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Abstract

Causal inference is a problem of uncovering the mechanism of real-world phenomena

that determines how each variable influences another. This problem can be mainly

separated into the two tasks. One is causal discovery, which infers the directions and

the presence of causal relationships between variables. The other is treatment e↵ect

estimation, which estimates the causality strength as how greatly manipulating a

cause variable (called a treatment) changes its e↵ect (referred to as an outcome).

Solving these two causal inference tasks enables us to elucidate the underlying

mechanism in scientific phenomena and hence has been actively studied in various

fields of science, such as bioinformatics, chemical engineering, meteorology, neuro-

science, epidemiology, and economics. In addition, recent causal inference applica-

tions include trustworthy machine learning. In particular, improving the fairness of

machine learning predictions based on causality has received increasing attention be-

cause it widens the range of machine learning applications to decision-making against

individuals, such as hiring, loan approval, and child abuse screening.

Therefore, understanding the mechanism via a lens of causality is a promising ap-

proach to advancing a step toward accelerating scientific discoveries and making fair

machine learning predictions. However, despite many e↵orts, inferring the causality

from observational data still remains a challenging problem. Due to this di�culty,

the existing techniques su↵er from many methodological limitations, which hinder

scientific discoveries and fairness-aware machine learning.

This dissertation is devoted to establishing the causal inference frameworks for

accelerating scientific discoveries and improving the reliability of machine learning

predictions. To accomplish these two goals, we make the following contributions.

First, we improve the inference accuracy of causal discovery from time series

data by developing a data augmentation framework. In particular, we propose a

supervised learning framework that infers the causal relationship underlying in test
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data by utilizing training data, whose causal relationships are obvious and known.

We experimentally show that such a data augmentation framework can e↵ectively

deal with the data scarcity issue and the complex nonlinearity between variables,

both of which are common in many fields of science, such as bioinformatics.

We then consider to develop an interpretable approach to treatment e↵ect es-

timation. In particular, to elucidate why the treatment e↵ects are di↵erent across

individuals, we establish a feature selection framework for discovering the features

related to the treatment e↵ect heterogeneity. We formulate a feature importance

measure using a distributional discrepancy measure, which enables us to discover a

wider range of features than the existing methods. By applying our feature selection

framework to the medical survey data, we have successfully found an important fea-

ture attribute that could not be detected by the existing method, which demonstrates

the e↵ectiveness in accelerating scientific discoveries.

We finally establish a causality-based learning framework for making accurate and

fair predictions against individuals. In the field of machine learning and fairness, the

causality-based approaches have attracted increasing attention as a promising frame-

work for striking a good balance between fairness and prediction accuracy. However,

developing such a framework is challenging due to the di�culty of estimating the

causality-based unfairness measure. To overcome this di�culty, we derive the up-

per bound on the unfairness measure called the probability of individual unfairness

(PIU) and imposing a penalty on it to train an accurate and individually fair clas-

sifier. We reveal that why such a penalty guarantees individual-level fairness and

present several extensions to address the complicated real-world scenarios.
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Chapter 1

Introduction

1.1 Causal Discovery

Causation can be rephrased as a mechanism that determines the real-world phenom-

ena. Elucidating such a mechanism itself contributes to scientific discoveries. As

such, many scientists have dedicated tremendous e↵orts for causal discovery, which

aims at inferring the directions and the existence of the causal relationships between

random variables. The inference targets in science include the gene regulatory net-

work in bioinformatics [Kleinberg and Hripcsak, 2011], the reaction mechanism in

chemical engineering [Ting and Barnard, 2022], the atmospheric teleconnections in

meteorology [Kretschmer et al., 2021], and the modulation mechanism of neuronal

activity in neuroscience [Bergmann and Hartwigsen, 2021].

However, it is challenging to infer the causal relationships from the observed

data. This is because as claimed by David Hume, a Scottish philosopher over three

centuries ago, these observations only tell us a constant conjunction (i.e., correlation)

of the events. Unfortunately, such correlation does not imply the causation because it

might be brought by a third factor called a confounder, which influences the observed

events, as stated by the Common Cause Principle (CCP) [Reichenbach, 1956].

Although many attempts have been made to deal with the influence of such a

third factor [Granger, 1980; Pearl, 2009], causal discovery still remains a challenge

because the observed data are often scarce and exhibit complex nonlinearity.
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CHAPTER 1. INTRODUCTION

1.2 Treatment E↵ect Estimation

If the underlying causal directions are obvious, then scientists will be interested in

gaining further causal knowledge, in particular, the strength of causal relationship.

For instance, in medical science, we know that medical treatment, such as drug ad-

ministration and vaccination, a↵ects each patient’s status; however, it is not obvious

how strongly the status is a↵ected by such a treatment.

Once Rubin [1974] o↵ered a formulation of such treatment e↵ects, many re-

searchers have developed the techniques for estimating the treatment e↵ects [Athey

and Imbens, 2016; Hill, 2011; Robinson, 1988]. These studies have been accelerated

by the appearance of neural-network-based estimation models [Johansson et al., 2016;

Shalit et al., 2017]. As a result, a large number of approaches have been established

using complex machine learning models [Alaa and van der Schaar, 2017; Hassanpour

and Greiner, 2019; Künzel et al., 2019; Nie and Wager, 2021; Yoon et al., 2018].

However, due to the model complexity, these approaches cannot be used to explain

why the treatment e↵ects are di↵erent across individuals. Such a lack of model

interpretability makes it impossible to elucidate the causal mechanism that yields

the treatment e↵ect heterogeneity, which hinders scientific discoveries in many fields,

such as epidemiology [Jabal et al., 2021] and economics [Taddy et al., 2016].

1.3 Machine Learning and Fairness

The above issue of interpretability is not limited to treatment e↵ect estimation but

including many machine learning problems. To resolve this issue, many studies have

been dedicated to improve the transparency of machine learning predictions [Heskes

et al., 2020; Larsen, 2022; Molnar, 2020].

In this direction, fairness-aware machine learning has gained increasing at-

tention because it broadens the scope of machine learning applications. Indeed, ma-

chine learning is increasingly being used to make critical decisions that severely a↵ect

people’s lives, such as loan approval [Khandani et al., 2010], hiring decision [Houser,

2019], child abuse screening [Chouldechova et al., 2018], and recidivism predictions

[Angwin et al., 2016]. The huge societal impact of such decisions on people’s lives

raises concerns about fairness because these decisions may be discriminatory with

respect to sensitive features, such as race, gender, religion, and sexual orientation.
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1.4. CONTRIBUTIONS

The fairness is usually defined by the Laws, and many studies have discussed how

to formulate such legal definitions as numeric fairness criteria [Dwork et al., 2012;

Hardt et al., 2016]. For instance, a well-known fairness criterion called demographic

parity is formulated as the correlation between sensitive features and the decision

outcome. However, the absence of such correlation does not necessarily imply the

absence of causation because the correlation can be a↵ected by other factors (i.e., the

confounders), as mentioned in Section 1.1. Hence, in the presence of confounders,

the correlation-based fairness criteria might wrongly determine the fairness.

A growing number of studies aim to achieve the causality-based fairness criteria

[Makhlouf et al., 2020]. However, learning fair predictive models based on causality

still remains challenging due to the di�culty of estimating the causal e↵ects.

1.4 Contributions

The goal of this dissertation is to establish the causal inference frameworks for ac-

celerating scientific discoveries and improving the fairness of machine learning pre-

dictions. In particular, our contributions are summarized as follows:

Chapter 3 : We propose a data augmentation framework for improving the infer-

ence accuracy of causal discovery from time series data. To deal with the data

scarcity issue and the complex nonlinearity among time-dependent variables,

we establish a supervised learning approach that infers the causal relationships

using training data, whose causal relationships are known.

Chapter 4 : We establish a feature selection approach to elucidating why the treat-

ment e↵ects are di↵erent across individuals. We consider a multiple hypothesis

test for discovering the features related to the treatment e↵ect heterogeneity.

To achieve this, we formulate the feature importance measure based on the

distributional discrepancies, which enables us to discover a wider variety of the

features than the conventional approaches.

Chapter 5 : Following the existing causality-based fairness criterion, we propose a

learning framework that strikes a good balance between fairness and prediction

accuracy. Unlike the existing approaches, this framework can make individually

fair predictions without making restrictive assumptions on the data.

3



CHAPTER 1. INTRODUCTION

Chapter 1

Chapter 2

Section 2.1 Section 2.2 Section 2.3

Chapter 3 Chapter 4 Chapter 5

Chapter 6

Scientific discoveries Fairness-aware machine learning

Figure 1.1: Dependence structure of chapters

While Chapters 3 and 4 are devoted to developing the causal inference approaches

for making scientific discoveries, Chapter 5 focuses on utilizing causal inference to

improve the fairness of machine learning predictions.

1.5 Dissertation Organization

The rest of this dissertation is organized as illustrated in Figure 1.1. Chapter 2

presents the background to the causality concepts: Section 2.1 introduces the causal-

ity concepts for time series data, Section 2.2 describes the potential outcome frame-

work, and Section 2.3 o↵ers the formulation of structural equation models. Chapter 3

presents a supervised learning approach to causal discovery from time series data.

Chapter 4 presents a feature selection approach for elucidating the treatment e↵ect

heterogeneity. Chapter 5 presents a learning framework that guarantees individual-

level fairness based on the causality. Chapter 6 concludes this dissertation.
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Chapter 2

Preliminaries

This chapter provides an overview of the existing causality concepts. Each causality

concept described in this chapter is founded on the following philosophical postulates

of causality [Eichler, 2013]:

1. Temporal precedence: A cause precedes its e↵ects in time.

2. Interventional influence: Manipulating a cause changes its e↵ects.

This chapter is organized as follows. Section 2.1 presents the temporal causality

concepts based on postulate 1: Granger causality [Granger, 1969], Sims causality

[Sims, 1972], and transfer entropy [Schreiber, 2000]. Sections 2.2 and 2.3 introduce

the potential outcome framework [Rubin, 1974] and the structural equation models

[Pearl, 2009], both of which are founded on postulate 2.

2.1 Causality Concepts for Time Series Data

This section introduces a well-known temporal causality concept called Granger

causality [Granger, 1969] and provides its comparison with the two temporal causal-

ity concepts: Sims causality [Sims, 1972] and transfer entropy [Schreiber, 2000]. The

readers who are familiar with these concepts can skip this section.

2.1.1 Granger Causality

Granger causality [Granger, 1969, 1980] is a temporal causality concept, which

defines the causal relationship between two time-dependent variables.

5



CHAPTER 2. PRELIMINARIES

Bivariate Granger Causality

To illustrate the definition of Granger causality, consider the bivariate setting where

we have a bivariate time series, X = {Xt} and Y = {Yt}, which are measured at

discrete time points t = 1, 2, . . . . Roughly speaking, Granger causality defines X as

the cause of Y if the past values of X contain helpful information for predicting the

future value of Y . Formally, it is defined as follows:

Definition 1 (bivariate Granger causality [Granger, 1969]). Suppose we have a se-

quence pair of random variables, X = {Xt} and Y = {Yt} (t = 1, 2, . . . ), where Xt

and Yt are on X and Y, respectively. Let SX:t and SY:t be observations of {X1, . . . ,

Xt} and {Y1, . . . , Yt}, respectively.

Bivariate Granger causality states that X is not the cause of Y if the following

holds for all t = 1, 2, . . .

P(Yt+1 | SX:t , SY:t) = P(Yt+1 | SY:t); (2.1)

otherwise, X is the cause of Y .

Since the equality between two conditional distributions in Eq. (2.1) is equivalent

to the conditional independence relation

Yt+1??SX:t | SY:t , (2.2)

Definition 1 states that X is not the cause of Y if Yt+1 is conditionally independent

of SX:t given SY:t ; otherwise, X is the cause of Y .

Bivariate Granger causality cannot define the causal relationships in multivariate

time series [Granger, 1969]. This is because when there is no causal relationship

between time series X and Y , if these time series are a↵ected by the third time series

Z = {Z t}, they will be mutually dependent. This indicates that even in the absence

of the causal relationship between X and Y , the conditional independence relations

(e.g., (2.2)) may not hold, leading to a wrong conclusion that X is the cause of

Y , or Y is the cause of X. To resolve this weakness, conditional Granger causality

[Granger, 1980] has been developed, which is described in the next section.
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2.1. CAUSALITY CONCEPTS FOR TIME SERIES DATA

Conditional Granger Causality

Conditional Granger causality [Granger, 1980] is an extended notion of Granger

causality that addresses the influence of the third time series, Z = {Z t}, where Z t

is a univariate or multivariate random variable. Formally, it is defined as follows:

Definition 2 (conditional Granger causality [Granger, 1980]). Let X = {Xt}, Y =

{Yt}, and Z = {Zt} (t = 1, 2, . . . ) be a triplet of random variable sequences, where

Xt, Yt, and Zt are on X , Y and Z, respectively. Let SX:t, SY:t and SZ:t be observations

of {X1, . . . , Xt}, {Y1, . . . , Yt} and {Z1, . . . ,Zt}, respectively.

