
COHOMOLOGY OF THE SPACES OF COMMUTING ELEMENTS IN LIE
GROUPS OF RANK TWO

MASAHIRO TAKEDA

Abstract. Let G be a compact, connected Lie group, and let Hom(Zm, G) denote the space
of commuting m-tuples in G. Baird proved that the cohomology of Hom(Zm, G) is identified
with a certain ring of invariants of the Weyl group of G. In this paper by using the result of
Baird we give the cohomology ring of Hom(Z2, G) for simple, simply connected Lie groups
G of rank 2.

1. Introduction

Let G be a Lie group and T be a maximal torus of G. Let W (G) denote the Weyl group
of G. The space of commuting elements in G, denoted by Hom(Zm, G), is the subspace of
the Cartesian product Gm consisting of (g1, . . . , gm) ∈ Gm such that g1, . . . , gm are pairwise
commutative. Since the space Hom(Zm, G) is identified with the moduli space of based flat
G-bundles over an m-torus, Hom(Zm, G) is studied in not only topology but also geometry
and physics. On the other hand the cohomology of Hom(Zm, G) is deeply related with the
invariant theory, since Baird proved that the cohomology is identified with a certain ring of
invariants of the Weyl group of G. Thus the cohomology of Hom(Zm, G) is important for
many fields. The general result on the cohomology of Hom(Zm, G) is studied in [2, 4, 10,
11, 9], while there is not much research on specific computation. For example, the space
Hom(Zm, SU(2)) is deeply studied in [3, 5].

In this paper we give the cohomology ring of Hom(Z2, G) for G = Sp(2), SU(3), G2. Let
F be a field of characteristic zero or prime to the order of W (G), and F⟨S⟩ denote a free
graded commutative algebra generated by a graded set S. The main theorem in this paper
is the following.

Theorem 1.1. For the simply connected simple Lie group G of rank 2, there is an isomor-
phism

H∗(Hom(Z2, G);F) ∼= F⟨a11, a12, a21, a22, b1, b2⟩/(a11, a12, a21, a22, b1, b2)3 + I,

where I is generated by

b1b2, b2
2, a12b2, a22b2, a11b2 + a12b1, a21b2 + a22b1, a11a

2
2 + a21a

1
2,
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and

|aji | =


2i+ 1 (G = SU(3))

4i− 1 (G = Sp(2))

8i− 5 (G = G2),

|bi| =


2i (G = SU(3))

4i− 2 (G = Sp(2))

8i− 6 (G = G2).

To prove this we use the general results of Baird [2]. Let Hom(Zm, G)1 denote the connected
component of Hom(Zm, G) containing (1, . . . , 1). We consider the right action of W (G) on
G/T × Tm given by

(gT, t1, t2, . . . , tm) · w = (gwT,w−1t1w, . . . , w
−1t1w)

for w ∈ W (G), g ∈ G, t1, . . . , tm ∈ T . Then the map

G× Tm → Hom(Zm, G)1, (g, t1, . . . , tm) 7→ (gt1g
−1, . . . , gtmg

−1)

for g ∈ G, t1, . . . , tm ∈ T defines a map

ϕ : G/T ×W (G) T
m → Hom(Zm, G)1.

In [2] Baird proved that the map ϕ is an isomorphism in cohomology with F coefficients.
Moreover by Theorem 4.1 in [2] (proved by Kac and Smilga [8]) the space Hom(Z2, G) is
connected for a 1-connected Lie group G. Thus for a 1-connected Lie group G there is a ring
isomorphism

(1) H∗(Hom(Z2, G);F) ∼= (H∗(G/T ;F)⊗H∗(T ;F)⊗2)W (G).

Using the result of Baird, we can see another meaning of the main theorem. We apply the
result of Baird for m = 1, we obtain the isomorphism

(H∗(G/T ;F)⊗H∗(T ;F))W (G) ∼= H∗(G).

