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Abstract

The quantisation of gravity is one of the most challenging problems in theoretical physics,
and arguably the biggest missing piece in our fundamental understanding of nature. One of the
proposed models attempting to construct a theory for quantum gravity is the canonical tensor
model. In this model, a spatial slice of spacetime is described by a completely symmetric real
tensor of degree three, and its dynamical structure has algebraic similarities to the Hamiltonian
formulation of general relativity. In this dissertation, this model will be thoroughly explained
in the newly developed algebraic interpretation of tensor models, where a tensor generates an
associative commutative algebra together with a list of eigenvalues of the Laplace-Beltrami
operator, giving this model a potential direct spacetime interpretation through a duality be-
tween smooth manifolds and their algebra of smooth functions. After this, a matrix model
will be introduced and analysed corresponding to a simplification of a wave function of the
canonical tensor model. Lastly, some research related to the configuration space of tensor rank
decompositions will be explained.
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Preface

At the time of writing it is almost three years ago, October 1st 2019, that I started my

doctorate programme at Kyoto University. Back then I was out of academia for about a year,

working as a security consultant at CGI Netherlands. The idea of obtaining a doctorate degree

always stuck with me, so when I got the opportunity to do it with the MEXT scholarship I

was happy to accept it.

The research area I chose to specialise in is called “quantum gravity”. To me this was

always the most exciting branch of physics, as it is in some way the most fundamental of all.

In quantum gravity one tries to really understand what the nature of space and time itself

are. There are many interesting approaches to this, and all use a certain set of underlying

principles. In a way, the research is all about choosing and understanding what kind of

consistent theories can emerge from a given set of theoretical principles inspired by both

quantum mechanics and general relativity. In the absence of current experimental evidence,

these principles are the main guidance we have in the search for a theory of quantum gravity.

One would hope that a consistent theory could then actually start making predictions, so

specific experiments and measurements could then be proposed (though currently we are

still quite far from that stage).

My research topic was centered around a specific model for quantum gravity, called

the canonical tensor model. I encountered this model during my masters degree which I

obtained at the Radboud University in the Netherlands. As a master student, I was interested

in doing the research for my master thesis abroad in Japan. I was happy to find a professor at

Kyoto University, Naoki Sasakura, who did exactly the kind of research I was interested in:

Discrete quantum gravity. I still feel very humbled and fortunate that he agreed to accept

me me to do research in Kyoto for one year during my masters. I see this year as a very

productive year where I learned a lot, including the publication of my first three co-authored

papers [4, 5, 6]. It was when I was writing my masters thesis about this research under the

supervision of Renate Loll, that I discovered what I found most exciting about the topic: The

model seems really promising and had very nice results so far, but the direct interpretation of

it was still not well-established.

That is why, when I got the opportunity a year later to do my doctorate at Kyoto University

under the supervision of prof. Sasakura, I already knew exactly what I wanted to do: To find

a rigorous mathematical footing of the canonical tensor model. It was certainly not an easy
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goal, and I struggled at times for sure. It is quite easy to end up digging yourself too deep

into the mathematics, so I was lucky that my professor would sometimes help me to look at

the actual physical picture again. About halfway during my research I found myself to be

on the right track, with the early ingredients for the definition of the “associative closure”

being found. In the end, it turned out that it would be possible to store all of the geometric

information of a Riemannian manifold into a tensor Pabc and reconstruct it, which indeed

makes it possible to treat a tensor model like the canonical tensor model as a model for

quantum gravity.

Besides this, I also did research projects together with prof. Sasakura. The first project

was analysing a matrix model that may be seen as a simplification of a wave function of

the canonical tensor model. The second project was about a mathematical tool that often

turns up in the analysis of the canonical tensor model, called the tensor rank decomposition.

Both of these projects have been interesting parts of my research, and will be covered in this

thesis.

My research done during my doctorate degree is published, or to be published, in [1, 2, 3].

I am really proud of the research that I could do, and I look back to a really great time I had

in Japan.
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Chapter 1

Introduction

One of the most impressive achievements in theoretical physics is the development of

general relativity, which gives the best understanding of gravity to date. In this theory,

gravity is described as the curvature of spacetime, and it has been shown to describe

gravitational effects extremely well [7, 8]. Some notable experimental verifications

of this theory range from the correct prediction of the precession of mercury at the

introduction of the theory in 1915 [9], measurements of the deflection of light due to

gravitational lensing around the sun in 1919 [10], all the way up to the recent direct

observation of black holes [11] and gravitational waves [12], which have already been

predicted over a century ago using Einstein’s theory [13, 14].

Even though this theory can be called extremely successful and has yet to be dis-

proven, physicists believe that general relativity is incomplete and has to be replaced by

a new theory at high energy levels. This theory is expected to be a quantum theory, and

thus it is called quantum gravity. The first reason to believe that such a theory should

exist is the believe and experience that the microscopic world is inherently quantum.

This is supported by the fact that all of the known matter, and the other three fundamental

forces, are all combined within the framework of quantum field theory in the standard

model of particle physics. Secondly, there is hope that such a theory for quantum gravity

might actually be able to give new insights in physical phenomena, and even help solve

some puzzles that appear in the study of the universe such as inflation, dark matter, or

why the universe has the properties it has.

The last, and maybe most convincing, argument for the need of a theory of quan-

tum gravity is of a more technical nature, namely through the singularity theorems by

Penrose and Hawking [15, 16]. These theorems state that, under physically reasonable

conditions, the existence of singularities is guaranteed in for instance black holes or at

the big bang. At singularities, the geodesics of the theory become incomplete, which by

physicists is often interpreted as the theory simply not being a good description of reality

in those extreme conditions. It is expected that at these extremely strong gravitational

fields, i.e. at very high energies, a more fundamental theory will become relevant, such

that general relativity is mainly a low-energy description of gravity.

Usually in physics, theoretical development would be guided by experimental results

that give some properties of nature that need explanation. One of the biggest challenges

faced in the development of any theory for quantum gravity is that these experimental
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1. INTRODUCTION

results are largely absent. The reason is that performing direct experiments at the

energy scale where quantum gravitational effects are expected to play a role is next to

impossible. This energy scale is called the Planck scale, and it can be constructed by

using the fundamental constants c (the speed of light), ℏ (the Planck constant) and G

(the gravitational constant)

EP =

√
c5ℏ
G

≈ 1028 eV.

This energy scale is considerably higher than the maximal energy of the Large Hadron

Collider at ∼ 1013 eV [17, 18], and even the most energetic cosmic ray ever measured

does not come close at ∼ 1020 eV [19]. Therefore, one is mainly left to physical intuition

built from experience with both general relativity and quantum theory when constructing

models for quantum gravity.

1.1 Overview of this thesis

This thesis will discuss the construction of an algebraic approach to quantum gravity

using tensors, and use this as a mathematical foundation to introduce the canonical tensor

model. One of the known wave functions of the canonical tensor model is then analysed,

by considering a simplification that effectively turns it into a matrix model.

The current chapter serves as an introduction to the thesis, in order to understand

the context of the matter discussed. In the following section, Section 1.2, a short non-

exhaustive overview of some approaches to quantum gravity will be given, especially

those that have had an influence in the development of the canonical tensor model or

the algebraic tensor model approach. Section 1.3 will discuss some reasons as to why

an algebraic approach to quantum gravity might be useful. Lastly, Section 1.4 will

give a brief summary of the canonical tensor model, in order to understand what the

development of the algebraic tensor approach is building towards.

In Chapter 2, the mathematical foundations for the usage of algebras will be explained,

as this is crucial in the development of the theory. The geometric structure will be built up

throughout the chapter, starting with the duality between topological spaces and (some)

commutative associative algebras, then discussing the duality between the algebra of

smooth functions and topological manifolds, to finally discussing how a full Riemannian

geometry may be reconstructed by adding a Hilbert space structure and spectral data of

an operator to the algebra.

Chapter 3 will introduce the main framework used to link tensors of degree three

to Riemannian manifolds. In this chapter, it will be explained how one can reconstruct

the topological structure from even a finite-dimensional tensor. Furthermore, a way

of including the spectral data of an operator, and thus according to Chapter 2 the full

Riemannian geometry, is discussed, making these tensor models possible candidates for

quantum gravity.

Chapter 4 then gives a full introduction to the canonical tensor model in the context

of algebraic tensor models. The classical model in the Hamiltonian framework will be

explained, and using canonical quantisation the quantum model is defined. The main

results, including some exactly known wave-functions, will be explained.
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1.2. Some approaches to quantum gravity

In Chapter 5, the main results of [1] will be discussed. A matrix model relating to

one of the known wave functions of the canonical tensor model is analysed. After this,

Chapter 6 will explain the work done in [2], where the configuration space of tensor rank

decompositions was introduced and analysed.

1.2 Some approaches to quantum gravity

In this section, some approaches to quantum gravity will be discussed. Since the

field is very broad and many approaches exist, the approaches mentioned here are not

exhaustive. For some more discussion on quantum gravity, several useful references

are [20, 21, 22, 23]. The approaches discussed in this section are the most relevant to

the development of quantum gravity, and have been influential in the development of

algebraic tensor models and the canonical tensor model.

The approaches may in general be split between perturbative and non-perturbative

approaches. The former of these will be discussed first in order to gain some historical

perspective, followed by two kinds of non-perturbative approaches: covariant and canon-

ical approaches. The canonical tensor model that this thesis is falls into the canonical

non-perturbative category.

1.2.1 Perturbative methods

Perturbative expansions were introduced by Rayleigh for pre-quantum wave theory [24]

and later applied by Schrödinger to quantum mechanics [25], but only later made

mathematically precise [26]. Perturbation theory has been enormously successful in

quantum theory. From using it to explain for instance the Van der Waals interaction in

quantum mechanics [27], to being the main tool for calculations in the standard model of

particle physics [28] using perturbative quantum field theory [29].

The original attempts for quantising gravity were perturbative [30], mainly due

to the enormous success of theories like the standard model for particle physics. As

this approach worked for three of the four fundamental forces, it made sense to try to

apply this to the fourth one as well. The original idea, now often called the background

field method, was to expand the gravitational field, i.e. the metric field, around some

background metric ḡµν(x):

gµν(x) ≡ ḡµν(x) + hµν(x),

where hµν(x) denotes a small perturbation around this background metric so that it can

be used for a perturbative expansion. As the Minkowski metric ηµν was most-often used

in particle physics, this was the most logical choice for a background metric.

From dimensional analysis [29], one may already expect at this point what the result

of this exercise will be: The gravitational action is perturbatively non-renormalisable [21].

Dimensional analysis is a qualitative argument which explains whether quantum loop

corrections should be expected to diverge or converge if the cutoff energy is taken to

be infinite. However, the result of this argument is not necessarily always true. For

instance if the theory has a strong symmetry, divergences may be softened or cancelled

out completely [31].
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1. INTRODUCTION

In [32], contributions up to one-loop order in perturbative quantum gravity were

calculated, and as expected, divergences appeared. However, it was possible to absorb

these in field re-definitions up to a total derivative term, which is deemed unphysical and

thus not relevant. Therefore, it seemed as if it might be possible for the theory to still be

perturbatively renormalisable. This was later found to be incorrect, since calculations

showed that quantum gravity coupled to matter diverges at one-loop order, and pure

gravity diverges at two-loop order [33].

Modern perturbative approaches most-often try to circumvent these issues by adding

additional structure to the theory. As mentioned above, extra structure or symmetry

might soften out divergences such that they can be handled properly. In the 1970s it

was argued that adding a symmetry called supersymmetry to general relativity might

improve the divergent behaviour, and it was found that by adding a spin-3/2 field to the

gravitational action making the action supersymmetric, the theory would be finite up to

two-loop order [34]. However, interest faded in the years later when it was found that the

theory had bad UV behaviour after all, even when allowing the extension of the theory

to 11 dimensions [35].

Another approach which adds extra structure to the theory is string theory [36].

The idea of string theory is that the fundamental divergence of general relativity is

due to the point-particle description of nature in quantum field theory. Spreading out

these interactions by using two-dimensional world sheets instead of one-dimensional

world-lines circumvents this, and leads to a renormalisable theory that has general

relativity as its lower energy limit. One complication of the theory is the so-called string

theory landscape, which shows a high level of ambiguity in the theory coming from the

enormous amounts of possible compactifications of the theory [37].

1.2.2 The covariant approach

In this subsection, the covariant approach to non-perturbative quantum gravity will

be discussed. As explained in Section 1.2.1, general relativity is perturbatively non-

renormalisable. The philosophy behind the non-perturbative approaches is that the main

issue lies in the application of perturbation theory, even though the theory is not suited for

that. If one wants to avoid adding additional structure to the theory, one has to carefully

evaluate how to actually define the theory and avoid using perturbation theory in its

calculations.

The covariant approach to quantum gravity uses the path integral formulation of

quantum field theory, as this allows a non-perturbative starting point for quantum field

theories. The method is called covariant because, if the action used is covariant, the

theory is described in a manifestly covariant way. The path integral formulation of

quantum general relativity was already formulated by Misner in 1957 [38], and yields a

formal definition of the path integral as

Z :=

∫
D[g] ei SEH([g]), (1.1)

where [g] denotes an equivalence class of diffeomorphisms of metrics g, and the Einstein-

Hilbert action is used

SEH(g) =
1

16πG

∫
d4x

√
|g|R, (1.2)
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1.2. Some approaches to quantum gravity

where |g| denotes the absolute value of the determinant of the metric g, and R is the

Ricci scalar.

The main tasks for theories in the path integral approach, and also the main point

where they differ from one another, is to attempt to make the expression in Eq. (1.1)

well-defined. There are several ways to do this.

One promising example is asymptotic safety [39], originally introduced by Wein-

berg [40]. With asymptotic safety one assumes the existence of a UV fixed point of the

renormalisation group flow. In order to do this, one needs a non-perturbative definition of

renormalisation which is given by the functional renormalisation group [41]. In general

terms, the asymptotic safety programme boils down to carefully defining renormalisation

in a non-perturbative way, and evaluating if there is a UV fixed point making general

relativity “asymptotically safe”.

Another way of defining the path integral properly is by regularising it using dis-

crete building blocks. This is the general approach of theories like (causal) dynamical

triangulation and simplicial tensor models.

In dynamical triangulation [42, 43], the path integral is replaced by a sum over

all triangulations of a given topological manifold, weighted with a discrete version of

the Einstein-Hilbert action coming from Regge calculus. Dynamical triangulation was

really successful in two dimensions, but in three and four dimensions it did not show the

emergence of macroscopic spacetimes [44]. The real success of this approach came with

the introduction of causal dynamical triangulation [45, 46, 47], where a causal restriction

was added to the allowed triangulations such that a Wick rotation between the Euclidean

triangulations and their Lorentzian geometries was well-defined. This causal requirement

seemed crucial, as now there are some serious signs of the emergence of macroscopic

spacetimes in four dimensions [48].

Simplicial tensor models are another discrete approach to gravity. They were orig-

inally motived by the success of matrix models to describe two-dimensional quantum

gravity similarly to dynamical triangulation [49, 50, 51]. The idea is that d-dimensional

simplices are glued together according to the contraction of tensors of degree d, gen-

erated by a partition function. The original models were not very satisfactory, since

they mainly produced singular spaces. These problems seem similar to the issues that

dynamical triangulation was facing before the introduction of a causal requirement, but

for tensor models it seems impossible to include such a requirement in a natural way.

This motivated the introduction of the canonical tensor model, as it introduces time in a

fundamentally different way to tensor models, as discussed below.

1.2.3 Canonical quantum gravity

In this subsection, some elements of canonical quantum gravity will be discussed. First, a

brief overview of the canonical formalism of general relativity, called the ADM-formalism,

will be given, and some canonical quantisation methods will be briefly discussed.

The ADM-formalism, after Arnowitt, Deser and Misner who originally proposed

this form of general relativity [52], is the symplectic geometrical formulation of general

relativity. This formulation singles out time in order to describe the evolution of spatial

slices through time according to a Hamiltonian. It is important to note that although this
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1. INTRODUCTION

breaks manifest general covariance, general covariance is not broken since the choice

of time is taken to be a gauge choice. One might thus already expect that the resulting

Hamiltonian will be totally constraint. Here, a short summary will be given, for a more

elaborate discussion refer to [53, 54, 55].

The central assumption that makes this description possible is the assumption that the

spacetime manifold (M, g) is globally hyperbolic, meaning that it has a Cauchy surface.

A Cauchy surface is a subset of M such that any nowhere spacelike intersects it exactly

once. One might see this as a kind of causality condition, since if one knows the initial

conditions on a Cauchy surface there is a unique global solution on the whole manifold.

If this is satisfied, it may be shown that the spacetime manifold has the topology [56, 57]

M ∼= R× S. (1.3)

Here, S is a three-dimensional manifold of some fixed topology.

The main strategy is now to foliate M into hypersurfaces Σt
∼= S , parameterised by

t ∈ R, and rewrite the Einstein-Hilbert action in terms of the spatial manifold metric

qab, the shift vector Na and the lapse function N . Subsequently, one finds the canonical

momenta corresponding to these variables and finds the Hamiltonian, and one can show

that the final Hamiltonian actually only depends on the spatial metric qab and its canonical

conjugate pab. The result of this exercise is given by

H :=

∫
S
d3x[NaHa +NH],

where the spatial diffeomorphism constraint Ha and the Hamiltonian constraint H are

given by
Ha := −2qac∇bp

bc,

H :=
1

det(q)

[
pabp

ab − 1

2
p2
]
+
√
det(q)R,

with R the Ricci scalar on (S, q), ∇b the covariant derivative, and the shift vector and

lapse function act as Lagrange multipliers.

Since the shift vector and lapse function act as Lagrange multipliers, the effective

phase space now only consists of the canonically conjugate pair (qab, pab). Note that

this is an over-countably infinite-dimensional symplectic manifold, since the metric is

defined on every point on S. The Poisson structure on the phase space is given by the

following Poisson brackets

{qab(t, x), pcd(t′, x′)} = δcd(ab)δ(t, t
′)δ(3)(x, x′), (1.4)

where δcd(ab) =
1
2(δ

c
aδ

d
b + δcbδ

d
a).

The constraints Ha and H form the hypersurface deformation algebra{
H(f),H(f ′)

}
= H⃗(K⃗(f, f ′)),{

H(f), H⃗(F⃗ ′)
}
= H(LF⃗ f),{

H⃗(F⃗ ), H⃗(F⃗ ′)
}
= H⃗(LF⃗ F⃗

′),

(1.5)

where Ka := qab(f∂bf
′ − f ′∂bf) and the Lie derivative of a vector field is given by

(LF⃗ F⃗
′)a = F b∇bF

′a − F ′b∇bF
a and acting on a function gives LF⃗ f = Fµ∂µf . Note
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1.3. The case for algebras

here that the right hand side of the first equation depends on qab, which makes this not a

proper Lie-algebra.

The most direct way of canonically quantising general relativity, is by taking the

canonical variables qab(x) and pab(x) and mapping them to operators q̂ab(x) and p̂ab(x).

These operators then are required to satisfy the quantum commutator algebra[
q̂ab(t, x), p̂

cd(t′, x′)
]
= iδcd(ab)δ(t, t

′)δ(x, x′), (1.6)

which is a quantum analogue of the Poisson algebra in Eq. (1.4). Formally, one can write

these in a representation on a suitable function space over the space of all Riemannian

3-metrics on the spatial manifold S as

q̂ab(x)ψ[qab(x)] = qab(x)ψ[qab(x)],

p̂cd(x)ψ[qab(x)] = −iℏ δ

δqcd(x)
ψ[qab(x)].

To find the physical Hilbert space of the theory, one has to define the quantum

version of the constraints, which we will formally denote here by Ĥa and Ĥ, and require

the physical states to satisfy the constraint equations

0 ≡ ĤΨ :=

(
1

2
√
q
(qacqbd + qadqbc − qabqcd)

δ

δqab

δ

δqcd
−√

qR

)
Ψ,

0 ≡ ĤaΨ := i2∇bqac
δ

δqbc
Ψ.

(1.7)

The first of these equations is called the Wheeler-deWitt equation [54, 58]. These

equations are notoriously difficult to solve, and it is currently not known if the commutator

algebra of these equations contains any anomalies, in which case one cannot expect

four-dimensional covariance to occur.

A prominent canonical theory of gravity that uses a different set of variables is called

loop quantum gravity [54]. In this theory, the so-called Ashtekar variables are quantised

instead of the metric. These variables are related to the metric, but rewritten in such a

way that the three-dimensional metric degrees of freedom are represented as an SU(2)

gauge field.

1.3 The case for algebras

When developing a theory for quantum gravity, one has to look at the principles behind

the theories of both general relativity and quantum mechanics, and decide which of these

principles one deems important to keep in the final theory for quantum gravity. For all

the differences in the approaches in Section 1.2, they do have one thing in common:

They all attempt to quantise the metric tensor of (pseudo-)Riemannian manifolds, or

other variables from differential geometry. Arguably one of the big difficulties in

the quantisation of gravity is that this configuration space of all possible geometries

represented in this way is extremely large and complicated.

An intriguing development, and a big enabler of the field of algebraic geometry,

is a theorem due to Gelfand [59, 60], stating that commutative C∗ algebras are dual

to topological Hausdorff spaces. The C∗ algebra is then isomorphic to the continuous
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1. INTRODUCTION

functions over a topological space X , C(X). Later, Gelfand and Naimark generalised

this result to more general cases [61], which is often seen as the starting point for

non-commutative geometry [62].

For the commutative case, it turns out that even more structure of the geometry can

directly be linked to the algebra. If one considers an algebra A which is isomorphic to

the algebra of smooth functions over a manifold M, C∞(M), then one can reconstruct

the full smooth manifold structure purely from the abstract algebra A [63]. This means

that if one wants to describe a smooth manifold, one can choose to represent this as

the smooth manifold M, or equivalently one can represent the same information as the

abstract algebra A.

Generally, one can equip the algebra with a Banach space structure, and in many

cases, for instance for compact Riemannian manifolds, one can create a Banach space

with a Schauder basis. This basis is countable, and thus suddenly one can describe the

degrees of freedom of a topological manifold with a countably infinite-dimensional object.

What is more, as will be argued in Section 2.3, in the case of a compact Riemannian

manifold the algebra will get a natural Hilbert space structure, and together with the

spectrum of an operator - a countably infinite-dimensional list of numbers - one can

reconstruct the full geometry of the Riemannian manifold.

If one denotes the basis of the Hilbert space mentioned above by {fa}, the algebra

of functions may then be described as

fa · fb = Pab
cfc.

The objects Pab
c are known as the structure constants of the algebra, but they may also

collectively be seen as a tensor. If one has a measure on the space, as is the case for

Riemannian manifolds, the tensor may be written with a lower index Pabc. Together

with a way of encoding the spectrum of an operator in this tensor which is explained

in Section 3.3, one thus has a countably infinite-dimensional configuration space of

symmetric tensors Pabc which may encode the full geometry of a Riemannian manifold.

This configuration space is relatively easy to handle, and as will be shown below, it is even

possible to make sense of finite-dimensional tensors as a representation of Riemannian

manifolds.

The relatively simple configuration space, and the fact that an algebraic representation

of a manifold is manifestly diffeomorphism invariant, makes this approach an approach

worth investigating. After all, a priori there is no way of knowing which representation

of reality is a more appropriate starting point for a quantum theory of gravity. Besides

fundamentally changing the description of a manifold, which might be beneficial in

order to quantise the theory, there is a more philosophical argument to make for the

usage of this representation [63]. Whenever one makes a measurement on space, one

actually uses functions for this. For instance, separating two points on some manifold

x1, x2 ∈ M may be done by finding any function that has a different value at these points

f(x1) ̸= f(x2). If such a function exists, the points x1 and x2 are not the same. If one

takes a ruler and measures the distance between two points, one is basically measuring

the value of a function. Functions are the foundation of measurements, and it makes

sense from the point of physics to take these as the fundamental variables for the theory.

8



1.4. A sneak peek into the canonical tensor model

1.4 A sneak peek into the canonical tensor model

This section serves as a short explanation of the ideas, principles and interpretation of

the canonical tensor model, in order to understand what kinds of models may be thought

of as algebraic tensor models. It is not meant as a full introduction into the model, which

will be properly defined and examined in Chapter 4.

The canonical tensor model was introduced in 2011 in an attempt to build a tensor

model for quantum gravity with a local notion of time [64]. This was mainly motivated by

the success of causal dynamical triangulation over dynamical triangulation, suggesting

that the key element that makes a quantum theory of gravity feasible is a notion of

causality, or time. In simplicial tensor models, it is hard to incorporate a notion of

causality on a fundamental tensor level. Therefore, the idea of the model was to place

the model in the Hamiltonian formalism, in order to explicitly introduce time generated

by some Hamiltonian.

The fundamental variables of the model are a canonically conjugate pair of real

N -dimensional symmetric tensors of degree three, Qabc and Pabc. Though they have

finite dimension N , it is understood that in the full quantum theory - or at least in the

classical limit - one has to take some N → ∞ limit. The phase space of the model is

thus isomorphic to R2N , where N = 1
6N(N + 1)(N + 2) is the amount of degrees of

freedom of a real N -dimensional symmetric tensor.

The dynamical structure of the theory is such that it is algebraically similar to the

ADM-formalism of general relativity. The Hamiltonian of the theory is fully constraint,

and may be written as

H := naHa + nabJab.

