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Abstract 

We survey my 2020 paper [18], on the relevance of the differential Ga
lois theory of linear differential equations for the exact semiclassical com
putations in path integrals in quantum mechanics. The main tool will be 
a necessary condition for complete integrability of classical Hamiltonian 
systems obtained by Ramis and myself, formulated in the framework of 
differential Galois theory. A corollary of this result is that, for finite di
mensional integrable Hamiltonian systems, the semiclassical approach is 
computable in closed form. This explains in a very precise way the suc
cess of quantum semiclassical computations for integrable Hamiltonian 
systems. Moreover, I will point out several of the many open problems 
motivated from the above simple result: problems from quantum mechan
ics to quantum field theory. 
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Introduction 

In 1942 Feynman in his Phd Thesis discovered a new formulation to quantum 
mechanics, as an alternative to the more classical formulations: the Schri:idinger's 
operator and the Heisenberg's matrix ones ([10]). Today Feynman's approach is 
one of the most successful ways to study quantum systems, either finite dimen
sional (quantum mechanics) or not (quantum fields), including bosons, fermions, 
strings or even fields with gauge symmetries, today necessary in any reasonable 
quantum field theory. 

Feynman motivation was to find a formulation of the quantum mechanics 
closet to the classical mechanics. In fact, Feynman recognizes in 1964 the diffi
culties to understand quantum mechanics: 

"I think I can safely say that nobody really understands quantum mechanics" 
([11]). 

On the other hand, DeWitt pointed out: 
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"The quantum theory is basically a theory of small disturbances" ([7]). 

Thus, it is possible to consider the quantum mechanics as essentially ( quan
tum) fluctuations around the (classical) solutions given by the classical mechan
ics. The same idea works for the connection between classical field theory and 
quantum field theory. Then one can approach to the quantum physics by con
sidering classical solutions and small perturbation of this classical solutions with 
respect to initial conditions and parameters. Here we concentrate our attention 
to the variations with respect to the initial conditions: the small variations with 
respect to the initial conditions are given by a very well-known object in dy
namical systems, the variational equation, and in variational calculus it is called 
the Jacobi equation (and its solutions Jacobi fields). In quantum physics the 
variational equation is also called the "small disturbance equation" ([7, 8]), in 
agreement with the above, but it is an equation that comes from the classical 
(non-quantum) physics. 

Related with the above is the semiclassical ( or WKB) approximation in quan
tum systems. Since Feynman, the semiclassical expansion is one of the most 
effective methods to compute propagators in quantum systems. The idea is as 
follows, starting from a classical path 1 , x = x(t) (ie, solution of the Lagrange 
equation), to consider paths given by small quantum fluctuations around it, 
x + e, and then expand the amplitudes around the classical solution in powers 
of Ii, being the first term of this expansion the semiclassical approximation. The 
fluctuations in this approximation are then expressed by means of the determi
nant of the differential operator of the variational equation (a functional deter
minant) with suitable boundary conditions. By the so-called Gelfand-Yaglom 
method, this infinite determinant can be obtained as the determinant of a block 
of the fundamental matrix of the variational equation with standard initial con
ditions: we move from an apparently hard spectral problem to an apparently 
more treatable initial value problem. A similar, but more complex situation, 
is given in the case of fields, where the classical fields are defined by infinite 
dimensional problems. For functional determinants see [9]. 

An ideal goal in quantum physics is to solve the equations of quantum me
chanics and of quantum field theory. No body known a general approach to 
study this goal. Instead of the above, our goal will be to solve the equations of 
the semiclassical approximation of quantum physics. 

In agreement with Dewitt remark, the semiclassical approximation is pre
cisely very related with quantum fluctuations around classical solutions, and 
hence with the variational equations. 

Two problems are hidden in the above goal: 

1) Is it possible to solve the equations by closed analytical formulas? 

2) If yes, then how to obtain the solutions. 

The tool for both problems will be the differential Galois theory. 
When it is possible to solve the equations by closed analytical formulas we 

say that the problem is integrable. 
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As we will see, there are three different, but very related, integrability notions 
along the paper: 

i) The integrability in the sense of the differential Galois theory. 

ii) The integrability of the classical system. 

iii) The integrability of the semiclassical quantum approximation. 

All this notions are used to clarify what exactly means to solve one of the 
problems in "closed form". 

