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1 Introduction and the results 

In this paper we consider the algebraic independence of the values of a 

power series of the form f (z) = ~ oo k=0戸， where{ ek}k;:::0 is an increasing 
sequence of nonnegative integers. Let a1,..., ar be algebraic numbers with <゚|叫く 1(1 ~ i ~ r). We consider the following condition under which 
the values J(a1),..., f(ar) are clearly algebraically dependent. 

(*) There exist a nonempty subset { ai11...,位｝ of{ a1,..., ar }, roots of 
unity (1,..., (s, an algebraic number I with aiq = (qr (1 ~ q ~ s), 
and algebraic numbers 6,..., ts, not all zero, such that 

s 

こ＜ぷ？＝0 (1) 
q=l 

for all sufficiently large k. 

In what follows, ij denotes the field of algebraic numbers. Suppose that 
the condition (*) is satisfied. Then there exists a nonnegative integer k。
such that江パ心＝ 0for all k 2:: k。.Hence

苫af屈）一苫<q苫心＝旦苫<q心＝旦（苫くぷk)TCK=0 
and so区；＝1盆f(aiq)E豆． Thereforewe have the following: 
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Proposition 1.1. If the infinite set of the values {f(a) I a E (Q, 0 < lal < 
1} is algebraically independent, then there exist no distinct roots of unity 
(1, ... , (s for which (1) holds. 

If { ek h2:o increases rapidly, then the converse of Proposition 1.1 also 
holds. More precisely, the derivatives can be included. In what follows, 
Z2:o and f(l) ( z) denote the set of nonnegative integers and the derivative 
of an analytic function f(z) of order l E Z2:o, respectively. 

Theorem 1.2 (A special case of Nishioka [4]). Let fi(z) = ~~o zek, 
where { ekh2:o is an increasing sequence of nonnegative integers satisfying 

limk--+oo ek+i/ek = oo. Let a1, ... , ctr be algebraic numbers with O < lail < 1 
(1 :=; i :=; r). Then the following three properties are equivalent: 

(i) The infinite set {fil) ( ai) I l E Z2:o, 1 :=; i :=; r} is algebraically depen­
dent. 

(ii) 1, fi(a1), ... , fi(ar) are linearly dependent over (Q. 

(iii) The condition ( *) holds for a1, ... , ar. 

By the discussion before Proposition 1.1, the main assertion of Theo­
rem 1.2 is that the property (i) implies (iii); the latter property is broken 
by the following condition as is shown in Proposition 1.4 below. 

Definition 1.3. A sequence of nonnegative integers { ek}k2'.0 is said to be 
distributed infinitely to any of congruence classes if { k E Z2:o I ek - a 
(mod N)} is an infinite set for all positive integer N and for all a E 

{O, 1, .. . ,N - 1}. 

Proposition 1.4. There exist no distinct roots of unity ( 1 , ... , (s for which 
(1) holds if and only if { ekh2:o is distributed infinitely to any of congruence 
classes. 

Proof. First we prove that, if there exist no distinct roots of unity ( 1 , ... , (s 
for which (1) holds, then { ekh2:o is distributed infinitely to any of con­
gruence classes. We show the contrapositive. Suppose that there are 
a positive integer N and an integer a with O :=; a :=; N - 1 such that 
{ k E Z2:o I ek - a (mod N)} is a finite set. Then there exist a nonnega­
tive integer k0 and {b1 , ... , bs} C {O, 1, ... , N - 1} with s < N such that 
{ ek + NZ I k 2: ko} = {b1 +NZ, ... , bs + NZ}. Letting ( be a primitive 
N-th root of unity and noting that s < N, we can take algebraic numbers 
(o, ... , (N-1, not all zero, such that 
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Then, for any k 2:: k0 , there exist nonnegative integers bi(k) with 1::; i(k) ::; 
sand mk such that ek = bi(k) + mkN. Hence 

N-1 N-1 

L ~j (cjrk = L ~j (cjt(k) = 0 (k 2:: ko) 
j=O j=O 

and so the roots of unity 1, (, ... , (N-l satisfy (1). 
Next we prove that, if { ek}k~O is distributed infinitely to any of congru­

ence classes, then there exist no distinct roots of unity ( 1, ... , (s for which 
(1) holds. Assume on the contrary that there exist algebraic numbers 
6, ... , ~s, not all zero, distinct roots of unity ( 1 , ... , (s, and a nonnegative 
integer k0 such that 

s 

L ~q(;k = 0 (k 2:: k0 ). 