Here, na and nab are Lagrange multipliers and Jab is an analogue to the spatial diffeo-

morphism constraint, and comes from the assumed SO(N) rotation symmetry of the

theory. Ha is called the Hamiltonian constraint, and it is determined by the requirement

that Ha and Jab span an algebra similar to the ADM constraint algebra.

The quantum mechanical version of the model is obtained by canonical quantisation.

The fundamental variables have operator-versions Q̂abc and P̂abc, which satisfy canonical

commutation relations. Interestingly, the constraint algebra of the now operators Ĥa

and Ĵab is consistent with its classical analogue. The physical states Ψ of the theory are

determined as one would do in canonical quantum gravity, by requiring

ĴabΨ = ĤaΨ = 0.

This equation has several known exact solutions, some with interesting properties like

the emergence of symmetries.

The model has been shown to be unique under certain physical assumptions [65],

and has been shown to have some connections to general relativity in both the N = 1

case and a formal N → ∞ limit [66, 67, 68]. Despite this encouraging evidence of

a connection to gravity, and analysis using data analytic tools showing some signs of

geometry [6], a complete connection to a spacetime picture has been absent until recently

when the algebraic tensor model picture was developed [3].1

1Note that it has not been completely established whether or not this is the best spacetime interpretation
for the model.
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1. INTRODUCTION

In the algebraic tensor model picture, one of the tensors Qabc or Pabc is supposed to

play the role of the tensor defining the algebra of functions of a Riemannian manifold.

The tensor, say Pabc, would then represent a spatial slice of spacetime as a Riemannian

manifold, and the time evolution using the Hamiltonian would determine the full pseudo-

Riemannian manifold.
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Chapter 2

Algebras and Riemannian
manifolds

In this chapter, the description of Riemannian manifolds in an algebraic language is

discussed in order to set the stage for an algebraic interpretation of tensor models. Sec-

tion 2.1 a short introduction to this part of algebraic geometry will be given. Section 2.2

then explains the duality between algebras and topological spaces to some detail, in-

cluding the reconstruction of smooth manifolds. Section 2.3 then explains how the full

geometry of a Riemannian manifold can be reconstructed by introducing an inner product

structure with some operator.

2.1 The duality between topological spaces and
algebras

In this section, the original Gelfand duality and generalisations thereof will be explained

to provide the context in order to understand the place of this work within algebraic

geometry. This will be the starting point for the discussion in the following sections,

where the focus is to limit ourselves to a specific set of algebras which correspond to

real smooth manifolds and what extra structure is needed to create a link to Riemannian

manifolds.

The Gelfand duality is a duality between commutative C∗-algebras and topological

spaces. An algebra is a vectorspace A equipped with a bilinear product:

· : A×A → A.

In general, this product is not assumed to be commutative nor associative. A ∗-algebra is

a complex algebra with an involution operation ∗, while a C∗-algebra additionally has a

Banach space structure with the condition that ||AA∗|| = ||A||2.

For a locally compact Hausdorff space X , the (complex) continuous functions that

vanish at infinity on that space, denoted by C0(X), are closed under the following norm

||f || = sup{|f(z)| | z ∈ X},

and thus form a Banach space. Moreover, it may be verified that it is an associative

commutativeC∗-algebra under the pointwise product and pointwise complex conjugation

for the involution.

11



2. ALGEBRAS AND RIEMANNIAN MANIFOLDS

The Gelfand duality, cited here without proof, now claims the existence of a, rather

surprising, duality between C∗ algebras and locally compact Hausdorff spaces X [59,

60]:

Theorem 2.1. Let A be a commutative C∗-algebra. There exists a unique (up to

homeomorphisms) locally compact Hausdorff space X , for which A is isomorphic to

C0(X). If A is unital, X is compact (and thus A ∼= C(X)).

A natural question to ask is whether one can actually reconstruct the space X from

the algebra. The answer to this is positive. Consider the set of nonzero homomorphisms

of the algebra, which are a subset of the linear dual space A∗, denoted by |A|

|A| := {p : A → C | ∀ f, g ∈ A, p(f)p(g) = p(f · g)}. (2.1)

This space may then be equipped with the weak-∗ topology.1 This space is actually the

topological space one looks for. This can be seen by defining the Gelfand transform f̂ of

an element f ∈ A as a function on |A| such that

f̂(p) := p(f),

for all p ∈ |A|. The weak-∗ topology on |A| exactly corresponds to the weakest topology

such that the functions on |A| defined in this way are continuous. In the case of real

algebras below, the same topology will be introduced.

It is good to appreciate at this point that this is a true duality between C∗ algebras

and locally compact Hausdorff spaces. In the case of real algebras, as will be discussed

later, this will not be the case anymore and one has to require an algebra to correspond to

an algebra of functions.

Theorem 2.1 was the starting point for several generalisations of these concepts.

One notable example is non-commutative geometry, where the complex numbers C
in Eq. (2.1) are replaced by operators algebras. This opens the door to relaxing the

commutative requirement of the algebra, f · g = g · f , as operators that are represented

on a Hilbert space may well be defined without this property. Generalising the C∗

structure may be done by only requiring the algebra to be a vectorspace, but not needing

any Banach space structure. In algebraic geometry, this is done using the language of

schemes, which correspond to algebras generated by a finite amount of elements [70].

In this work the main focus is on real commutative algebras. In this chapter they

will always be associative as well, though Chapter 3 will also consider a certain class of

non-associative algebras. These non-associative algebras are generated by tensors, and

the question will be how to properly define an associative counterpart to it.

2.2 Associative commutative algebras and topological
manifolds

This section aims to describe topological manifolds in an algebraic way. For this, the

content of [63] will be used in combination with some additional insights. In order to

1See for instance [69] for an introduction to these concepts.
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2.2. Associative commutative algebras and topological manifolds

make the concepts in this section more clear, some examples will be used throughout.

Note that some of the examples will be somewhat abstract, since they mainly serve

to explain the mathematical concepts. Towards the end of the section, when smooth

algebras will be discussed, more physically relevant examples will be discussed, notably

the algebra of functions on the circle, which will be the prime example for the next

chapter as well.

2.2.1 Algebras and topological spaces

In this part, the duality between commutative associative real algebras and topological

spaces will be reviewed. For this, first one needs a proper definition of an R-algebra.

Definition 2.1. An R-algebra F is a linear space (F ,+) over R equipped with a bilinear

product

· : F × F → F . (2.2)

In this chapter, Chapter 2, the R-algebra is always assumed to be commutative and

associative, though the latter restriction will be relaxed in Chapter 3. Two examples of

commutative associative R-algebras are the following.

Example 2.1. An elementary example is the real numbers R with the usual product.

This one-dimensional R-algebra is generated by the set {1}, and is isomorphic to R as a

field.

By “generated by” one means to take linear combinations and products of the

elements in the generated set to arrive at the full algebra.

Example 2.2. A little more sophisticated example is the algebra of real polynomials

generated by {1, x}, denoted by R[x]. This algebra is infinite-dimensional and has a

Hamel basis given by {1, x, x2, ...}.

An R-algebra homomorphism is defined as follows:

Definition 2.2. An R-algebra homomorphism is a homomorphism α : F1 → F2 that

preserves the operations + and ·, preserves multiplication with λ ∈ R and is unital, i.e.

sends the unit of F1 to the unit of F2. In this dissertation, F2 will usually be taken to be

the real numbers R.

Example 2.3. An example of an R-algebra homomorphism for the algebra in example 2.2

may be constructed as

α0 : R[x] → R,

f → f(x = 0),

where by f(x = 0) means to set x to 0. Take for example f =
√
2 + x + 3x2, then

α0(f) =
√
2.

Replacing x by a real number is called the evaluation map, so here the polynomial

f is evaluated at 0. Note that any other real number could also have been chosen and

would be a valid R-algebra homomorphism.
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In order to view the algebra F as an algebra of functions over some topological space

M, one defines the algebraic dual space |F| as

Definition 2.3. The algebraic dual space of an algebra F , denoted by |F|, is defined as

the set of all R-algebra homomorphisms of F into R:

|F| := {p : F → R | ∀f, g ∈ F , p(f · g) = p(f) · p(g)}.

Remark 2.1. The algebraic dual space is a subset of the linear dual space F∗

|F| ⊂ F∗.

Elements of the algebraic dual space, p ∈ |F|, will be referred to as “points”.

Example 2.4. The dual space of F = R from Example 2.1 is a single point |F| = {p}.

This can be seen as follows. For any R-homomorphism, the unit of F has to be sent to

the unit in R. However, since the + and · operations and multiplication by λ ∈ R have

to be preserved, the only R-algebra homomorphism possible is

p : F → R,

x→ p(x) = x.

Example 2.5. The dual space of F = R[x] is the real numbers |F| = R. This may be

seen as follows. As already mentioned in Example 2.3, the evaluation of a polynomial at

a point in R is always an R-algebra homomorphism. The only thing to prove now is that

every R-algebra homomorphism α is determined by a single real number λ, which holds

true as follows

α(f) = α

(∑
k

akx
k

)
,

=
∑
k

akα(x
k),

=
∑
k

akα(x)
k ≡

∑
k

akλ
k.

Here, λ ≡ α(x) indeed has to be a real number, and it determines the action of the

homomorphism uniquely.

In order to view F as an algebra of functions over the dual space |F|, one needs to

define the Gelfand transform of an algebra element

Definition 2.4. The Gelfand transform f̃ : |F| → R of an element f ∈ F is a function

on |F| defined as

p ∈ |F|, f̃(p) = p(f).

Definition 2.5. The algebra of functions on |F| canonically induced by F are all the

Gelfand transforms of F ,

F̃ :=
{
f̃ : |F| → R , f̃(p) = p(f) | f ∈ F

}
,

where we have the natural map from the algebra F to F̃

τ : F → F̃ ,

f → (p→ p(f)) .
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2.2. Associative commutative algebras and topological manifolds

Remark 2.2. τ is a homomorphism, and thus, F̃ may indeed be interpreted as an algebra

of functions over |F|. Furthermore it is surjective.

As the goal is to create a connection between algebras and topological spaces, one

wants to interpret the algebra F as an algebra of functions over a topological space

|F|. It is worth noting that the algebraic structures in this section are slightly different

from the case of the Gelfand duality as discussed in Section 2.1. For one, the algebras

discussed are real, and there is no Banach space structure assumed. In general, a real

algebra F does not directly correspond to an algebra of functions over the space |F|,
justifying the following definition

Definition 2.6. A R-algebra F ∋ f is geometric if it is isomorphic to the space of

Gelfand transforms of F ,

F ∼= F̃ .

In other words: F is geometric if it can be seen as an algebra of functions over some

space M = |F|.

Remark 2.3. Note that if F is geometric, the algebra F̃ induced by F is pointwise as

(f̃ · g̃)(p) = p(f · g) = p(f)p(g) = f̃(p)g̃(p).

Example 2.6. The algebra F = R, discussed in Examples 2.1 and 2.4, is geometric.

The (clearly bijective) map τ is given by

τ : F → F̃ ,

x→ x̃(p) = p(x) = x.

Example 2.7. The algebra F = R[x], discussed in Examples 2.2 and 2.5 is also

geometric, as every element f̃ ∈ F̃ can be written as

f̃(pλ) = pλ(f) =
∑
k

akλ
k,

where pλ ∈ |F| exists for any λ ∈ R. Therefore this exactly corresponds to a polynomial

given by the coefficients ak, and thus

τ(f)(p) = f̃(p)

is bijective.

Example 2.8. Consider the field R2 endowed with the product

(x1, y1) · (x2, y2) = (x1x2, x1y2 + x2y1).

Note that the unit of this algebra is (1, 0). This means that for ∀p ∈ |F|, p((x, 0)) = x,

since p should be a homomorphism. This means that for general points (x, y) ∈ R2:

p((x, y)) = p((x, 0) + (0, y)) = x+ p((0, y)).
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This means that for the product of two elements for homomorphisms:

p((x1, y1) · (x2, y2)) = p((x1, y1))p((x2, y2)),

= x1x2 + x1p((0, y2)) + x2p((0, y1)) + p((0, y1))p((0, y2)),

= x1x2 + p((0, x1y2 + x2y1)) + p((0, y1))p((0, y2)).

However, from the multiplcation rule of the algebra follows:

p((x1, y1) · (x2, y2)) = p((x1x2, x1y2 + x2y1)),

= x1x2 + p((0, x1y2 + x2y1)).

So the only way for which p can be a homomorphism is if p((x, y)) = p((x, 0)) +

p((0, y)) = x: The dual space consists of only a single point. It is now clear that the

map τ : F → F̃ cannot be injective, as

f̃(p) = τ(f)(p) = p(f) = p((x, y)) = p((x, 0)).

So this algebra is not geometric.

Remark 2.4. An important observation of Example 2.8 which will be important for

the following is that the algebra has an ideal, given by I = Ker p = {(0, y) | y ∈ R}.

This ideal is the root of the problem, since every element of this ideal is mapped to 0

by elements in the dual space. In a slightly less rigorous phrasing: The dependence on

elements of this ideal disappears in the algebra of functions F̃ , as under τ for f = (x, y);

f̃(p) = p(f) = p((x, y)) = p((x, 0)).

This remark inspires the following definition and theorem.

Definition 2.7. The central ideal I(F) of an R-algebra F is

I(F) :=
⋂

x∈|F|

Ker x.

Theorem 2.2. An R-algebra F is geometric iff its central ideal I(F) is trivial.

Proof. Note that F is geometric iff Ker τ = 0. So assume

f ∈ Ker τ ⇔ τ(f) = f̃ = 0,

⇔ f̃(x) = x(f) = 0 ∀x ∈ |F|,

⇔ f ∈
⋂

x∈|F|

Ker x = I(F)

Remark 2.5. With this theorem, the examples in Examples 2.6 and 2.7 become much

easier. Example 2.6 is trivial, and for Example 2.7 the only polynomial that evaluates to

zero everywhere is the zero-polynomial. The theorem also makes sense of Example 2.8

combined with remark 2.4. The central ideal of the algebra is non-trivial, so the algebra

is not geometric.

As explained before, not every R-algebra is geometric. However, with the following

proposition one can turn every arbitrary R-algebra into a geometric R-algebra.
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Proposition 2.1. For an arbitrary R-algebra, the quotient R-algebra

F/I(F)

is geometric and has the same dual space:

|F| = |F/I(F)|.

Proof. First it will be shown that the dual spaces are isomorphic. For this one needs the

quotient map

π : F → F/I(F),

f → [f ].

With this one can define the map

φ : |F/I(F)| → |F|,

b → b ◦ π.

This is well-defined since taking an element f ∈ F and projecting it to the quotient

space, and then using a homomorphism of the dual space of the quotient space is a

homomorphism of F as well.

In order to show that φ is an isomorphism, consider injectivity and surjectivity

seperately.

• Injective: Take b1, b2 ∈ |F/I(F)|, with b1 ̸= b2. Then, since π is surjective,

φ(b1) = b1 ◦ π ̸= b2 ◦ π = φ(b2).

So indeed φ is injective.

• Surjective: To show surjectivity, take an element a ∈ |F|. Note that Ker a ⊇
I(F). This means that all elements that are in an equivalence class [f ] of the

quotient space F/I(F) are mapped to the same value under a. So

ā([f ]) = a(f),

is a well-defined homomorphism of F/I(F), i.e. ā ∈ |F/I(F)|. But that means

that a, by the definition of ā, is nothing more than

a = ā ◦ π = φ(ā),

so indeed φ is surjective.

Thus we can conclude that φ is an isomorphism.

Now to show that the central ideal of this quotient algebra is trivial, take an element

[f ] ∈ I (F/I(F)). Then:

[f ] ∈ I (F/I(F)) ⇔ ∀b ∈ |F/I(F)|, b([f ]) = 0,

⇔ ∀a ∈ |F|, a(f) = 0,

⇔ f ∈ I(F),

⇔ [f ] = 0.
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Figure 2.1: An illustration of the construction of a topology on |F| as described in Re-
mark 2.6. Figure taken from [3].

From now on, the algebra F is generally assumed to be geometric, as one can always

construct a geometric algebra from an arbitrary R-algebra. Furthermore, the algebras F
and F̃ will be used interchangeably as they are isomorphic in that case.

Remark 2.6. Given a geometric R-algebra F , one can define a topology on |F|. This

topology is given by the basis of the form f−1(V ), where V ⊂ R is open and f ∈ F .

Note that f−1(V ) denotes the preimage of V under f , and is a meaningful expression

since f can be identified with a function over |F| by the Gelfand transform.

This topology in |F| is the weakest topology for which all functions in F are

continuous.

Proposition 2.2. If F is a geometric R-algebra, the dual space |F| with the topology

introduced in Remark 2.6 is a Hausdorff space.

Proof. |F| with this topology is a Hausdorff space if for every two distinct points

x, y ∈ |F| , there exist neighborhoods U ∋ x and V ∋ y that are disjoint, i.e. U ∩V = ∅.

Suppose x, y ∈ |F| with x ̸= y. This means that there is an f ∈ F such that

f(x) ̸= f(y). Without loss of generality one can assume that f(x) < f(y). Two

neighborhoods in |F| may then be constructed by, for instance,

U = f−1

((
−∞,

f(x) + f(y)

2

))
, V = f−1

((
f(x) + f(y)

2
,∞
))

,

which are indeed neighborhoods in the topology by the definition in Remark 2.6, and

indeed U ∩ V = ∅.

Example 2.9. Continuing with Example 2.7, where F = R[x] and |F| = R, one can

now construct a topology on this dual space. Take for instance the polynomial f = x.

Now any open set V ⊆ R corresponds by U = f−1(V ). This already constitutes the

usual basis for R, and this actually already defines the whole topology on |F|.

Example 2.10. A little more advanced is the example of the algebra of polynomials of n

variables, F = R[x1, . . . , xn]. It can be checked with similar arguments as before that

|F| = Rn. The topology defined in Remark 2.6 coincides with the usual topology of Rn.

It is good to reflect for a moment what has been achieved. From an abstract algebra

F , one can now unambiguously define an associated Hausdorff space to it, where the
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algebra now represents an algebra of functions on this Hausdorff space. The question

now is whether one can go even further; can one get any more structure from the algebra?

The answer to this is yes, in the following will be discussed what requirements the

algebra has to satisfy in order to be able to fully reconstruct a smooth manifold.

2.2.2 Smooth manifolds and algebras

Here, the algebraic definition of smooth manifolds will be given. For an algebra to

correspond to an algebra of functions over a smooth manifold, two more notions will be

needed: The notions of completeness and smoothness.

Definition 2.8. Suppose F is a geometric R-algebra and A ⊂ |F| a subset of its dual

space. The restriction of F to A, denoted by F|A, are all functions f : A → R, such

that for any a ∈ A there exists an open neighborhood U ⊂ A and a function f ′ ∈ F ,

such that the restriction of f to U coincides with the restriction of f ′ to U .

The restriction homomorphism for a subset A ⊂ |F| is

ρA : F → F|A,

f → f |A,

where f |A is the usual restriction of a function f to region A.

In order to see why this is useful, consider the following example.

Example 2.11. Suppose F = C∞(R) and A = R+ ⊂ R. With the definition in Defini-

tion 2.8,

C∞(R)|R+ = C∞(R+).

Take for instance the function f(x) = 1/x ∈ C∞(R+), it may be constructed in the

following way. Choose any a > 0, one can choose a function α which vanishes for

x ≤ a/3 and equals 1 whenever x > a/2. Then the function α/x ∈ C∞(R) and

coincides with 1/x in a neighbourhood of a.

Note that there is no function g(x) ∈ C∞(R) such that g(x)|R+ = f(x), which

makes Definition 2.8 useful.

This leads to the definition of a complete algebra.

Definition 2.9. A geometric R-algebra F is called complete if the restriction homomor-

phism ρ : F → F||F| is an isomorphism. In other words, every function on |F| that

locally overlaps with elements of F , is also included in F .

Remark 2.7. If an algebra is not closed, one can take the restriction F||F| to naturally

construct a closed algebra.

Example 2.12. In this example, the algebra F = C∞(U) of smooth functions over

a subset U ⊂ Rn will be discussed. While the aforementioned structures will all be

discussed, some proofs will be omitted.

The first thing one needs to establish, is what is the dual space of F? It might not be

a big surprise, but still something that one formally has to prove [63], that the dual space

is homeomorphic to U

|F| = U.
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In particular, |C∞(Rn)| = Rn. It now is also clear that the algebra is geometric, as only

the zero-function will evaluate to zero everywhere.

From the nature of smooth functions, it is also clear that the restriction of the algebra

to U will result in the same algebra

F|U = F ,

since every function that overlaps with a smooth function around any point, is necessarily

smooth, and thus the algebra is complete as well.

The last definition that makes the link to smooth manifolds possible is the following.

Definition 2.10. A complete geometric R-algebra F is called smooth if there is an, at

most countable, open covering {Uk} of |F| such that all restricted algebras F|Uk
∼=

C∞(Rn) for some fixed n.

It should come to no surprise that a smooth algebra F corresponds to the smooth

functions over a manifold M ∼= |F|. Actually proving that such an algebra indeed

corresponds to a manifold with a specific atlas is far from trivial, and for this proof I

would like to refer to chapter 7 of [63]. Here, the main theorem will be quoted:

Theorem 2.3. Suppose F is any smooth R-algebra. Then there exists a smooth atlas A

on the dual space M = |F|, such that the map

F → C∞(M), f → (p→ p(f)),

is an isomorphism.

In the following, the example of the circle will be discussed for all of the structures

explained above. This example will be the main example discussed and developed further

in the following section and chapter as well.

Example 2.13. The algebra of the circle. The circle is a smooth manifold, denoted by

S1, and it will serve as the main example throughout the following chapters. Therefore, it

is useful to algebraically define the circle, and show that this algebra indeed corresponds

to a geometric, complete and smooth algebra. In the next section, a Hilbert space

structure will be introduced, making this algebra much simpler to describe explicitly.

The easiest way to define this algebra is as a sub-algebra of the algebra of smooth

functions over R, C∞(R) (see Example 2.12), namely by only considering periodic

functions of period 2π:

F := {f ∈ C∞(R) |x ∈ R, f(x+ 2π) = f(x)}.

Proving that the dual space equals the topology of the circle S1 is done as follows. First

note that every evaluation map of an element x ∈ R, px(f) = f(x), by the pointwise

definition of the algebra constitutes an R-homomorphism. What is thus left to prove, is

that every p ∈ |F| corresponds to some evaluation map for a point x ∈ R.

Consider an element from the dual space p ∈ |F|, and assume that it does not

correspond to some point x ∈ R. In that case, there must exist a function fx ∈ F such
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2.2. Associative commutative algebras and topological manifolds

that fx(x) ̸= p(fx). One can now find an open covering of the interval [0, 2π] by sets of

the form

Ux = {y ∈ R| fx(y) ̸= p(fx)}.

Since [0, 2π] is compact, by definition there is a finite subcover, here denoted by

Ux1 , . . . , Uxn . One can now construct a function which is nowhere zero on [0, 2π],

for instance

g =

n∑
i=1

(fxi − p(fxi))
2.

Therefore, the function 1/g is also a smooth periodic function, and thus 1/g ∈ F . From

the definition of the algebraic dual space, p is a unital R-algebra homomorphism, and

therefore

1 = p(g · (1/g)) = p(g)p(1/g),

however, from the way that g is defined,

p(g) =

n∑
i=1

(p(fxi)− p(fxi))
2 = 0,

which is in contradiction with the statement above. Therefore, every point p ∈ |F| needs

to be a point in p ∈ R. Furthermore, since the points that are 2πm apart (for m an

integer) evaluate exactly the same, the dual space is given by |F| = R/Z = S1.

The fact that the algebra F is complete is a easier to establish. One has to proof that

every function on S1 = |F|, f : |F| → R, that coincides in a neighbourhood of every

point a ∈ |F| with some smooth function fa ∈ F , is also an element of F . However,

since C∞(R) ⊃ C∞(S1) is complete, surely there is a smooth function g ∈ C∞(R) that

for every a ∈ |F| has g(a) = f(a). If one then takes the restriction of this function g||F|,

one has found the element g||F| ∈ C∞(S1) = F that overlaps with f on S1 = |F|.
In order to show that this algebra is smooth, one has to find an open covering {Ui}

such that all C∞(Ui) ∼= C∞(R). If one picks two functions f1, f2 ∈ F

f1(x) = sin2
x

2
, f2(x) = cos2

x

2
,

where x ∈ R/Z = R/x ∼ x+ 2π, one can find a covering of |F| as

Ui = {x ∈ |F| ∼= R/Z| fi(x) ̸= 0}, i ∈ {1, 2}.

These Ui are homeomorphic to (0, 2π), and thus we see

F|Ui
∼= C∞ ((0, 2π)) ∼= C∞(R).

Since we explicitly found a covering as in Definition 2.10, F is a smooth algebra.

A final note about this example is that this algebra may also be constructed in different

ways. Another way is to consider the set of points of S1 := {(x, y) ∈ R2|x2 + y2 = 1},

and construct the above algebra as F = C∞(R2)|S1 using the restriction of an algebra

in Definition 2.8.
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2. ALGEBRAS AND RIEMANNIAN MANIFOLDS

2.3 Spectral representation of Riemannian manifolds

In Section 2.2 the duality between geometric complete smooth algebras and topological

manifolds was discussed. It was found that the algebra, a real vectorspace with a

product operator, actually contains the full information of the topological manifold. In

this section, additional structure will be added to the algebra, namely a Hilbert space and

a self-adjoint operator, and it will be shown that this actually contains the full data of

a Riemannian manifold. In order to prepare for the discussion in later chapters, extra

emphasis will be placed on the case where the Hilbert space is seperable.