Our proposal is based onto two key ideas: 

Key Idea 1: A necessary condition for integrability of Hamiltonian systems 
is the integrability of the variational equation along a particular solution of the 
system. 
Key Idea 2: The integrability of the variational equation implies the integrability 
of the semiclassical quantum approximation defined by the particular solution. 

Hence: 
The integrability of the Hamiltonian system implies the integrability of the 

quantum semiclassical approximation defined by the particular solution. 
As will becomes clear later, the quantum semiclassical approximation is not 

only very close to the classical mechanics, but it only depends on classical me
chanics constructions: the classical functional action and the variational equa
tions. 

1 Differential Galois Theory 

The differential Galois theory of linear ordinary differential equations is also 
called the Picard-Vessiot theory, because it was discovered by Picard at the 
end of the XIX century and with relevant contributions by Vessiot, a Picard's 
student, some years later. It was formalized by Kolchin in the middle of the 
XX century. Two standard monographs about it are [6, 21], and for an analytic 
introduction I recommend [23]. As complementary references, see also Martinet 
and Ramis's nice presentation [16] and the second chapter of the book [17]. 

We will assume that we are in the complex analytical category: the co
ordinates are over a complex analytical manifold, etc. In particular, time is 
analytically prolonged to the complex plane, which is in complete agreement 
with today's quantum physics. 

A differential field K is a field with a derivative ( or derivation) 8 = ', ie, an 
additive mapping satisfying the Leibniz rule. From now on we will assume that 
K = M (r), the meromorphic functions over a connected Riemann surface r. If 
t is a local coordinate over r, we consider -{ft as derivation. Particular cases are 
K = C(t) = M(P1 ), the field of rational functions (the field of meromorphic 
functions over the Riemann sphere P 1 ) or that of meromorphic functions on a 
genus one Riemann surface ( a field of elliptic functions). 
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We can define differential subfields and differential extensions in a direct way 
by requiring that inclusions commute with the derivation. Analogously, a differ
ential automorphism in K is an automorphism commuting with the derivative. 

Let 

y' = Ay, A= A(t) E Mat(m,K) 

be a system of linear differential equations. We now proceed to associate with 
(1.1) the so-called Picard-Vessiot extension of K. The Picard-Vessiot extension 
L of (1.1) is an extension of K, such that if ¢1, ... ,¢mis a "fundamental" system 
of solutions of the equation (1.1) (ie, linearly independent over C), then L = 
K(cpij) (rational functions in Kin the coefficients of the "fundamental" matrix 
<I> = ( ¢1 • • • c/Jm)). This is the extension of K generated by K together with the 
m 2 elements ¢iJ of the fundamental matrix. We observe that Lis a differential 
field (by (1.1)). 

As in classical Galois theory of algebraic equations, we define the Galois 
group of (1.1), G := Gal(L/K), as the group of all the (differential) automor
phisms of L leaving the elements of K fixed. In a concrete way, that means 
the group that leaves invariant the rational relations of the matrix elements c/>ij 
of the fundamental matrix with coefficients in K. This group must be linear, 
because it leaves invariant (1.1) over the fundamental matrix, writing as 

A= <I>'<I>-1. 

Then one of the main results of the theory is that the Galois group of (1.1) 
is faithfully represented as an algebraic linear group over C, the representation 
being given by the action cr E G, 

(1.2) 

Ba E GL(m, C). We recall that a linear algebraic group is a linear group 
that is an algebraic variety and the structures of group and algebraic varieties 
are compatible, ie, the group multiplication and the inversion transform are 
morphisms of algebraic varieties. 

We remark that if the equation (1.1) has some additional structure, the 
Galois group preserves it. For example, if it is symplectic, ie, A= JS(t) with 
S symmetric, then the Galois group is contained in the symplectic group (for a 
proof see [17]). 

Now we will define integrability in the Picard-Vessiot theory. We call an 
extension of differential fields K C L a Liouville ( or Liouvillian) extension over 
K if there exists a chain of differential extensions K1 := K C K2 C · · · C 

Kr := L, where each extension is given by the adjunction of one element a, 
Ki C Ki+l = Ki(a), such that a satisfies one of the following conditions: 

(i) a' E Ki, 
(ii) a' = ba, b E Ki, 
(iii) a is algebraic over Ki. 

