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TRANSCENDENCE OF THE MINIMUM OF 
PRIME-REPRESENTING CONSTANTS 
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GRADUATE SCHOOL OF MATHEMATICS 

NAGOYA UNIVERSITY 

ABSTRACT. Let (ck)kEN be a sequence of integers satisfying that Ck 2: 2 for every k EN 

and limk➔oo ck = oo. We investigate the set of A> I such that lAc1 •"ck J is a prime 
number for every k E N. Let W(ck) be the set of all such A > 1. We show that the 
minimum of W(ck) exists, and is transcendental. 

1. INTRODUCTION 

Let N be the set of all positive integers. Let us denote l x J as the integer part of x E R 
Let P be the set of all prime numbers. A function f: N ---+ P is called a prime-representing 
function (PRF). The construction of PRFs has been studied by many researchers. Mills 
was the first to propose a PRF of the form l A ck J . He showed that there exists A > 1 such 
that lA3kJ is a PRF [Mil47]. The minimum of such A's is called Mills' constant. Note 
that we can verify the existence of the minimum in Section 3. It is still open whether 
Mills' constant is rational or irrational. Recently, The author and Takeda studied the 
topological properties and algebraic independence of prime-representing constants [ST]. 
As a corollary, they disclosed the transcendence of some prime-representing constants. 
We say that A E (C is transcendental if J(A) -/- 0 for all non-zero polynomials f with 
rational coefficients. The discussions in [ST] are a bit complicated. Thus, the aim of this 
article is to focus on the simple case of [ST] and give the proof of the following theorem. 

Theorem 1.1. Let (ck)kEN be a sequence of integers satisfying that 

(1) C1 = 1, 
(2) ck ::,. 3 for all k E N, 
(3) limk-+oo Ck = oo. 

Then the minimum of { A > 1: l Aci .. ·ck J is a PRF} exists and is transcendental. 

Remark that Theorem 1.1 is a special case of Theorem 1.3 in [ST]. 

Notation 1.2. For all polynomials f(x) = E1=o ajxj with real coefficients, we define 

IJl(x) = E1=alajlxj. For all real sequences (ck)kEN, we define Ck= c1 •··Ck for every 
k EN. Define 0 = 21/40. 

2. MILLS' CONSTRUCTION AND OUTLINE OF THE PROOF OF THEOREM 1.1 

For all positive real sequences ( ck )kEN, we define 

We start with the following result given by Baker, Harman, and Pintz: 
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Theorem 2.1 ([BHPOl]). There exists a constant d0 > 0 such that 

#([x, x + x0] n P) ~ d0x0 / log x 

for sufficiently large x > 0. 

Lemma 2.2 ([AD04, Theorem 1] ). Let (ck)kEN be a real sequence satisfying that 

(1) C1 > 0, 
(2) ck+l ~ 40/19 for all k EN. 

Then W(ck) is non-empty. 

Proof. Take a sufficiently large prime number p1. Then by Theorem 2.1 with x = p~2, 
there exists P2 E P such that p~2 ::::; P2 < P2 + 1 ::::; p~2 + p~20 + 1. We see that c20 ::::; c2 - 1 
since we have c20::::; c2 - 1 {:} c2(1 - 0) ~ 1 {:} c2 ~ 1/(1- 0) = 40/19. Therefore 

P~2 ::::; P2 < P2 + 1 ::::; P~2 + P~2- 1 + 1 < (P1 + 1 r. 
Assume that there exist prime numbers Pk and Pk+l such that 

(2.1) p~k+l ::::: Pk+l < Pk+l + 1 < (Pk+ 1r+1 

for some k E N. Then similarly, we can find a prime number Pk+2 such that 

P~";12 ::::; Pk+2 < Pk+2 + 1 < (Pk+l + 1 r+2 • 

By induction, there exists a sequence (PkhEN of prime numbers satisfying (2.1) for every 
k EN. Therefore for every k EN we obtain 

Pi/Ck::::; Pi(~k+l < (Pk+l + 1)1/Ck+l <(Pk+ 1)1/Ck, 

which implies that 

Pi/C1 ::::; p~/C2 ::::; p~/C3 ::::; ... < (p3 + l)l/C3 < (P2 + l)l/C2 < (P1 + l)l/C1. 

Hence there exist A, A' E ~ such that lim Pi/ck = A ::::; A' = lim (Pk + 1 )1/ck. Since 
k--+oo k--+oo 

Pi/Ck ::::; A ::::; A' < (Pk+ 1)1/Ck for every k E N, we have Pk ::::; Ack <Pk+ 1. Therefore 
lAck J = Pk for every k EN. D 

Let (ck)kEN be a sequence of integers satisfying the conditions in Theorem 1.1. By 
Lemma 2.2, W(ck) is non-empty. Further, we will show that the minimum of W(ck) 
exists in Section 3. Let A= minW(ck)- Let Pk= lAckJ and ak = Pi/ck for all k EN. 
Fix any non-zero polynomial P(x) with integral coefficients. Let us show that P(A) =/- 0. 
By the triangle inequality, for all k E N, we have 

IP(A)I ~ IP(ak)I - IP(A) - P(ak)I =: S -T. 