A Riemannian manifold (M, g) is a smooth topological manifold M, together with

a positive-definite metric tensor field g. The metric defines an inner product on every

point p ∈ M
g : TpM× TpM → R.

Using this metric, one can define a measure, infinitesimally dµ(x) = ddx
√
|g|. Here,

|g| denotes the determinant of the metric gab.

As M is a smooth manifold, one can consider the algebra of smooth functions

F = C∞(M). This is a real infinite-dimensional vectorspace with a product operation,

but in the case of a compact Riemannian manifold one can define an inner product on

this vectorspace as

⟨f | g⟩ :=
∫
M

ddx
√
|g| f(x)g(x), (2.3)

where f, g ∈ C∞(M). It is important to note that C∞(M) is not closed with respect to

this inner product, however if one takes the closure of C∞(M) with respect to this inner

product, one arrives at a Hilbert space called the square integrable functions2

L2(M) := C∞(M).

For compact Riemannian manifolds, the Hilbert space L2(M) is actually seperable,

meaning that there is a countable basis {fa} which is also called a Schauder basis. Any

function f ∈ C∞(M) ⊂ L2(M) may thus be written by

f =
∑
a≥1

αafa.

The Hilbert space structure makes the algebra easier to describe, because if one knows

the product rules for all the basis functions fa · fb, one can reconstruct the whole algebra.

Take for instance f =
∑

a α
afa ∈ C∞(M), g =

∑
b β

bfb ∈ C∞(M), then

f · g =

∑
a≥1

αafa

∑
b≥1

βbfb

 =
∑
a≥1

∑
b≥1

αaβbfa · fb.

On a Riemannian manifold, one can define a natural self-adjoint operator: The

Laplace-Beltrami operator. This operator may be defined as

∆ := −div ◦ ∇,
2The discussion here is mainly geared towards compact Riemannian manifolds, as these are the main

objects of study in this work. For non-compact cases, one can still construct a Hilbert space by considering
the smooth functions with compact support, C∞

c (M), though this will not be a seperable Hilbert space.
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2.3. Spectral representation of Riemannian manifolds

where ∇ is the gradient of a function, which is a map from the smooth functions to the

tangent bundle

∇ : C∞(M) → TM,

which may be defined by first taking the exterior derivative of a function, and then using

the metric to map this element to the tangent bundle. In local coordinates this is given by

(acting on a function f ∈ C∞(M))

∇f = gab∂af∂b.

The operator div is the divergence operator, which maps tangent vectorfields to the

smooth functions again

div : TM → C∞(M).

The divergence is usually defined as the formal dual of the gradient with respect to the

inner product ⟨.| .⟩. Requiring this, one finds

divX =
1√
|g|
∂a(X

a
√
|g|), (2.4)

where X ∈ TM. In local coordinates, acting on a function f ∈ C∞(M), the resulting

Laplace-Beltrami operator is then given by

∆f = − 1√
|g|
∂a(g

ab
√

|g|∂bf). (2.5)

A very useful theorem for compact Riemannian manifold is the following [71], which

will be stated here without proof.

Theorem 2.4. The Hodge theorem for functions. Let (M, g) be a compact Riemannian

manifold. Then, there exists an orthonormal basis of L2(M) consisting of eigenfunctions

of the Laplace-Beltrami operator. All eigenvalues are negative (except for zero which

has multiplicity one), and have finite multiplicity.

Therefore, the Laplace-Beltrami operator is very useful in order to find a useful basis

of the Hilbert space L2(M).

From (2.5) it is very clear that the metric is crucial for the construction of this

operator, and that the operator is in this sense determined by the metric. However,

this works also the other way around: The action of the Laplace-Beltrami operator on

smooth functions f ∈ C∞(M) fully determines the metric. This may be readily seen by

expanding the expression (2.5)

∆f ≈ gab∂a∂bf + lower order terms. (2.6)

Therefore, if one takes a function that is locally f ∼ xaxb, one can reconstruct gab.

Combining this with the knowledge that from the algebra of functions F = C∞(M)

one can reconstruct the smooth manifold structure, this means that for a Riemannian

manifold (M, g), the triple (F ,H,∆) actually contains the exact same information,

where F ∼= C∞(M) is a real commutative associative algebra, H = L2(M) is a Hilbert

space that is the closure of F with respect to some inner product, and ∆ : H → H a

densely defined operator on H.
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2. ALGEBRAS AND RIEMANNIAN MANIFOLDS

This statement is similar to the spectral triple approach from non-commutative

geometry [62], where the so-called canonical triple contains a C∗-algebra, a Hilbert

space and a Dirac-operator [72, 73]. The difference to this approach is the type of

algebraic structures used.

Example 2.14. Continuation of the circle. In Example 2.13, the smooth algebra of

the circle has been introduced as a sub-algebra of the smooth functions on R. Here, the

example will be built out more, by not considering only the algebra of smooth functions

on S1, C∞(S1), but adding a Hilbert space structure and the Laplace-Beltrami operator.

The circle is a one-dimensional manifold (see Example 2.13), and one can take a

local coordinate system where θ ∈ [0, 2π]. The Laplace-Beltrami operator on a unit

circle, in terms of these coordinates, is defined as

∆ :=
d2

dθ2
,

and as one might expect from the discussion above, this actually fixes the metric to be

gθθ = 1.

The eigenfunctions, {fa(θ)}, of the Laplace-Beltrami operator on the circle are well-

known, and are given by{
1√
2π
,

1√
π
sin(θ),

1√
π
cos(θ),

1√
π
sin(2θ),

1√
π
cos(2θ), . . .

}
, (2.7)

where they have been normalised with respect to the inner product of Eq. (2.3),

δab = ⟨fa| fb⟩ =
∫ 2π

0
dθfa(θ)fb(θ).

The eigenvalues of these eigenfunctions have multiplicity 2 (except for the constant

function), and are given by n2 for n ∈ N. In order of the eigenfunctions above they are

{0, 1, 1, 4, 4, 9, 9, . . .}.

One might wonder if it is possible to use Eq. (2.6) to reconstruct the metric above.

This is indeed possible, if one takes a point θ0 ∈ [0, 2π], one finds the inverse metric at

that point by choosing a function that locally equals fθ0(θ) ≈ (θ − θ0)
2. For fθ0(θ) one

may take the following function

fθ0(θ) = 2(1− cos(θ − θ0)),

= 2(1− sin(θ0) sin(θ)− cos(θ0) cos(θ))).

Now, consider the action of the Laplacian at point θ0 to find the (inverse) metric at that

point [
1

2
∆fθ0(θ)

]
θ=θ0

= (sin(θ0)
2 + cos(θ0)

2) = 1 = gθθ(θ0),

so the (inverse) metric has been correctly reconstructed.

In the following chapter, this fact will be used to build a framework that is funda-

mentally using these three elements. A tensor, acting on a Hilbert space, will define

the algebra of functions and contain the spectral information of the Laplace-Beltrami

operator. It is thus a single (countable) object that includes all information of a compact

Riemannian manifold.
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Chapter 3

Algebraic tensor models

In this chapter, the focus will be on the construction of algebraic tensor models. The

idea is to use a tensor Pabc to generate an algebra, and then use the algebraic insights

developed in Chapter 2 to relate this tensor to a geometric space. While generating a finite-

dimensional commutative algebra is relatively straightforward for finite-dimensional

tensors, assuring associativity and finding infinite-dimensional algebras is more dif-

ficult. In Section 3.1, the main topological aspects of this will be discussed. The

associative closure of a tensor will be defined, which gives the opportunity to connect

a finite-dimensional tensor to an infinite-dimensional associative commutative algebra

of functions. In Section 3.2 it will be found that demanding the tensor to be totally

symmetric may be interpreted as introducing a Hilbert space structure on which the

product operator acts as a self-adjoint operator, which is then shown to introduce a

measure on the topological space. Section 3.3 then shows how one can encode the full

geometric information of a Riemannian manifold into a tensor, and discusses possibilities

to extract this information from the tensor.

The formalism explained here has been introduced in [3]. Though the general

explanation remains the same, in this chapter the emphasis will be to explain why all the

mathematical structures involved are used and building the theory up layer by layer. For

instance, while a Banach space structure of the algebra for compact spaces comes for

free, and this is extensively used in Section 3.1 to make a tensor-representation of the

algebra possible, taking the tensor to be fully symmetric will be shown to introduce a

Hilbert space structure and, by that, a measure on the topological space in Section 3.2. If

the algebra generated by the tensor does not have an exact unit, this is then interpreted

in Section 3.3 as including geometric information into the tensor, yielding the potential

reconstruction of a full Riemannian manifold.

3.1 Tensors, algebras and topology

In this section, a tensor describing a product operation of an abstract algebra will be

introduced. This (possibly infinite-dimensional) tensor naturally exists for any algebra

(A, ·), and since it completely fixes the algebra it is an interesting object to consider.

First, it will be shown how to, in quite general cases, define this tensor for an algebra.

After that, the other way around will be explored. Since not every tensor immediately
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3. ALGEBRAIC TENSOR MODELS

corresponds to an associative algebra, it is necessary to define the notion of associative

closure in order for the algebra to correspond to a pointwise product.

For the real continuous functions over a compact space,1 one can consider the linear

dual space C(X)∗ of all bounded linear functionals µ : C(X) → R. The Singer-Riesz

representation theorem for Banach spaces now states the following [74, 75, 76, 77]:

Theorem 3.1. The Singer-Riesz representation theorem. For every bounded linear

functional on C(X), there exists a unique (signed) Radon measure µ on X such that the

functional can be represented as

µ(f) =

∫
X
f(x)dµ(x).

This theorem will be useful later on.

3.1.1 Tensors corresponding to functional algebras

Consider a compact topological space X , and the real continuous functions on this space

C(X). Since here we consider compact spaces, the real continuous functions have a

(sensible) norm; namely for f ∈ C(X)

||f || = sup{|f(x)| |x ∈ X}. (3.1)

The continuous functions form an algebra by a pointwise definition (hereafter called

pointwise algebras). This product operation

· : C(X)× C(X) → C(X),

is defined for every x ∈ X as

(f · g)(x) = f(x)g(x), (3.2)

utilising the usual product on the real numbers R. Because this algebra is defined

pointwise, and the product on the real numbers has these properties, the algebra is

commutative and associative. Furthermore, since the unit function is a continuous

function, it is also a unital algebra. An important fact about these algebras is that they

are seperable. From now on, abstract Banach R-algebras F will be discussed which are

unital, associative, commutative and seperable.2 In Chapter 2 is already explained how

to reconstruct the topological space X from only the abstract algebra.

In order to arrive at a tensor-representation of this algebra, it is useful to introduce

the canonical product map.
P : F × F → F ,

P (f, g) → f · g.
(3.3)

From the definition of the product, by construction, this is a symmetric bilinear map.

While this map is trivial in the sense that it acts exactly as the operator · , it will be more

straightforward to link this to a tensor.
1Or continuous functions with compact support on locally compact spaces.
2In the finite dimensional case, assuming a Banach space structure is not strictly necessary, since the

main element used here is the existence of a countable (Schauder) basis. But for the finite-dimensional case
the Hamel basis is already finite. However, in the construction of the associative closure, we will formally
assume this finite basis to be a subset of a Schauder basis.
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3.1. Tensors, algebras and topology

Let us denote a Schauder basis of the algebra F by {fa}. It is known that there is a

dual linearly independent set of elements in the linear dual space {αa} ⊂ F∗, such that

they form a bi-orthogonal system [78], i.e.

αa(fb) = δab .

Using this, one can decompose any given function f ∈ F in terms of the basis fa, and

explicitly find its decomposition by using these elements {αa}

f =
∑
a≥1

αa(f)fa.

Now, since the product of two elements of the algebra is again an element of the algebra,

one can decompose this resulting element in terms of this basis too

P(f, g) = f · g =
∑
c≥1

αc(f · g)fc.

Using the bilinearity of the product (or the linearity of αc), one can fully decompose this

as

P(f, g) =
∑
a≥1

∑
b≥1

∑
c≥1

αa(f)αb(g)αc(fa · fb)fc. (3.4)

This shows that the product operator P is fully determined by the set of scalars

Pab
c := αc(fa · fb) ∈ R,

as one can reconstruct any product f · g using Eq. (3.4). Thus, given this (countably

infinite) set of numbers and assuming the existence of a Schauder-basis of the underlying

vectorspace F , one can thus reconstruct every product of the algebra (F , ·), and thus

using the methods developed earlier reconstruct the topological space. These numbers

may be recognised to be a tensor, acting as

P : F × F × F ′ → R,

where F ′ = span{αa} ⊆ F∗, where F ′ = F∗ if F is reflexive.3 The fact that this is a

tensor, i.e. a multilinear map, is due to the bi-linearity of P and the linearity of the α’s.

Note that the scalars Pab
c may also be interpreted as the structure constants of the

algebra, since

fa · fb =
∑
c≥1

Pab
cfc. (3.5)

Some interesting properties of the maps above will now be considered due to the

structure of the R-algebra, besides the multi-linearity.4 Firstly, since the product is

commutative the map P is symmetric,

P(f, g) = (f · g) = (g · f) = P(g, f),

which translates to the tensor P as a symmetry in the first two indices

Pab
c = Pba

c (3.6)
3Later, when Riemannian manifolds are considered, a Hilbert space structure will be introduced which

makes this reflexive.
4Though the multi-linearity ultimately is also due to the definition of the algebra.
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3. ALGEBRAIC TENSOR MODELS

Secondly, the R-algebra product is associative. This translates to the property that

P(P(f, h), g) = ((f · h) · g) = (f · (g · h)) = P(f,P(g, h)).

For the tensor P , one may define a new object Γ describing the non-associativity of the

tensor P , which for associative algebras equals zero

Γabc
d := αd((fa · fb) · fc − fa · (fb · fc)) = Pab

ePec
d − Pbc

ePae
d = 0. (3.7)

Lastly, the R-algebra has a unit, this means that there exists an element 1 =
∑

a≥1 γ
afa

such that, for all f ∈ F ,

1 · f = f,

in particular for every element fa of the basis. For the tensor P this translates to

1 · fb =
∑
a≥1

γa(fa · fb) =
∑
a≥1

∑
c≥1

γaPab
cfc

!
= fb,

⇒ γaPab
c = δcb

(3.8)

From now on, the opposite approach will be taken, where one assumes a tensor Pab
c

and the generated algebra is given by the vectorspace F = span{fa} and the product

operation defined by the tensor Pab
c

fa · fb = Pab
cfc.

Note that one does not need to assume the vectorspace to have a norm or to be closed, as

with the algebra one can already define the dual space |F| with a topology [63]. Note that

as long as the dual space is compact, or the algebra represents functions with compact

support, one can reconstruct the Banach space structure by taking the norm of Eq. (3.1).

Similarly to the names of algebras, a tensor Pab
c is called commutative if Eq. (3.6) holds,

associative if Eq. (3.7) holds and unital if there is an element γa such that Eq. (3.8) holds.

Note that the algebraic dual space (see Definition 2.3) of a tensor Pab
c is given by

elements p ∈ F∗ which satisfy

papb =
∑
c≥1

Pab
cpc, (3.9)

where the notation pa ≡ p(fa) is often used throughout this thesis. Note that the full

homomorphism p in this notation is given by p =
∑

a≥1 paα
a.

Example 3.1. The tensor corresponding to a circle. In Examples 2.13 and 2.14, the

algebra of smooth functions on the circle has been examined already. Here, a tensor will

be constructed that corresponds to this algebra. Taking the basis of the algebra defined in

Eq. (2.7), one can evaluate the pointwise product. For instance, a well known geometric

identity gives

f2 · f2 =
1

π
sin(x) · sin(x) = 1

2π
(1− cos(2x)) =

1√
2π
f1 −

1

2
√
π
f5.

This product determines the following elements of P

P22
1 =

1√
2π
, P22

5 = − 1

2
√
π
, P22

a = 0 (for a ̸= 1, 5).
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By considering the general product rules

sin(nx) · sin(mx) =
1

2
(cos ((m− n)x)− cos ((m+ n)x)) ,

cos(nx) · sin(mx) =
1

2
(sin ((m− n)x) + sin ((m+ n)x)) ,

cos(nx) · cos(mx) =
1

2
(cos ((m− n)x) + cos ((m+ n)x)) ,

(3.10)

all elements of Pab
c may be found.

The idea is now to use this tensor Pab
c as the fundamental variable of the theory.

While one might be tempted to be satisfied with this, after all there is a clear formalism

relating tensors to topological spaces, there is some work to be done to make this useful

for a quantum theory of gravity:

• Even if Eq. (3.7) holds for certain tensors, quantum perturbations might affect the

tensor such that it is not associative anymore. As pointwise-defined algebras are

necessarily associative, this needs to be treated carefully. In the following sections,

the algebra will be linked to a bigger associative algebra, called the associative

closure of the tensor Pab
c.

• The prominent theory that this formulation is built for uses a totally symmetric

tensor Pabc, as opposed to the tensor Pab
c which is only assumed to be symmetric

in the first two indices. In Section 3.2 this is solved by assuming a Hilbert space

structure, which connects commutative algebras to completely symmetric tensors

Pabc, and has the interpretation of generating a measure on the dual space.

• Similarly to the first point, not every algebra has a well-defined unit as in Eq. (3.8).

In Section 3.3 it will be shown that the deviation of the unit may be used to add

the full geometric information of a Riemannian manifold to the tensor.

Note that similarly to the first point, one might also be worried about commutativity, but

restricting the configuration space of tensors to symmetric tensors solves this issue.

3.1.2 Partial algebras and associative extensions

In this section, the notions of a partial algebra and associative extension will be intro-

duced. In order to understand the motivation for the introduction of a partial algebra, the

example of the circle will first be explained more.

Example 3.2. Finite-dimensional circle algebra. The circle, already discussed in

Examples 2.13, 2.14 and 3.1, is a one-dimensional smooth manifold and thus has an

algebra of smooth functions that is infinite-dimensional. In the following, this algebra

will be restricted so that there is only a five-dimensional tensor left, to in the end recover

the original algebra C∞(S1).

In order to at least contain the information of the products of the generating set of

the algebra, given by {f1, f2, f3}, one can see from Eq. (3.10) that one at least needs to

take into account the tensor Pab
c with labels reaching up to N = 5.
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Figure 3.1: 10, 000 homomorphisms of the first three functions f1, f2, f3 of the cir-
cle, plotted as the list pi(fa) using the arranging of the points as described in Exam-
ple 3.2. The homomorphisms where calculated using Mathematica by minimising
(papb −

∑5
c=1 Pab

cpc)
2 and only keeping the ones that evaluated to zero (excluding the

trivial zero-map). Note that the first point is arbitrary, thus there is an arbitrary shift.
Images taken from [3].

It is good to note that once one restricts the algebra to finite dimensions, the algebra

will become non-associative. In this case, one example of a non-associative product is

f2 · (f3 · f4) = f2 ·
5∑

c=1

P34
cfc =

1

2
√
π
f2 · f2 =

1

2
√
2π
f1 −

1

4π
f5,

(f2 · f3) · f4 =
5∑

c=1

P23
cfc · f4 =

1

2
√
π
f4 · f4 =

1

2
√
2π
f1.

This non-associativity is due to finite cutoff N = 5 that was introduced, as for C∞(S1)

sin(θ)(cos(θ) sin(2θ)) =
1

2
sin(θ)(sin(θ) + sin(3θ)) =

1

4
(1− cos(4θ)),

(sin(θ) cos(θ)) sin(2θ) =
1

2
sin(2θ) sin(2θ) =

1

4
(1− cos(4θ)).

In the finite-dimensional case the sin(3θ) contribution “drops out”, because of which the

product is not associative anymore since f5 ∼ cos(2θ) should not be present.

If one now wants to find “homomorphisms” that are only homomorphisms for a

subset S ∼= {f1, f2, f3} of the algebra, one could define them as

p ∈ F∗ ∼= R5, a, b ∈ {1, 2, 3} : papb =
5∑

c=1

Pab
cpc. (3.11)

Note that these are not homomorphisms of the algebra F generated by P , but only of

a part of the algebra, namely S, and they are elements of F∗, not S∗. Let us denote

this “dual space” as |S|, then it is still possible to introduce a topology in the same

way as one would usually do for the algebraic dual space by demanding all elements of

S = {f1, f2, f3} to be continuous functions.

Solutions to Eq. (3.11) may be found by using a computer. In [3], Mathematica

was used to calculate 10, 000 points in this way. These points are labeled by pi, i ∈
{1, . . . , 10, 000}. In order to visualise the topology, consider the elementary definition

of continuity,

lim
ϵ→0+

fa(p)− fa(p+ ϵ) → 0.

For a discrete set of points, the most straightforward version of the continuous definition

above is by arranging the points such that the absolute value of

fa(p
i)− fa(p

i+1) = pia − pi+1
a
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is as small as possible. For this, one starts with a point, say p1. Then, take p2 to be the

point that minimises
∑5

a=1 |p1a − p2a|2. This is then done for every point pi, such that

5∑
a=1

|pia − pi+1
a |2 (3.12)

will be minimised. The result of this is shown in Fig. 3.1, where the resemblance, up to

deformations, with the functions { 1√
2π
, 1√

π
sin(x), 1√

π
cos(x)} is clear.

This example justifies the following definitions.

Definition 3.1. Consider a vectorspace F . A sub-vectorspace S ⊂ F with a bilinear

product operator on F , P : F × F → F , is called a partial algebra.

The partial algebra is unital if ∃ 1 ∈ S, ∀f ∈ S : P(1, f) = f . Similarly, the

partial algebra is commutative if ∀f, g ∈ S, P(f, g) = P(g, f) and associative if

∀f, g, h ∈ S, P(f,P(g, h)) = P(P(f, g), h).

Note that for the partial algebra, for the commutativity and associativity conditions,

the result of P(f, g) (and the others) can be lie outside of S , in F . This P is here taken

to be generated by a tensor Pab
c, as described in Section 3.1.1.

Definition 3.2. The algebraic dual-space of a partial algebra S ⊂ F with operator P ,

denoted |S|, are all p ∈ F∗ that are homomorphisms of the partial algebra in the sense

that

|S| := {p ∈ F∗| ∀f, g ∈ S, p (P(f, g)) = p(f)p(g)} . (3.13)

The elements of this dual space are called partial homomorphisms.

There is an important difference between this definition, and the original definition of

the algebraic dual space of an algebra in Definition 2.3, namely that the resulting product

P(f, g) of two elements f, g ∈ S is only required to be an element of the bigger algebra

F , and thus may lie outside of S . Furthermore, the elements p ∈ |S| are elements of F∗,

but not S∗, in general. Note that these definitions properly define the notions used in

Example 3.2.

In the case of Example 3.2, the partial algebra S ∼= span{f1, f2, f3} “reached” every

element of the full algebra F ∼= span{f1, . . . , f5}. The following definition serves to

make this notion precise.

Definition 3.3. The range of a unital partial algebra is defined as the sub-vectorspace

K(S) of F , where S ⊆ K(S) ⊆ F , which is reached by evaluating products of elements

of S.

K(S) := {P(f, g)| f, g ∈ S}.

A partial algebra is called covering if K(S) = F .

Note that the partial homomorphisms of S are well-defined on K∗ as projections

p|K∗ , since there they will be restricted by the action of the product. According to the

definition above, the partial algebra of Example 3.2 is a covering partial algebra. The

benefit of a covering partial algebra is that the partial homomorphisms are unambiguously

defined on the whole dual space F∗.
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In order to be more general than only single partial algebras, the following notion is

useful.

Definition 3.4. A system of partial algebras is a set of partial algebras {Si| i ∈ I} with

ranges {Ki| i ∈ I}, where I is some index set, such that for every pair (Si,Sj) their

dual spaces have a nontrivial intersection, i.e. |Si| ∩ |Sj | ≠ ∅. The range of the system is

defined as the union of the ranges of the partial algebras

K({Si}) :=
⋃

{i∈I}

K(Si).

The system {Si} is called maximal if there is no system, say {Tj}, with a larger range,

i.e. K({Si}) ⊂ K({Tj}). This system is said to be covering F if its range spans the whole

algebra, i.e. K({Si}) = F . The algebraic dual-space of a system of partial algebras {Si}
is the intersection of all of the dual spaces, i.e.

|{Si}| :=
⋂
i

|Si|.

Now, all ingredients needed are present to define the associative extension, which

will be the basis of the associative closure later on.

Definition 3.5. An associative extension of a tensor Pab
c acting on a vectorspace F with

basis {fa} and dual elements {αa}, is an algebra (A, ·), consisting of a seperable Banach

space A, which is an extension of F ⊂ A, and a product operation · : A × A → A
satisfying:

1. The algebra is unital, associative and commutative.

2. The product operation · reduces to Pab
c on F in the sense that

∀fa, fb ∈ {fa}, αc ∈ {αc} : Pab
c = αc(fa · fb), (3.14)

3. Every element of the algebraic dual space p ∈ |A| projected to F∗, i.e. p|F∗ , is

contained in the dual space of some maximal system of partial algebras |{Si}| ⊂
F∗. Furthermore this projection is injective.

