=1$ and $\left[\begin{array}{l}n \\ 0\end{array}\right]_{s}=\left\{\left\{\begin{array}{l}n \\ 0\end{array}\right\}\right\}_{s}=0(n \geq 1)$. Recently, in [15, 16], the Stirling numbers with higher level have been rediscovered and studied more deeply, in particular, from the aspects of combinatorics. When $s=1$, they are the original Stirling numbers of both kinds. When $s=2$, they have been often studided as central factorial numbers of both kinds (see, e.g., [1]).
Some typical values of Stirling numbers of the first kind with higher level are given as

$$
\begin{aligned}
& \llbracket \begin{array}{l}
n \\
1
\end{array} \rrbracket_{s}=((n-1)!)^{s}, \\
& \llbracket \begin{array}{l}
n \\
2
\end{array} \rrbracket_{s}=((n-1)!)^{s} H_{n-1}^{(s)},
\end{aligned}
$$

$$
\llbracket \begin{aligned}
& n \\
& 3
\end{aligned} \rrbracket_{s}=((n-1)!)^{s} \frac{\left(H_{n-1}^{(s)}\right)^{2}-H_{n-1}^{(2 s)}}{2},
$$

where $H_{n}^{(k)}$ are the generalized harmonic numbers of order k defined by $H_{n}^{(k)}=\sum_{j=1}^{n} \frac{1}{j^{k}}(n \geq$ $0)$ and $H_{n}=H_{n}^{(1)}$ are the classical harmonic numbers. More generally,

$$
\llbracket \begin{gathered}
n \\
m
\end{gathered} \rrbracket_{s}=\sum_{1 \leq i_{1}<\cdots<i_{n-m} \leq n-1}\left(i_{1} \cdots i_{n-m}\right)^{s} .
$$

Some typical values of Stirling numbers of the second kind with higher level are given as

$$
\begin{aligned}
& \left.\left\{\begin{array}{c}
n \\
1
\end{array}\right\}\right\}_{s}=1, \quad\left\{\left\{\begin{array}{l}
n \\
2
\end{array}\right\}\right\}_{s}=\sum_{k=0}^{n-2} 2^{s k}=\frac{2^{s(n-1)}-1}{2^{s}-1}, \\
& \left\{\left\{\begin{array}{l}
n \\
3
\end{array}\right\}\right\}_{s}=\sum_{j=0}^{n-3} 3^{n-j-3} \sum_{k=0}^{j} 2^{s k}=\frac{2^{s}\left(3^{(n-2) s}-2^{(n-2) s}\right)}{\left(2^{s}-1\right)\left(3^{s}-2^{s}\right)}-\frac{3^{(n-2) s}-1}{\left(2^{s}-1\right)\left(3^{s}-1\right)} \\
& \left\{\left\{\begin{array}{c}
n \\
n-1
\end{array}\right\}\right\}_{s}=\sum_{j=1}^{n-1} j^{s} .
\end{aligned}
$$

2 Stirling numbers with higher level

Given a positive integer s, let $\left[\begin{array}{l}n \\ k\end{array}\right]_{s}$ denote the number of ordered s-tuples $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right) \in$ $\mathfrak{S}_{(n, k)} \times \mathfrak{S}_{(n, k)} \times \cdots \times \mathfrak{S}_{(n, k)}=\mathfrak{S}_{(n, k)}^{s}$, such that

$$
\begin{equation*}
\min \left(\sigma_{1}\right)=\min \left(\sigma_{2}\right)=\cdots=\min \left(\sigma_{s}\right) . \tag{2}
\end{equation*}
$$

For example, $\left[\begin{array}{l}3 \\ 2\end{array}\right]_{3}=9$, the relevant 3 -tuples being

$$
\begin{array}{lll}
((1)(23),(1)(23),(1)(23))), & ((1)(23),(1)(23),(13)(2)), & ((1)(23),(13)(2),(1)(23)), \\
((1)(23),(13)(2),(13)(2))), & ((12)(3),(12)(3),(12)(3)), & ((13)(2),(1)(23),(1)(23)), \\
((13)(2),(1)(23),(13)(2))), & ((13)(2),(13)(2),(1)(23)), & ((13)(2),(13)(2),(13)(2)) .
\end{array}
$$

If $n, k \geq 0$, then let $\Pi_{(n, k)}$ denote the set of all partitions of $[n]$ having exactly k nonempty blocks. Given a partition π in Π_{n}, let $\min (\pi)$ denote the set of the minimal elements in each block of π. Given a positive integer s, let $\left\{\left\{\begin{array}{l}n \\ k\end{array}\right\}\right\}_{s}$ denote the number of ordered s-tuples $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{s}\right) \in \Pi_{(n, k)} \times \Pi_{(n, k)} \times \cdots \times \Pi_{(n, k)}=\Pi_{(n, k)}^{s}$, such that

$$
\begin{equation*}
\min \left(\pi_{1}\right)=\min \left(\pi_{2}\right)=\cdots=\min \left(\pi_{s}\right) . \tag{3}
\end{equation*}
$$

This sequence is called Stirling numbers of the second kind with higher level. For example, $\left\{\left\{\begin{array}{l}3 \\ 2\end{array}\right\}\right\}_{3}=9$, the relevant 3-tuples being
(1/23, 1/23, 1/23),
(1/23, 1/23, 13/2),
(1/23, 13/2, 1/23),

$$
\begin{array}{lll}
(1 / 23,13 / 2,13 / 2), & (12 / 3,12 / 3,12 / 3), & (13 / 2,1 / 23,1 / 23), \\
(13 / 2,1 / 23,13 / 2), & (13 / 2,13 / 2,1 / 23), & (13 / 2,13 / 2,13 / 2) .
\end{array}
$$

The Stirling numbers of the second kind with higher level can be expressed in terms of iterated summations.