q=l 

Let N be a positive integer satisfying ({ = 1 (1 ::; q::; s) with N 2:: s. For 
each a E {O, 1, ... , N - 1}, since {k 2:: k0 I ek - a (mod N)} #- 0 by the 
assumption, we can take k(a) = min{k 2:: k0 I ek - a (mod N)}. Then 

s s 

L~q(; = L~q(:k(a) = 0 (a E {O, 1, ... , N -1}). 
q=l q=l 

In particular, we have 

Since ( 1, ... , (s are distinct, by the non-vanishing of the Vandermonde 
determinant, we see that ~q = 0 (1 ::; q::; s), a contradiction. □ 

By Proposition 1.4 we see that, if a sequence { ekh~o satisfying the 
assumptions of Theorem 1.2 is distributed infinitely to any of congruence 
classes, then the property (iii) does not hold for any of the distinct algebraic 
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numbers a1, ... , ar. Since the sequence { k! + k }k2o is distributed infinitely 
to any of congruence classes, we have the following result as the corollary 
to Theorem 1.2. 

Corollary 1.5 (Nishioka [4]). Let h(z) = L~o zk!+k_ Then the infinite 

set {JJZ\a) I l E Z20 , a E Q, 0 < lal < 1} is algebraically independent. 

By Hadamard's Gap Theorem (cf. Rudin [6, 16.6 Theorem]), power 
series L~o zek with lim inf k--+oo ek+ i/ ek > 1 has the unit circle I z I = 1 as 
its natural boundary. Hence h(z) in Corollary 1.5 is one of the concrete 
examples of power series satisfying the following: 

Property 1.6. The infinite set consisting of all the values of a power 
series in question and its derivatives of any order, at any nonzero algebraic 
numbers within its domain of existence, is algebraically independent. 

Here, we introduce another power series which has the unit circle as its 
natural boundary and satisfies Property 1.6. Let l x J denote the integral 
part of the real number x, namely, the largest integer not exceeding x. 

Theorem 1. 7 (Tanuma [8]). Let w > 0 be a quadratic irrational number. 

Define fs ( z) = I:~1 z l kw J . Then the infinite set {JJ1\ a) I l E Z20, a E 

Q, 0 < lal < 1} is algebraically independent. 

The sequence {l kw J }k20 is called the Beatty sequence. By Corollary 1.5 
and Theorem 1.7, it is expected that, if f(z) = L%°=o zek has the unit circle 
as its natural boundary and if { ekh2:o is distributed infinitely to any of 
congruence classes, then f(z) also has Property 1.6. Before constructing 
such a power series, we consider power series generated by a geometric 
progression, which has simpler structure than { k! + k }k20 in Corollary 1.5 
or the Beatty sequence {l kw J}k2o. 

Theorem 1.8 (Loxton and van der Poorten [2]). Let d ~ 2 be an integer 
and define f4(z) = L%°=o zdk. Let a1, ... , ar be algebraic numbers with 
0 < I ai I < 1 ( 1 S i S r). Then the following three properties are equivalent: 

(i) The infinite set {fd1) ( ai) I l E Z20, 1 S i S r} is algebraically depen­
dent. 

(ii) 1, !4(a1), ... , f4(ar) are linearly dependent over Q. 
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(iii) There exist a nonempty subset { O'.ii, ... , aiJ of { a1, ... , ar }, nonneg­
ative integers k1 , ... , ks, roots of unity ( 1 , ... , (s, an algebraic number 

1 with afq = (qr (1 ::; q::; s), and algebraic numbers 6, ... , ~s, not 
q 

all zero, such that 
s 

L~q(f = 0 (k ~ 0). 
q=l 

By Hadamard's Gap Theorem, f 4 (z) also has the unit circle as its natu­
ral boundary. Moreover, the property (iii) of Theorem 1.8 is similar to that 
of Theorem 1.2. Hence, imitating Corollary 1.5, we expect to construct a 
sequence which is distributed infinitely to any of congruence classes and 
which generates a power series satisfying Property 1.6. In this paper we 
consider the case of the sum of a geometric progression and an arithmetic 
progression. To begin with, we observe the following: 

Proposition 1.9. Let c ~ l, d ~ 2, and m be integers. Then, if the 
sequence { cdk+mk h::>:o is distributed infinitely to any of congruence classes, 

then 1ml = 1. 