We firstly evaluate upper bounds for T. Since A is the minimum of W(ck), IA - akl is 
very small. Indeed, in Section 3, we will show that there exists 'Y > 1 such that 

IA - akl ::::; A"((0-1)Ck+1 

for every sufficiently large k EN. By this inequality and the mean value theorem, we can 
obtain quantitative upper bounds for T in Section 4. 

Let us next evaluate lower bounds for S. Since [QJ( ak) : QJ] = Ck, if we take k such that 
Ck> degP, then IP(ak)I > 0. Moreover, we will be able to obtain quantitative lower 
bounds for S. Indeed, in Section 4, we will have 

S = IP(ak)I ~ (4 + 4IPl(A))-ck 
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Therefore by combining bounds for S and T, and using limk➔oo ck = oo, there exists a 
suitable large k E N such that S > T. Therefore A is transcendental. 

3. LEMMAS 

In this section, we present some lemmas to evaluate S and T. 

Lemma 3.1 ([ST, Lemma 4.1]). Let (ck)kEN be a sequence of positive real numbers. Sup
pose that W(ck) is non-empty. Let (Ar)rEN be a sequence of W(ck)- If A1 ~ A2 ~ · · ·, 
then lim Ar exists in W(ck)- In particular, min W(ck) exists. 

r➔oo 

Proof. Since Aj is monotonically decreasing and Aj > 1 for all j EN, the limit limj➔oo Aj 
exists. Let A be this limit. Fix any k E N. Let E = (1 - {Ack}) /2 > 0, where { x} is 
the fractional part of x ER We have O ~{Ack}+ E = (1 + {Ack})/2 < 1. Therefore, 
l Ack J = l Ack + Ej. There exists a large j E N such that O ~ Afk - Ack ~ E, which 

implies that lAckJ ~ lAfkJ ~ lAck+EJ = lAckJ. Therefore, 

lAckJ = lAfkJ E P. 

Let~ = inf W(ck)- Such~ exists since W(ck) is lower bounded and non-empty. Then 
for every N E N there exists AN E W(ck) such that ~ ~ AN ~ ~ + 1/N. Therefore 
~ = limN➔oo AN E W(ck)- Hence~= min W(ck)- D 

Lemma 3.2 ([ST, Lemma 4.5]). Let (ck)kEN be a sequence of positive integers. Suppose 
that W(ck) is non-empty. Let A E W(ck) and Pk = lAck J for every k E N. Then for 
every k EN 

(3.1) 

Proof. Fix any k EN. Then we have Pk~ Ack <Pk+ 1 by A E W(ck)- This implies that 
p~k+ 1 ~ Ack+1 <(Pk+ l)ck+1 • By ck+l EN, we have p~k+ 1 ~ lAck+1 J ~(Pk+ l)ck+1 -1. 
Note that Pk+l = l Ack+1 J. If Pk+l =(Pk+ l)ck+1 - 1, then Pk+ 1 = 2 since ck+l ~ 3 is an 
integer. This is a contradiction. Therefore, (3.1) holds. □ 

Lemma 3.3 ([ST, Lemmas 5.1 and 5.2]). Let (ck)kEN be a sequence of positive integers 
satisfying that 

(1) C1 ~ 1, 
(2) ck+l ~ 3 for every k EN. 

Let A= min W(ck), and let Pk= lAck J for every k EN. Then there exists k0 > 0 such 
that for every k ~ k0 we have 

(3.2) 

Further, there exists "( > 1 such that for all k ~ k0 we have 

(3.3) IA - Pt/Ck I ~ A1(0-l)Ck+l. 

Proof. By Lemma 3.2, we have p~k+i ~ Pk+l for every k E N. Assume that for infinitely 
many k E N such that p~k+i + p:ck+i < Pk+1. Then take a sufficiently large C E N such 

that p~H1 + p:cHi < Pc+1- By Theorem 2.1, there exists qc+1 E P such that 

(3.4) 
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Similarly with the proof of Lemma 2.2, we can construct a sequence of prime numbers 
(qk)k=R+l such that 

(3.5) q~k+l ~ qk+l < qk+l + 1 < (qk + 1r+l 

for every k = £'+1,£'+2, .... Let qk = Pk for every k = l, 2, ... ,£'. Then by Lemma 3.2 and 
(3.4), for every k EN, (3.5) holds. Therefore, B = limk-+oo qk/ck exists and lBck J = qk 

for every k EN. Hence BE W(ck)- Further, lBce+1J = q£+1 ~ p~e+i + p~ce+i < PR+l = 
l ACe+i J. This implies that B < A which is a contradiction to A= min W(ck)- Thus there 
exists k0 > 0 such that for every k ~ k0 , (3.2) is true. 