Theorem 1. For $2 \leq k \leq n$,

$$
\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{s}=k^{s(n-k+1)} \sum_{i_{k-1}=1}^{n-k+1}\left(\frac{k-1}{k}\right)^{s i_{k-1}} \sum_{i_{k-2}=1}^{i_{k-1}}\left(\frac{k-2}{k-1}\right)^{s i_{k-2}} \cdots \sum_{i_{2}=1}^{i_{3}}\left(\frac{2}{3}\right)^{s i_{2}} \sum_{i_{1}=1}^{i_{2}}\left(\frac{1}{2}\right)^{s i_{1}}
$$

The (ordinary) generating function of Stirling numbers of the second kind with higher level can be given as follows.

Theorem 2. For $k \geq 1$,

$$
\sum_{n=k}^{\infty}\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{s} x^{n}=\frac{x^{k}}{(1-x)\left(1-2^{s} x\right) \cdots\left(1-k^{s} x\right)}
$$

Corollary 1. We have the following rational explicit formula

$$
\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{s}=\sum_{j=0}^{k} \frac{j^{s n}}{\prod_{i=0, i \neq j}^{k}\left(j^{s}-i^{s}\right)}
$$

There exist orthogonality relationships of Stirling numbers of both kinds with higher level.

Theorem 3. We have the relations

$$
\begin{align*}
& \sum_{k=0}^{\max \{n, m\}}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array} \rrbracket_{s}\left\{\left\{\begin{array}{c}
k \\
m
\end{array}\right\}\right\}_{s}=\delta_{n, m}\right. \tag{4}\\
& \sum_{k=0}^{\max \{n, m\}}(-1)^{k-m}\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{s} \llbracket\left[\begin{array}{c}
k \\
m
\end{array}\right]_{s}=\delta_{n, m} \tag{5}
\end{align*}
$$

where $\delta_{n, m}$ is the Kronecker delta.
We show identities which combine Stirling numbers with higher level and Bernoulli polynomials. The Bernoulli polynomials $B_{n}(x)$ can be defined by the exponential generating function

$$
\frac{t e^{t x}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}
$$

Theorem 4. We have the relation

$$
\left.\sum_{\ell=1}^{n-1} \ell(-1)^{\ell} \llbracket \begin{array}{c}
n \\
n-\ell
\end{array}\right]_{s}\left\{\left\{\begin{array}{c}
n-1+j-\ell \\
n-1
\end{array}\right\}\right\}_{s}=\frac{B_{s j+1}(0)-B_{s j+1}(n)}{s j+1} .
$$

Corollary 2. For $n \geq k \geq 0$, we have

$$
k \llbracket \begin{gathered}
n \\
n-k
\end{gathered} \rrbracket_{s}=\sum_{j=1}^{k}(-1)^{j} \llbracket \begin{gathered}
n \\
n-k+j
\end{gathered} \rrbracket_{s} \frac{B_{s j+1}(0)-B_{s j+1}(n)}{s j+1} .
$$

2.1 Stirling numbers with level 2

When $s=2$, there is a convenient form to calculate Stirling numbers of the first kind with level 2 from the classical Stirling numbers of the first kind.

Theorem 5.

$$
\begin{aligned}
&\left.\llbracket \begin{array}{c}
n \\
m
\end{array}\right]_{2}=\left[\begin{array}{c}
n \\
m
\end{array}\right]^{2}-2\left[\begin{array}{c}
n \\
m-1
\end{array}\right]\left[\begin{array}{c}
n \\
m+1
\end{array}\right]+2\left[\begin{array}{c}
n \\
m-2
\end{array}\right]\left[\begin{array}{c}
n \\
m+2
\end{array}\right] \\
&-\cdots+2(-1)^{m-1}\left[\begin{array}{c}
n \\
1
\end{array}\right]\left[\begin{array}{c}
n \\
2 m-1
\end{array}\right] .
\end{aligned}
$$

When $s=2$, there is a relation $\llbracket \begin{aligned} & n \\ & m\end{aligned} \rrbracket_{2}=(-1)^{n-m} t(2 n, 2 m)$, where $t(n, m)$ are the central factorial numbers of the first kind, defined by

$$
x\left(x+\frac{n}{2}-1\right)\left(x+\frac{n}{2}-2\right) \cdots\left(x-\frac{n}{2}+1\right)=\sum_{m=0}^{n} t(n, m) x^{m} .
$$