Conditional Granger causality states that X is not the cause of Y given Z if the

following holds for all t = 1, 2, . . .

P(Yt+1 | SX:t , SY:t , SZ:t) = P(Yt+1 | SY:t , SZ:t);

otherwise, X is the cause of Y given Z.

As with the bivariate setting, conditional Granger causality is equivalently rep-

resented as the conditional (in)dependence relations: X is not the cause of Y given

Z if Yt+1 is conditionally independent of SX:t given SY:t and SZ:t , i.e.,

Yt+1??SX:t | SY:t , SZ:t ;

otherwise, X is the cause of Y given Z.

For this reason, discovering Granger causality from time series data can be for-

mulated as a problem of inferring the conditional (in)dependence relations. This

inference problem has a long history in statistics, which is why Granger causality

has attracted a lot of attention.

2.1.2 Related Temporal Causality Concepts

After the concept of Granger causality was proposed in Granger [1969], several tem-

poral causality concepts have been introduced [Sims, 1972; Schreiber, 2000]. This

section provides a comparison of these concepts with Granger causality to discuss

the similarity and the di↵erence between them.
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(a): Granger causality (b): Sims causality

graph1

X Y Z

Copyright�2021 NTT corp. All Rights Reserved.

graph1

X Y Z

Copyright�2021 NTT corp. All Rights Reserved.

Figure 2.1: Granger causality and Sims causality may lead to di↵erent conclusions:
If time-dependent variables X, Y , and Z have Granger causality as shown in (a),
their Sims causality is given as (b).

Sims Causality

The notion of Sims causality [Sims, 1972] is similar to that of Granger causality.

While Granger causality says that X is the cause of Y if the past values of X are

helpful for predicting the future value of Y , Sims causality states that X is the cause

of Y if the future values of Y are helpful for predicting the present value of X (See

Sims [1972]; Florens [2003] for the formal definition).

According to Kuersteiner [2010], in bivariate setting, Granger causality and Sims

causality are equivalent. However, in multivariate setting, they are not equivalent. In

particular, while the former distinguishes the direct and indirect causal relationships,

the latter does not.

To illustrate this di↵erence, consider the trivariate time series X, Y , and Z.

Suppose that this time series has the following Granger causality relations: X is the

cause of Y given Z, Y is the cause of Z given X, and X is not the cause of Z given Y ,

as shown in Figure 2.1(a). In this case, as illustrated in Figure 2.1(b), Sims causality

draws a di↵erent conclusion; unlike Granger causality, X is regarded as the cause of

Z given Y due to the indirect influence of X on Z via Y .

This example highlights that Granger causality is a stronger notion of temporal

causality in the sense that the presence of Granger causality implies the presence of

Sims causality while the converse is not true. Although it is unclear which causality

notion is preferable in practice, since Granger causality has been far more widely used

than Sims causality [Eichler, 2013], this dissertation focuses on Granger causality.
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2.1. CAUSALITY CONCEPTS FOR TIME SERIES DATA

Transfer Entropy

Transfer entropy [Schreiber, 2000] is an information-theoretic measure of temporal

causality [Amblard and Michel, 2013]. This measure uses Shannon entropy [Shannon,

1948] to measure how greatly the conditional independence relations between time-

dependent variables are violated. Originally, Schreiber [2000] defines it for bivariate

time series as follows:

Definition 3 (transfer entropy [Schreiber, 2000]). Suppose we have a pair of ran-

dom variable sequences X = {Xt} and Y = {Yt} (t = 1, 2, . . . ), where Xt and Yt

are discrete random variables and defined on X and Y, respectively. Let SXt�(k�1):t

and SYt�(k�1):t
(for some k 2 {1, . . . , t}) be observations of {Xt�(k�1), . . . , Xt} and

{Yt�(k�1), . . . , Yt}, respectively.

Transfer entropy is defined as a di↵erence between the two (conditional) Shannon

entropies:

TX!Y = H(Yt+1 | SYt�(k�1):t
)� H(Yt+1 | SXt�(k�1):t

, SYt�(k�1):t
), (2.3)

where H denotes (conditional) Shannon entropy, which is formulated for two discrete

random variables A and B as

H(B | A) = �
X

a,b

P(A = a, B = b) log
P(A = a, B = b)

P(A = a)
.

While Definition 3 only addresses bivariate discrete-valued time series, it has been

extended to multivariate time series [Lizier et al., 2008, 2011] and continuous-valued

time series [Cover, 1999].

Transfer entropy can also be used to determine the presence and the direction of

Granger causality. In particular, we can infer Granger causality between X and Y

by performing a statistical hypothesis test that determines whether transfer entropy

TX!Y is zero. Barnett et al. [2009] show that if the time series follows a multivariate

vector autoregressive (VAR) model with Gaussian noises, then the test statistic of

such a transfer entropy test is equivalent to that of the Granger causality test for

a multivariate linear time series [Geweke, 1982]; hence, in this case, the transfer

entropy test is equivalent to the Granger causality test.
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Unlike Granger causality, transfer entropy can capture the strength of causality

as an information-theoretically intuitive quantity; however, its estimation is not easy.

Inferring Shannon entropy H in Eq. (2.3) requires us to estimate the joint distri-

bution, which is challenging, especially when time lag k is large. For this reason,

the estimation of transfer entropy often relies on the parametric assumption on the

underlying time series (e.g., the assumption that the data follow a VAR model) or

requires a large sample size enough to perform nonparametric density estimation.

Indeed, the existing methods for inferring Granger causality also su↵er from these

weaknesses, as described in Chapter 3.

2.2 Potential Outcome Framework

The temporal causality concepts described in Section 2.1 have the two weaknesses:

• They cannot be used if the data are not time series (e.g., i.i.d. data) or if the

time series data do not contain their observed time points.

• They cannot quantify how strongly intervening a cause changes its e↵ects.

In particular, the second weakness is a crucial drawback if we are interested in

assessing the e↵ects of a treatment, such as drug administration [Kosorok and Laber,

2019], education program [Tipton and Olsen, 2018], and advertisement placement

[Rzepakowski and Jaroszewicz, 2012].

This section introduces a widely used statistical framework for formulating such

treatment e↵ects, which is called the potential outcome framework [Rubin, 1974].

2.2.1 Potential Outcomes and Treatment E↵ects

The potential outcome framework (a.k.a. the Neyman-Rubin causal model) uses the

three random variables: treatment A, featuresX (a.k.a. covariates), and outcome Y .

For example, in case of the drug e↵ect evaluation, treatment A stands for the drug

administration, features X represent the attributes of each patient, and outcome Y

expresses their health condition. Throughout this dissertation, we consider binary

treatment A 2 {0, 1}; however, the framework can be extended to categorical and

continuous-valued treatments.
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2.2. POTENTIAL OUTCOME FRAMEWORK

The e↵ects of treatment A on outcome Y is formulated using the two random

variables called potential outcomes, each of which represents the outcome under some

treatment. For binary treatment A 2 {0, 1}, these random variables are denoted by

Y 0 and Y 1, which express the outcome when an individual gets no treatment (A = 0)

and the one when the individual receives a treatment (A = 1), respectively. Using

potential outcomes Y 0 and Y 1, a treatment e↵ect for an individual (a.k.a. individual

treatment e↵ect (ITE)) is defined as

ITE: Y 1
� Y 0. (2.4)

An ITE is never observed because Y 0 and Y 1 are never jointly observed.

However, under several assumptions, we can estimate the average of a treatment

e↵ect across individuals; in particular an average treatment e↵ect (ATE) and a

conditional average treatment e↵ect (CATE):

ATE: EY 0,Y 1 [Y 1
� Y 0], (2.5)

CATE: EY 0,Y 1 [Y 1
� Y 0

| X = x ]. (2.6)

While an ATE is the average of a treatment e↵ect over all individuals, a CATE is

the average across a subgroup of individuals who have feature attributes X = x .

The next section presents a gold standard approach to treatment e↵ect estima-

tion, which is called randomized controlled trials (RCTs).

2.2.2 Randomized Controlled Trials (RCTs)

An RCT, which is called A/B testing in the field of marketing design, is an exper-

iment for evaluating treatment e↵ects where the treatments are randomly assigned

to individuals. More precisely, in RCTs, treatment A is randomly assigned to be

independent of potential outcomes Y 0 and Y 1; in other words,

A??{Y 0, Y 1
}. (2.7)

Under independence relation (2.7), for instance, the ATE in Eq. (2.5), which

equals EY 1 [Y 1] � EY 0 [Y 0] because of linearity of expectation, is represented as the
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di↵erence between the following two conditional expected values:

EY 1 [Y 1
| A = 1]� EY 0 [Y 0

| A = 0]. (2.8)

Given the observations of n individuals {(ai, yi)}ni=1 obtained by the RCT, we can

easily formulate the consistent and unbiased estimator of Eq. (2.8) as

1

n1

nX

i=1;ai=1

yi �
1

n0

nX

i=1;ai=0

yi, (2.9)

where n0 and n1 are the number of individuals whose treatment assignment is given

as ai = 0 and ai = 1, respectively.

Unfortunately, performing RCTs is highly expensive in terms of time and money

and is often impossible due to the legal and ethical reasons. For this reason, instead

of RCTs, researchers often rely on observational data.

2.2.3 Treatment E↵ect Estimation from Observational Data

Whereas the RCT data are collected by randomly assigning treatments to individuals,

observational data are obtained without any interference, i.e., simply by observing

the actions, the features, and the outcomes of individuals.

Although this data-collecting process is cost-e↵ective, it makes independence re-

lation (2.7) violated. This is because in such a data-collecting process, treatment

A and outcome Y are usually a↵ected by the variables called confounders. For

instance, in case of the drug e↵ect evaluation, age is a confounder, which influences

drug administration A and health condition Y : individuals with di↵erent ages have

di↵erent treatment preferences and di↵erent outcomes. The presence of such a con-

founder leads to the well-known selection bias problem (i.e., the observations are

not representative to the inference target distribution), which makes it challenging

to estimate ATE and CATE.

A traditional estimation technique for dealing with such selection bias problem

is inverse probability weighting (IPW) [Rosenbaum and Rubin, 1983], which

o↵ers an ATE estimator using importance sampling [Kloek and Van Dijk, 1978].

Specifically, IPW takes an expectation with respect to target distribution P(X )

by computing a weighted average of the observations from conditional distribution

12
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P(X | A = a) (a 2 {0, 1}). To achieve this, it uses the following inverse probability

weights:

w0(A,X ) =
I(A = 0)

1� e(X )
, w1(A,X ) =

I(A = 1)

e(X )
, (2.10)

where e(X ) := P(A = 1 | X ) is the conditional distribution called a propensity score,

and I(A = a) is an indicator function that takes 1 if A = a; otherwise, 0. Estimating

ATE with these weights requires the following two standard assumptions:

Assumption 1 (Conditional ignorability (a.k.a. strong ignorability)).

Conditioned on features X, treatment A is conditionally independent of potential

outcomes Y 0 and Y 1; that is,

A??{Y 0, Y 1
} | X. (2.11)

Assumption 2 (Positivity). For any value x of features X, propensity score e(X)

satisfies the following support condition:

0 < e(x) < 1. (2.12)

Conditional ignorability (Assumption 1) requires features X to contain all con-

founders, which ensures the equality between the conditional distributions of poten-

tial and observed outcomes: P(Y a
| A = a,X ) = P(Y | A = a,X ). By contrast,

positivity (Assumption 2) imposes the support condition on propensity score e(X ),

which guarantees that no zero division occurs in Eq. (2.10). Under these assump-

tions, the IPW-based estimator of ATE is given as

EY 1 [Y 1]� EY 0 [Y 0]

=EX [EY 1|X [Y 1]]� EX [[EY 0|X [Y 0]]

=EX |A=1


EY |X ,A=1


P(A = 1)

P(A = 1 | X )
Y

��
� EX |A=0


EY |X ,A=0


P(A = 0)

P(A = 0 | X )
Y

��

=EA,X ,Y [w
1(A,X )Y ]� EA,X ,Y [w

0(A,X )Y ]. (2.13)

Given the observational data about n individuals, D = {(ai,x i, yi)}ni=1
i.i.d.
⇠ P(A,X , Y ),
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we can estimate the expected values in Eq. (2.13) as

1

n1

nX

i=1

w1(ai,x i)yi �
1

n0

nX

i=1

w0(ai,x i)yi, (2.14)

where n0 and n1 are the number of individuals whose treatment assignment is given

as ai = 0 and ai = 1, respectively.