Let us next show (3.3). Fix any k ~ k0 . Since l Ack J = Pk, we have Pk/ck ~ A. By 
(3.2) and the definition of A, we obtain 

IA- Pk/Ckl =A-Pk/Ck < (Pk+l + 1)1/Ck+l - Pi/Ck ~ (p~k+l + p:Ck+l + 1)1/Ck+l - Pi/Ck 

~ (p~k+l + 2p:ck+l )1/Ck+l _ Pi/Ck = Pi/Ck ( (1 + 2pk0-l)Ck+1 )1/Ck+l _ 1) . 

By the mean value theorem, there exists rt E (0, 2pke-l)ck+i) such that 

(1 + 2pk0-l)ck+l )1/Ck+l - 1 = c2 Pk0-l)ck+l (1 + 77)1/Ck+l -1 ~ Pk0-l)ck+l. 
k+l 

By Pi/Ci ~ Pi/ck, we obtain PkO-l)ck+i ~ (Pi/Ci )(O-l)Ck+i. Let , = Pi/Ci. Therefore we 

conclude that IA - Pi/ck I ~ A,(O-l)Ck+1. □ 

Let f(x) be a polynomial with rational coefficients, and suppose that 

d 

f(x) = adxd + ad_1xd-l + · · · + a1x + ao = ad II (x - aj) 
j=l 

for some ad, ad-l, ... , a0 E Q and a 1 , ... , ad E C. Then we define 

d d 

L(f) = L lajl, M(f) = ladl II max(l, lajl)-
j=O j=l 

Remark that L(f) is called the length of f and M(f) is called the Mahler measure of f. 

Lemma 3.4. In the above notations, we have L(f) ~ 2d M (f). 

Proof. By expanding f(x) = adrt=l(x - O:j), 

f(x) = ad I)-l)N ( L O:j1 • • • O:jN) xd-N_ 
N=O l~ji <···<jN~d 

Therefore, we have 

□ 

We refer the reader to the book written by Everest and Ward [EW99, Chapter 1] for 
more details on the Mahler measure. 
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4. PROOF OF THEOREM 1.1 

Let (ck)kEN be a sequence of integers satisfying the conditions in Theorem 1.1. By 
Lemma 2.2, W(ck) is non-empty. Further, the minimum of W(ck) exists by Lemma 3.1. 
Let A = min W(ck)- Let Pk = l Ack J and ak = Pt/ck for all k E N. Fix any non-zero 
polynomial P(x) with integral coefficients. Let us show that P(A) =/= 0. Fix any large 
k E N. By the triangle inequality, for all k E N, we have 

Evaluating T. By the mean value theorem and Lemma 3.3, there exist T/ E (ak, A), 
k0 EN, and 1 > 1 such that if k 2'. k0 , then we have 

(4.1) 

where F = IP'l(A). 

Evaluating S. Let us show that there exists /3 = /3(A, P) > 1 such that 

(4.2) 

We may assume that IP(ak)I :=;; 1. Let K = (Ql(ak)- Then g(x) = xck - Pk is the minimal 
polynomial of ak over (Ql. Therefore [K, (Ql] = deg g = Ck. Let G be the set of all field 
homomorphisms from K to (C. We define 

<p(x) = II (x - O"(P(ak))). 
aEG 

Then <p(0) E Z since <p(0) is the norm of P(ak) on K/(Ql, and P(ak) is an algebraic 
integer. Moreover, <p(0) =/= 0, if not, then there exists O" E G such that O"(P(ak)) = 0. By 
the injection of O", P(ak) = 0. This contradicts [(Ql(ak) : (Ql] = Ck if k is enough large to 
satisfy Ck > deg P. Therefore, by retaking a larger k, we see that <p(0) E Z \ {0}. Hence 
by the mean value theorem, there exists 0 E (-IP(ak)I, IP(ak)I) i:;;;; (-1, 1) such that 

Lemma 3.4 yields that 

II (1 + IPl(IO"(ak)I)) = (1 + IPl(ak))deg'I'_ 
aEG 

Therefore, by deg<p = ck, we obtain 

1 :=;; IP(ak)ICk2ck(l + IPl(ak))°k :=;; IP(ak)I (4 + 4IPl(A))°k. 

Setting /3 = /3(A, P) = 4 + 4IPl(A), we conclude (4.2). 
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Completing the proof of Theorem 1.1. By combining (4.1) and (4.2), we have 

IP(A)I 2:: S -T 2:: 13-ck - p-yC0-1)ck+1_ 

Further, we observe that 

13-ck - p-yC0- 1)Ck+1 > O {:} ( -Ck) log f3 > log F + ( 0 - 1 )Ck+i log 1 

{:} - log /3 > (log F)/Ck + (0 - l)ck+l log,. 

Hence there exists a large k E N such that 13-ck - F,(e-i)ck+i > 0 since lim ck+l = oo. 
k-+oo 

Therefore, IP(A)I > 0 which means that A is transcendental. 
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