Proof. We show the contrapositive. Assume that 1ml =/=- 1. Put 

N := max{gcd(c, m), gcd(d, m)}. 

We distinguish the following two cases: 
First we consider the case of N ~ 2, which includes the case of m = 0 

by d ~ 2. Since cdk + mk _ 0 (mod N) for all k ~ l, the sequence 
{ cdk + mk h::>:o is not distributed infinitely to the congruence classes other 
than O modulo N. 

Secondly we consider the remaining case of N = l, which implies 1ml ~ 
2. Let p be a prime factor of m and put N' := p2• Then the shortest 
period modulo N' of the sequence { mk h::>:o is equal to 1 or p, respectively 
according as m is divisible by p2 or not. Since the shortest period modulo 
N' of the sequence { cdkh::>:o is a divisor of cp(p2) = p(p - l), that of the 
sequence { cdk + mk h::>:o is also a divisor of p(p - l), which is smaller than 
N'. This means that there are some congruence classes modulo N' to which 
the sequence { cdk + mk} k::>:O is not distributed infinitely. □ 

From the discussion above, we have the following result. 
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Main Theorem 1.10. Let c 2:: 1, d 2:: 2, and m be integers. Define 
00 

f(z) = L zcdk+mk_ 

k=O 

Then, the infinite set {fU)(a) I l E Z20 , a E (Q, 0 < lal < 1} is alge­
braically independent if and only if 1ml = 1. 

Proof. If the infinite set {fU)(a) I l E Z 2o, a E (Q, 0 < lal < 1} is alge­
braically independent, then so is the infinite subset {f(a) I a E (Q, 0 < 
lal < 1 }. By Proposition 1.1, there exist no distinct roots of unity ( 1 , ... , (s 
for which (1) holds. Then by Proposition 1.4, the sequence { cdk + mk }k20 

is distributed infinitely to any of congruence classes. Hence by Proposi­
tion 1.9, we have 1ml = 1. 

The converse is immediate from Theorem 1.11 below. □ 

Theorem 1.11. Let c 2:: 1 and d 2:: 2 be integers. Define 
00 00 

g(z) = L zcdk+k and g-(z) = L zcdk-k_ 

k=O k=O 

Then, each of the infinite sets {g(1l(a) I l E Z20 , a E (Q, 0 < lal < 1} and 
{g-(Zl(a) I l E Z2 o, a E (Q, 0 < lal < 1} is algebraically independent. 

By Propositions 1.1, 1.4 and Theorems 1.7, 1.11, we have the following: 

Corollary 1.12. Each of the sequences {lkwj}k20 , where w > 0 is 
a quadratic irrational number, and { cdk + k }k20 , { cdk - k }k20 , where 

c 2:: 1, d 2:: 2 are integers, is distributed infinitely to any of congruence 
classes. 

2 Lemmas 

In this section we prepare several lemmas for proving Theorem 1.11. The 
following lemma is a well-known fact on linear recurrences. 

Lemma 2.1 (cf. Shorey and Tijdeman [7, Theorem C.1]). Let 

Pl (Y), ... , p8 (Y) be nonzero polynomials with algebraic coefficients and 
01 , ... , 08 nonzero algebraic numbers. Let 

s 

rk = LPi(k)0f (k 2:: 0). (2) 
i=l 
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Put di = deg Pi ( 1 ::; i < s), m 

numbers b1, ... , bm by 
I:t=l ( di + 1), and de.fine algebraic 

Then 

holds. 

s 

IT (X - 0ili+I =: xm - b1xm-l - ... - bm. 

i=l 

The following lemma plays a crucial role in making the descent method 
work in the proof of Theorem 1.11. 

Lemma 2.2 (A special case of Lemma 2.3 of Ide, Tanaka, and Toyama 
[1]). Let d 2'. 2 be an integer. Then, for any integer N 2'. 2, there exist a 

positive integer N 1 and a nonnegative integer u 1 such that N 1, u 1 < N and 
dk+Ni - dk (mod N) for any k 2'. u1. 