Recently, a growing number of causal inference methods have been developed

to estimate heterogeneous treatment e↵ects, which are expressed as CATEs. Jo-

hansson et al. [2016]; Shalit et al. [2017] have developed a representation learning

approach that addresses the selection bias problem by learning a balanced feature

representation with neural network. Hassanpour and Greiner [2019] have combined

such a representation learning approach with IPW. Hahn et al. [2020]; Hill [2011]

have formulated nonparametric tree-based models, which use Bayesian inference to

quantify the estimation uncertainty. Künzel et al. [2019]; Nie and Wager [2021] have

established machine learning frameworks called meta-learners, which yield a CATE

estimator with the fast convergence rate and hence do not require much data.

Although these methods focus on improving the accuracy of CATE estimation,

their estimation models are often too complex to understand why the estimated

treatment e↵ects are di↵erent across individuals. This is a crucial drawback because

elucidating the reason why such treatment e↵ect heterogeneity arises is a common

problem in many applications. As an approach that overcomes this drawback, in

Chapter 4, we present a feature selection framework for discovering the features

related to distributional treatment e↵ect heterogeneity.

2.3 Structural Equation Models (SEMs)

This section introduces structural equation models (SEMs) [Pearl, 2009], which o↵ers

an alternative causality formulation to the potential outcome framework [Rubin,

1974]. Below we discuss their di↵erence and similarity; namely,

• Unlike the potential outcome framework, an SEM o↵ers a graphical represen-

tation of the causal relationships between variables by a causal graph (Sec-

tion 2.3.1). Such a graphical representation can be used to analyze the causal

e↵ects under a complex causal relationships among variables (Section 2.3.3).
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• As with the potential outcome framework, an SEM provides an equivalent

formulation of potential outcomes (Section 2.3.2).

2.3.1 Causal Graphs and Structural Equations

An SEM is a model for representing the complex causal relationship between observed

and unobserved variables. Formally, it is defined as follows:

Definition 4 (Pearl [2009]). An SEM is triplet M = (U,V,F), where

• U is a set of exogenous variables, i.e., unobserved variables that express the

external factors, such as measurement errors and unmeasurable quantities.

• V is a set of endogenous variables, i.e., observed variables whose values are

determined by U [V.

• F is a set of deterministic functions (a.k.a. structural functions). Each

fV 2 F is used to express endogenous variable V 2 V as a structural equation:

V = fV (pa(V ),UV ), (2.15)

where pa(V ) ✓ V\V is a subset of endogenous variables V\V , and UV ✓ U

are exogenous variables.

Structural equation (2.15) determines the values of each observed variable V 2 V

as an output of deterministic function fV that takes the two inputs, pa(V ) and U V .

Each SEM is associated with a directed acyclic graph (DAG), which is referred

to as a causal graph. In each causal graph, the nodes represent endogenous variables

V , and each edge points from each member of pa(V ) to V .

To illustrate a causal graph and an SEM, consider the setup of the poten-

tial outcome framework described in Section 2.2. The causal relationships among

treatment A, features X , and outcome Y can be depicted as the causal graph

in Figure 2.2. Suppose that this causal graph structure is associated with SEM

M
po := (U po,V po,F po), where V po := (A,X , Y ) is a set of the endogenous vari-
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Figure 2.2: Causal graph that describes setting of potential outcome framework:
treatment A influences outcome Y , and both of them are a↵ected by features X ,
which include confounders.

ables whose values are determined by the following three structural equations:

X = fX (UX ), (2.16)

A = fA(X ,U A), (2.17)

Y = fY (A,X ,U Y ), (2.18)

where fX , fA, fY 2 F po are deterministic functions, and UX , U A,U Y ✓ U po are

the sets of unobserved variables (e.g., measurement errors and unmeasurable quan-

tities) that influence observed variables X , A, and Y , respectively.

Indeed, these structural equations can be used to equivalently formulate the po-

tential outcomes defined in Section 2.2. To do so, we need to modify them with an

operation on an SEM, which is called interventions.

2.3.2 Interventions and Interventional SEMs

An intervention is defined as an operation on an SEM that replaces the structural

equation [Pearl, 1994]. For instance, intervention do(A = a) replaces structural

equation (2.17) with constant A = a (a 2 {0, 1}).

This intervention can be used to o↵er an equivalent formulation of the potential

outcomes. By replacing structural equation (2.17) with A = a, it yields a modified

SEM called an interventional structural equation model (SEM), denoted by
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M
po
do(A=a), which contains the following structural equations:

X = fX (UX ), (2.19)

A = a, (2.20)

Y a := fY (a,X ,U Y ). (2.21)

In this interventional SEM, outcome Y is replaced with potential outcome Y a, i.e.,

outcome that is observed if treatment is given as A = a.

In fact, the notion of an intervention can be used not only to formulate the

potential outcomes but also to define the causal e↵ects under the complex causal

graph. The analysis of such complex causal e↵ects is called causal mediation analysis.

2.3.3 Causal Mediation Analysis

Causal mediation analysis is a methodology for understanding the complex causal

relationships by evaluating how greatly one variable directly and indirectly influences

the other. In causal mediation analysis, we address the cases where some part of this

influence is mediated by other variables called mediators.

Direct and Indirect E↵ects

To illustrate the direct and indirect e↵ects, consider the causal graph shown in Fig-

ure 2.3, which indicates that drug administration A indirectly decreases the risk of

heart attack Y by lowering blood pressure M (A!M ! Y ) and directly influences

Y through another unknown mechanism (A ! Y ). Following this causal graph, we

can perform causal mediation analysis to quantify the direct e↵ects along pathway

A! Y and the indirect e↵ects along pathway A!M ! Y .

To formulate such direct and indirect e↵ects, Pearl [2001] have defined natural

direct e↵ects (NDEs) and a natural indirect e↵ects (NIEs). Under the causal

graph in Figure 2.3, they are defined based on the SEM with the structural equations:

A = fA(X ,U A), (2.22)

M = fM(A,C ,UM), (2.23)

Y = fY (A, M,X ,C ,U Y ), (2.24)
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Figure 2.3: Example causal graph that depicts mediation: drug administration A
indirectly decreases risk of heart attack Y by lowering blood pressure M (A!M !
Y ) and directly influences Y through an unknown mechanism (A! Y ). X denotes
confounders (e.g., age) that a↵ect A and Y , and C stands for mediator-outcome
confounders (e.g., gender) that alter M and Y .

where U A, UM , and U Y denote the exogenous variables that a↵ect drug admin-

istration A, blood pressure M , and heart attack Y , respectively. Given this SEM,

NDEs and NIEs are formulated using potential mediator Ma (a 2 {0, 1}), which

is defined as mediator M under intervention do(A = a) as

Ma := fM(a,C ,UM). (2.25)

Using potential mediator Ma, an NDE and an NIE are defined as

NDE: Y 1,M0
� Y 0, (2.26)

NIE: Y 0,M1
� Y 0, (2.27)

where Y 1,M0
and Y 0,M1

are the random variables called (nested) potential out-

comes, which are defined by the following structural equations:

Y 1,M0
:= fY (1, M

0,X ,C ,U Y ), (2.28)

Y 0,M1
:= fY (0, M

1,X ,C ,U Y ), (2.29)

Compared with potential outcome Y 0 := fY (0, M0,X ,C ,U Y ), these nested poten-

tial outcomes are formulated by switching input A = 0 to A = 1 or input M0 to M1,

both of which are defined two interventional SEMs under do(A = 0) and do(A = 1).

By taking a mean di↵erence from these nested potential outcomes, NDEs and NIEs

measure the direct e↵ects of A on Y and the indirect e↵ects of A on Y through M .
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While we illustrate the formulation of NDEs and NIEs under such a simple causal

graph as Figure 2.3, they can be similarly formulated under a more complicated

causal graph with multiple causal pathways from A to Y . However, in such cases,

NIEs measures the total indirect e↵ects along all indirect pathways from A to Y and

hence cannot be used to assess the causal e↵ects along some of the causal pathways

from A to Y . To evaluate such causal e↵ects, we need a generalized notion of causal

e↵ects, which is called path-specific e↵ects.

Path-Specific E↵ects

A path-specific e↵ect [Avin et al., 2005] is the notion of causal e↵ects, which measures

a causal e↵ect along a given set of causal pathways. This notion corresponds to the

generalization of an NDE and an NIE. For instance, letting A and Y denote treatment

and outcome, it recovers the NDE of A on Y by setting causal pathways ⇡ to the

direct pathway (i.e., ⇡ = {A! Y }).

A path-specific e↵ect is a di↵erence between potential outcomes YA(0 and YA(1k⇡:

PSE: YA(1k⇡ � YA(0. (2.30)

YA(0 is simply defined as the potential outcome under intervention do(A = 0), which

is hence equivalent to potential outcome Y 0 in Eqs. (2.26) and (2.27). By contrast,

YA(1k⇡ is defined as a nested potential outcome that is formulated by switching each

variable in causal pathways ⇡ with a di↵erent treatment value, A = 1.

Formally, this nested potential outcome is defined with an SEM that is modified

by combining two interventional SEMs MA=0 and MA=1. To illustrate this SEM,

for each endogenous variable V 2 V in original SEM M, consider to partition its

parents, pa(V ), into two subsets, pa(V ) = {pa(V )⇡,pa(V )⇡}, where pa(V )⇡ is the

members of pa(V ) connected with V on pathways ⇡, and pa(V )⇡ is a complementary

set (i.e., pa(V )⇡ = pa(V )\pa(V )⇡). Based on these two subsets, we consider the

following structural equation over V 2 V :

V = fV (pa(V )⇡A=1,pa(V )⇡A=0,U V ), (2.31)

where pa(V )⇡A=1 is the variables in pa(V )⇡ whose values are determined by inter-

ventional model MA=1, and pa(V )⇡A=0 is the variables in pa(V )⇡ whose values are
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provided by MA=0. Given an SEM with such a structural equation, nested potential

outcome YA(1k⇡ is defined as outcome Y defined with structural equation (2.31).

Literature Overview on Causal Mediation Analysis Applications

Traditionally, causal mediation analysis has been applied in various fields, such as

epidemiology [Richiardi et al., 2013], econometrics [Heckman and Pinto, 2015], and

online marketing [Yin and Hong, 2019].

Recent studies have focused on how to utilize it to improve the interpretability

of machine learning predictions. Heskes et al. [2020] have formulated each feature’s

contribution to the predictions by decomposing Shapley values into NDEs and NIEs.

Larsen [2022] have employed NIEs to develop an e↵ective and interpretable reward

measure in reinforcement learning.

In this research direction, one of the most important application examples of

causal mediation analysis is fairness-aware machine learning. Zhang et al. [2017,

2018] have utilized causal mediation analysis to analyze the discriminatory bias in

the data and to generate a fair dataset. Vig et al. [2020] have analyzed the gender

bias in the learned natural language processing models. Zhang and Wu [2017]; Nabi

and Shpitser [2018]; Chiappa and Gillam [2019]; Xu et al. [2019] have developed a

framework for learning fair predictive models. Wu et al. [2018]; Nabi et al. [2019]

have extended such a framework to ranking learning and reinforcement learning.

Among these applications, learning fair predictive models is promising because

causal mediation analysis enables us to e↵ectively measure the discriminatory bias,

which is helpful to strike a good balance between fairness and prediction accuracy.

Unfortunately, however, due to the di�culty of estimating the unfairness measures

based on path-specific e↵ects, existing methods require restrictive assumptions to

develop a fair predictive models. To overcome this limitation, in Chapter 5, we

present a learning framework that can e↵ectively learn a fair classifier without making

such restrictive assumptions.
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Chapter 3

A Supervised Learning Approach

to Granger Causality Discovery

In this chapter, we consider the problem of inferring Granger causality from time se-

ries data, which is defined as the conditional (in)dependence relations between them,

as described in Section 2.1.1. Solving this inference problem allows us to understand

the underlying complex causal relationships in time series and hence has diverse im-

portance applications, including economics [Kar et al., 2011], bioinformatics [Yao et

al., 2015], and neuroscience [Smith, 2012]. However, as described below, it is not easy

to solve the Granger causality inference problem with traditional methods because

they require an appropriate selection of the time series regression model, which needs

a deep understanding of the time series data analysis. To overcome this limitation,

we propose a supervised learning approach to Granger causality inference.