When $s=2$, we have an convenient identity for the Stirlin numbers of the second kind as

$$
\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{2}=\frac{2}{(2 k)!} \sum_{j=1}^{k}(-1)^{k-j}\binom{2 k}{k-j} j^{2 n}
$$

This is an analogous identity for the classical Stirling numbers of the second kind:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{j=1}^{k}(-1)^{k-j}\binom{k}{k-j} j^{n} .
$$

However, no convenient form has not been found when $s \geq 3$.
When $s=2$, there is a relation $\left\{\left\{\begin{array}{c}n \\ m\end{array}\right\}\right\}_{2}=T(2 n, 2 m)$, where $T(n, m)$ are the central factorial numbers of the second kind, defined by

$$
x^{n}=\sum_{m=0}^{n} T(n, m) x\left(x+\frac{m}{2}-1\right)\left(x+\frac{m}{2}-2\right) \cdots\left(x-\frac{m}{2}+1\right) .
$$

3 Poly-Cauchy numbers with level 2

Poly-Cauchy numbers $\mathfrak{C}_{n}^{(k)}$ with level 2 are defined by

$$
\begin{equation*}
\operatorname{Lif}_{2, k}(\operatorname{arcsinh} t)=\sum_{n=0}^{\infty} \mathfrak{C}_{n}^{(k)} \frac{t^{n}}{n!} \tag{6}
\end{equation*}
$$

where arcsinht is the inverse hyperbolic sine function and

$$
\operatorname{Lif}_{2, k}(z)=\sum_{m=0}^{\infty} \frac{z^{2 m}}{(2 m)!(2 m+1)^{k}}
$$

This function is an analogue of Polylogarithm factorial or Polyfactorial function $\operatorname{Lif}_{k}(z)$ [7, 8], defined by

$$
\operatorname{Lif}_{k}(z)=\sum_{m=0}^{\infty} \frac{z^{m}}{m!(m+1)^{k}}
$$

Several initial values of $\mathfrak{C}_{n}^{(1)}$ are as follows.

$$
\left\{\mathfrak{C}_{2 n}^{(1)}\right\}_{n \geq 0}=1, \frac{1}{3},-\frac{17}{15}, \frac{367}{21},-\frac{27859}{45}, \frac{1295803}{33},-\frac{5329242827}{1365}, \ldots
$$

Note that the numerators of coefficients for numerical integration ([19]) are given as

$$
1,17,367,27859,1295803,5329242827,25198857127,11959712166949, \ldots
$$

([20, A002197]). From higher-order Bernoulli numbers, the denominators of D numbers $D_{2 n}(2 n)([17,18])$ are given as

$$
1,3,15,21,45,33,1365,45,765,1995,3465,1035,20475,189,435,7161, \ldots
$$

([20, A261274]). Here, the D numbers (or cosecant numbers) $D_{2 n}^{(k)}$ may be defined by

$$
\left(\frac{t}{\sinh t}\right)^{k}=\sum_{n=0}^{\infty} D_{2 n}^{(k)} \frac{t^{2 n}}{(2 n)!} \quad(|t|<\pi) .
$$

By using the polyfactorial function, poly-Cauchy numbers (of the first kind) $c_{n}^{(k)}$ are defined as

$$
\begin{equation*}
\operatorname{Lif}_{k}(\log (1+t))=\sum_{n=0}^{\infty} c_{n}^{(k)} \frac{t^{n}}{n!} \tag{7}
\end{equation*}
$$

When $k=1$, by $\operatorname{Lif}_{1}(z)=\left(e^{z}-1\right) / z, c_{n}=c_{n}^{(1)}$ are the original Cauchy numbers defined by

$$
\frac{t}{\log (1+t)}=\sum_{n=0}^{\infty} c_{n} \frac{t^{n}}{n!}
$$

The generating function of poly-Cauchy numbers $c_{n}^{(k)}$ in (7) can be written in the form of iterated integrals ([7]):

$$
\frac{1}{\log (1+x)} \underbrace{\int_{0}^{x} \frac{1}{(1+x) \log (1+x)} \cdots \int_{0}^{x} \frac{1}{(1+x) \log (1+x)}}_{k-1} \times x \underbrace{d x \cdots d x}_{k-1}=\sum_{n=0}^{\infty} c_{n}^{(k)} \frac{x^{n}}{n!} .
$$

We can also write the generating function of the poly-Cauchy numbers with level 2 in (6) in the form of iterated integrals.