The following lemma is deduced from Lemma 2.1. 

Lemma 2.3 (A special case of Lemma 2.2 of Ide, Tanaka, and Toyama 
[1]). Let d, N, N1, and u1 be integers as in Lemma 2.2. De.fine 

Rk = rk(dk (k 2: 0), 

where {rk}k::>:O is a linear recurrence of algebraic numbers of the form (2) 
and ( is an N-th root of unity. Then { RN1k+u1 +a-h::>:o (0 ::; (J ::; N1 - 1) 
are linear recurrences satisfying the same recurrence relation 

where b1 , ... , bm are algebraic numbers de.fined by 

s IT (X - 0[11 )d;+l =: xm - b1xm-l - ... - bm 

i=l 

and di (1 ::; i::; s), m are as in Lemma 2.1. 

Let z1 , ... , Zs be variables and d 2'. 2 an integer. Denote z = (z1 , ... , zs), 

k k d( k) _ dk dk d(k) = (d , ... ,d ), and z -(z1 , ... ,zs ). (3) 
~ 

s 
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Lemma 2.4 (A special case of Lemma 2.4 of Ide, Tanaka, and Toyama 
[1]). Let N be a positive integer and let { Rt)h::>:o (0 :::; r5:::; N -1) be linear 
recurrences of algebraic numbers satisfying the same recurrence relation 

R (a) b R(a) b R(a) 
k+m = 1 k+m-1 + · · · + m k (k ~ 0). 

Define 
oo N-1 s R 

f(z) =LL Rt) IT (zJNk+u+~) i, 

k=O a=O j=l 

where u is a nonnegative integer and £1, ... , t's are nonnegative integers 
not all zero. Then f(z) ( = f(zd(O))) , f(zd(N)), ... , f(zd((m-l)N)) satisfy 

the functional equation 

0 1 0 

f(zd(N)) 
j(zd(2N)) 

+ 

b(z) 
0 

0 

where b(z) is a polynomial in variables z1, ... , Zs with algebraic coefficients. 

The following lemma is used for constructing the Mahler functions in 
the proof of Theorem 1.11. 

Lemma 2.5 (Loxton and van der Poorten [2]). Let a:1, ... , O:r be algebraic 
numbers with 0 < lail < 1 (1 :::; i :::; r). Then there exist multiplicatively 
independent algebraic numbers /31, ... , f3s with 0 < l/3jl < 1 (1 :::; j :::; s) 
such that 

s 

ai = (i II ,e;ij ( 1 :::; i :::; r) , ( 4) 
j=l 

where (i (1 :::; i :::; r) are roots of unity and t'ij (1 :::; i :::; r, 1 :::; j :::; s) are 
nonnegative integers. 

Remark 2.6. In Lemma 2.5, at least one of £i1 , ... , £is is positive for any 
i. 

Lemma 2.7 (Ide, Tanaka, and Toyama [1]). Let {bii)h::>:o (1 :::; i :::; p) 
be sequences of complex numbers which are eventually periodic with period 
N. Let 81 , ... , b"p be complex numbers with l8i I = 1 (1 :::; i :::; p) and 8i/ 6j 
(1:::; i < j:::; p) are not N-th roots of unity. If 
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p 

L bki)bf ➔ 0 (k ➔ oo), 
i=l 

then bki) = 0 ( 1 :S i :S p) for all sufficiently large k. 

3 Proof of Theorem 1.11 

We denote by F[z1, ... , zs] and by F[[z1, ... , zs]] the ring of polynomials 
and that of formal power series in variables z1, ... , Zs with coefficients in a 
field F, respectively. 