The definition above has several requirements that have either mathematical or

physical reasons. Firstly, the fact that the algebra should be unital, associative and

commutative is simply because the associative extension A is supposed to describe a

pointwise algebra which naturally has these properties. Secondly, the main information

about the algebra one has is given by the tensor Pab
c, so the second requirement ensures

this information is present. The last condition has two main reasons for being included

in this way. Physically, it is important that the functions that are measured, basically

the partial algebra S,5 do not change their form once the extension of the algebra is

considered. Therefore, the elements of the dual space of this associative extension have

to be proper extensions of the partial homomorphisms. The second reason relates to the

injectivity requirement, as one does not want to consider algebras that are not connected

to the algebra generated by Pab
c.

5Or system of partial algebras
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Example 3.3. Partial algebras and associative extension of the circle. In Example 3.1,

an example of a covering unital commutative associative partial algebra S of the five-

dimensional circle algebra was already given. There are other partial algebras possible

as well.

Consider for instance the partial algebra S1 = span{f1, f2}. This partial algebra has

range

K1 = span{f1, f2, f5},

and is thus not a covering partial algebra. Another example is a one-parameter family of

partial algebras Sα = span{f1, sin(α)f2 + cos(α)f3}, for α ∈ [0, 2π), with ranges

Kα = span{f1, sin(α)f2 + cos(α)f3, 2 sin(α) cos(α)f4 + (cos(α)2 − sin(α)2)f5}.

Note that this reduces to S1 if α = π/2. Using this one-parameter family, one can

construct a system of partial algebras {Sα} which is actually also a covering set of partial

algebras. Note that
⋃

α Sα = S, and in particular K{Sα} = K and |{Sα}| = |S|.
Let us prove that the smooth functions over the circle are an associative extension of

the five-dimensional algebra F .

Proposition 3.1. Consider the algebra F ∼= span {f1, . . . , f5} with the tensor Pab
c

acting on it as in Example 3.1, A ∼= C∞(S1) is an associative extension of this algebra.

Proof. Since the algebra F is simply the span of the first few elements of the algebra, A
is naturally an extension, and it is known already to be a Banach space. Furthermore the

algebra is unital, associative and commutative, and the tensor Pab
c is defined exactly in

the same way as required by Definition 3.5. Therefore the only thing that needs to be

proven is that the third condition of Definition 3.5 is satisfied.

To do this, one needs to show that every p ∈ |C∞(S1)|, projected to F∗, is an

element of the dual space of a maximal partial algebra. For this, one can take the partial

algebra S ∼= span{f1, f2, f3}. However, this can easily be seen, since this is equivalent

to checking whether

fa(p)fb(p) =

5∑
c=1

Pab
cfc(p),

for a, b ≤ 3. This is exactly the case by construction, since all information for the

products of {f1, f2, f3} is contained in Pab
c.

3.1.3 The associative closure

The associative extension defined in Section 3.1.2 links an associative algebra to a tensor

Pab
c which does not directly generate an associative algebra. In Example 3.2 the example

of a five-dimensional tensor representing the low-energy limit of the algebra of the circle.

The problem with the associative extension is that, while the smooth algebra of

functions indeed is an associative extension, there are many other extensions. For

instance, there are many associative extensions of the five-dimensional algebra mentioned

above which have finite dimension, though the associative algebra that is looked for,

C∞(S1), is infinite-dimensional. This final algebra will be called the “associative

closure”.
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When looking for a candidate of such an algebra, it is useful to look for the dual

space of this candidate, since one would like this dual space to be as large as possible

in order to come closest to the notion of a continuous space. The strategy to define the

associative closure, is to “merge” all the dual spaces of associative extensions together.

The following notion will be useful for this.

Definition 3.6. Let p ∈ |A| for any associative extension (A, ·) of Pab
c. The projection

of p to the linear dual space of F ,

p∗ ≡ p|F∗ ,

is called a potential homomorphism of Pab
c.

The space of potential homomorphisms of F , denoted |F|(P ), is the collection of all

homomorphisms of all associative extensions projected to F∗.

The key point of this definition is to allow one to not only consider the homomor-

phisms of F under P , but consider all homomorphisms of some bigger algebra that

could generate P . The space of potential homomorphisms may then be thought of as the

actual space of points. The associative closure may then finally be defined.

Definition 3.7. An associative closure of a tensor Pab
c acting on F is an associative

extension (A, ·) of Pab
c such that the restriction of its algebraic dual space to the

linear dual space of F is exactly the space of potential homomorphisms of F , i.e.

|A||F∗ = |F|(P ).

One can readily see that this lemma holds.

Lemma 3.1. The algebraic dual space of an algebraic closure is isomorphic to the space

of potential homomorphisms.

Proof. Since the projection map is surjective for the associative closure, and injectivity

is already assumed in the definition of the associative extension, the projection map is an

isomorphism.

With this definition, the associative closure essentially is the associative extension

with the largest possible dual space. Note that while the associative closure is not

necessarily unique, this is physically not really a problem. The underlying assumption

is that the functions one can actually measure are the functions included in F , and the

physical space is the space of potential homomorphisms. This space will be exactly

the same for every associative closure. The associative closure is in that sense mainly

a mathematical tool to be sure that there exists a topology on the space of potential

homomorphisms.

In the following will be proved that the algebra C∞(S1) is an associative closure of

the algebra of Example 3.2.

Example 3.4. The associative closure, C∞(S1), for the circle. In this example it

will be shown that the smooth functions C∞(S1) are an associative closure for the

five-dimensional tensor from Example 3.2.

For this, the following lemma will be useful.
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Lemma 3.2. The space of potential homomorphisms is included in the dual space of the

partial algebra S = span{f1, f2, f3}. I.e.

|F|(P ) ⊆ |S|.

Proof. Note that the cases that S ′ ⊃ S, the requirement for elements of |S ′| will be

at least as restrictive as for |S|, and thus in those cases the statement is trivial since

then |S ′| ⊂ |S|. Furthermore, a two-dimensional partial algebra can never cover a

five-dimensional vectorspace. Therefore, the most important type of partial algebra to

consider are three-dimensional ones. There are two possibilities, either the partial algebra

overlaps with S, or it does not.

Let us assume the latter. In that case the partial algebra has the form

W = span{f1, f4, f5},

but note that this gives
f4 · f4 ∼ f5 · f5 ∼ f1,

f4 · f5 = 0,

so this partial algebra is not a covering algebra. F

The most general form of three-dimensional partial algebras that overlap with S is

V = span{f1, g = αf2 + βf3, h = γf4 + δf5},

where α, β, γ, δ ∈ R. However, one wants partial algebras that are associative. One

could construct the Γ-tensor of Eq. (3.7) and see for which triplets of vectors this would

evaluate to zero. However, it is instructive to simply calculate the product here and see

which products are associative. If one does this exercise to compare (g · g) · h with

g · (g · h), one gets

(g · g) · h =
δ(β2 − α2) + 2αβγ

2
√
2π

f1 +
(α2 + β2)γ

2π
f4 +

(α2 + β2)δ

2π
f5,

whereas

g · (g · h) = δ(β2 − α2) + 2αβγ

2
√
2π

f1 +
(α2 + β2)γ

4π
f4 +

(α2 + β2)δ

4π
f5.

Comparing the two equations above, it is clear that this can only be associative if either

α = β = 0 or γ = δ = 0, but then the case reduces to a two-dimensional non-covering

algebra.

So there is no other associative covering partial algebras.

Therefore, every potential homomorphism has to be included in |S|, since they

cannot come from other partial algebras.

Proposition 3.2. C∞(S1) is an associative closure of the five-dimensional tensor Pab
c

of Example 3.2.

Proof. As has already been proven in Proposition 3.1, C∞(S1) is an associative exten-

sion of Pab
c. What one needs to show is that every potential homomorphism of Pab

c is

an element of |C∞(S1)||F∗ .
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Using Lemma 3.2, it is clear that every potential homomorphism must lie in |S|. This

means that, if |C∞(S1)||F∗ = |S|, then necessarily every potential homomorphism lies

in |C∞(S1)||F∗ and thus C∞(S1) is an associative closure.

To confirm this, take an element p ∈ |S|. From Definition 3.2, this is any p ∈ R5

such that ∀a, b ≤ 3

papb =
5∑

c=1

Pab
cpc.

For p1, p2, p3 this already fixes the components as evaluation maps of f1 ∼ 1, f2 ∼
sin(x), f3 ∼ cos(x). This is because the evaluation maps of these functions are precisely

all the homomorphisms p : C∞(S1) → R, and since all the information of their products

is contained within the five-dimensional tensor Pabc, the solutions to the above equation

are nothing more but the restriction of these homomorphisms to R3, so |C∞(S1)||R3 =

|S||R3 . One now needs to check the last two components, p4 and p5, and show that these

correspond to restrictions of the full C∞(S1) homomorphisms.

However, since the C∞(S1) algebra is defined pointwise, this is necessarily the case.

For instance, if one takes the case of f5. The product defined by P22
c gives

f5 =
√
2f1 − 2

√
πf2 · f2,

and taking the same homomorphism p ∈ R5

f5(p) = p5 =
√
2p1 − 2

√
πp2p2 =

√
2f1(p)− 2

√
πf2(p)f2(p),

one gets a pointwise definition of the function f5 ∼ cos(2x). A similar statement holds

for f4 ∼ sin(2x). Since every homomorphism of C∞(S1) necessarily respects this, we

see that actually

|C∞(S1)||F∗ = |S|.

3.2 A measure from a Hilbert space

In this section, the structure introduced in Section 3.1 will be extended. In Section 3.1, a

Banach space structure was always assumed. In the case of a (locally) compact Hausdorff

space, this is a fair assumption to make. For a (canonical) theory of gravity however, one

would like to ideally describe Riemannian manifolds, or at least spaces that look like it.

Furthermore, this section will put the notation of the tensor Pab
c more in line with the

canonical tensor model assumption that the main tensor of interest is a totally-symmetric

tensor Pabc. After this, the construction of an associative closure will be discussed using

a space of potential homomorphisms, after which it will be explained how these potential

homomorphisms may be generated.

3.2.1 Hilbert space, totally symmetric tensors and a measure

In Section 2.1 was already explained that the space of compactly supported smooth

functions on a Riemannian manifold has a natural inner product, as defined in Eq. (2.3).

Therefore, assuming an inner product structure on the algebra A seems like a logical
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first step towards describing a Riemannian manifold in terms of a tensor. Here, it will be

shown that in this case the natural measure on a Riemannian manifold,

µ(f) :=

∫
|A|

ddx
√

|g|f(x),

may be reconstructed. In the following, the vectorspace A with basis {fa}a≥1 will be

assumed with an inner product

⟨fa| fb⟩ = δab.

First, let us note that for a Hilbert space A, the Riesz representation theorem of Theo-

rem 3.1 has an even stronger notion [69], namely that for every α ∈ A∗, there is a g ∈ A
such that for every f ∈ A

α(f) = ⟨g| f⟩ .

Specifically, for a real measured space of functions (like the functions on a Riemannian

manifold), this means that there is a single measure µ such that

α(f) = ⟨g| f⟩ =
∫
|A|

dµ(p)f(p)g(p),

where the measure dµ(p) = ddx
√

|g(x)| for Riemannian manifolds, with x the local

coordinate representation of p. Let us define the product operator Pg : A → A of a

function g ∈ A as follows

Pg(f) = f · g.

This operator is self-adjoint under the inner product, as may be seen as follows

⟨h|Pg(f)⟩ = ⟨h| f · g⟩ =
∫
|A|

dµ(p)h(p)f(p)g(p) = ⟨h · g| f⟩ = ⟨Pg(h)| f⟩ .

Note that the definition of Pab
c may now be rewritten to

Pab
c := αc(fa · fb) =

∫
|A|

dµ(p)fa(p)fb(p)fc(p). (3.15)

From this expression it is clear that the tensor Pab
c is totally symmetric. More abstractly,

this comes from the fact that the product operator Pg(f) above is self-adjoint, so for an

abstract algebra one would like (or impose) this to be the case. If one now writes

gcd := ⟨fd| fc⟩ , (3.16)

and

Pabc := gcdPab
d,

one arrives at the totally-symmetric tensor of degree three that is used in the canonical

tensor model. This implies that the restriction of the tensor Pabc to have this form in the

model, together with the total symmetric requirement, implies that the tensor actually

represents a product on an inner-product space. This seemingly simple, and almost

trivial, requirement actually makes the interpretation of a measured space possible.

From here on, when it is clear from the context that the Hilbert space is considered,

the Einstein summation convention will be assumed for lower indices as well unless

specified otherwise. This means that for instance,

Pabcfc ≡
∑
c≤1

Pabcfc.
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It is useful to separately define the associative extension and closure of a tensor Pabc

with three lower indices, just to be clear that the Hilbert space structure is assumed for

tensors with all-lower indices, while only a Banach space is assumed for tensors of the

form Pab
c.

Definition 3.8. An associative extension of a tensor Pabc := δcdPab
d, is an associative

extension as in Definition 3.5 which is a Hilbert space. Here,

Pabc = ⟨fc| fa · fb⟩ .

Definition 3.9. A potential homomorphism of a tensor Pabc acting on F is a homomor-

phism of an associative extension (A, ·) of Pabc projected to F∗. The space of potential

homomorphisms of F , denoted |F|(P ), is the collection of all homomorphisms of all

associative extensions projected to F∗.

Definition 3.10. An associative closure of a tensor Pabc acting on F is an associative

extension (A, ·) of Pabc such that the restriction of its algebraic dual space to the linear

dual space of F is exactly the space of potential homomorphisms of F , i.e. |A||F∗ =

|F|(P ).

In order to fully define the relationship to a measure, the following definition is

useful.

Definition 3.11. A tensor Pabc acting on F is said to be measure-generated if there is an

associative closure A equipped with a measure µ on |A| such that

∀f, g ∈ A : ⟨f | g⟩ =
∫
|A|

dµ(p)f(p)g(p). (3.17)

With the following proposition can be seen that this is equivalent to the existence of

an associative closure.

Proposition 3.3. A unital tensor Pabc is measure-generated iff there is an associative

closure of Pabc.

Proof. If there is an associative closure of Pabc, then Pabc may be written as

Pabc = ⟨fc| fa · fb⟩ =
∫
|A|

dµ(p)fa(p)fb(p)fc(p).

In particular, if one uses the bi-linearity of the inner product one can show that, for

f = αafa, g = βbfb and 1 = γcfc

⟨f | g⟩ = αaβbγc ⟨fc| fa · fb⟩ =
∫
|A|

dµ(p)f(p)g(p).

It is currently not known whether every tensor has an associative closure, but this is

the current conjecture. The following statements utilise the isomorphism |A| ∼= |F|(P ).

Proposition 3.4. For any f, g ∈ F

⟨f | g⟩ =
∫
|A|

dµ(p)f(p)g(p) =

∫
|F|(P )

dµ(p)f(p)g(p),
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Proof. |F|(P ) is the projection of homomorphisms p ∈ |A| to F∗ by the definition of

the associative closure, so for f ∈ F , p(f) = p∗(f), where p∗ denotes the projection of

p to F∗. Since we are only considering functions in F , and the spaces are isomorphic,

we only have to consider |F|(P ).

Corollary 3.1.1. In particular, for any two basis elements fa, fb

δab =

∫
|F|(P )

dµ(p)fa(p)fb(p). (3.18)

Proposition 3.5. A measure-generated unital tensor is given by

Pabc =

∫
|F|(P )

dµ(p)fa(p)fb(p)fc(p). (3.19)

Proof. Take A to be an associative closure of Pabc. For an element of its algebraic dual

space p ∈ |A| we have

p(fa)p(fb) = p(fa · fb).

Furthermore, for any product of the basis function fa, fb ∈ BF

fa · fb = Pabcfc + g,

where Pabcfc ∈ F and g ∈ F⊥. This comes from the definition of an associative

extension, such that Pabc = ⟨fc| fa · fb⟩, so ⟨f | g⟩ = 0 for all f ∈ F . In particular, for

any p ∈ |A|
p(fa)p(fb) = p(fa · fb) = p(Pabcfc) + p(g).

Since p(f) = p∗(f) for f ∈ F , where p∗ denotes the projection of p to F∗, we find∫
|F|(P )

dµ(p)p(fa)p(fb)p(fc) =

∫
|A|

dµ(p)p(fa)p(fb)p(fc),

=

∫
|A|

dµ(p)p(Pabdfd)p(fc) +

∫
|A|

dµ(p)p(g)p(fc).

On the right-hand-side we have the inner product as defined in (3.17), so we get∫
|F|(P )

dµ(p)p(fa)p(fb)p(fc) = Pabd ⟨fd| fc⟩+ ⟨g| fc⟩ = Pabc,

where the last inner product is zero since g ̸∈ F .

Given the above mathematical notions, it is interesting to explore how one could

construct the measure in practice. Note that simple functions play a central role in

measure theory, and they will be useful here as well. First, assume that the basis functions

may be written as simple functions. These simple functions are linear combinations of

indicator functions 1Ai , where Ai ⊂ |F|(P ) are measurable sets. Denoting R as the

amount of disjoint regions Ai, the function is then given by

fa =
R∑
i=1

pia1Ai , (3.20)

With the measure on |F|(P ) above one can now perform the integration∫
|F|(P )

dµ(p)fa =
R∑
i=1

piaµ(Ai) ≡
R∑
i=1

piaβi,
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with βi ≡ µ(Ai) > 0. One assumption of the above is that all of the basis functions are

decomposed in terms of the same indicator functions. This means that one can evaluate a

product of two functions by simply writing

fa · fb =
R∑
i=1

piap
i
b1Ai .

If one then integrates this quantity as shown above, one gets a representation of the inner

product

⟨fa| fb⟩ =
∫
|F|(P )

dµ(p)fa(p)fb(p) =
R∑
i=1

µ(Ai)p
i
ap

i
b ≡

R∑
i=1

βip
i
ap

i
b. (3.21)

Moreover, by using (3.19) one finds

Pabc =
R∑
i=1

βip
i
ap

i
bp

i
c. (3.22)

This expression is a tensor rank decomposition of the tensor Pabc, and shows why the

tensor rank decomposition has been so useful when applied to the canonical tensor

model in the past. Below it will be conjectured that taking a positive minimal tensor

rank decomposition, notions which will be defined below, corresponds to potential

homomorphisms pi ∈ |F|(P ) with a measure-value for the region they represent βi ∈
R+.

Example 3.5. Constructing the measure of the circle. For the circle, it was found in

Example 3.4 that the space of potential homomorphisms is actually the dual space of

the partial algebra S ∼= span{f1, f2, f3}, |S|. In Example 3.2 was already explained

how the points of |S| may be found. In this example, these points will be used, and a

consistent measure will be found for this space.

First note that, since the circle is one-dimensional, the measurable sets Ai of

Eq. (3.20) are generated by line segments [ai, bi), where b > a. Therefore, suppose one

has a solution to Eqs. (3.21) and (3.22), then the βi actually are describing the length of

each line-segment βi = bi − ai. If one assumes this approximation of the functions fa
as simple functions, the function may be written as

fa(x) =



p1a , 0 ≤ x < β1,

p2a , β1 ≤ x < β1 + β2,

. . .

pRa ,
∑R−1

i=1 βi ≤ x <
∑R

i=1 βi.

(3.23)

These βi may be found by finding solutions to Eqs. (3.21) and (3.22), for instance by

using Mathematica. In [3] this exercise was performed using 1.000 randomly selected

points of the 10.000 points from Example 3.2.The result of this procedure may be

found in Fig. 3.2. Note that the circumference of the circle exactly matches 2π, and the

functions look exactly like the functions used to construct the tensor. It should be noted

that this is merely an approximation of the functions, but in the limit they will represent

the original functions {1, sin(x), cos(x)}.
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3.2. A measure from a Hilbert space

Figure 3.2: A plot of the first three basis functions of the circle, as given by Eq. (3.23),
taken from [3]. As mentioned in the text, 1.000 points are used. Note that the deforma-
tions of Fig. 2.1 disappear due to the inclusion of the information of the measure.

In order to reconstruct the full measure, one needs to take all possible finite subsets

of |S| ∼= |F|(P ), and take all possible solutions to Eq. (3.21). The collection of all these

different solutions will then correspond to the measure over different regions. This means

that one has a well-defined Lebesgue integral for any function.

Note that in practice, it usually suffices to take only one set of points and find a

solution like in Fig. 3.2, similarly to the fact that for many purposes taking a finite

Riemann sum gives a good approximation of many integrals. This then makes it possible

to do numerical calculations, as for instance will be shown below in Example 3.7.

3.2.2 Generating potential homomorphisms

So-far, the mathematical background has been given to link a tensor Pabc to an asso-

ciative closure. In this section, it will be shown how to generate a space of potential

homomorphisms using a technique used in data analysis which has also been extensively

used in the canonical tensor model [6, 1], the tensor rank decomposition. Once one has

this space of potential homomorphisms, Section 3.2.3 will explain how one can construct

the associative closure.

The straightforward way of generating potential homomorphisms is the one used

sofar in Examples 3.1 to 3.4, namely find all (covering) partial algebras Sk, construct

their dual spaces |Sk|, and and check which p ∈ |F|(P ) ⊆
⋃

k |Sk| have a finite measure

contribution in Eqs. (3.21) and (3.22).

The tensor rank decomposition is a data analysis tool which has many applications in

various fields, such as machine learning [79], signal processing [80], neuroscience [81],

mathematics [82] and many more [83]. Notably, it was used in the context of the

canonical tensor model several times [6, 2, 84, 85]. In [6] it was shown that the tensor

rank decomposition, combined with other techniques such as persistent homology [86,

87, 88, 89], may be used to recover topological and geometrical information from a

tensor Pabc that is constructed from eigenfunctions of the Laplace-Beltrami operator as

explained above. From Eq. (3.22) it can be seen why the tensor rank decomposition

might be so useful, since one recovers a tensor rank decomposition if one uses a suitable

simple function to approximate the basis functions pa = fa(p).

In [3], a peculiar connection between the tensor rank decomposition and potential

homomorphisms was discovered. It was conjectured that a certain class of tensor

rank decompositions, namely positive minimal tensor rank decompositions, generates

potential homomorphisms. Consider a rank-R tensor rank decomposition of a unital
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tensor Pabc acting on a vectorspace F ,

Pabc =

R∑
i=1

ϕiaϕ
i
bϕ

i
c, (3.24)

where ϕi ∈ F∗. Note that often the definition of a tensor rank decomposition includes

the requirement that R is the lowest possible integer for which such a decomposition may

be found. Here, however, this is not required and instead defined seperately (as in [2]).

Definition 3.12. A tensor rank decomposition

Pabc =

Rc∑
i=1

ϕiaϕ
i
bϕ

i
c,

is called minimal if there is no integer R < Rc for which such a decomposition is

possible.

Since the tensor Pabc is unital, there is a unit element 1 = γafa such that

δbc = γaPabc =

R∑
i=1

(γaϕ
i
a)ϕ

i
bϕ

i
c ≡

R∑
i=1

λiϕ
i
bϕ

i
c. (3.25)

This leads to the following definition

Definition 3.13. A tensor rank decomposition

Pabc =

Rc∑
i=1

ϕiaϕ
i
bϕ

i
c,

for a unital tensor Pabc with unit 1 = γafa is called positive if for all i

λi ≡ (γaϕ
i
a) > 0.

If one now writes βi ≡ (λi)
1/3 and pia ≡ (βi)

−1/3ϕia, one finds that Eqs. (3.24)

and (3.25) may be written as

Pabc =
R∑
i=1

βip
i
ap

i
bp

i
c,

δab =
R∑
i=1

βip
i
ap

i
b,

(3.26)

which are exactly of the same form as Eqs. (3.21) and (3.22). This similarity suggests

that there might be a relationship between positive tensor rank decompositions and the

space of potential homomorphisms with a measure on it.

From the above, there are some clear connections between positive tensor rank

decompositions and the space of potential homomorphisms. For one, both the building

blocks of the tensor rank decomposition, pi, and elements of the space of potential

homomorphisms r, are elements of the linear dual space F∗. Furthermore, there is a

natural association of the βi in the tensor rank decomposition with a measure, where

βi ≡ µ(Ai) for a region Ai ⊂ |F|(P ).

The question is whether or not these elements are actually potential homomorphisms.

To classify this, another definition will come in handy
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3.2. A measure from a Hilbert space

Figure 3.3: A plot of the points of the circle generated by the tensor rank decomposition
of the second basis function pi2 = f2(p

i), using the simple function representation
described in Eq. (3.23). From left to right, M = 1, 5 and 150 tensor rank decompositions
were used. Figure taken from [3].

Definition 3.14. A positive tensor rank decomposition

Pabc =

Rc∑
i=1

βip
i
ap

i
bp

i
c,

is called pointwise, if all elements are potential homomorphisms, i.e. every pia ∈ |F|(P ).

The underlying idea of the formalism described in this section is that if one considers

all pointwise tensor rank decompositions, one finds the whole space of potential homo-

morphisms |F|(P ). The main question is thus under what conditions does a tensor rank

decomposition correspond to a pointwise decomposition. The example of the circle will

lay the groundwork for a conjecture about this very question below.

Example 3.6. Tensor rank decompositions of the circle. In this example, the tensor

rank decomposition of the tensor corresponding to the circle, as already discussed in

Examples 3.1 to 3.5.