A Liouvillian function over K is a function that belongs to a Liouville extension 
L of K. 
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It can be proven that the Picard- Vessiot extension of a linear differential 
equation is a Liouville extension if, and only if, the identity component G0 of 
its Galois group is a solvable group. In particular, if G0 is abelian, then the 
Picard-Vessiot extension is a Liouville one. 

Then we define a linear differential equation as integrable if the associated 
Picard- Vessiot extension is Liouvillian. This is a very precise integrability state
ment. 

We only consider here gauge transformations with coefficients that remain 
in the differential field of coefficients K. Then a gauge transform of (1.1) is a 
linear change of the dependent variables P(t) E GL(n, K), 

y = P(t)z. 

Furthermore, if the linear equation has more structure, it is natural to consider 
gauge transformations that preserve this structure. For example, if the equation 
is symplectic, symplectic gauge transformation P over K are the natural gauge 
transforms to be considered. The transformed equation becomes 

z' = P[A](t)z, P[A] = p- 1 AP - p- 1 P'. (1.3) 

Then the Galois group is invariant by the gauge transformation, ie, as the 
Picard-Vessiot extensions are the same, the Galois groups of (1.1) and (1.3) 
are also the same. As a particular example, we can interpret geometrically 
d'Alembert classical reduction of order (see for instance [14], p. 121), when a 
particular solution is known: take the particular solution as one of the columns 
of P. 

2 The variational equations 

Let H = H ( x, y, t) be a (classical) real analytic Hamiltonian function with n 
degrees of freedom, defining the Hamiltonian system 

xi= 8H/8yi, Yi= -8H/8xi, i = 1, ... , n, (2.1) 

then we can write the variational equation of (2.1) along an integral curve 
X = x(t), y = y(t), 

(~) = JH"(x(t),y(t)) (~), (2.2) 

where H"(x(t),y(t)) is the Hessian matrix of H evaluated at the integral curve 
and 

J= ( 0 
-ln 

is the symplectic matrix, with ln the identity matrix of dimension n. 
Now let <I> ( t, t0 ) be the fundamental matrix of the variational equation of the 

Hamiltonian system along the integral curve, with initial condition <I>(t0 , t0 ) = 
l2n• Then, it will be relevant later the decomposition 
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<I>(t t ) = (H(t, to) 
' 0 L(t, to) 

J(t, to)) 
P(t, to) 

of the above matrix in four squared boxes of dimension n. 

(2.3) 

In order to apply the differential Galois theory, we need to extend analytically 
our real analytic Hamiltonian system to complex coordinates, including time. 
Then the integral curves (solutions on phase space) are given geometrically by 
Riemann surfaces r parameterized by complex time. 

Let now (2.1) be a complex analytical Hamiltonian system defined over a 
complex symplectic manifold M. For simplicity of notation, we denote again 
by H the Hamiltonian function, and by Xi, Yi, t, the local complex symplectic 
coordinates and complex time. 

The integrability of the Hamiltonian systems is the Liouville complete inte
grability. Thus, we say that the Hamiltonian field XH = (8H/8yi, -8H/8xi) 
i = 1, ... , n, or the corresponding Hamiltonian system, is integrable if there are 
n functions Ji = H, h, ... , fn, such that 

(1) they are functionally independent ie, the 1-forms dfi i = 1, 2, ... , n, are 
linearly independent over a dense open set U C M, [! = M; 

(2) they form an involutive set, {h fJ} = 0, i, j = 1, 2, ... , n. 

We recall that in canonical coordinates the Poisson bracket has the classical 
expression 

{f g} = ~ a f ag _ a f ag 
' ~ 8y· 8x· 8x· 8y· · i=l i i i i 

Then by (2) above the functions Ji, i = 1, ... , n are first integrals of the 
Hamiltonian field XH, It is very important to be precise regarding the degree 
of regularity of these first integrals. Along this paper we assume that the first 
integrals are meromorphic. Unless otherwise stated, this is the only type of 
integrability of Hamiltonian systems that we consider here. Sometimes, to recall 
this fact people talk about meromorphic integrability. 

Some integrable Hamiltonian systems are: 

- 1-degree of freedom ones( harmonic oscillator, simple pendulum, etc.), 
- Kepler problem in celestial mechanics and the hydrogen atom, 
- spherical pendulum, 
- several rigid bodies with a fixed point (Euler, Lagrange and Kovalevskaya), 
- geodesics over revolution surfaces, 
- Schwarzschild black-hole, etc. 