Proof of Theorem 1.11. First we prove the algebraic independency of 
{g(ll(a) I l E Z2o, a E (Ql, 0 < lal < 1} and secondly we verify that 
the algebraic independency of {g-(l)(a) I l E Z2o, a E (Ql, 0 < lal < 1} 
can be proved in the similar way. We assume on the contrary that there 
exist distinct algebraic numbers 0:1, ... , O:r with 0 < lail < 1 (1 :S i :S r) 
and a nonnegative integer L such that {g(l) ( ai) I 0 :S l :S L, l :S i :S r} is 
algebraically dependent. For each l (0 :S l :SL), let 

Then we see that {g1( ai) I 0 :S l :S L, l :S i :S r} is algebraically dependent. 
Let (i, /3j, fij (1 :Si :Sr, 1 :S j :S s) be as in Lemma 2.5. Then the algebraic 
numbers 0:1, ... , c.xr are expressed as ( 4). Let z1, ... , Zs be variables and 
z = (z1 , ... , zs)- For each l, i (0 :S l :SL, l :Si :Sr), define 

Then by (4) we have gzi(f3) = gz(c.xi) (0 :S l :S L, l :S i :S r), where 
{3 = (/31, ... , f3s)- Thus {gzi(/3) I 0 :S l :S L, l :S i :S r} is algebraically 
dependent. Take a positive integer N0 such that ({°1° = 1 for any i (1 :S i :S 
r). Then by Lemma 2.2 there exist a positive integer N1 and a nonnegative 
integer u1 such that 

(5) 
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for any k 2:: u1. Then, using Lemma 2.3 with (5) and applying Lemma 2.4 
to 

(0::::; l ::::; L, 1 ::::; i ::::; r), 

we see that 9zi(zd(vNi)) (0 ::::; l ::::; L, 1 ::::; i ::::; r, 0 ::::; p ::::; m(l) - 1) satisfy 
the Mahler type functional equation of the form 

9li(z) b1 bm(l) 9li(zd(N)) 
9li(zd(N)) 1 0 0 9Zi ( zd(2N)) 

9Zi ( zd((m(l)-l)N)) 0 1 0 9Zi ( zd(m(l)N)) 

E (Q[zl)m(l), (6) 

where m(l) (0 ::::; l ::::; L) are some positive integers. Moreover, by the 
vanishing theorem of Masser [3], all the conditions required for Mahler 
functions are satisfied. Then by Theorem 2 of Nishioka [5], {gli(zd(O)) = 
9zi(z) IO::::; l::::; L, 1::::; i::::; r} is linearly dependent over Q modulo Q[z]. 
Thus there exist algebraic numbers czi ( 0 ::::; l ::::; L, l ::::; i ::::; r), not all zero, 
such that 

L r L r 00 ( s ) cdk 
~ ~ czi9Zi(z) = ~ ~ czi ~(cdk + k)1af(fdk D z?1 E Q[z]. (7) 

We may assume that Czi (0::::; l::::; L) are not all zero for any i (1 ::::; i::::; r). 
Hence there exists a sufficiently large integer R such that the roots of the 
polynomials ~f=o clixz (1 ::::; i ::::; r) are inside the circle IXI = R. Then by 
(7) we have 

L r 00 ( 8 ) cdk 
~ ~ Czi 6(cdk + k)1af(fdk D zJiJ =: G(z) E Q[z]. 

Take an integer k1 so large that 

cdk1 > max{degz G(z), _max. {fijdR}}. 
1:S:z:S:r,1:S:J:S:s 

(8) 

(9) 
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Since f 1j (1 ~ j ~ s) are not all zero by Remark 2.6, we have 

( ) 
cdk+k1 8 

degz g zJ" ~ cdk+k, ~ f1j :> rn•, > degz G(z) 

for all k 2 0. Let S be the subset of {1, ... , r} consisting of the indices i 
such that 

(IT zJij) cdki = (rr zJlj) cdkl 

j=l j=l 

for some ki 2 R. Then for all i ES and k 2 0, 

and for all i E {1, ... , r} \ S, k 2 0, and k' 2 R, 

Therefore, comparing the coefficients of (I].i=l zJ1j)cdk+ki in (8), we have 

L 

LL Czi(cdk+k; + k + kiia7+k;(fdk+k; = 0 

iES l=O 

for all k 2 0. Expanding (11), we have 

L 

L L Czi(Fk+k; a7+k; L ( u ~ w) ( cdk+k;) u kv kf 
iES l=O u+v+w=l 

(11) 

~ L t I: :t ( u v l ~ u _ v) C!i c• (/""'' ( a,d'' )" k;-u-u ( a,d" )' k' 
iES u=O v=O l=u+v 