This N = 5 dimensional tensor Pabc has a (positive) rank of R = 7. Therefore it

is useful to first look at the elements pia which make up these (minimal) tensor rank

decompositions. This may be done by finding solutions to

0 =

(
R∑
i=1

ϕiaϕ
i
bϕ

i
c − Pabc

)2

,

for instance with a computer. After this, one can use rewrite this tensor rank decom-

position in the form of Eq. (3.26), in order to get to a set of “points” {pia} and their

associated “measure” {βi}. In [3], this was done using Mathematica by findingM = 150

positive minimal tensor rank decompositions. Here, M denotes the amount of tensor

rank decompositions generated.

For any element pi ∈ F∗, one can check if it is a potential homomorphism by

verifying whether they are elements of the partial algebra S defined in Example 3.3. This

verification for a point pia is straightforwardly done by checking if

s1as
2
bp

i
ap

i
b = s1as

2
bPabcp

i
c, (3.27)

for every s1, s2 ∈ S. Rather surprisingly, if one performs this check for all the points

generated by the minimal positive tensor rank decomposition above, {pia}, every point
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Figure 3.4: A plot of the “points” generated by a non-minimal tensor rank decomposition,
showing how they deviate from the results in figure 3.3. In this image, 10 tensor rank
decompositions of rank 8 are combined into the plot, using the same procedure as before.
Some points still look similar to figure 3.3, but there are clear discrepancies from what is
expected. The figure was taken from [3].

actually corresponds to a potential homomorphism. Furthermore, for every tensor rank

decomposition, the sum of the measure elements exactly evaluates to

R∑
i=1

βi = 2π,

which is exactly what one expects for a measure corresponding to a circle of circumfer-

ence 2π.

To visually represent all of these points together as simple functions, it is useful

to use the notation (β
(I)
i , p

(I)
a

i
) denoting the i-th point and measure in the I-th tensor

rank decomposition. If one now rewrites the tensor in terms of the M tensor rank

decompositions one finds

Pabc =
1

M

(
R∑
i=1

β
(1)
i p(1)a

i
p
(1)
b

i
p(1)c

i
+ . . .+

R∑
i=1

β
(M)
i p(M)

a

i
p
(M)
b

i
p(M)
c

i

)
,

=
1

M

M∑
I=1

R∑
i=1

β
(I)
i p(I)a

i
p
(I)
b

i
p(I)c

i
.

This implies that, using M tensor rank decompositions, the correct measure values to

take are actually
1

M
β
(I)
i . (3.28)

This is what was used in the demonstration in Fig. 3.3, where this approach was demon-

strated for three cases: Using only M = 1 tensor rank decomposition, using M = 5

tensor rank decompositions, and using M = 150 tensor rank decompositions.

In this example, thus-far only the minimal tensor rank decomposition was discussed.

This was for a reason, namely for a non-minimal tensor rank decomposition the elements

pia are not necessarily potential homomorphisms anymore. This might not be clear from

the discussion above, and a deeper understanding of this might be useful in the future. In

the case of this example, one might try to find positive tensor rank decompositions of rank

R = 8. When finding solutions to this, there always seem to be elements where Eq. (3.27)

is not satisfied quite substantially (of the order |s1as2bpiapib − s1as
2
bPabcp

i
c| ∼ O(1)).

This fact is seen more clearly in a visual representation. If one generates M = 10

tensor rank decompositions of rank R = 8 and uses the same intepretation as points as

for R = 7, the result is given in Fig. 3.4. Clearly this points towards the requirement
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3.2. A measure from a Hilbert space

that the tensor rank decomposition is supposed to be minimal. Note that this does not

mean that there are no pointwise tensor rank decompositions of higher rank, but only for

minimal tensor rank decompositions does every tensor rank decomposition seem to be

pointwise.

From Example 3.6, one is led to the following conjecture.

Conjecture 3.1. For a unital tensor Pabc that admits a covering partial algebra, any

minimal positive tensor rank decomposition is a pointwise decomposition.

If this conjecture is true, it makes generating potential homomorphisms relatively

simple, as many techniques for finding tensor rank decompositions already exist [83].

Currently it is not known if this conjecture hold more generally or not. It is an interesting

potential future research direction.

An interesting aspect to consider is the case when a tensor Pabc has some symmetry.

In [84] it was already pointed out that, if a tensor Pabc has a symmetry such that for a

Lie-group transformation Gab

Gaa′Gbb′Gcc′Pa′b′c′ = Pabc,

there is a continuous degeneracy of the tensor rank decomposition. This is because

for every pia belonging to a tensor rank decomposition, the element Gaa′p
i
a′ belongs to

another tensor rank decomposition

Gaa′Gbb′Gcc′Pa′b′c′ =

R∑
i=1

βi(Gaa′p
i
a′)(Gbb′p

i
b′)(Gcc′p

i
c′) = Pabc. (3.29)

Therefore, if such a symmetry exists, it implies together with Conjecture 3.1 that the

tensor Pabc corresponds to a continuous space.

One last thing to discuss about the construction of a measured space from tensor rank

decompositions is the choice of the individual measure elements as in Eq. (3.28). It should

be noted that this is nothing more than a choice. Since the tensor rank decompositions are

generated randomly, it is not clear beforehand if this would be the most natural choice.

The only real restriction for the final measure elements is that the sum of the elements

remains unchanged
∑M∗R

i=1 βi =
∑R

i=1 β
(I)
i ∀I≤M . One could write Eq. (3.28) as the

rule

β(I−1)∗R+j =
1

M
β
(I)
j . (3.30)

There is a certain ambiguity in doing so. The most general form of this would be given

by

β(I−1)∗R+j = AIβ
(I)
j ,

where AI > 0 and
∑M

I=1AI = 1. It is expected that such a “transformation” corre-

sponds to performing a diffeomorphism on the manifold, since it can be interpreted as a

deformation.
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3.2.3 Constructing the associative closure

In this section, it will be shown how an associative closure of a tensor Pabc acting on

vectorspace F may be reconstructed if one has the space of potential homomorphisms

|F|(P ). This space may be found by using the tensor rank decomposition, as explained

in Section 3.2.2.

Consider two basis functions fa, fb. A potential homomorphism p ∈ |F|(P ) will, in

the associative closure, correspond to the evaluation of the functions fa and fb at a point

p. The strategy will be to already treat this point as an evaluation map, and the part of

the pointwise product that is not described by the tensor Pabc yet should then correspond

to a new function. Performing this decomposition, one gets

fa(p)fb(p) = Pabcfc(p) + g(p) = ⟨fc| fa · fb⟩ fc(p) + g(p), (3.31)

where g(p) corresponds to the difference between the pointwise product to the product

induced by Pabc. There are two options, either g(p) = 0∀p∈|F|(P ) or g(p) is non-trivial.

In the first case, the pointwise product is already exactly described by Pabc, and fa and fb
span a partial algebra. One has to pick new fa and fb until one finds a non-trivial result.

If such fa, fb do not exist, this means Pabc already describes an associative algebra and

one is done.

In the other case, where g(p) is non-trivial, the idea is to see g(p) as a new function

that is not in the algebra yet. By construction, g is a map

g : |F|(P ) → R.

In a sense, the algebra is now “closed” with respect to this function if it is added as a

new basis element. Note that, again by construction,∫
|F|(P )

dµ(p)fa(p)g(p) = 0.

This shows that the inner product may be extended to g trivially as well, keeping the

basis orthogonal. In order to make the basis orthonormal, introduce the final new basis

element

fN+1(p) =
g(p)

∥g∥
,

where ∥g∥ =
√

⟨g| g⟩ is the norm induced by the inner product. fN+1 together with

{fa} forms an orthonormal basis with the same inner product

δab = ⟨fa| fb⟩ =
∫
|F|(P )

dµ(p)fa(p)fb(p), (3.32)

where a now runs from 1 to N + 1. Let us now denote this vectorspace by F (N+1),

and introduce a new tensor P (N+1)
abc = ⟨fc| fa · fb⟩ for all a, b, c ≤ N + 1 with the inner

product of Eq. (3.32).

Next, one takes new fa, fb ∈ F (N+1) and restarts this process, starting with Eq. (3.31).

In this case, F (N+1) is treated as the starting vectorspace using the tensor P (N+1)
abc . The

associative closure is now found as the inductive limit of this process, producing a

countably infinite-dimensional algebra.

One has to show that this indeed produces an associative closure.
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3.2. A measure from a Hilbert space

Figure 3.5: A plot of the 10th and 11th basis functions of the exact circle using the
procedure described in the text, with the same 1.000 points as before in figure 3.2.

Proposition 3.6. The construction above produces an associative closure.

Proof. The proof will commence in two parts. First it will be shown that this construction

leads to an associative extension, and after that it will be shown that this extension is

actually an associative closure.

First note that for every element in p∗ ∈ |F|(P ), an element was constructed in

the algebraic dual space of A, p ∈ |A|, p(fa) = fa(p
∗), since basically a new algebra

was constructed where the original potential homomorphisms become proper homomor-

phisms. Referring to Definition 3.5, it is clear that the first two points are satisfied by

construction. Furthermore, since every element of the dual space p ∈ |A| projected

to F∗ must be an element of some associative extension by the definition of potential

homomorphisms, it necessarily lies in |S| for a maximal system of partial algebras

Si ⊂ F . Since every element p ∈ |A| is constructed from a p∗ ∈ |F|(P ), this is injective.

Similarily it follows that it is an associative closure, since for every p ∈ |A| it must

hold that p∗ ≡ p|F∗ ∈ |F|(P ) by definition of the space of potential homomorphisms,

and p ∈ |A| was directly constructed from every p∗ ∈ |F|(P ). Therefore, this is an

isomorphism and thus |A||F∗ = |F|(P ).

To end this section, the example of the circle will once more be used.

Example 3.7. Constructing the associative closure of the circle. In this example, the

exact circle from Examples 3.1 to 3.6 is used again.

As has already been shown, there is an infinite-dimensional associative closure (A, ·)
of the five-dimensional tensor Pabc given my the smooth functions

A ∼= C∞(S1).

It is useful, however, to show this using this more general procedure. In [3], this

procedure was used to construct an extension of the algebra up to A ∼= R11, which gives

the opportunity to display the funcitons f10(x) ∼ sin(5x) and f11(x) ∼ cos(5x). To

this end, a number of 1000 points was used, defining the pointwise inner product as

Eq. (3.21). The result of this is shown in Fig. 3.5.

Note that technically, the construction using only a finite number of points will result

in an associative extension. Therefore, if one wants to generate high frequency functions

reliably, one needs to use an approximation with more and more points.
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3.3 Generating a unit and reconstructing geometry

Thus far, in this chapter, a topological and measure-theoretic understanding of algebras

generated by a tensor Pabc has been shown. It might be noted that the general strategy

followed here is similar to that used in the spectral triple approach [72], though the

mathematical objects used differ slightly, namely

• An associative commutative algebra A generates the topological space |A|.

• A Hilbert space H on which the elements of the algebra are represented yields a

measure.

• An operator D acting on the Hilbert space H which contains the full information

of the Riemannian metric qab.

This section will now explain how the last step may be added in this formalism. It

will be shown that it is possible to do this without adding any additional objects to the

theory, meaning that a symmetric tensor of degree three, Pabc, will be all that is needed

to describe the full geometry of a Riemannian manifold.

The approach taken in this section is in two steps. First a method will be given to

include the information of an operator into the tensor Pabc, and then it will be explained

how this information may be reconstructed from the tensor Pabc afterwards without

losing the important topological and measure-theoretic results obtained thusfar. As

already alluded to in Chapter 2, the operator that plays a central role in Riemannian

geomtry is the Laplace-Beltrami operator [71]. Therefore, this is the main operator that

will be used.

Before resuming, it is useful to introduce some notation for this section. The “naked”

tensor that corresponds to a measured topological space as explained in the sections

above will be denoted by P̄abc, where the tensor corresponding to the full geometric

information will be denoted by Pabc. The tensor P̄abc will also be called the topological

tensor, and the tensor Pabc the geometric tensor.

3.3.1 Spectral information in algebraic tensor models

In this section, it will be explained how the full information of the Laplace-Beltrami

operator may be included in a tensor Pabc by altering the topological tensor P̄abc. In

Section 3.3.2 it will then be shown that one can actually recover the original tensor P̄abc

The reason for wanting the information of the Laplace-Beltrami operator is the close

connection it has with Riemannian geomtry.

Recall from Section 2.3 that the Laplace-Beltrami operator ∆, for a compact Rie-

mannian manifold (M, q), has a countable number of eigenfunctions {fa} satisfying

∆fa := λafa. (3.33)

Moreover, these eigenfunctions form a Schauder basis for L2(M). This is useful in this

setup, since L2(M) is also the Hilbert space that the tensor P̄abc is defined on. Therefore,

in principle, if one knows the tensor P̄abc and the eigenvalues of the Laplace-Beltrami

operator {λa}, then one can reconstruct the full geometry of (M, q).
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However, in practice it will be difficult to use the Laplace-Beltrami operator directly,

as it is not compact. The idea is to use a positive compact self-adjoint operator O. From

the spectral theorem [69], it is known that compact self-adjoint operators on a seperable

Hilbert space have some nice properties. Firstly, their eigenvectors {fa} form a countable

(Schauder) basis,6 and the eigenvalues, µa, have the property that µa → 0 for a→ ∞.

Note that one has several choices of an operator which directly correspond to the

Laplace-Beltrami operator one can choose. In Section 3.3.2, it will be clear that a positive

compact self-adjoint operator makes sense, but besides that the choice of operator will

be theory dependent. One example of such an operator would be the heat operator

e−t∆ : L2(M) → L2(M),

for t > 0. One can prove that this is a compact operator on L2(M) [71]. Here, this

operator will be assumed, though other choices can be considered in exactly the same

way. The eigenvalues of this operator µa may be written in terms of the eigenvalues of

the Laplace-Beltrami operator

µa = e−tλa .

This means that knowing the eigenvalues µa of e−t∆ is enough to identify the eigenvalues

λa of ∆. This is the key property that is important for a general operator O, the

eigenvalues of the Laplace-Beltrami operator have to be determined by the eigenvalues

of the operator O, and not add additional degeneracies to the spectrum.

Assuming the tensor P̄abc to already be defined in the same basis {fa} of eigenfunc-

tions of the operator O, one can define a new tensor Pabc as

Pabc := ⟨Ofc| (Ofa) · (Ofb)⟩ . (3.34)

Because the eigenfunctions are already assumed to be aligned, this may also be written

in terms of the eigenvalues and the topolotical tensor P̄abc

Pabc := ⟨Ofc| (Ofa) · (Ofb)⟩ ,

= µaµbµc ⟨fc| fa · fb⟩ ,

= µaµbµcP̄abc,

(3.35)

where the original topological definition of the tensor was used. Note that this tensor

Pabc is still real and completely symmetric. In the specific case of the heat operator

above, this reduces to

Pabc = e−t(λa+λb+λc) P̄abc. (3.36)

Note that this is exactly an expression that was used in [6], where a “damping factor”

e−λa/Λ was introduced in the definition of the eigenfunctions. This damping factor

was motivated by the fact that the results for reconstructing the topology and geometry

became more stable. The current discussion gives this factor a whole new interpretation,

since this factor basically introduces the full geometric information into the tensor. From

the discussion above, it is clear that the topological tensor P̄abc simply does not contain

any information on the geometry of the Riemannian manifold yet except for the measure,
6It might be that the kernel of O is non-trivial. It will not be the case here, but in that case one has to

add a basis for the kernel of O in order to arrive at a countable basis.
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so this kind of “damping factor” is a way of ensuring that the information is included

in the tensor. This also explains the success that was had reconstructing part of the

geometry and the topology of the manifolds considered using a discrete version of the

heat equation.

A last note before ending this section is on the new tensor Pabc. It is important to

realise that one cannot use the tensor Pabc directly anymore in order to reconstruct the

topology and measure by the methods developed in Sections 3.1 and 3.2, one has to use

the topological tensor P̄abc. Even though all information is included in the tensor Pabc,

in practice one needs to have the topological tensor P̄abc and a list of eigenvalues λa of

the Laplace-Beltrami operator in order to reconstruct the Riemannian manifold.

One thing that will be important is the fact that Pabc will not have a well-defined unit

anymore. Say, for instance, the unit of P̄abc is given by 1 = γf1, meaning that

γP̄1bc = δbc.

However, for Pabc, this will clearly not be a unit anymore

γP1bc = γµ1µbµcδbc.

In Section 3.3.2 it will be shown how to recover a topological tensor P̄abc and a list of

eigenvalues {µa} of a compact self-adjoint operator from a large class of tensors Pabc.

3.3.2 Distilling the unit and the spectrum of a positive compact
self-adjoint operator.

In Section 3.3.1 a method was shown to include geometric information into a symmetric

tensor. This section serves to explain how to extract this information again from the

tensor. The result of this procedure applied to a tensor Pabc will be a topological tensor

P̄abc and a list of positive eigenvalues {µa}, which then can be used to reconstruct

the Riemannian manifold. This makes the inclusion of the geometric information as

explained in Section 3.3.1 unambiguous, as one has a way to recover the ingredients

used, except that one still has to specify the operator one uses to interpret the eigenvalues

{µa}, which will be left as a model dependent property. For instance, the canonical

tensor model will be assumed to have some specific operator OCTM which will link the

dynamics of the model to general relativity.

The key to extracting the spectrum of a positive compact self-adjoint operator lies in

the absence of a unit in this kind of tensor Pabc, as has already be hinted towards in the

end of Section 3.3.1. In Sections 3.1 and 3.2 it was always assumed that the tensor P̄abc

has a unit, meaning that ∃1 = γafa ∈ F such that

γaP̄abc = δbc. (3.37)

Generally for a symmetric tensor Pabc, and in particular for the construction in Sec-

tion 3.3.1, there will be no such unit element. In order to generate a new tensor P̄abc

which is unital, it is instructive to go back to the original definition of the unit. Namely a

unit 1 ∈ F has the property that ∀f = αafa ∈ F

1 · f = γaαbPabcfc = αcfc = f,
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which holds iff Eq. (3.37) holds. If one wants to find a candidate for a unit, it is useful to

generalise this notion somewhat. This is done by the requirement that the unit is its own

unit

1 · 1 = γaγbPabcfc = γcfc = 1,

which implies

γaγbPabc = γc. (3.38)

This is exactly the Eigen-problem of a tensor Pabc, which always has at least one real

solution for real symmetric tensors [90]. This solution might not be unique, but it will be

explained later what the canonical choice will be.

Motivated by Eq. (3.37), one can construct a matrix using the solution γa,

Mbc := γaPabc.

If γa would correspond to a true unit, this matrix would simply reduce to δbc as Eq. (3.37).

Currently, the interest lies in the case where it does not correspond to the unit. In that case,

one can diagonalise the matrix to find a matrix of the form (without Einstein-summation)

Mab = waδab. (3.39)

From now on, Pabc is already taken to be in terms of the basis that diagonalises the

matrix Mab. Furthermore, wa is assumed to be positive. In this case, one can define a

new tensor (without using Einstein-summation)

P̄abc :=
1

√
wawbwc

Pabc, (3.40)

which is the candidate for the topological tensor. This tensor indeed is unital, with unit

1 ≡
∑
a

γ̄afa :=
∑
a

√
waγafa,

as may be seen by (without using Einstein-summation)∑
a

γa
√
waP̄abc =

∑
a

γaPabc
1

√
wbwc

=
wbδbc√
wbwc

= δbc.

Since the assumption was that the wa are all positive, the tensor in Eq. (3.40) is real.

Equation (3.40) may be rewritten as

Pabc :=
√
wawbwcP̄abc.

By comparing this equation to Eq. (3.35), it is easily seen that the wa may be interpreted

in terms of the eigenvalues {µa} of an operator O by identifying

wa := µ2a, (3.41)

and indeed, if one uses Eq. (3.35) to define a new tensor Pabc from the topological tensor

P̄abc, the procedure described here exactly reproduces the topological tensor P̄abc and

spectrum {µa}.
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3. ALGEBRAIC TENSOR MODELS

Since the object that one starts with it Pabc, it is interesting to see under which

conditions the matrix Mab is positive definite. Consider the problem where one tries to

fiend the extremal values of the functional

f(γ) := γaγbγcPabc, (3.42)

under condition |γ|2 = γaγa = 1. For this, one can introduce a Lagrange multiplier k,

g(γ) := γaγbγcPabc + k(1− |γ|2).

If one now takes the derivative with respect to γa

∂γcg(γ) = 3γaγbPabc − 2kγc = 0,

one should solve this equation to find the extremal values. Defining γ′a = 2k
3 γa, this

exactly reproduces the Eigen-problem Eq. (3.38),

γ′aγ
′
bPabc = γ′c.

Therefore, by definition of Mab, the extremal value γa is an eigenvector of Mab

γaMab = γaγ
′
cPabc =

2k

3
γaγcPabc =

(
2k

3

)2

γb.

It can be seen that the eigenvalues are positive for real solutions. This also implies

γaγbγcPabc =
2k

3
.

This sets the first eigenvalue to
(
2k
3

)2
. In order to find the other eigenvalues, consider a

second order perturbation of (3.42) denoted by ϵδa, with δa a unit-size vector. It follows

from the restriction |γ|2 = 1 that γaδa = 0. The first-order contribution is zero since for

extremal values. The second-order contribution is given by

3γaδbδcPabc =
9

2k
Mbcδbδc,

this means that the requirement that Mab is positive-definite coincides with the func-

tional (3.42) either having a local minimum with a positive value (k > 0), or a local

maximum with a negative value (k < 0).

If there are still several candidates left, one can consider to look for “almost unit”

functions, thus minimising
N∑
a=1

(wa − 1)2.

This would then produce a candidate unit which is as close to the real unit as possible.
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Chapter 4

The canonical tensor model and
its wave functions

The canonical tensor model was introduced in [64], and is a tensor model set in the

Hamiltonian framework. In this chapter, the model will be extensively reviewed. Both

the kinematics and dynamics of the classical model will be introduced, and the quantum

version of the model will be explained.

4.1 The motivation for a new kind of tensor model

In this thesis, the canonical tensor model is introduced as a prime example of a model

that could be interpreted as an algebraic tensor model. In this section the main motiva-

tion behind this model will be briefly reviewed, both from the algebraic tensor model

perspective and a more historical perspective.

The predecessors of the original tensor models are matrix models. Matrix models

appeared in the study of planar maps [91, 92, 93], and were very useful tools in the

study of two-dimensional dynamical triangulation since they made explicit calculations

possible [94]. In these matrix models, perturbative expansions yield ribbon graphs which

are extensions of the Feynmann graphs appearing in field theories. The dual of these

ribbon graphs then yields a triangulation of a two-dimensional surface. One of the

critical factors to make this breakthrough possible was an observation by ’t Hooft that

matrix models of this kind using very large N ×N matrices have an 1/N -expansion,

characterising the topology of the resulting graphs [95].

In [49, 50, 51], matrix models were then extended to tensor models in an attempt to

reproduce the success of two-dimensional dynamical triangulation in higher dimensions.

The logic was that since matrices have two indices they reproduce two-dimensional

spaces, whereas tensors of degree d could reproduce d-dimensional spaces. However,

a proper 1/N expansion was not available for these kind of models, and the emergent

spaces are highly singular. In order to improve this, group field theories were introduced

shortly after, but they still were difficult to analyse [96, 97, 98]. An apparent breakthrough

came with the introduction of coloured tensor models [99, 100], which are a class of

tensor models that allow a certain type of 1/N expansion [101]. Even though this 1/N -

expansion is not topological as in the matrix model case, this was the first time that tensor
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4. THE CANONICAL TENSOR MODEL AND ITS WAVE FUNCTIONS

models could systematically be analysed. However, it was found that these models still do

not generate macroscopic spacetimes [102], and the main hope is to connect these models

to gravity via holography due to the dominance of so-called melonic graphs [103, 104].

The results of tensor models are similar to that of the dynamical triangulation ap-

proach to quantum gravity already mentioned in Section 1.2. In dynamical triangulation,

the inclusion of a causal requirement to the set of allowed triangulations seemed to

solve many of the issues [46]. This is the main insight that led to the introduction of the

canonical tensor model [64]. A key point in the causal requirement of causal dynamical

triangulation is the assumption that the spacetime manifold has the form of

M ∼= R× S,

i.e. that spacetime is globally hyperbolic as in Eq. (1.3). However, the topology in

tensor models is supposed to be an emergent phenomenon, and fixing such a topological

requirement would be very unnatural. Therefore, it was proposed to build a tensor model

which was set in the Hamiltonian framework built in by the ADM-formalism of general

relativity, because this would implicitly implement the causal requirement already and

use a Hamiltonian to generate time translations. The Hamiltonian of the model is then

chosen by certain first principles in order to assure that its constraint algebra resembles

the ADM constraint algebra, as explained in Section 4.2.

One caveat of this approach is that the interpretation of tensors relating to simplices

that triangulate a space is lost. Therefore, the strategy has mainly been to investigate

this abstract tensor model, and leave the direct interpretation of the tensors in terms of

spatial manifolds for later, backed up by some strong evidence suggesting a connection

to general relativity [66, 67, 68]. A potential interpretation in the form of algebraic tensor

models was then introduced in [3], motivated by data-analytic results in [6].