This isomorphism has long been known(cf. [6]), and can be proved by using the theorem
of Solomon(cf. [12, Theorem 9.3.2]) and the theorem of Shepard-Todd (cf. [12, Theorem
7.4.3]) in representation theory. We know that H∗(G;F) is isomorphic to the exterior algebra
generated by rank(G) elements. Therefore the ungraded ring structure of (H∗(G/T ;F) ⊗
H∗(T ;F))W (G) only depends on the rank of G. We have not known the generalization of the
correspondence of ring structure, but the main theorem in this paper supports the existence
of the generalization.

We prove the main theorem for each case that G = SU(3), Sp(2), G2.
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2. Cohomology of Hom(Z2, SU(3))

In this section we compute the ring structure of H∗(Hom(Z2, SU(3))). The result of this
ring structure is recorded in [9]. By (1), there is an isomorphism

H∗(Hom(Z2, U(3))1;F) ∼=
(
F[x1, x2, x3]W (U(3)) ⊗ Λ(y11, y

1
2, y

1
3)⊗ Λ(y21, y

2
2, y

2
3)
)W (U(3))

,

where |xi| = 2 and |yji | = 1 for any i, j, Z[x1, x2, x3]W (U(3)) is the ring of coinvariants of
W (U(3)), and the action of W (U(3)) on {x1, x2, x3} and {yi1, yi2, yi3} is the permutation
action. By the isomorphism in Kishimoto and Takeda [9, p.12 (4)], there is an isomorphism

H∗(Hom(Z2, SU(3))) ∼= H∗(Hom(Z2, U(3)))/(y11 + y12 + y13, y
2
1 + y22 + y23).

By Theorem 1.1 in Ramras and Stafa [10], we obtain the Poincaré series of Hom(Z2, SU(3)).

Lemma 2.1. The Poincaré series of Hom(Z2, SU(3)) is given by

P (Hom(Z2, SU(3)); t) = 1 + t2 + 2t3 + 2t4 + 4t5 + t6 + 2t7 + 3t8.

In this section we define aji = xi
1y

j
1 + xi

2y
j
2 + xi

3y
j
3 and bi = xi−1

1 y11y
2
1 + xi−1

2 y12y
2
2 + xi−1

3 y13y
2
3.

A generating set is called minimal if the set doesn’t properly contain any generating set.

Theorem 2.2. H∗(Hom(Z2, SU(3))) is minimally generated by {a11, a12, a21, a22, b1, b2}.

Proof. This follows from the result of Kishimoto and Takeda [9, Corollary 6.18].
□

Theorem 2.3. There is an isomorphism

H∗(Hom(Z2, SU(3));F) ∼= F⟨a11, a12, a21, a22, b1, b2⟩/(a11, a12, a21, a22, b1, b2)3 + I,

where I is generated by

b1b2, b2
2, a12b2, a22b2, a11b2 + a12b1, a21b2 + a22b1, a11a

2
2 + a21a

1
2.

Proof. By Theorem 2.2 the natural map

F⟨a11, a12, a21, a22, b1, b2⟩ → H∗(Hom(Z2, SU(3));F).
is a surjection. By Lemma 2.1 we can obtain the generators of (a11, a

1
2, a

2
1, a

2
2, b1, b2)

3 + I are
0 in H∗(Hom(Z2, SU(3));F) except for

b1b2, a
1
1b2 + a12b1, a

2
1b2 + a22b1, a

1
1a

2
2 + a21a

1
2, a

1
1a

1
2b1, b

3
1.