= 0 (12) 

for all k > 0. Let 0r > 0r_1 > · · · > 01 be the distinct absolute values of 
aidu ( i E S, 0 ~ u ~ L) and let 

Xt = { (i, u) I i E S, 0 ~ u ~ L, laidul = 0t} 
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for each t (1 ~ t ~ T). Then we have S x {0, ... , L} = X 1 LJ · · · LJ Xr. By 
(12), we obtain 

t L f t ( u v l ~ u _ v )c,.c"([nw, ( a,d'')k' kt"-" ( a,d")' k' 
t=l (i,u)EXt v=O l=u+v 

T L 

= LLa~t,v)0fkv 
t=l v=O 

=0 (13) 

for all k ~ 0, where 

(14) 

Note that each sequence { at'v)h::::o is bounded since laidu /0tl = 1 and 
l(il = 1. Wegivealexicographicalorderto (t,v) E {1, ... ,T}x{0, ... ,L}, 
namely, (T,L) > (T,L-l) > ··· > (T,0) > (T-1,L) > ··· > (1,1) > 
(1, 0). We prove by induction on (t, v) from (T, L) down to (1, 0) that 

(t,v) O 
ak = (15) 

for all sufficiently large k. First, we see that a~T,L) = 0. Indeed, if (i, u) E 

Xr, then u = L, since d ~ 2. Thus, if v = L, then we have u+v = 2L > L, 
and so arL) is an empty sum. Hence a~T,L) = 0. Assume that for all (t, v) 
with (t, v) > (to, vo), 

(t,v) _ O 
ak -

for all sufficiently large k. Then by (13), we have 

and hence 

L at'v)0f kv = 0 
(t,v)S(to,vo) 

a~to,vo)0fokvo = - L a~t,v)0f kv 

(t,v)<(to,vo) 

OSv<vo t=l v=O 
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for all sufficiently large k. Note that if v0 = 0, the first sum of the rightmost 
side of (16) is an empty sum. Dividing both sides by 0f0 kv0 , we have 

to-I L g k 
(to,vo) = _ ~ (to,v)kv-v0 _ ~ ~ (t,v) (-t) kv-v0 

ak ~ ak ~ ~ ak 0 . 
O:'::v<vo t=l v=O to 

Since v - v0 < 0, the first sum of the right-hand side tends to zero as k 
tends to infinity. The second sum of the right-hand side also tends to zero 
as k tends to infinity, since 0t < 0t0 if 1 :::; t ::=; to - 1. Therefore, we have 

aro,vo)-+ 0 (k-+ oo). (17) 

Here we write (i, u) ~ (i', u') if (aidu)N1 = (ai,du')N1 _ Then~ is an equiv­
alence relation on Y := {(i, u) E Xt0 I u + vo ::=; L}. Let Y = Y1 LJ · · · LJ Yp 
be the partition of Y with respect to~. For each q (l :::; q ::=; p), we fix a 
representative (iq, uq) of Yq and let 

O',· dUq 
8 ·- iq 

q .- e;;-· 
Then l8ql = 1 (1 :::; q ::=; p), and 8q/8q, (1 :::; q < q' ::=; p) are not N1-th roots 
of unity. In addition, for each (i, u) E Yq, letting 

aidu 
-0- = ~iu6q 

to 

with ~iu an N1-th root of unity, we have by (14) the expression 

(to,vo) = L LL ( l ) . u;-cdk+ki( ·du)kikl-u-v0 (aidu)k 
ak l Czic ':>i ai i 0 u v0 - u - vo t 

(i,u)EY l=u+vo o 

where 

p 

= ~b(q)8k 
~ k q, 
q=l 

Since {(t+kih2o (1:::; i:::; r) are eventually periodic with period N1 by (5), 

so are {b1q)h2o (1 :::; q ::=; p). By (17) and Lemma 2.7, we have 

b1q) = 0 (1 :::; q :::; p) 
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for all sufficiently large k. Thus 

for all sufficiently large k, and (15) is proved. In particular, noting that 
(i, u) E X1 if and only if lail = mini'ES lai,I = 01 and u = 0, we have 