The interpretation of this model in the algebraic tensor model description of Chapter 3,

introduced in [3], uses some ideas that were introduced already before [105, 106, 107,

108, 109, 110, 111]. The absence of a notion of associative closure however, made this

approach hard to give some real physical interpretation. After all, any finite-dimensional

associative algebra would necessarily reduce to a finite set of disconnected points,

and non-associative algebras could not correspond to functions over a manifold. This

realisation in rather natural from the algebraic tensor model point of view; if the algebra

is finite-dimensional and associative, the algebraic dual space will consist of a finite

amount of points with the discrete topology on them. The non-associativity of a finite-

dimensional algebra makes it possible to link a finite-dimensional tensor to an infinite-

dimensional algebra.

4.2 The classical canonical tensor model

In this section, the classical canonical tensor model will be defined as a starting point

to define the full quantum mechanical model. As explained before, it is expected

that the tensor Pabc represents a spatial slice of the full spacetime manifold through

the interpretation of Chapter 3. Therefore, a natural starting point is the Hamiltonian

formalism, where all possible tensors Pabc constitute the configuration space, and a

Hamiltonian defines the time evolution.
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4.2. The classical canonical tensor model

4.2.1 The phase space

The canonical tensor model is defined using finite-dimensional real symmetric tensors.

The tensors are multilinear maps from a finite-dimensional vectorspace F to the real

numbers

Q : F × F × F → R.

The symmetry requirement means that, for any f, g, h ∈ F ,

Q(f, g, h) = Q(f, h, g) = Q(g, f, h) = Q(g, h, f) = Q(h, f, g) = Q(h, g, f).

As is well known, given a basis {fa} of this vectorspace, a tensor is fully characterised

by a real multidimensional array

Qabc := Q(fa, fb, fc).

It is therefore easy to see that the configuration-space, the space of all possible N -

dimensional totally symmetric tensors of degree three, is given by

C = RN ,

where

N ≡ 1

6
N(N + 1)(N + 2) (4.1)

is the amount of independent entries of a symmetric tensor of degree three. This fact

may be used to readily find the cotangent space, and thus the canonical phase space of

the model with symplectic structure. First, note that the phase space Γ is isomorphic to

the cotangent bundle

Γ := T ∗C ∼= R2N .

If one takes Q ∈ C, then choose an element P ∈ T ∗
QC. Since T ∗

QC ∼= RN , this may

again be represented by a tensor Pabc. The local coordinates on Γ are now denoted by

(Qabc, Pabc). In these coordinates, a natural one-form is given by

w := PabcdQabc (4.2)

which gives rise to the symplectic two-form

dw = dQabc ∧ dPabc. (4.3)

The Poisson bracket is given by

{Qabc, Pdef} :=
∑
σ

δaσd
δbσeδcσf

, (4.4)

where σ is a permutation of {d, e, f} and δ the Kronecker delta.

As mentioned in Section 3.2, the reason why one can consider totally symmetric

tensors Qabc is because of an inner product structure present on the vector space F . The

choice of inner product given a basis {fa} is taken to be

⟨fa| fb⟩ := δab. (4.5)
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4. THE CANONICAL TENSOR MODEL AND ITS WAVE FUNCTIONS

Note that this means that if one takes a tensor Qabc one implicitly implies the above

inner product structure, meaning that with only a tensor one automatically constructs

a (finite-dimensional) Hilbert space structure. Having such an inner product, it is thus

relevant to investigate the orthogonal transformations of the vectorspace.

By definition, an orthogonal transformation T : F → F preserves the inner product

⟨f | f⟩ = ⟨Tf |Tf⟩. Doing a basis transformation fa → Taa′fa′ induces a kinematical

symmetry in the model:
Qabc → Taa′Tbb′Tcc′Qa′b′c′ ,

Pabc → Taa′Tbb′Tcc′Pa′b′c′ .
(4.6)

Here, T are matrices of the defining representation of the O(N) orthogonal group.1 The

generators, Jab, of the SO(N) subgroup span the skew-symmetric matrices (Jab =

−Jab). One can show that the generators of the SO(N) subgroup are given by

Jab = −1

4
(QacdPbcd −QbcdPacd). (4.7)

To summarise the kinematical setup, the phase space of the canonical tensor model

is given by all symmetric tensors of degree three Qabc. The phase space is then given

by T ∗C ∼= R2N , with the Poisson bracket in Eq. (4.4). The inner product assumed on

the vector space F induces a symmetry generator Jab, which will be used below when

building a Hamiltonian for the theory.

4.2.2 A Hamiltonian from first principles

The dynamics of a physical model in the Hamiltonian formalism are given by the

Hamiltonian H, which fundamentally is a map

H : Γ → R,

generating time translations of observables. Observables are given by phase-space

functions

f : Γ → R,

and their time translation is then given by (in case there is no explicit time dependence

of f )
df

dt
= {f,H}.

There are clearly many possible functionals one could choose from as a Hamiltonian.

However, one can find a good candidate model by making some physical assumptions,

mainly coming from the ADM-formalism of general relativity.

The first important observation is that in the canonical formalism of general relativity,

the Hamiltonian is totally constraint. This reflects the free choice of coordinates, in order

to fully restore the four-dimensional diffeomorphism invariance. This is an desirable

aspect of the theory as well, therefore the most general Hamiltonian could be written as

a linear combination of first class constraints

H := nIaHI
a + nIabHI

ab + nIabcHI
abc + . . . . (4.8)

1As an aside; there is an extension of the canonical tensor model where the symmetry group is replaced
by the orthogonal symplectic group, which might be useful to describe fermionic degrees of freedom [112].
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4.2. The classical canonical tensor model

In order to stay as close as possible to the ADM-formalism as possible, it makes sense

to focus on just two first-class constraints: A Hamiltonian constraint and a kinematical

constraint (analogous to the spatial diffeomorphism constraint of the ADM-formalism).

For the kinematical constraint, the most natural choice is the SO(N) symmetry generator,

as this represents the fundamental symmetry of the theory one wishes to describe. While

in manifold language, coordinate independence is the fundamental underlying symmetry,

a theory of an algebra of functions should naturally be basis independent.

Since the SO(N) constraint already takes a care of the potential rearranging of func-

tions, it makes sense to assume a one-index structure Ha for the remaining “Hamiltonian

constraint”. Physically, this corresponds to a sort of local time requirement. All in all,

the general form of the Hamiltonian is now

H := naHa + nabJab, (4.9)

where na and nab are a vector and an anti-symmetric two-tensor which act like Lagrange

multipliers, similar to the lapse function and shift vector in the ADM-formalism.

What is left is to determine the Hamiltonian constraint Ha. For this, one needs

to make some more assumptions in order to fully fix it. The first major assumption

is that all terms need to be connected via contractions. This means that a term like

QabcQbcdQdee is allowed, but QabbQcdeQcde is not. Furthermore, for simplicity, the

Hamiltonian constraint is a polynomial in terms of Q and P , up to third order.

An important observation of the ADM-formalism is that the Hamiltonian is given

by a linear combination of first class constraints. Therefore, a physically reasonable

requirement on the Hamiltonian is that the constraint algebra closes, such that the

Hamiltonian is indeed first-class. If one furthermore assumes that the Hamiltonian is

invariant under a time-reversal symmetry (such that P → −P ), one arrives at the unique

Hamiltonian constraint of the canonical tensor model [65]:

Ha :=
1

2
(PabcPbdeQcde − λQabb). (4.10)

This Hamiltonian was built from first principles to resemble closely the ADM for-

malism of general relativity. From the point of view of algebraic tensor models it might

actually be possible to derive this Hamiltonian directly from general relativity, if one

takes the interpretation of Section 3.3 into account. It is not known presently if this is

possible, but the Poisson-algebraic resemblance is encouraging.

4.2.3 The dynamics of the model

In this section the dynamics of the model will be briefly reviewed, by citing the constraint

algebra and equations of motion of the model.

In order to describe the algebra, it is useful to introduce some notation;

H(ξ) ≡ ξaHa,

J (η) ≡ ηabJab,

57



4. THE CANONICAL TENSOR MODEL AND ITS WAVE FUNCTIONS

where ξ and η are an arbitrary vector and respectively an anti-symmetric two-tensor. The

constraint algebra of the canonical tensor model is then given by

{H(ξ1),H(ξ2)} = J
(
[ξ̃1, ξ̃2] + 2λξ1 ∧ ξ2

)
,

{J (η),H(ξ)} = H(ηξ),

{J (η1),J (η2)} = J ([η1, η2]).

(4.11)

Here ξ̃ab := Pabcξc, (ξ1∧ ξ2)ab := ξ1aξ
2
b − ξ1b ξ2a and [η1, η2]ab := η1acη

2
cb−η2acη1cb. When

comparing this algebra to the ADM algebra in Eq. (1.5), it can be seen that the algebra

has a non-trivial dependence on one of the canonical variables, Pabc, on the right hand

side of the first equation. This is in accord with the ADM formalism, as can be seen in

Eq. (1.5), since it also has a non-trivial dependence on the spatial metric. It is a rather

nontrivial fact that this dependence shows up in exactly the right place.

In the canonical tensor model, the tensors Qabc and Pabc have no explicit time

dependence and the Hamiltonian is treated as the generator of time translations

Q̇abc ≡
dQabc

dt
= {Qabc,H},

Ṗabc ≡
dPabc

dt
= {Pabc,H}.

(4.12)

Using the Hamiltonian of Eq. (4.9), one can calculate these equations of motion directly.

The result is given by

Q̇abc =
1

2

∑
σ

nσaPσbghQσcgh + ndPσadeQeσbσc + nσadQdσbσc ,

Ṗabc =
1

2

∑
σ

−ndPσadePeσbσc + λnσaδσbσc + nσadPdσbσc .

(4.13)

4.3 The quantum canonical tensor model

In this section, the quantum version of the canonical tensor model will be introduced,

since the main objective of the model is to provide a quantum mechanically consistent

model for gravity. In Section 4.3.1 the canonical quantisation procedure will be used

in order to define the quantum mechanical system. After that, in Section 4.3.2, the

physical Hilbert space will be examined, and some exact solutions to the Wheeler-de

Witt equations will be given.

4.3.1 Canonical quantisation procedure

The quantum mechanical version of the canonical tensor model is defined using a

canonical quantisation procedure. Since the configuration space of the canonical tensor

model is RN , this procedure, originally introded by Dirac [113], is well-known in

quantum mechanical literature [114]. The quantisation of the canonical tensor model

was performed originally in [115].

The canonical quantisation procedure commences in three steps. First, one defines a

Hilbert space as a space for operators to act on. Second, the fundamental operators and

their commutation relation is chosen in accord with their classical Poisson bracket. Lastly
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the other relevant observables on the Phase space are mapped to quantum operators acting

on the Hilbert space.

In the canonical tensor model, the most natural choice for the kinematical Hilbert

space are the square integrable functions over the configuration space C ∼= RN ;2

Hkin := L2
(
RN ) , (4.14)

where N := 1
6N(N + 1)(N + 2). The fundamental operators are chosen to be the

self-adjoint operator versions of the canonical variables of the phase space

Q̂abc : Hkin → Hkin,

P̂abc : Hkin → Hkin.

The commutation relations between these operators are the quantum analogy of the

Poisson bracket in Eq. (4.4), and are given by

[Q̂abc, P̂def ] = i
∑
σ

δaσd
δbσeδcσf

,

[Q̂abc, Q̂def ] = 0,

[P̂abc, P̂def ] = 0,

(4.15)

where σ are the permutations of (def). A possible representation of this algebra is, for

ψ ∈ Hkin,

Q̂abc(ψ) = Qabcψ, P̂abc(ψ) = i
∂

∂Qabc
ψ.

Note that the operators on a Hilbert space are densely defined, so this last equation makes

sense.

The main other relevant observable in the canonical tensor model is the Hamilto-

nian Eq. (4.9). The quantum versions of these observables are given by the operators

Ĥa :=
1

2
(P̂abcP̂bdeQ̂cde − λQ̂abb + iλH P̂abb),

Ĵab :=
1

4
(Q̂acdP̂bcd − Q̂bcdP̂acd).

(4.16)

Note that there is an extra term proportional to λH in the Hamiltonian constraint operator

Ĥa coming from the normal ordering. This constant λH may be fixed by requiring the

operator to be self-adjoint (which is desired for proper observables)

λH =
1

2
(N + 2)(N + 3). (4.17)

Lastly, for consistency one wants to confirm whether the constraint algebra is still

closed. It turns out that the algebra remains of the same form, which is encouraging:

[Ĥ(ξ1), Ĥ(ξ2)] = iĴ
(
[ξ̂1, ξ̂2] + 2λξ1 ∧ ξ2

)
,

[Ĵ (η), Ĥ(ξ)] = iĤ(ηξ),

[Ĵ (η1), Ĵ (η2)] = iĴ ([η1, η2]).

Here, [, ] denotes a commutator, ξ1 ∧ ξ2ab := ξ1aξ
2
b − ξ2aξ

1
b , and ξ̂ab := P̂abcξc.

2The Hilbert space is called the “kinematical Hilbert space” because the Hamiltonian constraints that
will be dealt with in Section 4.3.2 in order to define the “physical Hilbert space”.
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4.3.2 The physical Hilbert space and some wave functions

Since the Hamiltonian of the canonical tensor model is fully constraint, just like the

Hamiltonian of general relativity, one needs to implement this on a quantum level as well.

The approach taken is the same as in other canonical quantum gravity approaches [54],

whereone restricts the Hilbert space Hkin to the so-called physical Hilbert space Hphys.

The physical Hilbert space is defined as the states that are annihilated by the con-

straints in Eq. (4.16):
Ĥa(Ψ) ≡ 0,

Ĵab(Ψ) ≡ 0.
(4.18)

The first of these equations is the canonical tensor model equivalent of the Wheeler-

deWitt equation, and these equations are the direct equivalent of the requirements on the

physical Hilbert space in canonical quantum gravity (see Eq. (1.7)).

A formal picture of the process of applying the constraints above is given by

Hkin
Ĵab−−→ Hsym

Ĥa−−→ Hphys.

Though the application of the Jab constraint does not seem to pose any problems, it

should be noted that currently the physical Hilbert space is not fully understood. It is a

known fact that if the spectrum of the Hamiltonian constraint is continuous around zero,

the elements of the physical Hilbert space will become distributions instead of simple

functions [54, 116]. However, this might not be a problem in the canonical tensor model,

and the existence of the solutions to Eq. (4.18) below are encouraging in that regard.

However, it might still be possible that the standard inner product of Hkin is not the best

suited anymore.

There are several general solutions to the constraint equations Eq. (4.18) found [115,

117, 118]3 and analysed [5, 4, 120, 121, 84, 1, 85], some of which are defined for general

N . It is a very nontrivial fact and feature of the model, that explicit solutions to the

constraint equations may actually be found. There are two types of functions known for

general N , one in the Q-representation, and one in the P -representation. Both of them

will be cited here. For a derivation, see [118].

In the Q-representation, the constraints have the following form

Ĥa =
1

2
(Qcde∂

(Q)
abc ∂

(Q)
bde + iλH∂

(Q)
abb ),

Ĵab =
1

4
(Qacd∂

(Q)
bcd −Qbcd∂

(Q)
acd ).

where ∂(Q)
acd := ∂

∂Qacd
. By using the following Ansatz

Ψ(Q) =

∫
RN

dϕf(ϕ2) eiQϕ3
,

where π ∈ RN , one can find a solution to the constraint equations. Here, the following

notations are used
ϕ2 ≡ ϕaϕa,

dϕ ≡
∏
a

dϕa,

Qϕ3 ≡ Qabcϕaϕbϕc.

(4.19)

3Some of the functions were found because of analysis done for random tensor networks related to the
canonical tensor model [117, 118, 119, 68].
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The final solution is given by

Ψ(Q) =

∫
dϕ(ϕ2)α eiQϕ3

. (4.20)

In the P -representation, one might expect solutions to be found as well, since the the

Hamiltonian constraint becomes a first-order system of partial differential equations. In

this representation it is given by

Ĥa =
i

2
(PabcPbde∂cde + λHPabb − λ∂abb).

In order to solve this, one can use a similar Ansatz as was used for the Q-representation

Ψ(P ) =

∫
dϕf(ϕ2)eiPϕ3

.

For a fixed value of λH , there is a solution given by

ΨλH
(P ) = (Ψ(P ))λH/2, (4.21)

where

Ψ(P ) =

∫
dϕdϕ̃ ei(Pϕ3+ϕ2ϕ̃− 4

27λ
ϕ̃3) . (4.22)

Here, again ϕ ∈ RN and there is a new integration variable ϕ̃ ∈ R used. This integration

variable comes from the Airy function, which is used to solve part of the differential

equation

Ai(x) =

∫ ∞

−∞
dt ei(xt+

1
3
t3) .

4.4 The current state of the model

Since its introduction in [64], many aspects of the model have been analysed as a

serious candidate for quantum gravity. In this section, some of the results will be

explained, in order to understand the potential of this model. There are three main areas

of development: The classical relationship to general relativity, analysis of the quantum

model and wave functions, and the interpretation of the model.

4.4.1 Classical results

When constructing a theory for quantum gravity, it is important that the results are

consistent with the currently most prominent theory for classical gravity available:

General relativity. As already alluded to in Chapter 1, general relativity has been tested

to extremely high precision, and any “classical limit” of a quantum theory of gravity

should at least reproduce the same results.

As explained in Section 4.2, the phase space of the model has been chosen as sym-

metric tensors because they may be used to represent spatial slices according to Chapter 3.

The Hamiltonian is then built on first principles, to resemble the ADM-formalism of

general relativity as closely as possible while keeping computations manageable. In

that sense the model is expected to be the simplest nontrivial candidate theory, and it is

encouraging that the model has a very rich structure already.
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There are two main approaches that have been tried to tie the model to general

relativity, which may be considered opposites. Firstly, the N = 1 case has been

examined [66]. In this case, the dynamics of the model simplifies drastically. By doing a

Legendre transform of the Hamiltonian in this case, the following action is found

SN=1 CTM :=

∫
dt

(
Q̇2(t)

4n(t)Q(t)
+ λn(t)Q(t)

)
,

where Q ≡ 1
3Q111 is the only variable in the configuration space, and n(t) is the lapse

function. This exactly corresponds to the minisuperspace approximation given by the

action of the Friedmann-Robertson-Walker universe [53, 122]. This is very encouraging,

as this is exactly what one would hope for.

The second case that has been examined is a formal continuum limit [67, 68]. The

limit is formal in the sense that, instead of showing the emergence of a continuous space,

it was assumed to be the case. This emergence of a space was done by replacing the

labels a by elements of a D-dimensional space

a→ x ∈ RD,

and the sum over elements is replaced by an integral∑
a

→
∫

dDx.

Furthermore, the tensor, now written as Pxyz was assumed to be almost local. For a local

tensor, one would expect Pxyz to only be non-zero for x ∼ y ∼ z. Such a tensor may be

written as

P 0
xyz =

∫
RD

dωβ(ω)δD(x− ω)δD(y − ω)δD(z − ω),

which, being strictly local, would not have any expected dynamics, but by considering a

derivative expansion of a tensor Pxyz around this local tensor, one could understand the

dynamics.

In [67] it was shown that the constraint algebra of general relativity is recovered

from the canonical tensor model constraint algebra of Eq. (4.11) when taking such a

continuum limit. Moreover, in [68] it was then shown that, when one considers the

equations of motion of the canonical tensor model in Eq. (4.13) in the Hamilton-Jacobi

formalism, the continuum limit introduced here corresponds to general relativity coupled

to a scalar field.4

It is remarkable that a tensor model that is defined from first principles, has such

clear connections to general relativity. There is still work to be done, since the continuum

limit discussed here is rather formal. Note that the interpretation here seems to differ

from the algebraic interpretation introduced in Chapter 3, but this is mainly an artifact

of the overcountably infinite-dimensional vectorspace of smooth functions C∞(RD).

Note that this approach seems to correspond to a basis of functions where the functions

fx0(x) are localised around x0. Therefore, the interpretation seems consistent, but the

mathematics for dealing with these cases has yet to be developed.
4This study motivated the introduction of the “mother canonical tensor model”, which derives the

canonical tensor model through the Hamilton-Jacobi procedure [123].
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Figure 4.1: Some examples of the calculations performed in [5] in order to demonstrate
the symmetry highlighting in the canonical tensor model. On the left: The size of |Ψ|2
in terms of the parameterisation of the O(2) symmetric tensor in x, y. The high peaks
follow the curve of Eq. (4.23), which are exactly the configurations that lead to anO(1, 2)
symmetry. On the right: The symmetry highlighting mechanism for N = 7. In this
parameterisation, the line x1 = ±2.5 represents an SO(4) symmetric tensor, while
x2 = ±2.5 represents O(2). At the intersection of these lines, for x2 = x1 the symmetry
is enhanced to O(6) and at x2 = −x2 to O(4)×O(2).

4.4.2 Interesting properties of the quantum model

The canonical tensor model, having a quite interesting classical structure as explained

in Section 4.4.1, also has interesting quantum mechanical properties. In this section,

some of the results in that area will be discussed.

Interestingly, as has already been explained in Section 4.3.2, the canonical tensor

model has known exact solutions to the constraint equations. This is highly nontrivial

and remarkable for any theory of quantum gravity. Some of the wave-functions have

been analysed in the past, and some of the results will be presented here.

The main function analysed was the one in the P -representation, in Eq. (4.22). The

original analysis was done by using a mechanism introduced in [5]. The mechanism

consists of a conjecture that quantities of the form

Ψ(Q) :=

∫
C
dϕeiS(Q,ϕ),

where Q is some configuration variable and ϕ an integration variable, and S(Q,ϕ)

is invariant under transformations of some Lie-group G, will exhibit highlighting of

symmetries. This means that the function Ψ will be peaked at configurations Q which

are invariant under some subgroup H ⊂ G. In [5] the discussion was still quite general,

and a relatively simple toy-model was evaluated and the mechanism was shown to work.

In [4] the mechanism was subsequently applied to the canonical tensor model wave

function of Eq. (4.22). The reason for choosing this wave function is that the exponent

S(Pabc, ϕ) is sufficiently complex such that there are nontrivial fixed points to be ex-

pected. For N = 3, there is only one possible Lie-subgroup O(2) ⊂ O(3). This case

was shown to be highlighted for specific configurations, where the real symmetry is

actually O(1, 2); a symmetry which suggests the existence of a time symmetry in the

model as well. In some ways this does make sense, since the wave function was obtained

using the Hamiltonian constraint - which generates time translations - as well. The

SO(2) symmetry is parameterised by two parameters, here called x and y. In Fig. 4.1

an example is shown how the curves symmetric under O(1, 2) are highlighted. These
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curves are given by

y = x− 4

27
x3 (4.23)

Another example for N = 7 is given, where the biggest subgroup possible is O(6), and

smaller symmetry groups have considerably smaller peaks.

The emergence of these symmetries is an important indication that the canonical

tensor model might show the emergence of macroscopic spaces, as these kind of spaces

usually have some symmetric properties. With the algebraic tensor model interpretation,

this becomes even clearer because a single point would generate a whole continuous set

of points under this Lie-group symmetry, as explained around Eq. (3.29).

Further analysis of this wave function was done in [120, 121, 2] for the case of a

negative cosmological constant and a toy model in [124]. These works suggest that for

the emergence of macroscopic spacetimes, a positive cosmological constant is needed.

Stronger evidence for this was found in [84].

4.4.3 Extracting geometry and the interpretation of the model

In this section, two more topics will be discussed. Firstly, the extraction of geometrical

and topological properties from a tensor using techniques from data analysis will be

discussed. To finalise this chapter, some closing remarks on the interpretation of the

model as an algebraic tensor model will be made.

In [6], important groundwork was laid for the interpretation of the canonical tensor

model as a model describing dynamical spacetime. Though the relationship to general

relativity discussed in Section 4.4.1 is encouraging, an explicit interpretation of the

tensor relating it to Riemannian geometry was not found yet. The work in [6] explained

how one could regain topological and geometric data from a tensor Pabc. Two crucial

elements in this setup were the tensor rank decomposition and persistent homology.

The tensor rank decomposition used in this work is defined in Section 3.2.2 as the

minimal tensor rank decomposition, denoted as

Pabc =
R∑
i=1

ϕiaϕ
i
bϕ

i
c.

The elements ϕi were then treated as the “set of points” corresponding to the tensor.

Then, an inner product was introduced on the set of points

ϕi · ϕj :=
N∑
a=1

ϕiaϕ
j
a.

It was then argued that, if this inner product is large, points are to be treated as close.

If one then picks a cutoff value ϵ, one can construct a graph, where points that have

an inner product larger than ϵ are connected. The graph distance can then be used as

a parameter for persistent homology. Using this technique, the authors were able to

show that for a wide variety of tensors that were constructed using almost the same inner

product definition as Eqs. (3.35) and (3.36), the homology groups could be recovered.

Moreover, by using a discrete version of the heat kernel and a virtual diffusion process, a

distance measure on the set of points was defined, implying that the geometric data of a

Riemannian manifold could be recovered.
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Note that in the above, it was not claimed that a rigorous understanding of the

interpretation of tensors had been found. But, the work was very important to show that

topological and geometric data was clearly encoded in the tensor, and could partly be

recovered (albeit with some margins for error).