Theorem 6. For $k \geq 1$ we have

$$
\frac{1}{\operatorname{arcsinh} x} \underbrace{\int_{0}^{x} \frac{1}{\operatorname{arcsinh} x \sqrt{1+x^{2}}} \cdots \int_{0}^{x} \frac{1}{\operatorname{arcsinh} x \sqrt{1+x^{2}}}}_{k-1} \times x \underbrace{d x \cdots d x}_{k-1}=\sum_{n=0}^{\infty} \mathfrak{C}_{n}^{(k)} \frac{x^{n}}{n!} .
$$

3.1 Cauchy numbers with level 2

When $k=1$, Cauchy numbers $\mathfrak{C}_{2 n}=\mathfrak{C}_{2 n}^{(1)}$ with level 2 have a determinant expression.
Theorem 7. For $n \geq 1$,

$$
\mathfrak{C}_{2 n}=(-1)^{n-1}(2 n)!\left|\begin{array}{ccccc}
\frac{1}{2^{2 \cdot 3} \cdot 3}\binom{2}{1} & 1 & 0 & & \\
\frac{1}{2^{4 \cdot 5}}\binom{4}{2} & \frac{1}{2^{2 \cdot 3}}\binom{2}{1} & 1 & & \\
\vdots & & \ddots & \ddots & 0 \\
\vdots & & & \frac{1}{2^{2 \cdot 3}}\binom{2}{1} & 1 \\
\frac{1}{2^{2 n}(2 n+1)}\binom{2 n}{n} & \cdots & \cdots & \frac{1}{2^{4 \cdot 5}}\binom{4}{2} & \frac{1}{2^{2} \cdot 3}\binom{2}{1}
\end{array}\right| .
$$

Remark. A determinant expression of the classical Cauchy numbers may be given as

$$
c_{n}=n!\left|\begin{array}{ccccc}
\frac{1}{2} & 1 & 0 & & \\
\frac{1}{3} & \frac{1}{2} & 1 & & \\
\vdots & & \ddots & & 0 \\
\vdots & & & \frac{1}{2} & 1 \\
\frac{1}{n+1} & \cdots & \cdots & \frac{1}{3} & \frac{1}{2}
\end{array}\right| .
$$

([2, p.50]).
By the inversion formula below (see, e.g., $[14]^{1}$), we also have the following.

[^0]Corollary 3. For $n \geq 1$,

$$
\frac{1}{2^{2 n}(2 n+1)}\binom{2 n}{n}=\left|\begin{array}{cccc}
\frac{\mathfrak{C}_{2}}{2!} & 1 & & 0 \\
-\frac{\mathfrak{C}_{4}}{4!} & \frac{\mathfrak{C}_{2}}{2!} & & \\
\vdots & & \ddots & 1 \\
(-1)^{n-1} \frac{\mathfrak{c}_{2 n}}{(2 n)!} & \cdots & -\frac{\mathfrak{C}_{4}}{4!} & \frac{\mathfrak{C}_{2}}{2!}
\end{array}\right|
$$

Lemma 1 (Inversion formula).

$$
\begin{aligned}
& \sum_{k=0}^{n}(-1)^{n-k} x_{n-k} z_{k}=f_{n} \text { with } x_{0}=z_{0}=1 \\
& \Longleftrightarrow z_{n}=\left|\begin{array}{ccccc}
x_{1} & 1 & & & 0 \\
x_{2} & x_{1} & \ddots & & \\
\vdots & \vdots & \ddots & \ddots & \\
x_{n-1} & x_{n-2} & \cdots & x_{1} & 1 \\
x_{n}+(-1)^{n-1} f_{n} & x_{n-1}+(-1)^{n} f_{n-1} & \cdots & x_{2}-f_{2} & x_{1}+f_{1}
\end{array}\right| \\
& \Longleftrightarrow x_{n}=\left|\begin{array}{ccccc}
z_{1} & 1 & & & 0 \\
z_{2} & z_{1} & \ddots & & \\
\vdots & \vdots & \ddots & \ddots & \\
z_{n-1} & z_{n-2} & \cdots & z_{1} & 1 \\
z_{n}-f_{n} & z_{n-1}-f_{n-1} & \cdots & z_{2}-f_{2} & z_{1}-f_{1}
\end{array}\right|
\end{aligned}
$$

Poly-Cauchy numbers have an expression of integrals

$$
c_{n}^{(k)}=n!\underbrace{\int_{0}^{1} \cdots \int_{0}^{1}}_{k}\binom{x_{1} x_{2} \cdots x_{k}}{n} d x_{1} d x_{2} \ldots d x_{k}
$$

([7]). Poly-Cauchy numbers with level 2 also have a similar expression (or a kind of definition).

Corollary 4. For $n \geq 0$ and $k \geq 1$, we have

$$
\mathfrak{C}_{2 n}^{(k)}=(-4)^{n}(n!)^{2} \underbrace{\int_{0}^{1} \cdots \int_{0}^{1}}_{k}\left(\frac{x_{1} x_{2} \cdots x_{k}}{2}\right)\left(-\frac{x_{1} x_{2} \cdots x_{k}}{2}\right) d x_{1} d x_{2} \ldots d x_{k}
$$

4 Poly-Bernoulli numbers with level 2

As poly-Bernoulli numbers [6] and poly-Cauchy numbers are closely connected with each other ([12]), poly-Bernoulli numbers with level 2 can be naturally introduced ([11])
in the connection with poly-Cauchy numbers with level 2 . In fact, poly-Bernoulli numbers with level 2 have a good analogy of poly-Bernoulli numbers.