There is a following equation

b1b2 = (y11y
2
1 + y12y

2
2 + y13y

2
3)(x1y

1
1y

2
1 + x2y

1
2y

2
2 + x3y

1
3y

2
3)

= (x1 + x2)y
1
1y

2
1y

1
2y

2
2 + (x2 + x3)y

1
2y

2
2y

1
3y

2
3 + (x3 + x1)y

1
3y

2
3y

1
1y

2
1

= 2(x1 + x2 + x3)y
1
1y

2
1y

1
2y

2
2

= 0,

and we obtain b1b2 = 0. By the similar calculation we can show the other elements are 0 in
H∗(Hom(Z2, SU(3));F).
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Therefore the surjection induces the following map

F⟨a11, a12, a21, a22, b1, b2⟩/(a11, a12, a21, a22, b1, b2)3 + I → H∗(Hom(Z2, SU(3));F).
The Poincaré series of F⟨a11, a12, a21, a22, b1, b2⟩/(a11, a12, a21, a22, b1, b2)3+I is equal to 1+ t2+2t3+
2t4 + 4t5 + t6 + 2t7 + 3t8, and it corresponds with the Poincaré series of Hom(Z2, SU(3)) in
Lemma 2.1. Therefore the map is an isomorphism, and the proof is complete.

□

3. Cohomology of Hom(Z2, Sp(2))

In this section we compute the ring structure of H∗(Hom(Z2, Sp(2))). The Weyl group
W (Sp(2)) is isomorphic to ⟨a, b | a2 = b2 = (ab)4 = 1⟩. Let {x1, x2} be the generator of
H∗(Sp(2);F) and {yi1, yi2} be the generator of the cohomology of i-th torus. Then the
W (Sp(2))-action on H2(Sp(2)) and H∗(T ;F) is the signed permutation i.e.

xa
1 = x2, x

a
2 = x1, x

b
1 = −x1, x

b
2 = x2,

(yi1)
a = yi2, (y

i
2)

a = yi1, (y
i
1)

b = −yi1, (y
i
2)

b = y2.

By (1) there is an isomorphism

H∗(Hom(Z2, Sp(2))) ∼=
(
Z[x1, x2]W (Sp(2)) ⊗ Λ(y11, y

1
2)⊗ Λ(y21, y

2
2)
)W (Sp(2))

,

where |xi| = 2, |yi| = 1, Z[x1, x2]W (Sp(2)) is the ring of coinvariant of W (Sp(2)). In this

section we define aji = x2i−1
1 yj1 + x2i−1

2 yj2 and bi = x2i−2
1 y11y

2
1 + x2i−2

2 y12y
2
2.

Lemma 3.1. H∗(Hom(Z2, Sp(2))) is minimally generated by {a11, a12, a21, a22, b1, b2}.
Proof. This follows from the result of Kishimoto and Takeda [9, Theorem 6.28].

□

On the other hand, by Theorem 1.1 in Ramras and Stafa [10] we can determine the Poincaré
series of Hom(Z2, Sp(2)).

Lemma 3.2. The Poincaré series of Hom(Z2, Sp(2)) is given by

P (Hom(Z2, Sp(2)); t) = 1 + t2 + 2t3 + t4 + 2t5 + 2t6 + 2t7 + 2t9 + 3t10.

Theorem 3.3. There is an isomorphism

H∗(Hom(Zn, Sp(2));F) ∼= F⟨a11, a12, a21, a22, b1, b2⟩/(a11, a12, a21, a22, b1, b2)3 + I,

where I is generated by

b1b2, b2
2, a12b2, a22b2, a11b2 + a12b1, a21b2 + a22b1, a11a

2
2 + a21a

1
2.