But we remark that the majority of the Hamiltonian systems are not inte
grable. 

Now we are in situation of stay in a precise way the Key Idea 1 of the 
introduction. It is given by a joint result with Ramis around twenty-two years 
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ago. It is a necessary condition for integrability of complex analytical Hamilto
nian systems given by the Galois group of the variational equation around any 
particular integral curve r. 

Theorem 2.1 ([19], see also [17]). Assume a complex analytic Hamiltonian 
system is meromorphically completely integrable in a neighborhood of the integral 
curve r. Then the identity component of the Galois group of the variational 
equations (2.2} is an abelian group. 

In particular, as an abelian group is solvable, the variational equations are 
integrable in the sense of the Picard-Vessiot theory and the Picard-Vessiot ex
tension is a Liouville extension. 

Along the last twenty-two years this theorem has been applied to a consider
able amount of Hamiltonian systems, as a non-integrability criterium. However, 
here we are mainly interested to apply it in a direct way to the integrable clas
sical mechanical systems. 

Example We illustrate the above ideas with an application to an elementary 
example, but with some relevance in path integrals. It is well-known that the 
variational equation of a I-degree of freedom Hamiltonian system is solved in 
closed form, but we would like to look at this from the point of view of the 
Picard-Vessiot theory. We remark that what follows is a very particular simple 
case of the method of reduction to the normal variational equations (see [19], 
and also [17], pp. 75-77). For simplicity we assume that the Hamiltonian is 
natural 

1 
H = 2my2 + V(x). 

Then the variational equation around the solution x = x(t), y = y(t) is given 
by 

(2.4) 

denoting V" = V"(x(t)). A particular solution of (2.4) is 

being y = y(t) and V' = V'(x(t)). It seems clear that the coordinates of this 
solution belong to K, the meromorphic functions over the Riemann surface 
defined by the particular solution, because we assume V analytical in some 
domain, etc. Hence we consider the simple symplectic gauge transformation 
taking as the last column the above particular solution 

P = (-O~ _t,) E SL(2,K) 

(this is not the only possible choice for P, but it is a simple symplectic one). 
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Then the matrix of the transformed system is triangular 

The general solution of the transformed system is 

(-c1m ?;~ + c2)' 
with c1 , c2 integration constants. As the fundamental matrix of this system is 

the Picard-Vessiot extension is given by 

J dt 
KcK( y2 )=L. (2.5) 

The Galois group is represented as an algebraic subgroup of the additive group 

with a E C, coming from its action on the integral, ie, 

df dt ) = J dt + a 
y2 y2 

(see formula (1.2)). In fact, only two cases are possible, either the integral f ;~ 
belongs to K or either it does not. In the first case the group reduce to the 
identity, as follows from the definition of the Galois group, and in the second 
case the Galois group is the complete additive group. In any case the Galois 
group is abelian and coincides with its identity component. 

Coming back to the initial system (2.4), its general solution is 

(2.6) 

We observe that the fundamental matrix in (2.6) is symplectic with coefficients 
in the Picard-Vessiot extension (2.5). In (2.6) we correct some typos of paper 
[18]. 

3 Semiclassical quantum mechanics 

The (integral kernel) propagator, K(x1 , t 1 lx0 , t0 ) in the coordinate representa
tion, between the points (x0 , t0 ) and (x1, t 1 ) gives the solution of the Cauchy 
problem for the time-dependent Schrodinger equation, ie, 
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(3.1) 

is the solution of 

8 A 

in at 'lj;(t) = H'lj;(t), 'l/Jto (x) = 'l/J(x, to), (3.2) 

being iI the Hamiltonian operator corresponding to the classical Hamiltonian 
H. 

We recall that, for a I-degree of freedom system with 

1 
H = -y2 + V(x) 

2m 

then, as the momentum corresponds to the operator fj = -in !Jx, and the position 
to the operator x = xl d ( denoted again by x), 

A n2 82 
H = - 2m 8x2 + V (x). 

Then the Schri:idinger equation becomes 

8 n2 [)2 
in-'l/J = (---- + V(x))'l/J, 

at 2m 8x2 

and separating variables 

n2 d2 
(- 2m dx2 + V(x))<p = E<p. 