3.1 Introduction

Unraveling the complex causal relationships in time series o↵ers key scientific dis-

coveries in many fields. For this goal, a large body of studies have been devoted

to discovering Granger causality, which is one of the central problems in time series

analysis. This problem has many important applications in various fields. Applica-

tion examples include the financial development analysis in economics [Kar et al.,

2011], the gene regulatory network discovery in bioinformatics [Yao et al., 2015], and

the inference of the brain functional connectivity in neuroscience [Smith, 2012].
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CHAPTER 3. A SUPERVISED LEARNING APPROACH TO GRANGER
CAUSALITY DISCOVERY

As described in Section 2.1.1, Granger causality [Granger, 1969] is defined as the

conditional (in)dependence relations between time-dependent variables. Roughly

speaking, in case of bivariate setting with two time-dependent variables X and Y ,

Granger causality defines X as the cause of Y if the past values of X contain helpful

information for predicting the future values of Y .

To detect such relations, traditional methods for identifying Granger causality use

regression models [Bell et al., 1996; Cheng et al., 2014; Granger, 1969; Marinazzo

et al., 2008; Sun, 2008]. With these methods, we determine that X is the cause of

Y when the prediction errors of Y based only on its past values are significantly

reduced by additionally using the past values of X. When the regression model can

be well fitted to the data, we can infer correct causal directions. However, in practice,

selecting an appropriate regression model for each time series data is di�cult and

requires a deep understanding of the data analysis. Therefore, it is not easy to

identify correct causal directions with these model-based methods.

3.1.1 Contributions

We propose an approach to Granger causality discovery that does not require a deep

understanding of the data analysis. To achieve this goal, we develop a supervised

learning framework that trains a classifier for assigning a ternary causal label (X !

Y , X  Y , or No Causation) to each pair of time series. This idea of classification

is inspired by recently proposed causal discovery methods for i.i.d. data, which have

experimentally worked well [Bontempi and Flauder, 2015; Guyon, 2013; Lopez-Paz

et al., 2015, 2017]. A significant advantage of the classification framework over the

model-based methods is that apart from the data whose causal relationships we

infer, which we call test data, it can utilize training data, i.e., the data with known

causal relationships. Examples of such training data include the synthetic data whose

generating processes are obvious and the real-world data whose causal relationships

are obvious from the knowledge of domain experts. Based on these training data,

the classification framework performs data augmentation, which allows us to achieve

high inference accuracy in causal discovery.

To develop a classification framework for time series data, we formulate a feature

representation that provides su�ciently di↵erent feature vectors for time series with

di↵erent causal relationships. The idea for obtaining such feature vectors is founded
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on the definition of Granger causality: X is the cause of Y if the following two condi-

tional distributions of the future value of Y are di↵erent; one is given the past values

of Y and the other is given the past values of X and Y . To build the classifier for

Granger causality identification, we utilize the distance between these distributions

when preparing feature vectors. To compute the distance, by using kernel mean

embedding, we map each distribution to a point in the feature space called the repro-

ducing kernel Hilbert space (RKHS) and measure the distance between the points,

which is termed the maximum mean discrepancy (MMD) [Gretton et al., 2007].

In experiments, our method su�ciently outperformed the model-based Granger

causality methods and the supervised learning method for i.i.d. data. Further-

more, we describe how our approach can be extended to multivariate time series and

show experimentally that feature vectors have a su�cient di↵erence that depends on

Granger causality, which demonstrates the e↵ectiveness of our proposed framework.

3.1.2 Related Work

Model-based methods for Granger Causality Discovery

Many approaches have been dedicated to inferring Granger causality by detecting

the conditional (in)dependence relations relations between time-dependent variables.

This is because Granger causality is defined as the conditional (in)dependence

relations, as described in Section 2.1.1. To illustrate the definition, consider the bi-

variate setting with X = {Xt} and Y = {Yt}, where each of Xt and Yt is defined

on X and Y , respectively (t = 1, 2, . . . ). Letting SX and SY denote the observa-

tions of {X1, . . . , Xt} and {Y1, . . . , Yt}, the presence and the absence of bivariate

Granger causality from X to Y (Definition 1) are defined as the following conditional

(in)dependence relations:

Yt+1 6??SX | SY and (3.1)

Yt+1??SX | SY , (3.2)
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which are equivalent to the (non-)equality between the conditional distributions:

P(Yt+1 | SX , SY ) 6= P(Yt+1 | SY ) and (3.3)

P(Yt+1 | SX , SY ) = P(Yt+1 | SY ), (3.4)

respectively.

Since it is challenging to determine whether the equality between two conditional

distributions P(Yt+1 | SX , SY ) and P(Yt+1 | SY ) holds, traditional methods [Bell et

al., 1996; Granger, 1969; Marinazzo et al., 2008] develop a hypothesis testing that

determines whether the following two conditional expected values are equal:

E[Yt+1 | SX , SY ] = E[Yt+1 | SY ], (3.5)

which is much simpler than testing the (non-)equality in Eqs. (3.3) and (3.4).

To represent the conditional expected values in Eq. (3.5), these traditional meth-

ods use the two time series regression models: one is fitted to the observations of

variables X and Y , and the other is fitted only to the observations of Y . In par-

ticular, they use such regression models as the vector autoregressive (VAR) model

[Granger, 1969], the generalized additive models (GAM) [Bell et al., 1996], and ker-

nel regression [Marinazzo et al., 2008]. By computing the prediction errors based on

the fitted regression models, these methods evaluate the test statistics and determine

whether the equality in Eq. (3.5) holds.

The limitation of these model-based methods is that their inference accuracy

of Granger causality depend greatly on whether each regression model can be well

fitted to the data. Unfortunately, it is di�cult in practice to select an appropriate

regression model for each time series. To overcome this limitation, we propose a

supervised learning approach that allows us to avoid this model selection issue.

Supervised Learning Approaches to Causal Discovery from I.i.d. Data

It is worth noting that several supervised learning approaches have been developed

for causal discovery.

The idea of performing supervised learning for discovering the causal relation-

ships has been first introduced in the data analysis competition called ChaLearn

[Guyon, 2013]. ChaLearn provided each participant with a large collection of train-
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ing data, each of which contained an i.i.d. dataset and a causal label representing the

underlying causal direction in the dataset, and the participant attempted to train a

classifier that accurately assigns a causal label to each i.i.d. dataset.

While the participants in ChaLearn focused on the laborious task of hand-crafting

the features, the subsequent studies have developed more sophisticated feature rep-

resentation using mutual information [Bontempi and Flauder, 2015], kernel mean

embedding [Lopez-Paz et al., 2015], and neural network [Lopez-Paz et al., 2017].

Among these studies, the randomized causation coe�cient (RCC) [Lopez-Paz et

al., 2015] is closely related with our proposed method because both methods use

kernel mean embedding to obtain the features of the distribution that di↵er depend-

ing on the causal relationships. However, RCC and our method are designed to

obtain di↵erent features of the distribution. In particular, the feature representation

of RCC is founded on the postulate of causality, called the independence of cause

and mechanism (ICM) [Janzing and Scholkopf, 2010], which states that the marginal

and conditional distributions di↵er depending on the underlying causal directions.

By contrast, our method is designed to detect Granger causality by measuring the

distance between the conditional distributions between time-dependent variables.

All the existing supervised learning approaches to causal discovery are designed

for i.i.d. data; hence, these approaches cannot be applied to discover Granger causal-

ity from time series data.

3.2 Causal Discovery from Time Series Data via

Supervised Learning

3.2.1 Problem Statement

We consider a ternary classification task for inferring Granger causality from time

series data. This classification task can be extended to multivariate time series as

described in Section 3.2.5.

Let the training data be N time series S1, . . . , SN (N > 0), where each time series

Sj (j 2 {1, . . . , N}) has length Tj > 0 and consists of the observations of random

variables {(Xj
1 , Y

j
1 ), . . . , (Xj

Tj
, Y j

Tj
)}. Each time series Sj has a ternary causal label

lj 2 {+1, �1, 0} that expresses Granger causality between Xj = (Xj
1 , . . . , Xj

Tj
) and
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Y j = (Y j
1 , . . . , Y j

Tj
) as Xj

! Y j, Xj
 Y j, or No Causation. Suppose that we have

feature mapping function ⌫(·) that converts each time series Sj to a feature vector.

Using these training data and feature mapping function ⌫(·), we train a ternary

classifier with {(⌫(Sj), lj)}Nj=1. Then the task of discovering Granger causality from

another time series S 0 (i.e., a test data instance) can be rephrased as assigning a

causal label to ⌫(S 0) by utilizing the trained classifier.

3.2.2 Classifier Design

To build a classifier that assigns causal labels to time series, we formulate the feature

representation ⌫(·). In what follows, we describe our ideas for obtaining feature

vectors that are su�ciently di↵erent depending on Granger causality.

Basic Ideas for Granger Causality Identification

Following the definition of (bivariate) Granger causality (Definition 1),1 we define

causal labels as follows:2

X ! Y if

8
<

:
P(Xt+1 | SX , SY ) = P(Xt+1 | SX)

P(Yt+1 | SX , SY ) 6= P(Yt+1 | SY )
, (3.6)

X  Y if

8
<

:
P(Xt+1 | SX , SY ) 6= P(Xt+1 | SX)

P(Yt+1 | SX , SY ) = P(Yt+1 | SY )
, (3.7)

No Causation if

8
<

:
P(Xt+1 | SX , SY ) = P(Xt+1 | SX)

P(Yt+1 | SX , SY ) = P(Yt+1 | SY )
, (3.8)

where causal label X ! Y states that X is the cause of Y and that Y is not the

cause of X, and other causal labels are defined in the same way.

To assign causal labels to time series based on Eqs. (3.6), (3.7), and (3.8), it is

necessary to determine whether or not the two conditional distributions are identical.

1Note that since our approach is founded on Definition 1, which cannot address the case where
there are latent confounders (i.e., unobserved variables that influence both X and Y ), as with the
existing methods [Bell et al., 1996; Cheng et al., 2014; Granger, 1969; Marinazzo et al., 2008; Sun,
2008], it does not deal with such a case.

2Although we do not consider the case where P(Xt+1 | SX , SY ) 6= P(Xt+1 | SX) and
P(Yt+1 | SX , SY ) 6= P(Yt+1 | SY ) (i.e., X is the cause of Y , and Y is also the cause of X), we
can straightforwardly address such a case by adding an extra label.
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To represent the information about conditional distributions, instead of using regres-

sion models, we use kernel mean embedding, which maps a distribution to a point in

the feature space called the RKHS. Interestingly, when a characteristic kernel (e.g.,

a Gaussian kernel) is used, the mapping is injective: di↵erent distributions are not

mapped to the same point [Sriperumbudur et al., 2010].

Suppose that kernel mean embedding maps conditional distributions P(Xt+1 |

SX , SY ), P(Xt+1 | SX) and P(Yt+1 | SX , SY ), P(Yt+1 | SY ) to the points in the RKHS,

µXt+1|SX ,SY
, µXt+1|SY

2 HX and µYt+1|SX ,SY
, µYt+1|SY

2 HY , respectively, where HX

and HY are the RKHSs defined on X and Y . Then, with a characteristic kernel, the

causal labels in Eqs. (3.6), (3.7), and (3.8) can be rewritten as

X ! Y if

8
<

:
µXt+1|SX ,SY

= µXt+1|SX

µYt+1|SX ,SY
6= µYt+1|SY

, (3.9)

X  Y if

8
<

:
µXt+1|SX ,SY

6= µXt+1|SX

µYt+1|SX ,SY
= µYt+1|SY

, (3.10)

No Causation if

8
<

:
µXt+1|SX ,SY

= µXt+1|SX

µYt+1|SX ,SY
= µYt+1|SY

, (3.11)

To assign causal labels based on Eqs. (3.9), (3.10), and (3.11), we only have to

determine whether the two points in the RKHS are the same over time t; equivalently,

whether the distance between the two points in the RKHS is zero over time t.

In the literature on kernel methods, such a distance is termed the MMD [Gretton

et al., 2007]. Let kX be a positive-definite kernel function defined on X , �X(x) :=

kX(x, )̇ be a feature mapping function of kX ,3 and HX be the RKHS induced by kX .