Proof. By Theorem 3.1 the natural map

F⟨a11, a12, a21, a22, b1, b2⟩ → H∗(Hom(Z2, Sp(2));F).
is a surjection. By Lemma 3.2 we can obtain the generators of (a11, a

1
2, a

2
1, a

2
2, b1, b2)

3 + I are
0 in H∗(Hom(Z2, Sp(2));F) except for

a11b2 + a12b1, a
2
1b2 + a22b1, a

1
1a

2
2 + a21a

1
2, b

3
1.
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There is a following equation

a12b1 = (x1y
1
1 + x2y

1
2)(x

2
1y

1
1y

2
1 + x2

2y
1
2y

2
2)

= x1x
2
2y

1
1y

1
2y

2
2 + x2

1x2y
1
2y

1
1y

2
1

= −x3
1y

1
1y

1
2y

2
2 − x3

2y
1
2y

1
1y

2
1

= −(x3
1y

1
1 + x3

2y
1
2)(y

1
1y

2
1 + y12y

2
2)

= −a11b2,

and we obtain a11b2 + a12b1 = 0. By the similar calculation we can show the other elements
are 0 in H∗(Hom(Z2, Sp(2));F).
Therefore the surjection induces the following map

F⟨a11, a12, a21, a22, b1, b2⟩/(a11, a12, a21, a22, b1, b2)3 + I → H∗(Hom(Z2, Sp(2));F).
The Poincaré series of F⟨a11, a12, a21, a22, b1, b2⟩/(a11, a12, a21, a22, b1, b2)3+I is equal to 1+ t2+2t3+
t4+2t5+2t6+2t7+2t9+3t10, and it corresponds with the Poincaré series of Hom(Z2, Sp(2))
in Lemma 3.2. Therefore the map is an isomorphism, and the proof is complete. □

4. Cohomology of Hom(Z2, G2)

In this section we compute the ring structure of H∗(Hom(Z2, G2)). The Weyl group
W (G2) is isomorphic with the dihedral group D6 = ⟨a, b | a6 = b2 = abab = 1⟩. Let
V = spanF{z1, z2, z3} be the three dimension vector space on F spanned by z1, z2, z3 and the
action of D6 on V be the homomorphism ϕ : D6 → GLF(V ) such that ϕa(s1z1+s2z2+s3z3) =
−s1z3 − s2z1 − s3z2 and ϕb(s1z1 + s2z2 + s3z3) = s1z1 + s2z3 + s3z2 for s1, s2, s3 ∈ F. Since
ϕa(z1 + z2 + z3) = −(z1 + z2 + z3), ϕb(z1 + z2 + z3) = z1 + z2 + z3, spanF{z1 + z2 + z3} is an
invariant subspace for the action. Therefore there is a D6-action on V/spanF{z1 + z2 + z3}
induced by ϕ, and let ϕ̄ denote this action. By the definition of ϕ̄ and the definition of the
canonical representation of W (G2) (see [1, Section 7]), we obtain the next lemma.

Lemma 4.1. There are W (G2)-equivariant isomorphisms from V/spanF{z1 + z2 + z3 = 0}
to H1(T ;F) and H2(G2/T ;F).

Next we compute the ring of coinvariants of W (G2).

Lemma 4.2. There is an isomorphism

F[x1, x2, x3]/(e1, e2, e
2
3) → H∗(G2/T ;F),

where |xi| = 2 and ei is the i-th elementary symmetric polynomial in x1, x2, x3.

Proof. The cohomology H∗(G2/T ;F) is isomorphic with the ring of coinvariant of W (G2).
By the definition of ϕ, the polynomial e2, e

2
3 is in the invariant ring F[x1, x2, x3]

D6 . By Lemma
4.1 there is a surjection

α : F[x1, x2, x3]/(e1, e2, e
2
3) → H∗(G2/T ;F).
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Since e1, e2, e
2
3 is a regular sequence, the Poincaré series of F[x1, x2, x3]/(e1, e2, e

2
3) is given

by

P (F[x1, x2, x3]/(e1, e2, e
2
3); t) =

(
1

1− t2

)3

(1− t2)(1− t4)(1− t12)

= (1 + t2)(1 + t2 + t4 + t6 + t8 + t10),

and of H∗(G2/T ) is

P (G2/T ; t) =

(
1

1− t2

)2

(1− t4)(1− t12)

= (1 + t2)(1 + t2 + t4 + t6 + t8 + t10).