As this is a linear ODE, it is possible to apply to it the differential Galois theory 
(see my work in collaboration with Acosta-Humanez and Weil, [l]). But for more 
degrees of freedom is not possible to apply in a direct way the differential Galois 
theory to the Schri:idinger equation. However, it will be possible to apply it to 
the semiclassical approach. 

Furthermore, K(x1 , t 1 lx0 , t0 ) represents the probability amplitude ( or sim
ply amplitude) for a quantum system to go from the point (x0 , t0 ) to the point 
(x1 , t 1 ) in the configuration space. The quantum-mechanical problem is re
duced to compute this propagator. For the path integral approach to quantum 
mechanics see [12]. 

We recall that the propagator have an asymptotic expansion in the Planck 
constant. Thus, the semiclassical expansion of the propagator around the clas
sical path "Y from (x0 , t0 ) to (x, t) is (see [8]) 

(3.3) 

where K WKB(x1 , t 1 lx0 , t0 ) is the semiclassical approximation of the propagator, 
this is the function we are interested to compute. In fact, we start from a 
particular configuration classical path "Y joining the points (x1 , t 1 ) and (x0 , t0 ) in 
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the configuration space. Then the propagator "operates" over the wave function 
along the path,. This path is a projection of the integral curve r, (x(t),y(t)) 
onto the configuration space. We assume that this projection is well-defined, 
ie, that only one path 'Y corresponds to r, because we do not consider focal 
(or conjugate) points. Another assumption is that we assume that the integral 
curve is a fixed one and it is explicitly done in closed form. For simplicity we 
use the same notation r either for the real or for the complex integral curve. 

Now it is well-known that the semiclassical approximation KwxB is given 
by 

K ( I ) 1 1 ( i S( )) WKB X1,t1 Xo,to = ------=====exp - "( 
(21rin)n/2 JdetJ(t1,t0 ) n ' (3.4) 

where 

S('Y) :=lt1
d=yidXi-Hdt) 

to 1 

(3.5) 

is the action on the classical path ( extremal of the Hamilton functional action: 
it depends on the initial and final points of the path), and J(t1, t 0 ) is then x n 
block of the fundamental matrix of the variational equation defined in section 
2. We recall that the determinant det J is very related with the Morette-Van 
Hove determinant, det M, 

1 
det J = - det M. 

We call to the formula (3.4) the Pauli-Morette- Van Hove formula and it 
is obtained by means of some differential calculus starting from the quantum 
mechanical Feynmann principle of path integrals, see [18] for some idea of the 
proof and [8] for a detailed study. 

In [18] we call Van Vleck-Morette determinant to det M, but it seems that the 
names of Morette and Van Hove reflected better the origins of this determinant 
in connection with the semiclassical approach of the Feymann propagator ( see 
[5]). 

Now we can implement easily the Key Idea 2 of the introduction, ie, that 
the integrability of the variational equations implies integrability of the semi
classical approximation: the determinant det J belong to the Picard-Vessiot 
extension L of the variational equation, also the action (3.5) is of course a Liou
villian function over the field of coefficients K of the variational equation (it is 
given by quadratures), being as well the exponential in (3.4) a Liouvillian func
tion over K. Hence, KwxB becomes a Liouvillian function over K, considered 
as a function of t1 (in the autonomous case we can take t0 = 0). Finally, we 
obtain our main result: 

Theorem 3.1. (/18}) Assume that the Hamiltonian system is meromorphically 
completely integrable in a neighborhood of the complex integral curve r. Then 
the semiclassical approximation of the propagator K WKB(t1) around 'Y is a Li
ouvillian function over the field K of meromorphic functions over r. 
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The above theorem says that the integrability of the semiclassical approxi
mation is a necessary condition for the integrability of the Hamiltonian system. 
We recall that it is not a sufficient condition. In fact, there are Hamiltonian 
systems that are not integrable but the variational equation becomes integrable, 
and hence the semiclassical approximation will be integrable as well. 