L . k 
(1,0) _ ~ ~ 1cdk+ki kikl (O'.i) _ 0 

ak - ~ ~ Czi'>i ai i 0 -
iES, l=O l 

(18) 

lail=01 

for all sufficiently large k. Renumbering the indices i ( 1 S i S r), we 
may assume that { i E S I lail = 01} = {1, ... , ro}- Put Ai := Lf=o Czikf 
(1 S i S r 0 ). Then Ai =/- 0 (1 S i S r 0 ) since ki 2: R. Multiplying both 
sides of (18) by 0}, we have 

i=l 

for all k 2: k0 , where k0 is taken to be sufficiently large. Then, using (10), 
we have 

ro r0 00 ( 8 ) cdk 
~ Ai9oi(z) =~Ai L af<lk [I zJij 
i-1 i-1 k=O J-1 

r0 ko+ki-1 ( s ) cdk 

=~Ai ~ af(fdk D z?i 
E Q[z], (19) 

namely {9oi(z) I 1 S i S r0} is linearly dependent over Q modulo Q[z]. 
Noting that 

00 
( 

8 
) cdk ( ) ~ k;-cdk IT eij 

9oi z = ~ ai '>i j=l zj , 

we see by (3) and (5) that 

9oi(z) - af1goi(zd(Ni)) E Q[z] 

for each i (1 Si S r0). Multiplying (21) by Aia-;-N1 , we get 

Aia-;-N19oi(z) - Ai9oi(zd(Ni)) E Q[z]. 

(20) 

(21) 

(22) 
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Then, replacing z with zd(Ni) in (19) and substituting (22) into it, we have 

ro 

L AiaiNi 9oi ( z) E Q[ z]. 
i=l 

We write i ~ i' if af1 = af1 . Then ~ is an equivalence relation on 
Z := {1, ... , r 0}. Let Z = Z 1 LJ · · · LJ Zp denote the partition of Z with 
respect to ~ such that IZ1I S · · · S IZpl- Renumbering the indices i 
(1 s i s r0 ), we may assume that Z1 = {1, ... , r 1}. Letting ip be the 
representative of Zp and subtracting 

ro 

aZ1 L AiaiN19oi(z) E Q[z] 
i=l 

from (19), we have 

and thus {goi(z) I i E Z \ Zp} is linearly dependent over Q modulo Q[z]. 
Continuing this process, we see that {goi ( z) I i E Z1} = {goi ( z) I 1 S i S 
r 1} is linearly dependent over Q modulo Q[z]. Here, either of the following 
two cases holds: 

(i) There exists 1 Si' S ro such that af1 -/- af1 (i E {1, ... , ro} \ { i'} ). 

(ii) For each 1 S i S ro, there exists i' -/- i such that af1 = af1 • 

If (i) holds, then r 1 = 1 and so g01 (z) E Q[z], which contradicts (20). Hence 
(ii) holds, namely af1 = · · · = a;::1 and the functions g0i(z) (1 s i s r1 ) 

are linearly dependent over Q modulo Q[z], which imply respectively that 
N1 2: r1 2: 2 since a1, ... , CTr1 are distinct and that the values 9oi(f3) (1 S 
i s r1 ) are algebraically dependent. Since af1 = · · · = a;::1 , we can write 
ai = ~ia1 (1 Si S r1), where ~i (1 Si S r1) are N1-th roots of unity with 
6 = 1. Let z0 be a variable. For each i (1 sis r1), we define 

(23) 
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Since hi(a1) = L~o afdk+k = 9oi(/3) (1 :S i :S r1), the values hi(a1) 
(1 :S i :S r1) are algebraically dependent. By N1 2: 2, from Lemma 2.2 
there exist a positive integer N2 and a nonnegative integer u2 such that 
N2, u2 < N1 and 

cdk+N2 - cdk (mod N1) 

for any k 2'. u2• Then by ( 23) and ( 24) we see that 

hi(zo) - af2 hi(zf2
) E Q[zo] 