For $k \geq 1$, poly-Bernoulli numbers $\mathfrak{B}_{n}^{(k)}$ with level 2 are defined by

$$
\begin{equation*}
\frac{\mathrm{Li}_{2, k}(2 \sin (x / 2))}{2 \sin (x / 2)}=\sum_{n=0}^{\infty} \mathfrak{B}_{n}^{(k)} \frac{x^{n}}{n!} \tag{8}
\end{equation*}
$$

where

$$
\mathrm{Li}_{2, k}(z)=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)^{k}}
$$

is the polylogarithm function with level 2 ([11]). Such a concept is analogous of that of poly-Bernoulli numbers $\mathbb{B}_{n}^{(k)}$, defined by

$$
\frac{\operatorname{Li}_{k}\left(1-e^{-x}\right)}{1-e^{-x}}=\sum_{n=0}^{\infty} \mathbb{B}_{n}^{(k)} \frac{x^{n}}{n!}
$$

with the polylogarithm function

$$
\operatorname{Li}_{k}(z)=\sum_{n=0}^{\infty} \frac{z^{n+1}}{(n+1)^{k}}
$$

([6]). Then, Bernoulli numbers $\mathfrak{B}_{n}=\mathfrak{B}_{n}^{(1)}$ with level 2 are given by the generating function

$$
\begin{equation*}
\frac{1}{4 \sin (x / 2)} \log \frac{1+2 \sin (x / 2)}{1-2 \sin (x / 2)}=\sum_{n=0}^{\infty} \mathfrak{B}_{n} \frac{x^{n}}{n!} \tag{9}
\end{equation*}
$$

First several values of Bernoulli numbers with level 2 are given by

$$
\begin{aligned}
\left\{\mathfrak{B}_{2 n}\right\}_{0 \leq n \leq 10}=1, & \frac{2}{3}, \frac{62}{15}, \frac{1670}{21}, \frac{47102}{15}, \frac{6936718}{33}, \frac{29167388522}{1365}, \\
\frac{150996747969694}{255}, & \frac{58943788779804242}{399}, \\
& \frac{7637588708954836042}{165} .
\end{aligned}
$$

The generating function of the poly-Cauchy numbers with level 2 can be written in the form of iterated integrals ([13, Theorem 2.1]):

$$
\begin{aligned}
\frac{1}{\operatorname{arcsinh} x} \underbrace{\int_{0}^{x} \frac{1}{\operatorname{arcsinh} x \sqrt{1+x^{2}}} \cdots \int_{0}^{x} \frac{1}{\operatorname{arcsinh} x \sqrt{1+x^{2}}}}_{k-1} & \times x \underbrace{d x \cdots d x}_{k-1} \\
& =\sum_{n=0}^{\infty} \mathfrak{C}_{n}^{(k)} \frac{x^{n}}{n!} \quad(k \geq 1) .
\end{aligned}
$$

We can also write the generating function of the poly-Bernoulli numbers with level 2 in the form of iterated integrals.

Theorem 8. For $k \geq 1$, we have

$$
\frac{1}{2 \sin \frac{x}{2}} \underbrace{\int_{0}^{x} \frac{1}{2 \tan \frac{x}{2}} \cdots \int_{0}^{x} \frac{1}{2 \tan \frac{x}{2}}}_{k-1} \times \frac{1}{2} \log \frac{1+2 \sin \frac{x}{2}}{1-2 \sin \frac{x}{2}} \underbrace{d x \cdots d x}_{k-1}=\sum_{n=0}^{\infty} \mathfrak{B}_{n}^{(k)} \frac{x^{n}}{n!} .
$$

Poly-Cauchy numbers with level 2 can be expressed explicitly in terms of the Stirling numbers of the second kind with level 2. Poly-Bernoulli numbers with level 2 can be expressed explicitly in terms of the Stirling numbers of the second kind with level 2.

Theorem 9. For $n \geq 0$,

$$
\begin{aligned}
\mathfrak{C}_{2 n}^{(k)} & \left.=\sum_{m=0}^{n} \llbracket \begin{array}{c}
n \\
m
\end{array}\right]_{2} \frac{(-4)^{n-m}}{(2 m+1)^{k}}, \\
\mathfrak{B}_{2 n}^{(k)} & =\sum_{m=0}^{n}\left\{\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\right\}_{2} \frac{(-1)^{n-m}(2 m)!}{(2 m+1)^{k}} .
\end{aligned}
$$

4.1 Relations with poly-Cauchy numbers with level 2

Poly-Cauchy numbers with level 2 can be expressed in terms of poly-Bernoulli numbers with level 2.

Theorem 10. For integers n and k with $n \geq 1$,

$$
\mathfrak{C}_{2 n}^{(k)}=\sum_{m=1}^{n} \sum_{l=1}^{m} \frac{(-4)^{n-m}}{(2 m)!} \llbracket \begin{gathered}
n \\
m
\end{gathered} \rrbracket_{2} \llbracket \begin{gathered}
m \\
l
\end{gathered} \rrbracket_{2} \mathfrak{B}_{2 l}^{(k)}
$$

Remark. Poly-Cauchy numbers can be expressed in terms of poly-Bernoulli numbers ([12, Theorem 2.2]):

$$
c_{n}^{(k)}=\sum_{m=1}^{n} \sum_{l=1}^{m} \frac{(-1)^{n-m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l}^{(k)}
$$

On the contrary, poly-Bernoulli numbers can be expressed in terms of poly-Cauchy numbers:

$$
B_{n}^{(k)}=\sum_{m=1}^{n} \sum_{l=1}^{m}(-1)^{n-m} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m \\
l
\end{array}\right\} c_{l}^{(k)}
$$

Similarly, poly-Bernoulli numbers with level 2 can be expressed in terms of poly-Cauchy numbers with level 2.