Then kernel mean embeddings µXt+1|SX ,SY
and µXt+1|SX

are defined as the following

conditional expected values of feature mapping �X whose expectations are taken

with respect to conditional distributions P(Xt+1 | SX , SY ) and P(Xt+1 | SX):

µXt+1|SX ,SY
= EXt+1|SX ,SY

[�X(Xt+1)] (3.12)

µXt+1|SX
= EXt+1|SX

[�X(Xt+1)]. (3.13)

3For instance, when using Gaussian kernel kX(x, x
0) = exp(��kx�x

0
k
2) (� > 0 is a parameter),

the feature mapping is given as �X(x) = exp(��x
2)[1,

p
2�/1! x,

p
(2�)2/2! x

2
, . . . ]>.
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Using kernel mean embeddings µXt+1|SX ,SY
and µXt+1|SX

, the MMD for two condi-

tional distributions P(Xt+1 | SX , SY ) and P(Xt+1 | SX) is defined as

MMD2
Xt+1
⌘ kµXt+1|SX ,SY

� µXt+1|SX
k
2
HX

. (3.14)

In the same way, MMD2
Yt+1

is defined as the distance between µYt+1|SX ,SY
, µYt+1|SY

2

HY , where HY is the RKHS defined by positive-definite kernel function kY on Y .

The MMD is a metric between distributions that can be estimated without fitting

regression models or performing density estimation. At this point, the MMD is

much more attractive than other measures of the distributional discrepancy, such

as the Kolmogorov-Smirnov statistic Chen and An [1997] and the Kullback-Leibler

divergence [Kullback and Leibler, 1951]: the former requires us to select regression

models and the latter requires a density estimation, which is di�cult when there are

insu�cient samples.

However, it is challenging to estimate MMD2
Xt+1

and MMD2
Yt+1

because condi-

tional distributions P(Xt+1 | SX , SY ) and P(Xt+1 | SX) are conditioned on variable

values before time t, and hence we need to address long term dependence among

time-dependent variables. Below we describe how we can overcome this challenge.

3.2.3 MMD Estimators

To compute the MMD in Eq. (3.14), we estimate kernel mean embeddings µXt+1|SX ,SY

and µXt+1|SX
in Eqs. (3.12) and (3.13). To achieve this, we need to take the expec-

tations of feature mapping �X(Xt+1) with respect to the conditional distributions

conditioned on the variable values before time t.

We take such expectations by employing the existing time series prediction method

called the kernel Kalman filter based on a conditional embedding operator (KKF-

CEO) [Zhu et al., 2014]. KKF-CEO is founded on a state-space model, which, un-

like the first-order Markov processes, can deal with long term dependence among

time-dependent variables. Using such a generative model, it performs time series

prediction by estimating an expected value of feature mapping function.

In particular, Zhu et al. [2014] have formulated the estimator of such an expected

value as the weighted sum of the feature mapping function. In case of kernel mean

embeddings µXt+1|SX ,SY
and µXT+1|SX

in Eqs. (3.12) and (3.13), we can formulate
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their estimators as

µ̂Xt+1|SX ,SY
=

t�1X

⌧=2

wXY
⌧ �X(x⌧ ) (3.15)

µ̂Xt+1|SX
=

t�1X

⌧=2

wX
⌧ �X(x⌧ ), (3.16)

where wXY = [wXY
2 , . . . , wXY

t�1 ]
> and wX = [wX

2 , . . . , wX
t�1]

> (t > 3) are the real-

valued weight vectors. By applying Eqs. (3.15) and (3.16) to Eq. (3.14), the esti-

mator of MMD2
Xt+1

is given as

\MMD
2

Xt+1
=

t�1X

⌧=2

t�1X

⌧ 0=2

(wXY
⌧ wXY

⌧ 0 + wX
⌧ wX

⌧ 0 � 2wXY
⌧ wX

⌧ 0 )kX(x⌧ , x⌧ 0). (3.17)

To estimate weight vectors wX and wXY, we used the KKF-CEO’s estimation

algorithm, which is developed in Zhu et al. [2014] for performing time series predic-

tion. We can compute weight vector wX by directly employing it. As regards weight

vector wXY, we simply ran KKF-CEO using product kernel kX k̇Y . Although com-

puting these weight vectors requires us to set the values of several hyperparameters,

they can be appropriately selected for each time series by performing time series

prediction with KKF-CEO and minimizing the prediction errors.

3.2.4 Feature Representation

To build a classifier for Granger causality identification, we obtain the feature vectors

using MMD pair, denoted by dt := [\MMD
2

Xt+1
, \MMD

2

Yt+1
]>.

By designing feature vectors with this MMD pair, we can expect time series with

di↵erent causal labels to yield su�ciently di↵erent feature vectors. This is because as

indicated by Eqs. (3.9), (3.10), and (3.11), whether the MMD becomes zero depends

on causal labels. Note that each MMD in dt does not exactly take zero because it

is a finite sample estimate. However, we can expect su�ciently di↵erent MMD pairs

to be estimated from time series with di↵erent causal labels, as intuitively shown in

Figure 3.1; we experimentally confirm this di↵erence in Section 3.3.2.

The computational di�culty of preparing MMD pair dt is that the estimator in

Eq. (3.17) consists weight vectors wX and wXY, whose estimation with KKF-CEO’s
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...�

...�

...�No Causation

Figure 3.1: Di↵erent MMD pairs are estimated from time series with di↵erent causal
labels. Each dot represents the MMD pair estimated from each time series.

algorithm requires time O(T 3) for time series with length T [Zhu et al., 2014]. To

reduce this computation time, we chop a given time series with length T , denoted

by S = {(x1, y1), · · · , (xT , yT )}, into the subsequences with length W (W < T ), i.e.,

{(xt�(W�1), yt�(W�1)), · · · , (xt, yt)} (t = W , · · · , T ). By computing the MMD pairs

for each subsequence, we obtain the MMD pairs {dW , · · · , dT}.

A naive approach to obtaining a feature vector from these MMD pairs is to con-

catenate them into a single vector. Unfortunately, such a vector has dimensionality

2(T �W +1), which is di↵erent depending on time series length T and hence makes

it impossible to use the time series with di↵erent lengths as training data. Another

approach is to formulate a feature vector as the average over the MMD pairs, i.e.,
1

T�W+1

PT
t=W dt. However, this feature vector can take an identical value between the

two di↵erent empirical distributions of the MMD pairs if their means are identical.

To avoid mapping di↵erent empirical distributions of the MMD pairs to an identi-

cal feature vector, we represent a feature vector by utilizing kernel mean embedding

again. Let kD denote a kernel function that measures the similarity between the
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MMD pairs. Using kernel function kD, we define our feature representation as

⌫(S) :=
1

T �W + 1

TX

t=W

�D(dt) where dt = [\MMD
2

Xt+1
, \MMD

2

Yt+1
]> (3.18)

which is an average of feature mapping �D(dt) := kD(dt, ·).4

To compute feature mapping �D(·) in Eq. (3.18), we employed random Fourier

features (RFF) [Rahimi and Recht, 2007], which approximate the feature mapping

as a low-dimensional vector of random features that are sampled from the Fourier

transform of the kernel function. In experiments, we set the number of features

m = 100 and obtained an m-dimensional feature vector for each time series, where

we observed no significant improvements in the inference accuracy when using a

larger m.

3.2.5 Extensions to Multivariate Time Series

So far, we have presented a supervised learning approach to discovering Granger

causality from bivariate time series data. In this section, we describe how our ap-

proach can be extended to n-variate time series (n � 3). In what follows, we first

present the feature representation for trivariate time series (i.e., n = 3) and then

present an extension for addressing the case with n > 3.

Trivariate Time Series

Our feature representation for trivariate time series is founded on conditional Granger

causality [Geweke, 1984] in Definition 2, which can be applied to multivariate time

series unlike bivariate Granger causality in Definition 1.

As described in Section 2.1.1, naively applying bivariate Granger causality (Def-

inition 1) to trivariate time series leads to wrong inference results. To illustrate

this, consider the case where there is no causal relationship between X and Y . In

this case, if the third variable Z is the common cause of X and Y and yield the

correlation between them, we can wrongly conclude that X is the cause of Y or

4Note that unlike the estimators in (3.15) and (3.16), the one in (3.18) is formulated as a weighted
sum with an identical weight value, i.e., 1

T�W+1 . This formulation di↵erence arises depending on
whether the data instances are directly drawn from the target distribution (see Muandet et al.
[2017] for the detail).
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that Y is the cause of X. This is because P(Yt+1 | SX , SY ) 6= P(Yt+1 | SY ) or

P(Xt+1 | SX , SY ) 6= P(Xt+1 | SX) might hold due to the influence of Z.

To address the influence of Z, conditional Granger causality compares the two

conditional distributions conditioned on Z’s observations. Let SZ be the observations

of {Z1, · · · , Zt}, each of which is defined on Z. Then conditional Granger causality

defines X as the cause of Y given Z if P(Yt+1 | SX , SY , SZ) 6= P(Yt+1 | SY , SZ) holds;

otherwise, X is not the cause of Y given Z.

We define the causal labels based on conditional Granger causality. As with Eq.

(3.6), we define causal label X ! Y as

X ! Y if

8
<

:
P(Xt+1 | SX , SY , SZ) = P(Xt+1 | SX , SZ)

P(Yt+1 | SX , SY , SZ) 6= P(Yt+1 | SY , SZ),

which can be rewritten using kernel mean embedding as

X ! Y if

8
<

:
µXt+1|SX ,SY ,SZ

= µXt+1|SX ,SZ

µYt+1|SX ,SY ,SZ
6= µYt+1|SY ,SZ

,

where µXt+1|SX ,SY ,SZ
, µXt+1|SX ,SZ

, µYt+1|SX ,SY ,SZ
, and µYt+1|SY ,SZ

are the kernel mean

embeddings of P(Xt+1 | SX , SY , SZ), P(Xt+1 | SX , SZ), P(Yt+1 | SX , SY , SZ), and

P(Yt+1 | SY , SZ), respectively. Other causal labels, X  Y and No Causation, can

be defined in the same way.

To assign these causal labels to trivariate time series, we formulate our feature

representation by adding the MMD between µXt+1|SX ,SY ,SZ
and µXt+1|SX ,SZ

and the

one between µYt+1|SX ,SY ,SZ
and µYt+1|SY ,SZ

. In particular, we modify the formulation

of MMD pair dt in feature representation in Eq. (3.18) to

dt := [\MMD
2

Xt+1
, \MMD

2

Yt+1
, \MMD

2

Xt+1|Z , \MMD
2

Yt+1|Z ]
>,

where \MMD
2

Xt+1|Z and \MMD
2

Yt+1|Z denote the estimators of the MMD between

µXt+1|SX ,SY ,SZ
and µXt+1|SX ,SZ

and the one between µYt+1|SX ,SY ,SZ
and µYt+1|SY ,SZ

,

respectively.
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n-variate Time Series (n > 3)

Although it is possible to develop the feature representation for n-variate time series

(n > 3) by adding the extra MMDs to dt, it is challenging to prepare enough training

data to train the classifier since the number of possible combinations of the common

cause variables of the variable pair X and Y grows super-exponentially in n.

For this reason, we used the feature representation for trivariate time series. From

n-variate time series, we infer a causal relationship between each variable pair X and

Y in three steps:

1. For each v 2 {1, · · · , n�2}, we obtain the feature vector from the observations

of the triplet of the variables (X, Y , Zv).

2. Using each feature vector, we use a trained classifier to compute the probabil-

ities of the three labels (X ! Y , X  Y , and No Causation).

3. Finally, we assign the label with the highest average probability.

Addressing the cases where there are more than one common cause variable is

left as our future work.

3.3 Experiments

3.3.1 Experimental Settings

Baseline Methods

We compared the performance of our method (hereafter referred to as the supervised

inference of Granger causality (SIGC)) with the following five baselines:

• RCC [Lopez-Paz et al., 2015],5 the supervised learning method for i.i.d. data

• GCV AR [Granger, 1969]:6 which uses the VARmodel to infer Granger causality.

• GCGAM [Bell et al., 1996]7, which uses the GAM to identify Granger causality.

5https://github.com/lopezpaz/causation learning theory
6http://people.tuebingen.mpg.de/jpeters/onlineCodeTimino.zip
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• GCKER [Marinazzo et al., 2008],7 which performs kernel regression to discover

Granger causality.

• TE [Schreiber, 2000],8 which identifies the causal relationships based on trans-

fer entropy (see Definition 3 in Section 2.1.2 for the detail).

For our SIGC, we used a random forest classifier9 to make a fair comparison with

RCC, which has achieved better performance with the random forest classifier than

with the SVM [Lopez-Paz et al., 2015]. To prepare feature vectors, we used the

Gaussian kernel as kX , kY , and kD and set the kernel parameter using the median

heuristic, which is a well-known heuristic for selecting it [Scholkopf and Smola, 2001].

We set the parameter W in our method and the parameters in the existing methods

to provide the best performance for each method in our synthetic data experiments.

For our method, we selected W = 12.