The original interpretation of the canonical tensor model, was as a tensor model of

fuzzy spaces [64].5 This came from a tensor Pabc that was interpreted as the structure

constants of some algebra of functions

fa · fb = Pabcfc,

with inner product structure

Pabc = ⟨fc| fa · fb⟩ .

This interpretation was, however, difficult to maintain, since for a finite tensor an asso-

ciative algebra always corresponds to a discrete non-connected set of points. Therefore,

in order for the space to be non-connected, one needs to accept non-associative algebras,

making the interpretation as an algebra of functions over a manifold difficult.

The work in [3], explained in Chapter 3, aimed to combine the spirit of the original

interpretation of the canonical tensor model with the results of [6]. This led to the

interpretation that the tensor Pabc does not correspond to the structure constants of the

whole algebra, but the structure constants of the generators of the algebra. This combined

with conjecture Conjecture 3.1 could merge these two pictures. One of the nice things of

this interpretation is that it gives a very clear view of the N = 1 case above. The N = 1

case would in this picture correspond to only taking into account the constant function

of the algebra, and therefore only describes the homogeneous and isotropic part of the

universe.

5Note that the original definition was as a complex tensor model symmetric under a generalised
Hermiticity condition. However, here only the real version will be treated.
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Chapter 5

A matrix model from a simplified
wave function

In this chapter, the results of [1] will be explained. For this, Section 5.1 first explains

the model that is analysed and the previously obtained results in [120, 121]. Section 5.2

then discussed the numerical analysis performed, and finally its results and implications

for the canonical tensor model are discussed in Section 5.3.

5.1 Pairwise contracted matrix model

In this section, the matrix model under consideration will be introduced. The matrix

model turns up in a simplication of one of the wave functions of the canonical tensor

model. In Section 5.1.1, the matrix model will be defined. Then, in Section 5.1.2,

a brief review will be given of a perturbation theory analysis that was done in [120].

Section 5.1.3 will then discuss the main results from initial numerical analysis done

in [121].

5.1.1 Simplifying a wave function

The model under consideration is defined from a simplification of the wave function

in Eq. (4.22), given by

ψϵ(P ) =

∫
RN

dϕ ei(Pϕ3+ϕ2)−ϵϕ2
, (5.1)

where the same notation as in Eq. (4.19) was used. This function is actually the same

as the toy model analysed in [5]. The parameter ϵ > 0 is introduced to ensure the

convergence of the function, and in the end the limit

ψ(P ) ≡ lim
ϵ→0

ψϵ(P ),

is supposed to be taken. Note that in the case of the canonical tensor model, the full

wave function is given by a quantity of the form ψ(P )R.

An interesting quantum-mechanical question is whether the wave function is actually

normalised, i.e. if it is part of the kinematical Hilbert space. To answer this question,

one can study the following object with α > 0

g(N,R, κ) :=

∫
RN

dP e−αP 2
ψϵ(P )

R, (5.2)
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Figure 5.1: Examples of Feynmann graphs appearing in this model taken from [120].
On the left, an interaction

∑R
i,j=1

∑N
a,b,c=1 ϕ

i
aϕ

i
bϕ

i
cϕ

j
aϕ

j
bϕ

j
c is shown. The ϕia are located

at the points, whereas the solid lines represent contractions of i and j, and the dashed
lines represent contractions of a, b, c. On the right, an example of a connected Feynmann
diagram with three vertices. The thin lines represent Wick contractions.

where N = 1
6N(N +1)(N +2) denotes the amount of degrees of freedom of the tensor

P . If, for α→ 0 this quantity converges, the function is square integrable. Define

ZN,R(λ, k) :=

∫
RNR

dϕ e−λU(ϕ)−kTr[ϕϕt], (5.3)

where theR copies of ϕa are now treated as matrices ϕia with a ∈ {1, . . . , R}. ZN,R(λ, k)

is the partition function of the matrix model under consideration, for the interaction term

U(ϕ) :=
N∑

a,b,c=1

R∑
i,j=1

ϕiaϕ
i
bϕ

i
cϕ

j
aϕ

j
bϕ

j
c,

where

Uij :=
N∑

a,b,c=1

ϕiaϕ
i
bϕ

i
cϕ

j
aϕ

j
bϕ

j
c.

One can now show that

g(N,R, α) =
(π
α

)N
2
ZN,R

(
1

4α
,−i+ ϵ

)
.

Note that the matrix model in Eq. (5.3) has some unusual properties. Firstly, it is a

rectangular matrix model, since N and R do not need to be the same. Secondly, while

the lower indices are always contracted pairwise, as is usual in matrix models, the upper

indices are contracted pairwise due to the interaction term. Due to this, the model does

not have the full O(R) × O(N) symmetry that is usually the symmetry of this kind

of model. However, the lower indices still respect the O(N) symmetry and the upper

indices are now only symmetric under permutations. The correct symmetry group of the

model is thus SR ×O(N).

5.1.2 Analytical results

In [120], several analytical calculations were performed for the matrix model above in

Eq. (5.3). This was done for both a Feynmann graph expansion, and through the analysis

of a convergent series.
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The Feynmann expansion analysis is useful for exploring which graphs dominate in

what kind of regime. To this end, one uses a formal expansion of the partition function

above as

ZN,R(λ, k) ∝
∑
n≤1

(−λ)n

n!
⟨U(ϕ)n⟩0 ,

where

⟨U(ϕ)n⟩0 ≡
∫
RNR

dϕU(ϕ)n e−kTr[ϕϕt] .

Some examples of generated Feynmann diagrams are shown in Fig. 5.1. One can consider

several N → ∞ limits of these models, where one takes

R ∼ Nα.

For 0 < α ≤ 1, the so-called tree-like graphs dominate, while for α > 2 the so-called

star-like graphs dominate. 1 < α ≤ 2 is a mixed region, where small graphs tend to be

tree-like, and large graphs tend to be star-like.1

After the analysis above, the authors described the model as a convergent series.

To do this, they split up the variables ϕia into radial and angular components. Since

πia ∈ RNR, this means a decomposition into R+ × SNR−1. The angular part may then

be written as a convergent series, whereas the radial part can be integrated explicitly.

This leads to

ZN,R = VNR−1

∫ ∞

0
dr rNR−1fN,R(λr

6) e−kr2 ,

with

fN,R(t) ≡
1

VNR−1

∫
SNR−1

dϕ̃ e−tU(ϕ̃),

and VNR−1 =
∫
SNR−1 dϕ̃ is the volume of a NR − 1-sphere. ϕ̃ ≡ ϕ/r is the angular

part of ϕ, and dϕ̃ denotes the standard measure on the NR− 1-sphere.

Up to leading order this leads to the conclusion that there seem to be two phases

for the limit κ→ 0+ of g(N,R, κ). If R < 1
2(N + 1)(N + 2), the function g(N,R, κ)

diverges with a powerlaw, whereas the function converges for R > 1
2(N + 1)(N + 2).

For R = Rc ≡ 1
2(N + 1)(N + 2) the function has a logarithmic divergence. Combined

with the discussion above, this is an interesting result. Since the critical value Rc goes

like

Rc ≡
1

2
(N + 1)(N + 2) ∼ N2, (5.4)

this means that this critical value is exactly at the border of the star-like graph domination.

Moreover, this value, to leading order, is almost the same as the value required by the

canonical tensor model wavefunction Eq. (4.22), namely

R =
1

2
(N + 2)(N + 3).

However, since this is only up to leading order, it is hard to draw strong conclusions for

this.

1For the discussion here, the precise nature of the star-like and tree-like graphs is of less importance.
For this one can refer to [120].
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5. A MATRIX MODEL FROM A SIMPLIFIED WAVE FUNCTION

5.1.3 Monte carlo analysis

In [121], the model above was numerically analysed. Consider some observable O which

is observable under the SR ×O(N) symmetry mentioned above. The expectation value

of this operator is given by

⟨O⟩ = 1

ZN,R(λ, k)

∫
RNR

dϕO(ϕ) e−λU(ϕ)−kTr[ϕϕt] .

The expectation value of several observables, namely Tr[ϕϕt], U(ϕ), and a third observ-

able

Ud(ϕ) ≡
R∑
i=1

Uii(ϕ), (5.5)

were then numerically calculated using the famous metropolis algorithm [125]. This

led to some interesting results, for instance that there seems to be a transition region at

k → 0 for R ∼ 1
2(N +1)(N +2) = Rc. This is interestingly in line with the predictions

of [120]. However, due to drastic slowing down of the simulations for this region in the

radial direction, it could not be established whether this was a phase transition or just a

cross-over.

5.2 Numerical analysis

In this section, the numerical analysis performed in [1] is explained. While there was

already some numerical analysis done in [121], as explained in Section 5.1.3, the results

were not conclusive enough yet due to the slowing down of the metropolis algorithm.

In [1], this was largely solved by first integrating out the troublesome radial direction,

and using an extension of the metropolis algorithm, called “Hamiltonian Monte Carlo”.

It should be noted that the model under consideration in [1] differs slightly from the

original in Eq. (5.3), namely

ZN,R(λ, k) :=

∫
RNR

dϕ e−λU(ϕ)−k Ud(ϕ) . (5.6)

The reason for this is that it allows to integrate out the radial direction, which was the

main reason for the slowdown in the simulation as explained in Section 5.1.3. Note that

for k > 0, the partition function above is guaranteed to be convergent, but for k = 0

this is not necessarily the case. One of the main questions under investigation in [1] is

whether a sensible k
λ → 0 limit exists. The answer will be positive, where there is a

critical value Rc such that for R < Rc the function converges.

Note that from a physical point of view, the replacement of the term −kTr[ϕϕt] =
−k
∑R

i=1

∑N
a=1 ϕ

i
aϕ

i
a by −kUd(ϕ) =

∑R
i=1(

∑N
a=1 ϕ

i
aϕ

i
a)

3 may be interpreted by con-

sidering the wave function Eq. (4.22). The wave function in question was given by

Ψ(P ) ∝
[∫

RN

dϕ eiPϕ3
Ai(κϕ2)

]λH/2

, (5.7)
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where the same notation as in Eq. (4.19) was used, and κ = −(9λ/4)1/3 4
9λ . If one now

wants to probe the square integrability, as in Eq. (5.2), one finds

⟨Ψ| e−αP 2 |Ψ⟩ :=
∫
RN

dP e−αP 2 |Ψ(P )|2,

∝ α−N/2

∫
RNR

dϕ e−
1
4α

∑R
i,j=1 Uij(ϕ)

R∏
i=1

Ai(κϕ2).

(5.8)

For κ > 0, the Airy function has the properties of a damping function. An example of

a simplification in this region would thus be given by replacing the Airy function by a

damping function which is easier to handle, such as

e−k(ϕ2)3 = e−k Ud(ϕ),

where k is some constant.

The integration of the radial part and angular expectation values of operators will be

explained in Section 5.2.1. Section 5.2.2 will then explain the Hamiltonian Monte Carlo

method, and in Section 5.2.3 the results of this analysis will be discussed.

5.2.1 Integrating out the radial direction

A useful trick when dealing with numerical analysis of multi-dimensional non-compact

integrals like Eq. (5.6) is try to integrate out some variables such that one is left with

a compact integral, which is much easier to deal with when performing Monte Carlo

simulation. This is easier to do for Eq. (5.6) than for Eq. (5.3), and this is one of the

reasons for considering a different matrix model.

If one divides ϕia up into a radial part r and an angular part ϕ̃ia such that

ϕia = rϕ̃ia,

one can do a variable transformation to hyperspherical variables. When doing this one

can now integrate out the r variable:

ZN,R(λ, k) =

∫
SNR−1

dϕ̃

∫ ∞

0
dr rNR−1 e

−

λ R∑
i,j=1

Uij(ϕ̃) + k
R∑
i=1

Uii(ϕ̃)

 r6

 ,

=
1

6
Γ

(
NR

6

)∫
SNR−1

dϕ̃

λ R∑
i,j=1

Uij(ϕ̃) + k

R∑
i=1

Uii(ϕ̃)

−NR
6

,

where SNR−1 denotesNR−1 dimensional sphere, dϕ̃ is the volume element on SNR−1,

and Γ(·) is the gamma function. The benefit is that now one has a compact integral left,

which drastically simplifies numerical computations.

Let us define the angular part of the partition function as

zN,R(λ, k) :=

∫
SNR−1

dϕ̃

λ R∑
i,j=1

Uij(ϕ̃) + k
R∑
i=1

Uii(ϕ̃)

−NR
6

, (5.9)

and the angular expectation value of an observable O as

⟨O(ϕ̃)⟩ := 1

zN,R(λ, k)

∫
SNR−1

dϕ̃O(ϕ̃)

λ R∑
i,j=1

Uij(ϕ̃) + k

R∑
i=1

Uii(ϕ̃)

−NR
6

.
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If one now has an operator on all of ϕ with weight w, meaning

O(ϕ) = rwO(ϕ̃),

the expectation value of this operator can be found to be (see [1] for a derivation)

⟨O(ϕ)⟩ =
Γ[NR+w

6 ]

Γ[NR
6 ]

〈
O(ϕ̃)

λ R∑
i,j=1

Uij(ϕ̃) + k

−w/6〉
, (5.10)

where
∑R

i=1 Uii(ϕ̃) = 1 was used. This relation may now be used to relate observables of

the original matrix model Eq. (5.6) to Eq. (5.9). The numerics are now done for Eq. (5.9).

5.2.2 Hamiltonian Monte Carlo

In this section, the Hamiltonian Monte Carlo numerical method will be introduced.

For this, it is good to first recall how the standard Metropolis algorithm works. A

comprehensive overview of the topic may be found in [126].

The Metropolis algorithm, originally introduced in 1953 [127], is a method used for

obtaining random samples from some probability distribution P (x) with x ∈ X , where

X denotes the configuration space of some integral. The algorithm works as follows.

One needs to define an arbitrary probability density g(x| y), which gives a probability

for y given the current value x. This probability density needs to satisfy the requirement

for detailed balance, i.e.

g(x| y) = g(y|x).

An example of such a probability, which is also used in [121, 1], density would be a

normal distribution around x. To initialise the algorithm one chooses a (random) point to

start with, x1. Say now, one is at a point xn. Choose a candidate point y with probability

g(xn| y). Then one defines the acceptance ratio

R := min

(
P (y)

P (xn)
, 1

)
.

Then, one accepts this candidate point as the new point xn+1 = y with probability R.

Otherwise, the next point remains unchanged xn+1 = xn.

The algorithm above may be shown to have the distribution P (x) as a fixed point,

i.e.

lim
n→∞

pn(x) = P (x),

where pn denotes the probability of the random walker being at point x. This means

that if, for some probability density P (x), one wants to calculate expectation values of

observables O(x) as

⟨O⟩ :=
∫
X
dxO(x)P (x) ≈ 1

M

M∑
k=1

O(qk),

where qk is a list of M points created by taking some of the points xn above.2 In

particular, one can use it to calculate expectation values of a partition function.
2This is the place where it becomes a bit case-specific. Since the points xn+1 and xn are not independent,

one needs to do several iterations before adding a new point to the list qk. How many depends on the
acceptance rate above.
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One of the downsides of the Metropolis algorithm is that in practice it can get “stuck”

around local maxima. For this reason, an extension of the Metropolis algorithm was

proposed in [128], nowadays called Hamiltonian Monte Carlo [126]. The goal is to use

Hamilton dynamics to propose candidate points for the Metropolis algorithm that may

be further away. For this, one first creates a phase space from the configuration space X ,

by introducing canonical conjugate variables pi to xi. Then one defines the Hamiltonian

of the system by

H(x, p) = U(p) + V (x),

where U(p) =
∑d

i=1
p2i
2 , where d is the dimension of the space, and V (x) = −logP (x).

Solving the equations of motion is a difficult exercise in general, but one can use a discrete

approximation to do this. The discrete approximation steps do needs to satisfy two criteria

exactly: Time-reversal symmetry and the conservation of phase-space volume.

The leap frog method is a method that satisfies the above properties by executing a

discrete jump in two steps, firstly by doing a free (geodesic) motion in the configuration

variables xi and subsequently updating the momentum variables pi. For a flat phase

space, these two subsequent steps are given by

(1) δxi = ϵ pi, δpi = 0,

(2) δxi = 0, δpi = −ϵ∂V (x)

∂xi
.

It can be easily checked that these steps both satisfy the criteria. For the phase space

volume one needs to check if∣∣∣∣∣ ∂
∂xi

(xi + δxi)
∂
∂pi

(xi + δxi)
∂
∂xi

(pi + δpi)
∂
∂pi

(pi + δpi)

∣∣∣∣∣ = 1,

for both of the steps individually, which is clearly the case. For the time-reversal

symmetry, one has to confirm if

xi + δxi → xi, pi + δpi → pi,

whenever one takes ϵ→ −ϵ. This is also clearly the case for the steps above.

In the matrix model discussed here, the configuration space is a unit hypersphere,

yielding the constraints
d∑

i=1

x2i = 1,

d∑
i=1

xipi = 0.

It may be checked that the following two steps will satisfy these constraints and the

time-reversal and phase-space volume requirements. For the first (geodesic motion) step:

(1’)

(
x′i
p′i

)
=

(
cos θ sin θ

|p|
−|p| sin θ cos θ

)(
xi

pi

)
, (5.11)

where |p| =
√∑

i p
2
i and θ = ϵ |p|. The second step to update the momentum variable

is then given by

(2’) δxi = 0, δpi = −ϵ∂V (x)

∂xi
+ ϵxi

∑
j

xj
∂V (x)

∂xj
. (5.12)

In Section 5.2.3, this method will be applied to the model discussed in Section 5.2.1.
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Figure 5.2: The expectation values of O1 from Eq. (5.14). On the left, a single value
k = 10−8 was chosen and N was varied for N = 5, 8, 10. On the right, a single value
N = 10 was chosen and k was varied for k = 10−8, 10−9, 10−10. The horizontal axis
R/Rc was normalised according to the definition of Rc in Eq. (5.13).

5.2.3 Phase structure of the model

In this section, the results of applying the methods of Sections 5.2.1 and 5.2.2 to the

model of Eq. (5.9) will be explained, as were reported in [1].

In this case, the variables ϕ̃ia can be described asNR-dimensional vectors constrained

to the sphere where

|ϕ̃|2 =
R∑
i=1

N∑
a=1

ϕ̃iaϕ̃
i
a = 1.

Therefore, the leap frog steps of Eqs. (5.11) and (5.12) can be used. In this case, the

potential V (ϕ̃) is given by

V (ϕ̃) =
NR

6
log

λ R∑
i,j=1

Uij(ϕ̃) + k

R∑
i=1

Uii(ϕ̃)

 .

One can now calculate the partial derivatives of this potential to be

∂V (ϕ)

∂ϕia
=

NR/6

λ
∑R

j,k=1(ϕ
j · ϕk)3 + k|ϕ|3/2

6λ

R∑
j=1

ϕja(ϕ
i · ϕj)2 + 2kϕiaϕ

2

 ,

so that the second step of the leapfrog from Eq. (5.12) for the momentum variable πia on

the constraint surface is given by

δπia = −ϵ ∂V
∂ϕia

+ ϵϕia

R∑
j=1

N∑
a=1

ϕja
∂V

∂ϕja
,

= − ϵλNR

λ
∑R

j,k=1(ϕ
j · ϕk)3 + k

 R∑
j=1

ϕja(ϕ
i · ϕj)2 − ϕia

R∑
j,k=1

(ϕj · ϕk)3
 ,

where the constraint |ϕ|2 = 1 was used.

Below, the results of the simulations will be discussed. Here, λ = 1 is taken in all

simulations.

The first major result is to find the critical value Rc for which there might be a phase

transition (or a cross-over region). In the analytic and numerical analysis before, as

explained in Section 5.1, the critical value was found to be aboutRc =
1
2(N+1)(N+2).

In [1] it was found to actually be more about

Rc =
1

2
(N + 1)(N + 2)−N + 2. (5.13)
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5.2. Numerical analysis

Figure 5.3: The expectation values of O2 from Eq. (5.15). On the left, a single value
k = 10−8 was chosen and N was varied for N = 5, 8, 10. On the right, a single value
N = 10 was chosen and k was varied for k = 10−8, 10−9, 10−10. The horizontal axis
R/Rc was normalised according to the definition of Rc in Eq. (5.13).

In order to investigate this, one looks at the expectation values of certain observables. A

useful observable to look at is

O1 := N
∑
i ̸=j

(ϕi · ϕj)2. (5.14)

This operator may be interpreted as a measure for the correlation between ϕis, since for

a completely uncorrelated phase

⟨O1⟩ ∼ N
∑
i ̸=j

⟨ϕiaϕib⟩ ⟨ϕjaϕ
j
b⟩ ∼ 1.

Figure 5.2 shows the results of the simulation for several values of N and k. It is clear

that for all cases, the observable was almost 1 whenever R and Rc had very different

values. But for R ∼ Rc the correlation between the elements becomes larger, and seems

to become larger and larger for higher N . This implies that there is an actual phase

transition point at the thermodynamic limit.

Another interesting observable is given by

O2 := ϕ2 = r2. (5.15)

This observable has a weight of w = 2 and has therefore an expectation value of

(see Eq. (5.10))

⟨O2⟩ :=
Γ[NR+2

6 ]

Γ[NR
6 ]

〈
λ

R∑
i,j=1

(ϕi · ϕj)3 + k

〉
.

The results of the simulation of this operator are given in Fig. 5.3. It is clear that for

R < Rc, ⟨O2⟩ ∼ 0, but for R > Rc the value ⟨O2⟩ > 0. Therefore, it seems like a

good candidate of an order parameter to characterise the phase transition. As may be

seen in Fig. 5.3, for larger N the transition point becomes more and more sharp but

continuous, which again is evidence for point R = Rc to actually be a continuous phase

transition in the thermodynamic limit.

A last operator considered is Ud(ϕ) as defined in Eq. (5.5). The numerical results for

N = 10 are shown in Fig. 5.4. Firstly, note that the R-dependence again shows that there

seems to be a phase transition at R = Rc. The operator Ud is important in the analysis

of the wave function renormalisability in Section 5.3. First, note that for the free energy

FN,R(λ, k) := − logZN,R(λ, k), (5.16)
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5. A MATRIX MODEL FROM A SIMPLIFIED WAVE FUNCTION

Figure 5.4: The expectation values of Ud as defined in Eq. (5.5) for N = 10, taken
from [1]. On the left the dependence of the expectation value on R. The blue dots are
the measured values and the red line is the result of the perturbative calculation. In the
middle, the k dependence is shown for R = 45 < Rc which reaches a constant value
for k → 0, where on the right the k dependence is shown for R = 80 > Rc with a fit of
k ⟨Ud(ϕ)⟩ ≈ 23.3 + 107

√
k.

one can see from the definition of the partition function ZN,R(λ, k) in Eq. (5.6) that

∂

∂k
FN,R(λ, k) = ⟨Ud(ϕ)⟩ .

This means that if one wants to compute the free energy, and thus indirectly the the

partition function through Eq. (5.16), as a function of k, one can use the expectation

value above and perform the integral

FN,R(λ, k) =

∫ k

k0

dk ⟨Ud(ϕ)⟩+ F0,

withF0 some integration constant. In particular, limk→0 ⟨Ud⟩ determines limk→0 FN,R(λ, k).

Note that one may also write

FN,R(λ, k) = FN,R(1, λ/k) +
NR

6
log λ (5.17)

by performing a re-scaling ϕia → λ−1/6ϕia.

From Fig. 5.4 it seems clear that there are two main cases for the behaviour of

⟨Ud(ϕ)⟩, namely for R < Rc and R > Rc. For R < Rc, Fig. 5.4 shows that ⟨Ud(ϕ)⟩
converges to a constant, which will be called

U0
d := lim

k→0+
⟨Ud(ϕ)⟩ .

This then gives for the free energy

FN,R(λ, k) = U0
d

k

λ
+
NR

6
log λ+ pN,R(

k

λ
),

with pN,R(
k
λ) smaller than k

λ in order with a finite limit. For R > Rc, Fig. 5.4 shows that

the dependence goes like ⟨Ud(ϕ)⟩ ∼ 1
k . Therefore, the free energy will be of the form

FN,R(λ, k) = Ũ0
d log(

k

λ
) +

NR

6
log λ+ p̃N,R(

k

λ
), (5.18)

where

Ũ0
d := lim

k→0+
k ⟨Ud(ϕ)⟩ ,

and p̃N,R(
k
λ) is of lower order. Curiously, the numerical results seem to suggest that up

to leading order, Ũ0
d is given by

Ũ0
d =

NR

6
− N

2
+ δŨ0

d ,
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Figure 5.5: Two examples of the change in ⟨(δϕ̃)2⟩ of Eq. (5.19) for N = 10, taken
from [1]. On the left R = 45 is taken, and on the right the value is R = 80. A clear
decrease in simulation speed for R = 80 is shown when k < 10−6.

with N = 1
6N(N+1)(N+2) is the amount of degrees of freedom of a symmetric tensor

of order three, and δŨ0
d a sub-leading term. Note that forRc > R > 1

2(N+1)(N+2)/2

this value is positive, since Ũ0
d is positive, but for R > 1

2(N + 1)(N + 2)/2 it might be

either positive or negative.

