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abstract 

We discuss ultradiscrete equations in low-dimensional, especially, one-dimensional dynamical 

systems. The ultradiscrete equations are derived from the normal forms of the local bifurcations 

i.e., saddle-node, transcretical and pitchfork bifurcations, of one-dimensional continuous dynam

ical systems. With the aid of the graphical analysis, the dynamical properties of the obtained 

ultradiscrete equations are revealed. In particular, we show that these ultradiscrete equations 

exhibit the bifurcations characterized by piecewise linearity, say ultradiscrete bifurcations. 

1 Ultradiscretization 

Recently, ultradiscretization has been applied to nonlinear differential equations found in non

integrable non-equilibrium dissipative systems such as reaction-diffusion systems[l]-[8]. In these 

studies, we have successfully studied applications of ultradiscretization to dynamical systems 

with bifurcation structures[6]-[8]. In the present article, we treat ultradiscrete equations de

rived from the nonlinear equations well-known as the normal forms of the one-dimensional local 

bifurcations. 

First we focus on the following equation[9]: 

du 
dt =c+u(u-2). (1) 

c is the bifurcation parameter and the saddle-node bifurcation occurs at c = 1. If c < 1, eq.(1) 

has the two fixed points u_ and u+, where U± = 1 ± j1="c and u = u_ and u+ are stable and 

unstable, respectively. At c = 1, u = 1 is half-stable. When c > 1, there is no fixed point. From 

eq.(1) we obtain the following discrete equation by tropical discretization[l]: 

Un+ Llt[( Un) 2 + c] 
Un+i = l + 2Llt · (2) 

Note that eq.(2) shows the saddle-node bifurcation at c = 1. By taking the ultradiscrete limit[lO] 

{ 
lim clog(eA/s + eB/s + · · ·) = max(A, B, ... ), 

s--++0 

lim clog(eA/s · eB/s · ... ) = A+B + ... , 
s--++0 

after the variable transformations 

we derive the ultradiscrete equation 

Un+l = max{Un, T + max(2Un, C)} - max{O, T}. 
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(3) 

(4) 

(5) 
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If we set T 2 max{0, -C /2}, eq.(5) is converted into the following ultradiscrete equation: 

Un+l = max(2Un, C). (6) 

Equation (6) is the ultradiscrete equation for the one-dimensional normal form of the saddle-node 

bifurcation with the parameter C. 

Next we focus on 

du 
-=(u-l)(c-u) 
dt 

(7) 

which exhibits the transcritical bifurcation at c = 1 where c is the bifurcation parameter. By 

using the tropical discretization, we obtain 

(8) 

After the variable transformations 

(9) 

and ultradiscretization by (3), we have the ultradiscrete equation 

Un+l = Un+ max{Un, T +Un+ max(0, C)} - max{Un, T + max(2Un, C) }. (10) 

Assuming T 2 -C/2, we obtain from eq.(10) the ultradiscrete equation for the normal form of 

the transcritical bifurcation as 

Un+l = 2Un + max(0, C) - max:(2Un, C). 

Finally we focus on the following nonlinear equation: 

du 3 - = 3cu(u - 1) - u + l 
dt ' 

(11) 

(12) 

where c is positive bifurcation parameter and supercritical pitchfork bifurcation occurs at c = 1. 

The discrete equation of eq.(12) by the tropical discretization is 

Un+ ~t[3c(un)2 + 1] 
Un+l = 1 + ~t[(un)2 + 3c] · 

Setting the variable transformations 

we obtain the ultradiscrete equation 

Un+I = max{Un, T + max(2Un + C, 0)} - max{0, T + max(2Un, C) }. 

(13) 

(14) 

(15) 

Here, we assume T 2 max(-C, 0). Thus, the following ultradiscrete equation is obtained from 

eq.(15): 

Un+l = max(2Un + C, 0) - max:(2Un, C). (16) 
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2 Graphical analysis 

In this section, we discuss the dynamical properties of the following max-plus equations corre

sponding to the ultradiscrete equations (6), (11), and (16): 

(saddle-node) 

(transcritical) 

(supercritical pitchfork) 

Un+l = max(PUn, C), 

Un+1 = PUn + max(0, C) - max(PUn, C), 

Un+l = max(PUn + C, 0) - max(PUn, C). 

(17) 

(18) 

(19) 

where we use the general fixed value P > l instead of the value 2 in eqs. (6), (11), and (16). Their 

dynamics can be visualized by using a graphical analysis[ll, 12]. In particular, the parameter 

C becomes the bifurcation parameter and the bifurcation occurs at C = 0 in them. 