Classifier Training

To evaluate the performance of the supervised learning methods (i.e., SIGC and

RC), we trained a classifier using synthetic training data. This is because as de-

scribed in Lopez-Paz et al. [2015], there are few real-world data where the causal

relationships are known.

As training data of bivariate time series, we generated 15, 000 pairs of synthetic

time series with length T = 42 so that there were 5, 000 instances each with causal

labels X ! Y , X  Y , and No Causation. Here, we used the following linear and

nonlinear time series:

• Linear time series were sampled from the VAR model:

"
Xt

Yt

#
=

1

P

PX

⌧=1

A⌧

"
Xt�⌧

Yt�⌧

#
+

"
EXt

EYt

#
(3.19)

where ⌧ = 1, . . . , P (P 2 {1, 2, 3}) and EXt , EYt denote noise variables, which

were sampled from the Gaussian distribution N (0, 1). To obtain time series

7https://github.com/danielemarinazzo/KernelGrangerCausality
8https://github.com/Healthcast/TransEnt
9The number of trees is selected from {100, 200, 500, 1000, 2000} via 5-fold cross validation.
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with X ! Y , we used the following coe�cient matrix

A⌧ =

"
a⌧ 0.0

c⌧ d⌧

#

where a⌧ , d⌧ were drawn from the uniform distribution U(�1, 1), and c⌧ 2

{�1, 1}. Similarly, we prepared time series with X  Y , and No Causation.

• Nonlinear time series were also similarly generated by using the VAR model

with a standard sigmoid function g(x) = 1/(1 + exp(�x)). For instance, we

prepared time series with X ! Y so that Yt depended on {[g(Xt�⌧ ), Yt�⌧ ]>}P⌧=1

while Xt depended only on {Xt�⌧}
P
⌧=1.

• Finally, we scaled each time series with mean 0 and variance 1.

To test the performance on multivariate time series data, we prepared synthetic

trivariate time series in a similar way.

3.3.2 Experiments on Bivariate Time Series Data

Synthetic Time Series

We tested our method using synthetic time series data. As test data, we employed

the following linear and nonlinear test data:

• Linear Test Data: We prepared 300 pairs of linear time series so that the num-

bers of time series with X ! Y , X ! Y , and No Causation were 100. As with

the linear time series in the training data, each time series was sampled from

the VAR model (3.19) although several parameter settings were di↵erent (e.g.,

the noise variance was given as p 2 {0.5, 1.0, 1.5, 2.0}).

• Nonlinear Test Data: We used 300 pairs of nonlinear time series, where there

were 100 time series with X ! Y , X ! Y , and No Causation in each dataset.

We generated nonlinear time series with X ! Y by

Xt = 0.2Xt�1 + 0.9EXt (3.20)

Yt = �0.5 + exp(�(Xt�1 + Xt�2)
2) + 0.7 cos(Y 2

t�1) + 0.3EYt (3.21)
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Figure 3.2: Test accuracy for 300 pairs of time series against time series length (left:
linear test data; right: nonlinear test data). Means and standard deviations (error
bars) are shown for SIGC and RCC based on 20 runs with di↵erent training data.

where the noise variables EXt , EYt were sampled from N (0, 1). Similarly, we

prepared nonlinear time series with X  Y . To prepare time series with No

Causation, we simply ignored the exponential term in Eq. (3.21).

Using linear and nonlinear test data, we compared the performance of our method

with that of the existing methods. Figure 3.2 shows the test accuracy. Note that for

SIGC and RCC, we show the means and the standard deviations (error bars) in 20

experiments with di↵erent training data since these methods use randomly generated

training data.

As expected, the performance of Granger causality methods GCV AR, GCGAM ,

and GCKER depended on whether or not the regression model could be well fitted to

the data. For instance, since the VAR model could be well fitted to linear test data,

GCV AR performed well on linear test data although it worked badly on nonlinear

test data. In addition, with nonlinear test data, GCKER and TE were less accurate

than GCGAM because the time series was too short to perform kernel regression or

density estimation.

By contrast, our method worked su�ciently well on linear and nonlinear test

data. The main reason for the good performance lies in our feature representation.

This can be seen from a comparison with the supervised learning method RCC since

it prepares training data in the same way as our method.

To verify our feature representation, we confirmed that feature vectors are su�-
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Figure 3.3: Histogram of MMDs computed with linear test data with X ! Y (top
left), X  Y (top right), and No Causation (bottom)
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Figure 3.4: Histogram of MMDs computed with nonlinear test data with X ! Y
(top left), X  Y (top right), and No Causation (bottom)

ciently di↵erent depending on causal labels. To do so, we used linear and nonlinear

test data to plot a histogram of the MMD pairs {dt} that were used to compute the

feature vector for each time series. Figure 3.4 show the results. Since each MMD in

dt is a finite sample estimate, no MMD becomes exactly zero. However, the MMDs

were su�ciently di↵erent depending on the causal labels.

From such a large di↵erence among the MMD pairs, one may consider the fol-

lowing naive unsupervised approach that assigns causal labels in two steps:

1. Perform the hypothesis tests that determines whether the mean of \MMD
2

Xt+1

is zero and whether the mean of \MMD
2

Yt+1
is zero.
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2. Assign causal labels (i.e., X ! Y , X  Y , or No Causation) to each time series

using the p-values of the above hypothesis tests and some threshold value (i.e.,

significance level).

However, we confirmed that the performance of such an unsupervised approach de-

pended greatly on the threshold value. What is worse, it was less accurate than our

method; for instance, its test accuracy was 0.810 on nonlinear test data with length

T = 250 (not shown in Figure 3.2) while our method achieved 0.966. These results

suggest the e↵ectiveness of our supervised learning approach, which can obtain the

decision boundary needed to determine the causal label by training a classifier.

Real-world Time Series

We tested our method using real-world time series data. To improve the reliability

of the experiment, we used the following two test datasets:

• The first test dataset was composed of five pairs of bivariate time series down-

loaded from the Cause-E↵ect Pairs database [Mooij et al., 2016], whose true

causal relationships are reported in Mooij et al. [2016] as X ! Y for three pairs

and as X  Y for the others. For instance, the River Runo↵ is a bivariate

time series concerning average precipitation X and average river runo↵ Y , and

the true causal relationship is regarded as X ! Y .

• Using the aforementioned five real-world time series, we prepared the second

test dataset as a collection of the subsequences in each time series, each of

which has length T = 200.

As regards training data, we used synthetic time series that we prepared in the same

way as those for synthetic data experiments.

Tables 3.1 and 3.2 show the results for each test dataset. Our SIGC outper-

formed the other existing methods regardless of time series length T . Although

training data were randomly generated, the inference results of SIGC were always

correct throughout 20 experiments, while those of RCC changed depending on the

randomness (for this reason, we have omitted the results of RCC in Table 3.1).
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Table 3.1: Causal relationships inferred from first real-world test dataset. 3and 7
denote correct and incorrect results, respectively.

SIGC GCV AR GCGAM GCKER TE

Temperature
3 7 3 3 7(T = 16382)

Radiation
3 3 3 3 3(T = 8401)

Internet
3 3 7 7 3(T = 498)

Sun Spots
3 7 7 7 3(T = 1632)

River Runo↵
3 3 3 7 3(T = 432)

Table 3.2: Test accuracy on second real-world test dataset. Means and standard
deviations are shown for SIGC and RCC based on 20 runs.

SIGC RCC GCV AR GCGAM GCKER TE

Temperature 0.961 0.432
0.950 0.848 0.234 0.492

(T = 200) (0.011) (0.242)

Radiation 0.987 0.515
0.156 0.0 0.782 0.394

(T = 200) (0.053) (0.345)

Internet 1.0 0.478
0.157 0.387 0.261 0.498

(T = 200) (0.0) (0.222)

Sun Spots 1.0 0.435
0.908 0.704 0.076 0.522

(T = 200) (0.0) (0.182)

River Runo↵ 0.958 0.399
0.684 0.406 0.155 0.485

(T = 200) (0.058) (0.193)

No Causation
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Figure 3.5: Histogram of MMDs used to compute the feature vector for each time
series in second real-world dataset with X ! Y (left) and X  Y (right)
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In addition, we confirmed that the feature vectors obtained from these real-world

data are also su�ciently di↵erent depending on causal labels. Figure 3.5 shows the

results on the second real-world dataset. As expected, they demonstrate that the

feature vectors are su�ciently di↵erent depending on causal labels.

3.3.3 Experiments on Multivariate Time Series Data

Using synthetic and real-world data, we evaluated the performance of SIGCtri, which

utilizes a feature representation for trivariate time series.

Synthetic Data Experiments

We tested SIGCtri using synthetic trivariate time series data. We generated the test

data from the following three logistic map [Ott, 2002]:

Xt = 0.8(1� aX2
t�1) + 0.2(1� aY 2

t�1) + sEXt

Yt = 1� aY 2
t�1 + sEYt (3.22)

Zt = 0.8(1� aZ2
t�1) + 0.2(1� aX2

t�1) + sEZt ,

where a = 1.8, s = 0.01, and noise variables EXt , EYt , and EZt were drawn from

standard Gaussian distribution N (0, 1). In particular, we prepared 100 trivariate

time series test data with length T = 1000 by sampling 100 triplets of initial values

X1, Y1, and Z1 from Uniform distribution U(0, 1). The true causal labels are X  Y

for X and Y , X ! Z for X and Z, and No Causation for Y and Z.

Using such test data, we compared the performance of SIGCtri with the proposed

method for bivariate time series data, denoted by SIGCbi. Table 3.3 presents the

test accuracy of each method.

With these synthetic time series, SIGCtri and GCKER always correctly inferred

the Granger causality because they are founded on conditional Granger causality

and thus can be applied to trivariate time series data. By contrast, bivariate causal

discovery methods, including SIGCbi, worked poorly. These results demonstrate

that our SIGCtri can e↵ectively deal with the influence of the third variable using

the feature representation for trivariate time series data.
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Table 3.3: Test accuracy on trivariate synthetic time series data. Means and standard
deviations are shown for SIGC and RCC based on 10 runs.

Methods for trivariate time series Methods for bivariate time series Method for i.i.d. data
SIGCtri GCV AR GCKER SIGCbi GCGAM TE RCC

Test accuracy
1.0

0.72 1.0
0.0

0.0 0.0
0.0

(0.0) (0.0) (0.0)

Table 3.4: Macro and micro-averaged F1 scores. Means and standard deviations are
shown for our methods and RCC based on 10 runs.

SIGCtri SIGCbi RCC GCV AR GCGAM GCKER TE

Macro F1
0.483 0.431 0.407

0.457 0.437 0.351 0.430
(0.0) (0.007) (0.096)

Micro F1
0.637 0.578 0.567

0.567 0.513 0.436 0.449
(0.0) (0.011) (0.161)

Real-world Data Experiments

Finally, we evaluated the performance of SIGCtri using the time series gene expres-

sion data. In particular, we used the Saccharomyces cerevisiae (yeast) cell cycle gene

expression dataset collected by [Spellman et al., 1998]. By combining four short time

series that were measured in di↵erent microarray experiments, we prepared a time

series with the length T = 57, where the number of genes was n = 14. Following the

gene network database called Kyoto encyclopedia of genes and genomes (KEGG).10,

we determined the true causal relationships between the genes.

To evaluate the performance of each method, we used the macro and micro-

averaged F1 scores because the number of non-causally-related gene pairs was much

larger than the number of causally-related gene pairs.

Table 3.4 shows the results. Since the data were measured in di↵erent microarray

experiments, all the methods could not su�ciently work well. However, our SIGCtri

worked better than the existing Granger causality methods. It also performed better

than SIGCbi, which uses the feature representation for bivariate time series, thus

indicating that it is important to consider the influence of the common cause variable

as described in Section 3.2.5.

10https://www.genome.jp/kegg/
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3.4 Conclusion

We have proposed a classification approach to Granger causality identification. Whereas

the performance of the model-based methods depended hugely on whether the re-

gression model could be well fitted to the data, our method performed su�ciently

well by using the same feature representation and the same classifier (random for-

est classifier). Furthermore, we demonstrated experimentally the reason for such

good performance by showing a su�cient di↵erence between the feature vectors that

depends on Granger causality. These results demonstrate the e↵ectiveness of classi-

fication approaches to Granger causality identification.