Since these Poincaré series are finite type, the map α is isomorphism.
□

Lemma 4.3. The set {xi
1x

j
2 | 0 ≤ i ≤ 5, 0 ≤ j ≤ 1} is a basis of F[x1, x2, x3]/(e1, e2, e

2
3).

Proof. In F[x1, x2, x3]/(e1, e2, e
2
3), there are equations

x1 + x2 + x3 = e1 = 0

x2
1 + x1x2 + x2

2 = −e2 + x1e1 + x2e1 = 0.

Therefore x3 and x2
2 can be replaced to −x1 − x2 and −x2

1 − x1x2 respectively. Since x3
2 =

−x2
1x2 − x1x

2
2 = x3

1, there is a equation

x6
1 = x3

1x
3
2 = x2

1x
2
2(x1 + x2)

2 − x2
1x

2
2(x

2
1 + x1x2 + x2

2)

= x2
1x

2
2x

2
3 = e23 = 0.

By considering the Poincaré series of F[x1, x2, x3]/(e1, e2, e
2
3) which is given by

P (F[x1, x2, x3]/(e1, e2, e
2
3); t) = 1 + 2t2 + 2t4 + 2t6 + 2t8 + 2t10 + t12,

We obtain this lemma.
□

By (1) and Lemma 4.2, there is an isomorphism

H∗(Hom(Z2, G2)) ∼=

(
F[x1, x2, x3]/(e1, e2, e

2
3)⊗

2⊗
i=1

Λ(yi1, y
i
2, y

i
3)/(y

i
1 + yi2 + yi3)

)D6

.

On the other hand, by Theorem 1.1 in Ramras and Stafa [10] we can compute the Poincaré
series of Hom(Z2, G2).

Lemma 4.4. The Poincaré series of Hom(Z2, G2) is given by

P (Hom(Z2, G2)1; t) = 1 + t2 + 2t3 + t4 + 2t5 + t6 + t10 + 2t11 + 2t13 + 3t14.

In this section we define aji =
∑3

l=1 x
4i−3
l yjl and bi =

∑3
l=1 x

4i−4
l y1l y

2
l .
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Theorem 4.5. There is an isomorphism

H∗(Hom(Zn, G2);F) ∼= F⟨a11, a12, a21, a22, b1, b2⟩/(a11, a12, a21, a22, b1, b2)3 + I,

where I is generated by

b1b2, b2
2, a12b2, a22b2, a11b2 + a12b1, a21b2 + a22b1, a11a

2
2 + a21a

1
2.

Proof. First we prove that H∗(Hom(Zn, G2);F) is generated by a11, a
1
2, a

2
1, a

2
2, b1, b2. By the

calculation similar to the proof in Lemma 4.3, there is a equation

a11b2 = (
3∑

l=1

xly
1
l )(

3∑
l=1

x4
l y

1
l y

2
l )

= ((x1 − x3)y
1
1 + (x2 − x3)y

1
2)((x

4
1 − x4

3)y
1
1y

2
1 + (x4

2 − x4
3)y

1
2y

2
2)

= (2x2 + x1)(x
4
1 − (x1 + x2)

4)y11y
1
2y

2
2 + (2x1 + x2)(x

4
2 − (x1 + x2)

4)y12y
1
1y

2
1

= 3x4
1x2y

1
1y

1
2y

2
2 + 3x1x

4
2y

1
2y

1
1y

2
1

By Lemma 4.3 we obtain a11b2 ̸= 0. By the similar calculation we can show that a21 ̸= 0, a11a
2
1 ̸=

0, ai1b1 ̸= 0, ai1b2 ̸= 0, ai1a
j
2 ̸= 0 for i, j = 1, 2. By Lemma 4.4 and considering the degree with

respect to the exterior algebra, the first statement is proved.
We can prove the rest part of this theorem similar to Theorem 2.3.

□
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