One of the issues in the numerical analysis in Section 5.1.3 was that the Monte Carlo

simulation slowed down considerably around R ≳ Rc for small k. With the approach in

this section, this is improved drastically. While a slowdown still occurs if k is taken too

small, the value for which this occurs is several orders of magnitude lower than in the

previous analysis. A useful measure for the speed of updates in the algorithm is given by

⟨(δϕ̃)2⟩ := 1

M

M∑
m=1

∣∣∣ϕ̃(m+ 1)− ϕ̃(m)
∣∣∣2 , (5.19)

as this gives an indication of how quickly points change throughout the simulation. The

results of this for an example with N = 10 and R = 45, 80 may be found in Fig. 5.5.

These values are chosen such that one is clearly below Rc in Eq. (5.13) and one clearly

above. It is clear that below Rc, the simulation speed is fine when taking k → 0. For

R > Rc, the speed decreases a lot when taking k < 10−6. Note, however, that this is a

drastic improvement over the previous numerical analysis in [121], where the smallest

value probed was of the order of k ∼ 10−1.

5.3 Implications for the canonical tensor model

As already explained in Section 5.2, the matrix model investigated here has a close

connection to a wave function of the canonical tensor model in Eq. (5.7). In this section,

the implications to the canonical tensor model will be discussed.

Note that the link to the tensor model relies on the assumption that3

Ψsimple(P ) :=

[∫
RN

dϕ eiPϕ3−k(ϕ2)3
]R/2

, (5.20)

is a good approximation for Ψ(P ) in the sense that

⟨Ψ| e−αP 2 |Ψ⟩ ∼ ⟨Ψsimple| e−αP 2 |Ψsimple⟩ ,

∝ α−N/2ZN,R(
1

4α
, k).

(5.21)

3Here, ϕa corresponds to a single vector. If one then takes R copies of ϕ, as is done when calculating
Eq. (5.21), one gets a rectangular matrix ϕi

a.
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5. A MATRIX MODEL FROM A SIMPLIFIED WAVE FUNCTION

This corresponds to replacing the Airy function with Ai(κϕ2) → e−k(ϕ2)3 .

For the consistency of the canonical tensor model, the value R has to be a specific

value, namely

R = λH ,

where λH = 1
2(N + 2)(N + 3) as in Eq. (4.17). One of the major findings in [1], as

shown in Section 5.2.3, is that there is a critical value

Rc =
1

2
(N + 2)(N + 3)−N + 2,

at which there seems to be a phase transition. This means that the consistency condition

of the canonical tensor model, up to leading order, puts the canonical tensor model right

on the continuous phase transition point. This is very encouraging from a physical point

of view, since for the emergence of macroscopic spaces, the expectation is that one needs

to take a continuum limit around a continuous phase transition. The N → ∞ limit with

Eq. (4.17) seems to do exactly that.

To answer the question whether the physical Hilbert space is indeed a proper subset of

the kinematical Hilbert spaceL2(RN ), one needs to show if the solutions to the constraint

equations Eq. (4.16) are square integrable. In the current case, the simplification of the

wave function is considered. Note that for the canonical tensor model, R > Rc, and thus

one can use Eq. (5.18) to find

αN/2ZN,R(
1

4α
, k) ∼ α−δŨ0

d ,

as the dominant contribution in the α→ 0 limit. As already explained in Section 5.2.3,

for Rc < R < 1
2(N + 1)(N + 2) one has Ũ0

d > 0. Therefore, this would be a divergent

property. However, for the canonical tensor model, R > 1
2(N + 1)(N + 2), and the

value for Ũ0
d is unrestricted in that region. More research in this area is required to fully

say whether or not this function will converge. Note that even if the function diverges,

this might just point to the fact that the inner product on the physical Hilbert space is

different from the inner product on the kinematical Hilbert space.
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Chapter 6

Counting tensor rank
decompositions

In this chapter, the work in [2] will be summarised. In this work, a configuration space

of tensor rank decompositions was defined and studied. In particular, the behaviour of

volumes in this configuration space, giving a measure for the amount of tensor rank

decompositions.

Studying tensor rank decompositions is interesting in the context of the canonical

tensor model, since the tensor rank decomposition appears to play a crucial role in

the theory [6, 3]. The essential question answered in [2] is “how can one quantify the

amount of tensors close to a given tensor Q?”. The study was an extension of the work

in Chapter 5, since the quantities studied have a relationship with the partition function

of Eq. (5.6), which will be pointed out below.

Note that the work discusses a more general scenario than usually used in the

canonical tensor model. Firstly, in the canonical tensor model only tensors of degree three

are considered. In this chapter, the degree of the tensor is taken to be arbitrary. Secondly,

there are two cases considered; namely symmetric tensors and generic (non-symmetric)

tensors. In the canonical tensor model, only symmetric tensors are considered.

In Section 6.1 the configration space of tensor rank decompositions will be introduced.

The main definitions of the objects that are studied will also be given in that section,

including the connection to the partition function in Eq. (5.6). In Section 6.2, a derivation

of the volume law will be given, and the conditions under which this is valid according to

numerical analysis will be discussed. Note that the notation here differs from Chapter 5.

6.1 The configuration space of tensor rank
decompositions

In this section the configuration space of tensor rank decompositions will be introduced,

and the volume quantities that will be analysed will be defined. Two types of real tensor

spaces are considered in [2]; the symmetric tensors of degree K, SymK(RN ), and the

space of generic tensors of degree K, RN⊗K . In this section, only the symmetric tensor

case will be discussed. The case for generic tensors is very similar and similar results
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6. COUNTING TENSOR RANK DECOMPOSITIONS

hold. For the generic case, refer to [2].

For a given rank R, the general form for a symmetric tensor rank decomposition is

given by

Φa1...aK =
R∑
i=1

λiφ
i
a1 . . . φ

i
aK
, (6.1)

where φi
ak

∈ SN−1
+ lies on the upper-hemisphere of the N − 1-dimensional unit sphere

and λi ∈ R. Note that, just like in Section 3.2.2, the rank R is not necessarily the

minimal rank. From this definition, one can deduce the configuration space of tensor

rank decompositions as

FR := RR × SN−1
+ × . . .× SN−1

+︸ ︷︷ ︸
R times

= RR × SN−1
+

×R
. (6.2)

Equation (6.1) links a given tensor rank decomposition in the space FR to a tensor in

the tensor space SymK(RN ). However, the main objects of interest are the tensor rank

decompositions, and not their corresponding tensors. Some structure from the tensor

space is useful to consider, for instance an inner product for Q,P ∈ SymK(RN )

Q · P =
N∑

a1...aK=1

Qa1...aKPa1...aK ,

which also introduces a norm to the space ∥Q∥2 := Q ·Q =
∑N

a1...aK=1 |Qa1...aK |
2 ≡

Q2.

On the configuration space FR, one can introduce a measure by the infinitesimal

element

dΦw =

R∏
i=1

|λi|w−1dλi dφ
i, (6.3)

where dλi is the usual line-element of the real numbers, and dφi is the usual volume

element on the N − 1-dimensional unit-sphere. w ≥ 1 is introduced for generality. For

R < R′ it holds that FR ⊂ FR′ , so the spaces FR form an increasing sequence of spaces,

which limits to the whole symmetric tensor space of tensors of degree K:

FR ↑R→∞ SymK(RN ) ∼= RNQ ,

where NQ :=

(
N +K − 1

K

)
counts the degrees of freedom of the tensor space.

The following quantity introduces a way of counting the amount of tensor rank

decompositions which are close (within square distance ∆) of a given tensor Q

Vϵ
R(Q,∆) :=

∫
FR

dΦw Θ(∆− ∥Q− Φ∥2) e−ϵ
∑R

i=1 λ
2
i , (6.4)

where ϵ is a (small) positive parameter to ensure convergence of the quantity. In order

to be able to make general statements for average tensors, it is useful to integrate this

quantity over normalised tensors Q̃a1...aK (such that ∥Q̃∥2 = 1):

ZR(∆; ϵ) :=
1

V∥Q∥=1

∫
∥Q∥=1

dQ̃ Vϵ
R(Q̃,∆), (6.5)
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6.2. A volume law of tensor rank decompositions

where V∥Q∥=1 :=
∫
∥Q∥=1 dQ̃ = 2π

NQ/2

Γ(NQ/2) . A good question to ask is whether or not the

limit

ZR(∆) := lim
ϵ→0+

ZR(∆; ϵ), (6.6)

exists and is finite. As it turns out, the quantity does exist under the condition that the

following quantity exists and is finite

GR := lim
ϵ→0+

GR(ϵ) := lim
ϵ→0+

∫
FR

dΦw e−Φ2−ϵ
∑R

i=1 λ
2
i . (6.7)

Note that this may be rewritten as

GR(ϵ) =

∫
FR

R∏
i=1

dλi|λi|w−1dφie−
∑R

i,j=1 λi(φ
i·φj)Kλj−ϵ

∑R
i=1 λ

2
i , (6.8)

with an inner product

φi · φj =
N∑
a=1

φi
aφ

j
a.

This relates to the matrix model in Eq. (5.6). The partition function Eq. (5.6) may be

rewritten in hyperspherical coordinates for every ϕi → (ri, φ
i) with the convention that

φ ∈ SN−1
+ and ri ∈ R,

ZN,R(λ = 1, k) =

∫ R∏
i=1

|ri|N−1dridφ
i e−

∑R
i,j=1(ri(φ

i·φj)rj)
3−k

∑R
i=1 r

6
i ,

= const.

∫
FR

R∏
i=1

|λi|
N−3

3 dλidφ
ie−

∑R
i,j=1 λi(φ

i·φj)3λj−k
∑R

i=1 λ
2
i ,

where the substitution λi = r3i was used and const. is an irrelevant numerical factor.

Therefore, curiously, GR(ϵ) seems to be a generalisation of the partition function, where

ϵ = k, K = 3 and w = N
K .

In [2], this quantity was compared to another quantity

CR(∆) :=

∫
FR

dΦw Θ
(
∆− ∥Φ∥2

)
,

=
GR

Γ
[
wR
2 + 1

]∆wR
2 .

If one now takes the ratio ZR/CR, the GR dependence actually drops out. For more

discussion, please refer to [2].

6.2 A volume law of tensor rank decompositions

In this section, the quantity defined in Eq. (6.6) will be calculated. In Section 6.2.1, it

will be shown that under the condition that Eq. (6.7) is finite, Eq. (6.6) may be calculated

exactly, with the dependence on ∆ completely fixed. The only unknown in the solution

is the constant GR. In Section 6.2.2 will then be discussed when this condition is actually

satisfied by numerical analysis.
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6.2.1 Calculating the average volume

The general strategy for the deriviation is as follows, all assuming that the quantity GR

is finite. First, the Laplace transform of Eq. (6.6) will be taken. Then, Proposition 6.1

will give the solution for the Laplace transform. Lastly, in Proposition 6.2 the inverse

Laplace transform will be performed. Some of the mathematical details are omitted, and

for those is referred to [2].

The Laplace transform of Eq. (6.6) is given by:

Z̄R(γ) =

∫ ∞

0
d∆ZR(∆) e−γ∆,

=
1

V∥Q∥=1
lim
ϵ→0+

∫
∥Q∥=1

dQ̃

∫
FR

dΦw

∫ ∞

∥Q̃−Φ∥2
d∆ e−γ∆−ϵ

∑R
i=1 λ

2
i ,

=
1

γV∥Q∥=1
lim
ϵ→0+

∫
∥Q∥=1

dQ̃

∫
FR

dΦw e−γ(Q̃−Φ)2−ϵ
∑R

i=1 λ
2
i .

As will be clear later, it is useful to multiply this quantity by γ:

Z̄R(γ) := γZ̄R(γ) =
1

V∥Q∥=1
lim
ϵ→0+

∫
∥Q∥=1

dQ̃

∫
FR

dΦw e−γ(Q̃−Φ)2−ϵ
∑R

i=1 λ
2
i .

(6.9)

This will be undone again at a later stage. For later use it is convenient to also define this

quantity as a function of ϵ without taking the limit:

Z̄R(γ; ϵ) :=
1

V∥Q∥=1

∫
∥Q∥=1

dQ̃

∫
FR

dΦw e−γ(Q̃−Φ)2−ϵ
∑R

i=1 λ
2
i . (6.10)

Because, for the Laplace transform, a multiplication by γ corresponds to taking a

derivative in ∆-space, this effectively means that the above quantity corresponds to the

Laplace transform of the distributive quantity

ZR(∆; ϵ) :=

∫
∥Q∥=1

dQ̃DV ϵ
R(Q̃,∆) :=

∫
∥Q∥=1

dQ̃

∫
FR

dΦw δ(∆−∥Q̃−Φ∥2) e−ϵ
∑R

i=1 λ
2
i ,

where δ(x) (x ∈ R) is the delta distribution, assuming that (6.9) is well-defined.

An important ingredient is now the following.

Proposition 6.1. Given that Eq. (6.7) is finite, Eq. (6.9) is finite and given by

Z̄R(γ) = GR γ
−wR

2 1F1

(
NQ − wR

2
,
NQ

2
,−γ

)
.

Proof. Below only a sketch of the proof will be given. For the full proof with the full

mathematical details and some steps in between, please refer to [2].

The general proof consists of two steps. The first step is showing that if GR is finite,

Z̄R is finite as well. By using the reverse triangle inequality, one can show that

Z̄R(γ; ϵ) ≤
1

V∥Q∥=1

∫
∥Q∥=1

dQ̃ eγ
A

1−A
Q̃2
∫
FR

dΦw e−γAΦ2−ϵ
∑R

i=1 λ
2
i ,

= (γA)−
wR
2 eγ

A
1−A GR

(
ϵ

γA

)
.

This means that, as long as GR = limϵ→0+ GR(ϵ) is finite, Z̄R(γ) = limϵ→0+ Z̄R(γ; ϵ)

is finite.
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6.2. A volume law of tensor rank decompositions

The second step is showing the exact form of Z̄R(γ) under the assumption that GR

and thus Z̄R is finite. For this, an extra quantity is defined

Y (α, γ) := lim
ϵ→0+

∫
RNQ

dQ

∫
FR

dΦw e−αQ2−γ(Q−Φ)2−ϵ
∑R

i=1 λ
2
i ,

which is finite under the same assumption that GR is finite. Note that Q is now integrated

over the whole tensor space RNQ . On one hand, by solving it as a Gaussian integral, one

can show that

Y (α, γ) = πNQ/2γ−
NQ+wR

2 (1 + t)−
NQ−wR

2 t−
wR
2 GR,

and on the other hand, by using hyperspherical coordinates (|Q|, Q̃),

1

2
V∥Q∥=1γ

−
NQ+wR

2

∫ ∞

0
dxx

NQ+wR

2
−1Z̄R(x) e

−t x .

Therefore, one can see that∫ ∞

0
dxx

NQ+wR

2
−1Z̄R(x) e

−t x = Γ[NQ/2]GR (1 + t)−
NQ−wR

2 t−
wR
2 .

The left-hand side is nothing but the definition of the Laplace transform of the funciton

x
NQ+wR

2
−1Z̄R(x). Therefore, by taking the inverse Laplace transform one can show

Z̄R(x) = GR x
−wR

2 1F1

(
NQ − wR

2
,
NQ

2
,−x

)
.

The multiplication by γ of Eq. (6.9) can now be undone:

Z̄R(γ) = GRγ
−wR

2
−1

1F1

(
NQ − wR

2
,
NQ

2
,−γ

)
. (6.11)

Proposition 6.2. Given that GR in Eq. (6.7) is finite, ZR(∆), as defined in Eq. (6.6), is

given by

ZR(∆) =
2GR

Γ
[
wR
2

] ·


1
NQ

∆
NQ
2 2F1

(
1− wR

2 ,
NQ−wR

2 , 1 +
NQ

2 ,∆
)
, ∆ ≤ 1,

1
wR∆

wR
2 2F1

(
−wR

2 ,
NQ−wR

2 ,
NQ

2 , 1/∆
)
, ∆ ≥ 1,

(6.12)

Proof. Below only a sketch of the proof will be given. For the full proof with the full

mathematical details and some steps in between, please refer to [2].

Since GR is finite, it follows from Proposition 6.1 that Eq. (6.11) exists and is finite.

Therefore the main task is to perform the inverse Laplace transform. Taking this inverse

Laplace transform is a bit technical in nature. One has to rewrite Eq. (6.11) in terms of

the Whittaker functions Mµ,ν(γ) as

Z̄R(γ) = GR γ
−wR

2
−

NQ
4

−1 e−
γ
2 MNQ

4
−wR

2
,
NQ
4

− 1
2

(γ).

If one rewrites this as

Z̄R(γ) = GR γ−
NQ
4 e−

γ
2 MNQ

4
−wR

2
,
NQ
4

− 1
2

(γ)︸ ︷︷ ︸
L[f ]

γ−
wR
2

−1︸ ︷︷ ︸
L[g]

,
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one can first find the inverse Laplace transforms of L[f ] and L[g] (where L[f ] and L[g]

denote the Laplace transforms of the functions f and g respectively). These inverse

Laplace transforms are given by (see [2])

g(t) =
t
wR
2

Γ
[
wR
2 + 1

] ,
f(t) =

β
(
wR
2 ,

NQ−wR
2

)−1
t
NQ−wR

2
−1(1− t)

wR
2

−1, 0 < t < 1,

0, otherwise.

The convolution theorem states that for the convolution of two functions

(f ∗ g)(t) =
∫ t

0
f(τ)g(t− τ) dτ,

the Laplace transform behaves as

L(f ∗ g) = L(f)L(g).

This leads to

ZR(∆) =

cR
∫ ∆
0 q

NQ−wR

2
−1(1− q)

wR
2

−1(∆− q)
wR
2 dq, ∆ ≤ 1,

cR
∫ 1
0 q

NQ−wR

2
−1(1− q)

wR
2

−1(∆− q)
wR
2 dq, ∆ ≥ 1,

which evaluates to the final result.

6.2.2 Finiteness of the volume law

In this section, it will be investigated for which cases the quantity GR is finite. In order

to simplify the analysis, only the case of w = 1 will be discussed. In order to find out if

the quantity GR in Eq. (6.7) exists, it helps to, just like in Section 5.2, first integrate out

the radial components. For this, rewrite GR(ϵ) as

GR(ϵ) :=

∫
FR

dΦw=1 e−Φ2−ϵ
∑R

i=1 λ
2
i ,

=

∫
FR

R∏
i=1

dλi dφi e
−

∑R
i,j=1 λi

(
(φi·φj)

K
+ϵδij

)
λj .

This is just a multi-dimensional Gaussian integral for the radial components, and may be

solved

GR(ϵ) = (π)R/2
∫
SN−1
+

×R

R∏
i=1

dφi 1√
det
[
(φi · φj)K + ϵδij

] ,
which is a compact finite (for ϵ > 0) integral.

The numerical analysis was done using Monte Carlo methods with the following

algorithm:

1. Construct R, N -dimensional random normalised vectors using Gaussian sampling.

2. Generate the matrix M ij by taking inner products (and adding ϵ to the diagonal

elements).
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6.2. A volume law of tensor rank decompositions

Figure 6.1: An example of the verification of Rc and the determination of the numerical
value of GR for K = 3 and N = 3, taken from [2]. The dots (with error-bars) represent
the measurements, and the fitted curves areC∗ϵ−

R−Rc
2 +const. forR > Rc as Eq. (6.13),

and the constant value GR for R ≤ Rc as in Eq. (6.7). In this case, Rc = 10.

3. Calculate the determinant of M ij and evaluate the integrand.

4. Repeat this process M times.

Here, the matrix M ij is given by

M ij
ϵ :=

(
φi · φj

)K
+ ϵδij .

What divergent behaviour to expect can be explained as follows. Let us take the

limit of limϵ→0+ M
ij
ϵ =: M ij . It is clear that this integral diverges whenever the

matrix is degenerate. Assume now that M ij has rank r, meaning that the matrix M ij

in diagonalised form has R − r zero-entries. Thus, adding a small but positive ϵ to

the diagonal entries results in the following expansion One can describe the expected

convergent or divergent behaviour of GR as follows. Consider the limit

lim
ϵ→0+

M ij
ϵ =:M ij .

The integral above clearly diverges whenever the matrix is degenerate. If the matrix M ij

has rank r, meaning that the matrix M ij in diagonalised form has R − r zero-entries,

then in terms of a small ϵ the determinant has the following expansion

detMϵ = AϵR−r +O(ϵR−r−1),

leading to leading order for the integrand

1√
detMϵ

∼ ϵ−
R−r
2 .

Thus, if there is a set with measure nonzero in the integration region with r < R, the

final ϵ-dependence for small epsilon is expected to be

GR(ϵ) ≈ C ϵ−
R−r
2 +O(ϵ−

R−r−1
2 ) (6.13)
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where the constant factor C is the measure of the divergent set, and the other factor

is due to non-leading order non-zero measure integration regions. Define the critical

rank Rc to be the last value of R for which the integral convergent. Then r = Rc gives

the leading order contribution in Eq. (6.13) by definition. By the definition of Rc, for

R ≤ Rc, GR(ϵ) should converge to a constant value. In [2], the method above was

used to calculate numerically the ϵ-dependence of GR(ϵ). An example of this is given

in Fig. 6.1.

In [2], the value Rc was determined for many cases. From this analysis, a formula

for the critical rank was conjectured

Rc ≈
NQ

w
,

which should be noted, is also the leading-order contribution found in the matrix model

of Chapter 5, which is related to GR as explained in Section 6.1.

86



Chapter 7

Conclusion

This dissertation focuses on the development of the canonical tensor model, both from

a fundamental point of view and the analysis of specific wave functions. Section 7.1

will briefly review the main points, and explain their relevance in the research done for

the canonical tensor model. Section 7.2 will then conclude the chapter, by giving some

interesting future research that could be done.

7.1 Summary of the thesis

In this thesis, the main goal was to describe the work done in [1, 2] and put it in the

context of the canonical tensor model. To this end, in order to fully appreciate the context

of these works, the canonical tensor model was thoroughly explained, and a new potential

algebraic interpretation introduced in [3] was reviewed.

In Chapters 2 and 3 an extensive overview of the mathematical background of al-

gebraic tensor models was given. First, some knowledge from algebraic geometry was

reviewed, showing the equivalence of a compact Riemannian manifold to a smooth alge-

bra together with the spectrum of some operator. This opens up the door to an attractive

description of gravity; not only is the algebraic description manifestly diffeomorphism

invariant, but it also reduces the complexity of the description to a countably infinite-

dimensional configuration space. After this introduction to some mathematical concepts,

the real groundwork was laid for the algebraic tensor models. The main two achievements

here were the development of the associative closure, which links even finite-dimensional

tensors to infinite-dimensional algebras, and the realisation that the positive minimal

tensor rank decomposition appears to generate potential homomorphisms, and thus may

be used to construct the associative closure.

Chapter 4 then serves as an introduction to the canonical tensor model. Both the

classical model and the quantum model are explained, and some of the recent research is

cited. One of the important parts is to introduce the wave function Eq. (4.22), which is

the physical motivation behind the matrix model studied in Chapter 5. Chapter 5 then

explains the main parts of the analysis of the matrix model in [1]. The main numerical

results were explained and put into the context of the canonical tensor model, with the

main result being that the model does seem to indeed have a continuous phase transition

in the thermodynamic limit, and that the canonical tensor model places itself on it
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naturally through a consistency condition.

In the investigation of the canonical tensor model, the data-analytic tool tensor

rank decomposition keeps making an appearance. On one hand it seems crucial in the

interpretation of the model as a geometric space, and it even makes an appearance when

studying the wave-function. This motivated the research in [2], where the configuration

space of tensor rank decompositions was further investigated. This work was briefly

reviewed in Chapter 6, where an explicit formula was found for the average volume of

this space around normalised tensors and the convergence of this notion was investigated.

7.2 Future research directions

All of the research done above has interesting future directions. Here some future

research directions following Chapters 3, 4 and 6 will be given [1, 2, 3].

For the work on algebraic tensor models, there are several aspects that could be

considered. Firstly, some fundamental questions are left open to consider. For instance

the conjecture in Conjecture 3.1 might be proven, or limited in scope. Also some in-

teresting questions on the associative closure come up, for instance if there are certain

requirements on the tensor Pabc that, if satisfied, will lead to smooth manifolds. Sec-

ondly, it would be interesting to investigate the possibility to derive a Hamiltonian from

general relativity directly for a given operator, though the mathematics might not be

straightforward. Lastly, the application to the canonical tensor model might be further

looked at. For instance, one could see if tensors that represent continuous spaces - for

instance the five-dimensional circle - are located at peaks of the wave-function [5, 4].

For the research on the matrix model in Chapter 5, there are also several things that

would be interesting to investigate further. Firstly, while the numerical understanding of

the model has improved, a proper analytical understanding is still lacking. Secondly, the

matrix model was introduced as a simplification of the wave function of the canonical

tensor model in Eq. (4.22), but it only really holds for the case where the cosmological

constant λ < 0, since the Airy function may be seen as a damping function in this case.

It would be interesting to see if a similar model could be obtained for the λ > 0 case,

and if some of the characteristics found would still hold.

The analysis of the configuration space of tensor rank decompositions might also

still be improved. Firstly, there was a conjectured formula for the maximum rank Rm for

which the volume law is convergent based on numerical results. It would be interesting

to see if one could prove this conjecture. Secondly, dividing ZR by the quantity CR

made the dependence on the divergent factor GR drop out. It would be interesting to see

if ZR/CR has some interesting interpretation, even for R > Rm.
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