Addressing complicated real-world scenarios (e.g., inferring the causal directions

that change over time) constitutes our future work.
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Chapter 4

Feature Selection for Discovering

Distributional Treatment E↵ect

Modifiers

In this chapter, we consider the problem of finding the features relevant to the di↵er-

ence in treatment e↵ects. This problem is essential to elucidate the reason why the

treatment e↵ects are di↵erent across individuals, which leads to deep understanding

of the underlying causal mechanisms. Existing methods seek the features relevant

to treatment e↵ect heterogeneity by measuring how greatly the feature attributes

a↵ect the degree of the conditional average treatment e↵ect (CATE). However, these

methods may overlook important features because CATE, a measure of the average

treatment e↵ect, cannot detect the di↵erences in distribution parameters other than

the mean (e.g., variance). To resolve this limitation of the existing methods, we

propose a feature selection framework for discovering distributional treatment e↵ect

modifiers, i.e., the features related to distributional treatment e↵ect heterogeneity.

4.1 Introduction

When the e↵ects of a treatment (e.g., drug administration) di↵er across individuals,

elucidating why such heterogeneity exists is critical in many applications such as

precision medicine [Lee et al., 2018], personalized education [Schochet et al., 2014],
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and targeted advertising [Taddy et al., 2016]. A popular approach to explaining

treatment e↵ect heterogeneity is to identify the features of an individual that are

relevant to the degree of a treatment e↵ect. For instance, to unveil the mechanism of

COVID-19 vaccines, recent medical studies have sought the features related to the

degree of vaccine-acquired immunity [Jabal et al., 2021].

To find such features, we need to measure how greatly the attributes of each

feature influence the degree of a treatment e↵ect. To this end, the existing methods

use the conditional average treatment e↵ect (CATE) that is conditioned on each

feature, i.e., an average treatment e↵ect across the individuals who have an identical

attribute of each feature [Imai and Ratkovic, 2013; Tian et al., 2014; Zhao et al.,

2022]. However, this average cannot capture distribution parameters other than the

mean, such as the variance. As a result, if the attributes of a feature do not a↵ect

the average treatment e↵ect but influence other distribution parameters, these mean-

based methods will incorrectly conclude that the feature is unrelated to heterogeneity

of the treatment e↵ect.

The goal of this paper is to propose a feature selection framework for discov-

ering distributional treatment e↵ect modifiers. To achieve this goal, we develop a

feature importance measure that quantifies how greatly the attributes of each fea-

ture influence the discrepancy between the distributions of potential outcomes, i.e.,

the outcomes when an individual is treated and not treated. We formulate this mea-

sure as a variance of the maximum mean discrepancy (MMD) [Gretton et al., 2012]

between the conditional potential outcome distributions conditioned on each feature.

We derive its computationally e�cient estimator using a kernel approximation tech-

nique and establish a feature selection algorithm that can control the type I error

rate (i.e., the proportion of false-positive results) to the desired level.

4.1.1 Contributions

Our contributions are summarized as follows:

• We formulate an MMD-based feature importance measure for discovering dis-

tributional treatment e↵ect modifiers (Section 4.3.2). We derive its compu-

tationally e�cient weighted estimator using a kernel approximation technique

(Section 4.3.3).

44



4.2. BACKGROUND

• We develop an algorithm that selects distributional treatment e↵ect modifiers

while controlling the type I error rate (Section 4.3.4). To evaluate the signif-

icance, we perform multiple hypothesis tests based on the p-values computed

with the conditional resampling scheme.

• We experimentally show that our method successfully finds the features related

to treatment e↵ect heterogeneity and outperforms the existing mean-based

method.

4.2 Background

4.2.1 Problem Setup

Suppose that we have a sample of n individuals D = {(ai,x i, yi)}ni=1
i.i.d.
⇠ P(A,X , Y )

for i = 1, . . . , n. Here A 2 {0, 1} is a binary treatment (A = 1 if an individual

is treated; otherwise, A = 0), X = [X1, . . . , Xd]> is d-dimensional features (a.k.a.

covariates), where each feature Xm 2 X (m = 1, . . . , d) takes either discrete or

continuous values, and Y 2 R is a continuous-valued outcome.1 Here we assume that

(1) features X are measured before applying the treatment and observing outcome Y

(i.e., featuresX are pretreatment variables and notmediators or colliders [Elwert and

Winship, 2014]) and that (2) features X contain all confounders, i.e., the variables

that a↵ect treatment A and outcome Y . Note that these assumptions are standard

in the existing work [Imai and Ratkovic, 2013; Zhao et al., 2022].

Given sample D, we solve the problem of selecting the features inX that influence

the e↵ect of treatment A on outcome Y . In this problem, which features should

be selected depends on the measurement scale of the treatment e↵ect [Hernán and

Robins, 2020, Chapter 4]. There are two measurement scales: additive scale Y 1
�Y 0

and multiplicative scale Y 1/Y 0, where Y 0 and Y 1 are random variables that are

referred to as potential outcomes, each of which represents the outcome when A = 0

and when A = 1, respectively [Rubin, 1974]. In this study, we define the treatment

e↵ect for each individual on an additive scale as Y 1
�Y 0 because this scale is standard

and widely used in numerous applications [Lee et al., 2018; Schochet et al., 2014;

Taddy et al., 2016].

1We assume Y 2 R to use the kernel approximation technique [Rahimi and Recht, 2007], which
is described in Section 4.3.3.
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Unfortunately, we cannot observe treatment e↵ect Y 1
� Y 0. This is because we

cannot jointly observe two potential outcomes Y 0 and Y 1; we only observe either Y 0

or Y 1, which is obtained as Y = (1 � A)Y 0 + AY 1 (A 2 {0, 1}). For this reason,

existing methods use the average treatment e↵ect across individuals, which can be

estimated from the data.

4.2.2 Mean-based Approaches

Many existing methods [Tian et al., 2014; Zhao et al., 2022] seek the features whose

attributes a↵ect the degree of the average treatment e↵ect called CATE, which is

defined for each feature’s attribute, Xm = x (m = 1, . . . , d), as follows:

Tm(x) := E[Y 1
� Y 0

| Xm = x]

= E[Y 1
| Xm = x]� E[Y 0

| Xm = x]. (4.1)

CATE Tm(x) is an average treatment e↵ect over the individuals who share an iden-

tical attribute, Xm = x. Note that this CATE is di↵erent from the one conditioned

on all features X , which is an inference target of the recent causal inference methods

[Chang and Dy, 2017; Hassanpour and Greiner, 2019; Hill, 2011; Künzel et al., 2019;

Nie and Wager, 2021; Shalit et al., 2017; Yoon et al., 2018].

Using CATE Tm (m = 1, . . . , d), the features that influence the degree of the

average treatment e↵ect are defined as the following treatment e↵ect modifiers:

Definition 5 (Rothman et al. [2008]). Feature Xm is said to be a treatment e↵ect

modifier if there are at least two values of Xm, xm and x?
m (xm 6= x?

m), such that

CATE Tm in Eq. (4.1) takes di↵erent values, i.e., Tm(xm) 6= Tm(x?
m).

Definition 5 states that feature Xm is a treatment e↵ect modifier if CATE Tm(x)

is not a constant with respect to value Xm = x. Roughly speaking, when we group

individuals by their Xm’s values and compute the average treatment e↵ect in each

group of the individuals, if there are at least two groups with di↵erent averages, then

feature Xm is a treatment e↵ect modifier [VanderWeele, 2009].

The existing methods seek such treatment e↵ect modifiers by fitting a regression

model that is linear in treatment A with a sparse regularizer [Imai and Ratkovic,

2013; Sechidis et al., 2021; Tian et al., 2014; Zhao et al., 2022].
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Table 4.1: Joint probability tables of potential outcomes in Example 1. Nonzero
probabilities are shown in bold. Total expresses marginal potential outcome proba-
bilities.

P(Y 0, Y 1
| X = 0)

Y 0
Y 1

-1 0 1 Total

-1 0 0 0 0
0 0.5 0 0.5 1.0
1 0 0 0 0

Total 0.5 0 0.5 1.0

P(Y 0, Y 1
| X = 1)

Y 0
Y 1

-1 0 1 Total

-1 0 0 0 0
0 0 1.0 0 1.0
1 0 0 0 0

Total 0 1.0 0 1.0

4.2.3 Weakness of Mean-based Approaches

Since the aforementioned existing methods rely on the average treatment e↵ect, they

cannot detect the features whose attributes do not influence the average treatment

e↵ect but do a↵ect other functionals of the joint distribution of potential outcomes,

such as the covariance between potential outcomes and the treatment e↵ect variance

[Russell, 2021]. To illustrate such a feature, consider the following toy example:

Example 1. Let Y 0, Y 1
2 {�1, 0, 1} ⇢ R be the potential outcomes and let X 2

{0, 1} be a binary feature. Suppose that joint distribution P(Y 0, Y 1
| X) is given

as Table 4.1. Then feature X’s values are irrelevant to the average treatment e↵ect

and the covariance between potential outcomes but relevant to the treatment e↵ect

variance:

E[Y 1
� Y 0

| X = 0] = E[Y 1
� Y 0

| X = 1] = 0

Cov[Y 0, Y 1
| X = 0] = Cov[Y 0, Y 1

| X = 1] = 0

Var[Y 1
� Y 0

| X = 0] = 1; Var[Y 1
� Y 0

| X = 1] = 0.

Joint distribution P(Y 0, Y 1
| X) presented in Table 4.1 shows that feature X

is related to a di↵erence in treatment e↵ects: While no individual with attribute

X = 1 receives any treatment e↵ect, those with X = 0 get positive or negative

e↵ects. However, since the CATE values do not depend on X, the existing mean-

based methods will incorrectly conclude that feature X is unrelated to the treatment

e↵ect heterogeneity. This implies that using CATE is insu�cient to capture such

distributional treatment e↵ect heterogeneity and might lead to overlooking important

features.

47



CHAPTER 4. FEATURE SELECTION FOR DISCOVERING
DISTRIBUTIONAL TREATMENT EFFECT MODIFIERS

4.3 Discovering Distributional Treatment E↵ect

Modifiers

4.3.1 Detecting Distributional Heterogeneity

We propose a feature selection framework for discovering the features related to

distributional treatment e↵ect heterogeneity. To find such features, we consider

the problem of determining whether the values of each feature Xm (m = 1, . . . , d)

influence the functionals of the joint distribution of potential outcomes P(Y 0, Y 1
|

Xm), such as the average treatment e↵ect, the treatment e↵ect variance, and the

covariance between potential outcomes. 2 This problem is challenging because we

cannot infer joint distribution P(Y 0, Y 1
| Xm) since we can never jointly observe

potential outcomes Y 0 and Y 1, as described in Section 4.2.1.

To overcome this challenge, we propose measuring the importance of each feature

Xm (m = 1, . . . , d) by quantifying how greatly Xm’s values influence the discrepancy

between conditional distributions P(Y 0
| Xm) and P(Y 1

| Xm). This idea is moti-

vated by the following fact: if the discrepancy between P(Y 0
| Xm) and P(Y 1

| Xm)

varies with Xm’s values, then joint distribution P(Y 0, Y 1
| Xm) is also changeable

depending on Xm’s values, and some functionals of the joint distribution depend

on Xm. This fact can be easily proved by taking its contraposition, as shown in

Section 4.7.1.

Such an idea enables us to detect feature X in Example 1, whose values influence

the treatment e↵ect variance. This is because, in this example, the discrepancy be-

tween conditional potential outcome distributions P(Y 0
| X) and P(Y 1

| X) changes

depending on X’s values.

Note, however, that our idea does not always work well. This is because there are

counterexamples where feature Xm’s values do not a↵ect the discrepancy between

conditional distributions P(Y 0
| Xm) and P(Y 1

| Xm) but influence joint distribution

P(Y 0, Y 1
| Xm). We take a simple counterexample in Section 4.7.2 and present the

2Identifying which functionals of the joint distribution are a↵ected by each feature’s values is
extremely challenging due to the impossibility of inferring the joint distribution. One possible
solution is to use techniques for estimating the lower and upper bounds on the functionals [Chen
et al., 2016; Russell, 2021; Shingaki and Kuroki, 2021]. Although such bounds require several
additional assumptions, they have been successfully applied in several fields, including fairness-
aware machine learning [Chikahara et al., 2021].
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empirical performances in such cases in Section 4.5.4. Nevertheless, compared with

the existing methods, we can detect a wider variety of features relevant to treatment

e↵ect heterogeneity, which leads to a better understanding of the underlying causal

mechanisms.

4.3.2 Feature Importance Measure

To express the importance of each feature Xm (m = 1, . . . , d), we measure the

discrepancy between distributions P(Y 0
| Xm) and P(Y 1

| Xm) using the MMD

[Gretton et al., 2012].

In fact, there are several MMD-based metrics for measuring the discrepancy be-

tween potential outcome distributions [Bellot and van der Schaar, 2021; Muandet

et al., 2021; Park et al., 2021]. However, these metrics cannot be applied in our

setting because they are not designed for the conditional distributions conditioned

on a single feature; we give details of this reason in Section 4.4.2.