Theorem 11. For integers n and k with $n \geq 1$,

$$
\left.\mathfrak{B}_{2 n}^{(k)}=\sum_{m=1}^{n} \sum_{l=1}^{m}(-1)^{n-m} 4^{m-l}(2 m)!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\right\}_{2}\left\{\left\{\begin{array}{c}
m \\
l
\end{array}\right\}\right\}_{2} \mathfrak{C}_{2 l}^{(k)} .
$$

Other relations with Stirling numbers with level 2 are given as follows.
Theorem 12. For $n \geq 1$,

$$
\begin{align*}
& \frac{1}{(2 n)!} \sum_{m=0}^{n} \llbracket\left[\begin{array}{c}
n \\
m
\end{array}\right]_{2} \mathfrak{B}_{2 m}^{(k)}=\frac{1}{(2 n+1)^{k}}, \tag{10}\\
& \sum_{m=0}^{n}\left\{\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\right\}_{2} 4^{n-m} \mathfrak{C}_{2 m}^{(k)}=\frac{1}{(2 n+1)^{k}} . \tag{11}
\end{align*}
$$

Remark. For poly-Bernoulli and poly-Cauchy numbers ([7, Theorem 3]), we have

$$
\begin{aligned}
\frac{1}{n!} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] B_{m}^{(k)} & =\frac{1}{(n+1)^{k}}, \\
\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} c_{m}^{(k)} & =\frac{1}{(n+1)^{k}} .
\end{aligned}
$$

Since the Stirling numbers with level 2 have an explicit expression ([1, Proposition 2.4 (xiii)],[11, (7)]):

$$
\left\{\left\{\begin{array}{l}
n \tag{12}\\
k
\end{array}\right\}\right\}_{2}=\frac{2}{(2 k)!} \sum_{j=0}^{k}(-1)^{k-j}\binom{2 k}{k-j} j^{2 n},
$$

, we have an explicit expression of poly-Bernoulli numbers with level 2 .
Proposition 1. For $n \geq 1$,

$$
\mathfrak{B}_{2 n}^{(k)}=\sum_{m=0}^{n} \sum_{j=0}^{m} \frac{2(-1)^{n-j} j^{2 n}}{(2 m+1)^{k}}\binom{2 m}{m-j} .
$$

In particular, Bernoulli numbers with level 2 can be expressed explicitly as

$$
\mathfrak{B}_{2 n}=\sum_{m=0}^{n} \sum_{j=0}^{m} \frac{2(-1)^{n-j} j^{2 n}}{2 m+1}\binom{2 m}{m-j} .
$$

Remark. Note that poly-Bernoulli numbers \mathbb{B}_{n} can be expressed as

$$
\mathbb{B}_{n}^{(k)}=\sum_{m=0}^{n} \sum_{j=0}^{m} \frac{(-1)^{n-j} j^{n}}{(m+1)^{k}}\binom{m}{m-j}
$$

and the classical Bernoulli numbers B_{n} with $B_{1}=-1 / 2$ can be expressed as

$$
B_{n}=\sum_{m=0}^{n} \sum_{j=0}^{m} \frac{(-1)^{j} j^{n}}{(m+1)^{k}}\binom{m}{m-j}
$$

5 Bernoulli numbers with level 2

Bernoulli numbers $\mathfrak{B}_{n}=\mathfrak{B}_{n}^{(1)}$ with level 2 are given by the generating function

$$
\begin{equation*}
\frac{1}{4 \sin (x / 2)} \log \frac{1+2 \sin (x / 2)}{1-2 \sin (x / 2)}=\sum_{n=0}^{\infty} \mathfrak{B}_{n} \frac{x^{n}}{n!} \tag{13}
\end{equation*}
$$

First several values of Bernoulli numbers with level 2 are given by

$$
\begin{aligned}
\left\{\mathfrak{B}_{2 n}\right\}_{0 \leq n \leq 10}=1, \frac{2}{3}, & , \frac{62}{15}, \frac{1670}{21}, \frac{47102}{15}, \frac{6936718}{33}, \frac{29167388522}{1365}, \frac{9208191626}{3} \\
& \frac{150996747969694}{255}, \frac{58943788779804242}{399}, \frac{7637588708954836042}{165} .
\end{aligned}
$$

Though this definition may be strange, we shall show some meaningful relations with some classical numbers.
For Bernoulli numbers, the von Staudt-Clausen theorem holds. That is, for every $n>0$,

$$
B_{2 n}+\sum_{(p-1) \mid 2 n} \frac{1}{p}
$$

is an integer. The sum extends over all primes p for which $p-1$ divides $2 n$. For Bernoulli numbers with level 2, a similar formula holds ([11, Theorem 14]): for every $n>0$,

$$
\mathfrak{B}_{2 n}+\sum_{(p-1) \mid 2 n} \frac{(-1)^{n-\frac{p-1}{2}}}{p}
$$

is an integer. The sum extends over all odd primes p for which $p-1$ divides $2 n$.