(24) 

for each i (1 :S i :S r1). Hence hi(zo) (1 :S i :S r1) are Mahler functions of 
one variable and so, only by Theorem 2 of Nishioka [5], they are linearly 
dependent over Q modulo Q[zo]. We may assume that all the coefficients 
of the linear dependence relation of hi(zo) (1 :S i :S r1) are nonzero. Then, 
similarly to the case (i) above, if there exists 1 :S i' :S r1 such that af2 -/=­

af2 (i E {1, ... ,r1} \ {i'}), then hi'(z0) E Q[z0], which contradicts (23). 
Otherwise, renumbering the indices i (1 :Si :S r1), we see that there exists 
some r2 (2 :S r2 :S N2) such that af2 = · · · = a{:;2 and hi(zo) (1 :S i :S r2) 
are linearly dependent over Q modulo Q[zo]. Iterating this process finite 
times, we reach N1 > N2 > N3 > · · · > NM = l by Lemma 2.2. Since 
a 1 , ... , CXrM-i are distinct, similarly to the case (i) above, we lead to a 
contradiction. 

Now we verify that a similar argument can be applied to g-(z) = 
L%°=o zdk-k in proving the algebraic independency of {g-(l) (a) I l E 

Z:;:.o, a E Q, 0 < lal < l}. Assume that {g-(Zl(ai) IO :S l :SL, 1 :Si :Sr} 
is algebraically dependent. For each l, i ( 0 :S l ::S; L, l :S i :S r), define 

oo ( 8 ) cdk 
9u(z) = I)cdk - k)1aik(fdk IT zJ'1 

k=O J=l 

Then {gu(/3) I O :S l :S L, 1 :S i :S r} is algebraically dependent. By 
(5), Lemma 2.3, and Lemma 2.4, we see that 9u(zd(pNi)) (0 :S l ::S; L, 1 :S 
i :S r, 0 ::S; p ::S; m(l) - 1) satisfy the functional equation of the form (6) 
with 9u in place of 9Zi· Then by the vanishing theorem of Masser [3] and 
by Theorem 2 of Nishioka [5], there exist algebraic numbers cli (0 :S l ::S; 
L, 1 :Si :Sr), not all zero, such that 

L r L r 00 ( 8 ) cdk 
~ ~ Czi9u(z) = ~ ~ Czi ~(cdk - k)1aik(fdk D zJij E Q[z]. 
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We may assume that Czi ( 0 :s; l :s; L) are not all zero for any i ( 1 :s; i :s; r). 
Let R be a sufficiently large integer such that the roots of the polynomials 
Lf=o CziX1 (1 :s; i :s; r) are inside the circle IXI = R. Then we have 

L r oo (s )~ 
~ ~ czi ~(cdk - k)1ci;k(fdk D z1ij =: c-(z) E (Q[z]. 

Take an integer k1 so large that 

cdk1 > max{degz c-(z), _max_ {.eijdR}}. 
1:s;i:s;r,1:s;J:s;s 

Similarly to the case of g(z) = L~o zcdk+k, we define the subset S of 
{ 1, ... , r} and the nonnegative integers ki ( i E S). Then, similarly to ( 11), 
we see that 

L LL cli(cdk+k; - k - ki)1a--;k-k;(fdk+k; = 0 

iES l=O 

for all k 2:: 0. Expanding this equation, we have 

L L-u L ( l ) 

~~~l~v uvl-u-v 

X CziCU(fdk+k; ( a;lduli(-ki)l-u-v( a;ldul( -k r = 0 

for all k 2:: 0. Let 0r > 0r_1 > · · · > 01 be the distinct absolute values of 
a;1du (i ES, 0 :s; u :s; L) and let 

Xt = {(i, u) Ii ES, 0 :s; u :s; L, la;1dul = 0t} 

for each t ( 1 :s; t :s; T). Define 

-(t,v) 
ak 

Then, similarly to the case of g(z), we can prove that 

L -1 k 
-(1,0) _ ~ ~ _;-cdk+k; -k;(-k·)l (°'i ) _ 0 

ak - L..t L..t c1i-,,i ai i 0 -
iES, l=O l 

la;-11=01 
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for all sufficiently large k. Renumbering the indices i (1 :::; i :::; r), we may 
assume that { i E S I la;1 I = 01} = {1, ... , ro}. Then we see that 

where ,\ = ~f=o cli(-ki)1 -/- 0 (1 :s; i :s; ro)- This implies that {gOi(z) I 

1 :::; i :::; r 0} is linearly dependent over Q modulo Q[z], and the proof is 
completed in a similar way to (19) and thereafter. □ 
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