Example. The 1-degree of freedom Hamiltonian 

1 
H = 2my2 + V(x). (3.6) 

is completely integrable. 
Then in section 2 the space of solutions of the variational equation around 

any integral curve was computed in closed form. To obtain the semiclassical 
approximation from the formula (3.4), we only need to compute the classical 
action S(,) integrating the Lagrangian over the classical path, and to obtain 
the function J(t, 0) (as the system is autonomous we take to= 0). Now J(t, 0) 
is the ~(t) "position" solution of the variational equation with initial conditions 
~(0) = 0, 77(0) = 1. Looking at the formula (2.6) of the general solution, it is 
not difficult to obtain 

1 1t1 dt 
J(t1, 0) = -y(0)y(t1) ~(). 

m O y t 
(3.7) 

Hence, the semiclassical approximation is given as a Liouvillian function 
over the field of meromorphic functions on the Riemann surface defined by the 
classical solution: 

A concrete example is given by the harmonic oscillator, where 

y(t) = _mw (x1 - x0 coswti) cos wt - mwxo sin wt, 
smwt1 

and 

{ti dt 

lo y2 (t) 

Thus, 

(3.8) 

(3.9) 



99

obtaining the well-known expression of the Feynman propagator for the har
monic oscillator ([12]): 

mw ( imw 2 2 ) 
2 "fi . exp 2n . [(xo + x1 ) coswti - 2x0 x1] . 

1rz smwt1 smwt1 

We remark that as the Hamiltonian is quadratic, then the semiclassical ap
proximation is exact: K = KwKB· Furthermore, for the harmonic oscillator 
with constant coefficients variational equation, formula (3.7) is not the best way 
to obtain the function J, because we know directly the general solution of the 
variational equation with no need of computing any quadrature. 

4 Open problems: a Program 

Our proposal open new lines of research that in our opinion deserve to be de
veloped. Some of them were already pointed out in [18]. 

1) As far as we know the only previous applications of the differential Galois 
theory to the computation of the Feynmann propagators are obtained 
by Acosta-Humanez and Suazo for some one-dimensional time-dependent 
harmonic oscillators ([2, 3]). We are convinced that these works could be 
naturally included in our approach here. 

2) To apply our results to systems with more than one degree of freedom. 
In a forthcoming paper with P. B. Acosta-Humanez, C. Pantazi and J. T. 
Lazaro we will give explicit computations on some concrete two-degrees 
of freedom families. 

3) Is it possible to interpret some of the dynamical aspects of semiclassical 
quantum spectral properties of the Hamiltonian systems in the framework 
of the differential Galois theory? For instance, to include the focal ( con
jugate) points in our Galoisian approach. 

4) My result with Ramis was extended in 2007 to higher order variational 
equations ([20]). Then it is natural to consider the application of this 
extension to higher order in the semiclassical expansion (3.3). It seems 
that J.-P. Ramis have some idea of how to approach this problem ([22]). 

5) There exist some kind of "dictionary" between the quantum mechanics 
path integrals and the Wiener random processes: by an analytic pro
longation to imaginary complex time (a Wick rotation), the Schrodinger 
equation is transformed in a "diffusion like equation". Motivated by the 
Einstein work on the Brownian motion, Wiener considered path integrals 
to study such diffusion equations almost 20 years before Feynman. Hence 
, taking into account this "dictionary" between Feynman path integrals 
and the Wiener ones, the approach of this paper could also be applied 
to Wiener classical path integrals for Wiener processes (see for instance, 
[4, 15]). 
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6) In a similar way there is a "dictionary" between the statistical mechanics 
and the quantum mechanics, because the density matrix also satisfy a 
"diffusion like equation" (see [13, 4]). Thus, it will be also possible to 
apply our Galoisian methods to the statistical mechanics. 

7) Is it possible to extend our results to quantum field theory? To do that 
it is convenient to extend my theorem with Ramis to integrable classical 
fields. We remark that we include the gauge fields in the classical fields, 
where some integrable families of systems are well-known (the so-called 
self and anti-self dual Yang Mills fields), and also some integrable string 
theories in the framework of the AdS/CFT correspondence. My idea is 
that if the particular solution of a classical integrable field is of the so
called "algebra-geometric" type, then this extension will be possible, in 
some way. With J.-P. Ramis and M. A. Zurro we are working on this 
difficult problem. 

We would like to observe that the above list of problems is possibly not 
exhaustive. We believe that in any field where the path integral methods are 
relevant and where closed analytical semiclassical computations are possible, the 
differential Galois theory will plays some role in these computations. 
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