5.1 Glaisher's R numbers

In 1898, Glaisher introduced and studied several numbers related to Bernoulli numbers. In order to get several relations about Bernoulli numbers with level 2, first we use the numbers R_{n}, studied in [3, §132-138] and [4, p.51].The generating functions ([3, p.71]) of R numbers are given by

$$
\begin{equation*}
\frac{\cosh x}{2 \cosh 2 x-1}=\frac{1+\cosh 2 x}{2 \cosh 3 x}=\sum_{n=0}^{\infty}(-1)^{n} R_{n} \frac{x^{2 n}}{(2 n)!} \tag{14}
\end{equation*}
$$

The first several values of numbers R_{n} are given by

$$
\begin{aligned}
&\left\{R_{n}\right\}_{n \geq 0}=1,7,305,33367,6815585,2237423527,1077270776465, \\
& 715153093789687,626055764653322945,698774745485355051847, \ldots
\end{aligned}
$$

([20, A002437,A000364]). In [3, p.71], it is shown that

$$
\begin{equation*}
R_{n}=\frac{3^{2 n+1}+1}{4}(-1)^{n} E_{2 n} \tag{15}
\end{equation*}
$$

where Euler numbers E_{n} are defined by

$$
\frac{1}{\cosh x}=\sum_{n=0}^{\infty} E_{n} \frac{x^{n}}{n!} .
$$

Theorem 13. For $n \geq 0$, we have

$$
\sum_{k=0}^{n}\binom{2 n+1}{2 k}(-4)^{k} \mathfrak{B}_{2 k}=(-1)^{n} R_{n} .
$$

From Theorem 13, we have a determinant expression of Bernoulli numbers with level 2.
Theorem 14. For $n \geq 1$, we have

$$
\mathfrak{B}_{2 n}=\frac{(2 n)!}{4^{n}}\left|\begin{array}{ccccc}
\frac{1}{3!} & 1 & & & 0 \\
\frac{1}{5!} & \frac{1}{3!} & \ddots & & \\
\vdots & \vdots & \ddots & \ddots & \\
\frac{1}{(2 n-1)!} & \frac{1}{(2 n-3)!} & \cdots & \frac{1}{3!} & 1 \\
\frac{1+(-1)^{n-1}}{(2 n+1)!} & \frac{1+(-1)^{n} R_{n-1}}{(2 n-1)!} & \cdots & \frac{1-R_{2}}{5!} & \frac{1+R_{1}}{3!}
\end{array}\right|,
$$

where R_{n} are Glaisher's R numbers, given in (15).
Remark. Euler numbers of the second kind \widehat{E}_{n}, defined by

$$
\frac{x}{\sinh x}=\sum_{n=0}^{\infty} \widehat{E}_{n} \frac{x^{n}}{n!},
$$

have a similar determinant expression ([9, Corollary 2.2],[10, (1.7)]).

$$
\widehat{E}_{2 n}=(-1)^{n}(2 n)!\left|\begin{array}{ccccc}
\frac{1}{3!} & 1 & & & 0 \\
\frac{1}{5!} & \frac{1}{3!} & \ddots & & \\
\vdots & \vdots & \ddots & \ddots & \\
\frac{1}{(2 n-1)!} & \frac{1}{(2 n-3)!} & \cdots & \frac{1}{3!} & 1 \\
\frac{1}{(2 n+1)!} & \frac{1}{(2 n-1)!} & \cdots & \frac{1}{5!} & \frac{1}{3!}
\end{array}\right|
$$

By using the inversion formula, we have the determinant expression of $1 /(2 n+1)$! in terms of \mathfrak{B}_{n}.

Corollary 5. For $n \geq 1$, we have

$$
\frac{1}{(2 n+1)!}=\left|\begin{array}{ccccc}
\frac{4 \mathfrak{B}_{2}}{2!} & 1 & & & 0 \\
\frac{4^{2} \mathfrak{B}_{4}}{4!} & \frac{4 \mathcal{B}_{2}}{2!} & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
\frac{4^{n-1} \mathfrak{B}_{2 n-2}}{2 n-2)!} & \frac{4^{n-2} \mathfrak{B}_{2 n-4}}{(2 n-4)!} & \cdots & \frac{4 \mathfrak{B}_{2}}{2!} & 1 \\
\frac{4^{n} \mathfrak{B}_{2 n}}{(2 n)!}-\frac{R_{n}}{(2 n+1)!} & \frac{4^{n-1} \mathfrak{B}_{2 n-2}}{(2 n-2)!}-\frac{R_{n-1}}{(2 n-1)!} & \cdots & \frac{4^{2} \mathfrak{B}_{4}}{4!}-\frac{R_{2}}{5!} & \frac{4 \mathfrak{B}_{2}}{2!}-\frac{R_{1}}{3!}
\end{array}\right|
$$