2.1 Saddle-node bifurcation 

First we treat eq.(17). Figure 1 shows the graphs of eq.(17) for (a) C > 0, (b) C = 0, and 

(c) C < 0. For (a) C > 0, eq.(17) has no fixed point because the graph of eq.(17) does 

not touch the diagonal Un+l = Un; when Un < C/P, Un+l = C and Un+2 increases along 

Un+2 = PUn+l > Un+l· At C = 0, eq.(17) touches the diagonal at the origin of the graph and 

then Un= 0 is the only fixed point and it is half-stable as shown in Fig. 1 (b). For (c) C < 0, 

the graph intersects the diagonal at the two points Un= 0 and Un= C. When Un ::; C/P, 

Un+l = C. When C/P <Un< 0, Un tends to C/P first along Un+l = PUn, and after that Un 

finally arrives at C. When Un > 0, Un goes to positive infinity along Un+l = PUn, Therefore, 

Un = C and Un = 0 are the stable and unstable fixed points, respectively. This bifurcation 

is the saddle-node bifurcation characterized by piecewise linearity. The bifurcation diagram is 

given as Fig. 2. In the diagram, the solid arrows represent the transition of Un to the stable 

point just at the next step. The dotted arrows show the transition satisfying Un+l = PUn, 

(a) (b) (c) 

Figure 1: The graphs of eq.(17). (a) C > 0, (b) C = 0, and (c) C < 0. 

2.2 Transcritical bifurcation 

Next we focus on eq.(18) whose graph is given by Fig. 3. For (a) C > 0, the graph intersects the 

diagonal at the two points Un = 0 and Un = C. When Un < 0, Un goes to negative infinity along 

Un+l = PUn, When 0 <Un::; C/P, Un increases toward C/P along Un+l = PUn, and after 

that Un reaches C in the end. When Un > C / P, Un+l = C. Therefore, Un = 0 and Un = C are 

the unstable and stable fixed points, respectively. For (b) C = 0, we have the unique half-stable 
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Figure 2: The bifurcation diagram for the ultradiscrete saddle-node bifurcation generated from eq.(17). 

fixed point Un = 0; if Un > 0, Un+l = 0 and if Un < 0, Un+l = PUn( < Un)- When C < 0, the 

graph of eq.(18) intersects the diagonal at the two points Un= 0 and Un= C again; Un= 0 and 

Un =Care stable and unstable, respectively as shown in Fig. 3 (c). This is the transcritical 

bifurcation of eq.(18). Figure 4 shows the bifurcation diagram; the bifurcation occurs at C = 0. 

(a) (b) (c) 

Figure 3: The graphs of eq.(18) where (a) C > 0, (b) C = 0, and (c) C < 0. 

Figure 4: The bifurcation diagram of eq.(18). 

2.3 Supercritical pitchfork and flip bifurcations 

Finally, we consider eq.(19). Figure 5 shows the graphs of eq.(19) with three different cases of 

C. Note that Un+l of eq.(19) is an odd function of Un as shown in Fig. 5. Set C > 0. The 

graph of eq.(19) intersects the diagonal at the three fixed points Un = 0, ±C. When Un 2". C / P 

(Un ~ -C/P), Un+l = +C (Un+l = -C). When -C/P < Un < 0, there exists a certain 
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m(> n) at which Um:::; -C/P and Um+l = -C. Similarly, 0 <Un< C/P finally goes to C. 

Therefore, Un = ±C are stable and Un = 0 is unstable. At C = 0, Un = 0 is only the stable 

fixed point; Un+l = 0 for any initial Un as shown in Fig. 5 (b). In Fig. 5 (c) C < 0, Un= 0 

retains to be the unique fixed point, however it is no longer stable but unstable. Further we 

find a cycle C = { +C, -C} with period 2 around Un = O; it is attracting in the following sense. 

(i) Whenever IUnl > C, Un+m EC for any positive integer m. (ii) If Un satisfies O < I Uni < C, 

Un leaves from O oscillating around O and arrives at the point Um such that C/P:::; IUml- After 

that, U1 E C for l > m. Thus, any Un starting from Uo #- 0 is finally absorbed by the cycle C. 

Equation (19) therefore exhibits the bifurcation as putting the supercritical pitchfork and flip 

bifurcations together. 

(a) (b) (c) 

Figure 5: The graphs of eq.(19). (a) C > 0, (b) C = 0, and C < 0. 

3 Conclusion 

We derive ultradiscrete equations from the one-dimensional normal forms of saddle node, tran

scritical, and supercritical pitchfork bifurcations and we get dynamical descriptions of them by 

means of graphical analysis. These derived equations exhibit the ultradiscrete bifurcations which 

are the similar bifurcation properties to the original normal forms characterized by the piecewise 

linearity. In the ultradiscrete equation of the supercritical pitchfork bifurcation, another ultra

discrete bifurcation similarly to the flip bifurcation occurs where there is a stable cycle around 

a unstable fixed point. (More details are shown in [6].) 
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