6 Glaisher's H^{\prime} numbers

Glaisher's H^{\prime} numbers $\mathcal{H}_{n}([5, \S 34])^{2}$ are defined by

$$
\begin{equation*}
\frac{1}{2 \cos x-1}=1+\sum_{n=1}^{\infty} 2 \mathcal{H}_{n} \frac{x^{2 n}}{(2 n)!} \tag{16}
\end{equation*}
$$

and given by

$$
\begin{equation*}
\mathcal{H}_{n}=\sum_{k=1}^{2 n} \sum_{j=0}^{k} \sum_{i=0}^{\lfloor(j-1) / 2\rfloor}\binom{k}{j}\binom{j}{i}(-1)^{n-j} 2^{k-j}(j-2 i)^{2 n} \quad(n \geq 1) . \tag{17}
\end{equation*}
$$

(Cf. [20, A002114]). The first several values of \mathcal{H}_{n} are

$$
\begin{aligned}
&\left\{\mathcal{H}_{n}\right\}_{n \geq 1}=1,11,301,15371,1261501,151846331, \\
& 25201039501,5515342166891,1538993024478301, \ldots
\end{aligned}
$$

Notice that the value for $n=0$ may be recognized as $H_{0}=1 / 2$. In the next section, we shall see a nice relation with poly-Bernoulli numbers with level 2 for index 0 , yielding a simper expression than the known identity (17). In fact, Glaisher's H^{\prime} numbers are closely related to poly-Bernoulli numbers with level 2 with index 0 .
By Proposition 1, when the index is 0 , we can find a simpler relation about Glaisher's H^{\prime} numbers.

Theorem 15. For $n \geq 1$,

$$
\begin{aligned}
\mathcal{H}_{n} & =\frac{1}{2} \mathfrak{B}_{2 n}^{(0)} \\
& =\sum_{m=0}^{n} \sum_{j=0}^{m}(-1)^{n-j} j^{2 n}\binom{2 m}{m-j} .
\end{aligned}
$$

[^1]
Acknowledgement

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

[1] P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central factorial numbers; their main properties and some applications, Numer. Funct. Anal. Optimiz. 10 (1989), 419-488.
[2] J. W. L. Glaisher, Expressions for Laplace's coefficients, Bernoullian and Eulerian numbers etc. as determinants, Messenger (2) 6 (1875), 49-63.
[3] J. W. L. Glaisher, On the Bernoullian function, Quart. J. 29 (1898), 1-168.
[4] J. W. L. Glaisher, Classes of recurring formulae involving Bernoullian numbers, Messenger (2) 28 (1898), 36-79.
[5] J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc. 31 (1899), 216-235.
[6] M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), 199-206.
[7] T. Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
[8] T. Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
[9] T. Komatsu, Complementary Euler numbers, Period. Math. Hung. 75 (2017), 302314.
[10] T. Komatsu, On poly-Euler numbers of the second kind, RIMS Kokyuroku Bessatsu B77 (2020), 143-158.
[11] T. Komatsu, Stirling numbers with level 2 and poly-Bernoulli numbers with level 2, Publ. Math. Debrecen 100 (2022), 241-261.. arXiv:2104.09726 (2021)
[12] T. Komatsu and F. Luca, Some relationships between poly-Cauchy numbers and polyBernoulli numbers, Ann. Math. Inform. 41 (2013), 99-105.
[13] T. Komatsu and C. Pita-Ruiz, Poly-Cauchy numbers with level 2, Integral Transforms Spec. Func. 31 (2020), 570-585.
[14] T. Komatsu and J. L. Ramirez, Some determinants involving incomplete Fubini numbers, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 26 (2018), no.3, 143-170.
[15] T. Komatsu, J. L. Ramírez, and D. Villamizar, A combinatorial approach to the Stirling numbers of the first kind with higher level, Stud. Sci. Math. Hung. 58 (2021), 293-307.
[16] T. Komatsu, J. L. Ramírez, and D. Villamizar, A combinatorial approach to the generalized central factorial numbers, Mediterr. J. Math. 18 (2021), Article:192, 14 pages.
[17] G. Liu, A recurrence formula for D Numbers $D_{2 n}(2 n-1)$, Discrete Dynamics in Nature and Society 2009 (2009), Article ID 605313, 6 pages.
[18] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer 1924, p. 462.
[19] H. E. Salzer, Coefficients for mid-interval numerical integration with central differences, Phil. Mag. 36 (1945), 216-218.
[20] N. J. A. Sloane, The on-line encyclopedia of integer sequences, available at oeis.org. (2022).
[21] C. Tweedie, The Stirling numbers and polynomials. Proc. Edinburgh Math. Soc. 37 (1918), 2-25.

Department of Mathematical Sciences, School of Science
Zhejiang Sci-Tech University
Hangzhou 310018
CHINA
E-mail address: komatsu@zstu.edu.cn

[^0]: ${ }^{1}$ The case where $f_{n}=0$ for all $n \geq 0$ is considered in [14]

[^1]: ${ }^{2}$ Here we use the notation \mathcal{H}_{n} to avoid confusion with differentiation. In fact, $\mathcal{H}_{n}=H_{n} / 3$, where H_{n} are Glaisher's H numbers ([5, §25],[20, A002114]).