Consequently, we develop an MMD-based metric for conditional distributions

P(Y 0
| Xm) and P(Y 1

| Xm). Let kY : R⇥R ! R be a positive-definite kernel

function. Then the squared MMD between the conditional distributions conditioned

on a feature value, Xm = x, is defined as

D2
m(x) := MMD2(P(Y 0

| Xm = x),P(Y 1
| Xm = x))

=EY 0,Y 00|Xm=X0
m=x[kY (Y

0, Y 00)] + EY 1,Y 10|Xm=X0
m=x[kY (Y

1, Y 10)]

� 2EY 0,Y 1|Xm=x[kY (Y
0, Y 1)], (4.2)

where superscript prime 0 denotes an independent copy of each random variable, and

expectation EY 0,Y 00|Xm=X0
m=x is taken with respect to P(Y 0, Y 00

| Xm = X 0

m = x);

other expectations are taken in a similar manner. This metric has the following

property: If kY belongs to the class of kernel functions called characteristic kernels

[Gretton et al., 2012], then squared MMD is D2
m(x) = 0 if and only if P(Y 0

| Xm =

x) = P(Y 1
| Xm = x). Examples of characteristic kernels include the Gaussian

kernel.

Based on squared MMD D2
m, we define the features related to distributional treat-

ment e↵ect heterogeneity as the following distributional treatment e↵ect modifiers:
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Definition 6. Feature Xm is said to be a distributional treatment e↵ect modifier if

there are at least two values of Xm, xm and x?
m (xm 6= x?

m), such that squared MMD

D2
m in Eq. (4.2) takes di↵erent values, i.e., D2

m(xm) 6= D2
m(x

?
m).

In other words, feature Xm is a distributional treatment e↵ect modifier if the

squared MMD between P(Y 0
| Xm) and P(Y 1

| Xm) varies depending on Xm’s

values.

To detect such a variation, we formulate the importance of each feature Xm as

the variance of the squared MMD:

Im := Var[D2
m(Xm)]. (4.3)

4.3.3 Estimator of Feature Importance

To estimate feature importance measure Im in Eq. (4.3), we need to compute the

expected values in Eq. (4.2) whose expectations can be represented as the ones over

conditional distributions P(Y 0
| Xm = x) and P(Y 1

| Xm = x).

However, we cannot directly compute them because we have no access to the

observations from these conditional distributions. To overcome this di�culty, we

develop a weighted estimator that can be computed from the observed data.

Weighted Conditional MMD (WCMMD)

To infer squared MMD D2
m(x) in Eq. (4.2), we develop an estimator of the expected

value over conditional distribution P(Y a
| Xm = x) (a 2 {0, 1}) using a weighting-

based estimation technique called importance sampling.

To derive such an estimator, we use weight functions called inverse probability

weights [Rosenbaum and Rubin, 1983]:

w0(A,X ) =
I(A = 0)

1� e(X )
, w1(A,X ) =

I(A = 1)

e(X )
, (4.4)

where e(X ) := P(A = 1 | X ) is the conditional distribution called a propensity

score, and I(A = a) is an indicator function that takes 1 if A = a; otherwise 0. In

addition, we make the two standard assumptions: positivity, which imposes support

condition 0 < e(x ) < 1 for all x [Rosenbaum and Rubin, 1983], and conditional
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ignorability (a.k.a. strong ignorability), which requires conditional independence re-

lation {Y 0, Y 1
}??A | X ; this relation is satisfied if features X are pretreatment

variables, contain no mediator or collider, and include all confounders (See e.g., El-

wert and Winship [2014] for the details).

Under these assumptions, for instance, expected value EY 1|Xm=x[Y 1] can be re-

formulated as

EY 1|Xm=x[Y
1]

=EX�m|Xm=x[EY 1|X�m,Xm=x[Y
1]]

=EX�m|Xm=x,A=1


EY |X�m,Xm=x,A=1


P(A = 1)

P(A = 1 | X )
Y

��

=EA,X�m,Y |Xm=x[w
1(A,X )Y ],

where X�m := X \Xm denotes the features with Xm removed.

To estimate squared MMD D2
m(x) in Eq. (4.2) in the same way, we formulate

the following estimator, which we call a weighted conditional MMD (WCMMD):

WCMMD2
Xm=x

:=EA,A0,X�m,X 0
�m,Y,Y 0|Xm=X0

m=x[w
0(A,X )w0(A0,X 0)kY (Y, Y 0)]

+EA,A0,X�m,X 0
�m,Y,Y 0|Xm=X0

m=x[w
1(A,X )w1(A0,X 0)kY (Y, Y 0)]

�2EA,A0,X�m,X 0
�m,Y,Y 0|Xm=X0

m=x[w
0(A,X )w1(A0,X 0)kY (Y, Y 0)]. (4.5)

We can show that this WCMMD equals D2
m(x) under conditional ignorability and

positivity assumptions:

Proposition 1. Suppose that conditional ignorability and positivity hold. Then

D2
m(x) = WCMMD2

Xm=x.

See Section 4.7.3 for the proof. Hence, WCMMD has the same property with

squared MMD D2
m(x): If kY is a characteristic kernel, WCMMD2

Xm=x = 0 if and

only if P(Y 0
| x) = P(Y 1

| x).

Empirical Estimator of WCMMD

To infer MMD D2
m(x) with Eq. (4.5), we estimate the conditional expected values

conditioned on Xm = x using sample D = {(ai,x i, yi)}ni=1
i.i.d.
⇠ P(A,X , Y ).
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If feature Xm takes discrete values, we only have to take the averages over the

individuals with Xm = x. Formally, by letting !a,x
i for i = 1, . . . , n and a 2 {0, 1} be

!a,x
i =

I(xm,i = x)Pn
l=1 I(xm,l = x)

wa(ai,x i), (4.6)

we can estimate the expected values in Eq. (4.5) by

bD2
m(x) :=

nX

i=1

nX

j=1

�
!0,x
i !0,x

j + !1,x
i !1,x

j

�
kY (yi, yj)� 2

nX

i=1

nX

j=1

!0,x
i !1,x

j kY (yi, yj).

(4.7)

For continuous-valued feature Xm, we smoothen indicator function I in Eq. (4.6)

by applying the kernel smoothing technique [Nadaraya, 1964; Watson, 1964] as

!a,x
i =

1
hXm

kXm(xm,i, x)
Pn

l=1
1

hXm
kXm(xm,l, x)

wa(ai,x i), (4.8)

where the similarity between Xm’s values is measured by kernel function kXm with

bandwidth hXm ; in our experiments, we formulate kXm as the Gaussian kernel:

kXm(xm, x?
m) = exp

✓
�
kxm � x?

mk
2

h2
Xm

◆
.

In both cases where !a,x
i is given as Eqs. (4.6) and (4.8), we can show the

consistency of estimator bD2
m(x) in the limit of infinite sample size:

Theorem 1. Suppose that weight !a,x
i is given as (4.6) or (4.8). Then under the

assumptions presented in Section 4.7.4, we have bD2
m(x)

p
! D2

m(x) as n!1.

See Section 4.7.4 for the proof. In practice, we need to estimate !a,x
i by inferring

propensity score e(X ) := P(A = 1 | X ) using a regression model, such as logistic

regression and neural network.

A drawback of estimator bD2
m(x) in Eq. (4.7) is that it needs computation time

O(n2) for sample size n, implying that estimating D2
m(x) for each x = xm,1, . . . , xm,n

requires O(n3), which is impractical for large n. To resolve this issue, in what follows,

we develop a computationally e�cient variant of bD2
m(x).
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Computationally E�cient Empirical Estimator

To reduce the time of computing the squared MMD estimator bD2
m(x) in Eq. (4.7),

we use a well-known kernel approximation technique called random Fourier features

(RFFs) [Rahimi and Recht, 2007].

With RFFs, we approximate kernel function kY (yi, yj) in Eq. (4.7) as an inner

product of two feature vectors:

kY (yi, yj) ⇡ ekY (yi, yj) = hz (yi), z (yj)iRr , (4.9)

where z : R! Rr is a mapping that outputs a vector of the r features, where r is a

hyperparameter. These r features are randomly sampled from the Fourier transform

of kernel function kY . We formulate kY as a Gaussian kernel with bandwidth hY ;

in this case, feature mapping z is given as z (y) = [
p
2 cos(�1y+⇣1), . . . ,

p
2 cos(�ry+

⇣r)]>, where �1, . . . , �r are drawn from Gaussian distributionN (0, 2hY ), and ⇣1, . . . , ⇣r

are sampled from uniform distribution Unif(0, 2⇡) [Rahimi and Recht, 2007].

Based on (4.9), we approximate estimator bD2
m(x) in Eq. (4.7) as

eD2
m(x) := heµY 0|x, eµY 0|xiRr + heµY 1|x, eµY 1|xiRr � 2heµY 0|x, eµY 1|xiRr (4.10)

where eµY 0|x and eµY 1|x are the following weighted averages of the r-dimensional ran-

dom feature vector:

eµY 0|x =
nX

i=1

!0,x
i z (yi); eµY 1|x =

nX

i=1

!1,x
i z (yi).

Using (4.10), we estimate our feature importance measure as

eIm =
1

n� 1

nX

◆=1

 
eD2
m(xm,◆)�

1

n

nX

&=1

eD2
m(xm,&)

!2

. (4.11)

Computing this estimator requires O(rn2), which is feasible by setting hyperparam-

eter r to be a moderate value.
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4.3.4 Feature Selection with Conditional Randomization Test

(CRT)

Using estimated importance measures eI1, . . . , eId, we select distributional treatment

e↵ect modifiers. To achieve this, we perform multiple hypothesis tests where for each

m = 1, . . . , d, we consider the following null and alternative hypotheses:

H0,m : Im = 0 and H1,m : Im > 0. (4.12)

To decide whether to reject each null hypothesis H0,m, we compute p-value pm,

i.e., the probability of obtaining test statistic Im such that Im � eIm under null

hypothesis H0,m. Evaluating this p-value requires the distribution of test statistic

Im under H0,m. However, analytically deriving this distribution is extremely di�cult

because the asymptotic distributions of data-dependent weights !0,x
i and !1,x

i in

feature importance measure eIm are unclear.

For this reason, we approximate the distribution of the test statistic under null

hypothesis H0,m, where feature Xm is irrelevant to treatment e↵ect heterogeneity.

To this end, we simulate such an irrelevant feature for each Xm without changing

joint distribution P(X ) so that the joint distribution of this synthetically generated

dummy feature and other observed features X�m := X \Xm is equal to the original

joint distribution, P(X ). To achieve this, following the resampling scheme called

conditional randomization test (CRT) [Candes et al., 2018, Section F], we sample

new Xm’s values from the conditional distribution, P(Xm | X�m), without looking

at the values of treatment A and outcome Y .

Our CRT proceeds as illustrated in Algorithm 1. We first estimate conditional

distribution P(Xm | X�m) by fitting a generative model L to the data; in our ex-

periments, we employ a widely-used deep generative model called the conditional

variational autoencoder (CVAE) [Sohn et al., 2015]. Then, using fitted generative

model L, we prepare B datasets, each of which contains di↵erent values of the syn-

thetic dummy features drawn from L. In particular, for each b = 1, . . . , B, we repeat

the two steps: sampling n values of feature Xm as x(b)
m,i ⇠ L(Xm | x�m,i) (i = 1, . . . , n)

and using these values to compute test statistic eI(b)
m . By repeating these steps, we
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Algorithm 1 Conditional Randomization Test (CRT)

Input: sample D = {(ai,x i, yi)}ni=1, estimated statistic eIm
Output: p-value p̂m
1: Fit generative model L to sample D.
2: for b = 1, . . . , B do
3: for i = 1, . . . , n do
4: Draw x(b)

m,i ⇠ L(Xm | x�m,i).

5: x (b)
i  x(b)

m,i [ x�m,i

6: end for
7: Compute test statistic eI(b)

m using {(ai,x
(b)
i , yi)}ni=1.

8: end for
9: Compute p-value p̂m by Eq. (4.13).

10: return p̂m

Algorithm 2 Proposed feature selection framework

Input: sample D = {(ai,x i, yi)}ni=1, significance level ↵
Output: feature index set Ŝ ✓ {1, . . . , d}
1: for m = 1, . . . , d do
2: Compute test statistic eIm with sample D.
3: Compute p-value as p̂m  CRT(D, eIm).
4: end for
5: Adjust p-values as p̂⇤1, . . . , p̂

⇤

d using a multiple testing procedure.
6: Select feature index set as Ŝ = {m : p̂⇤m  ↵}.
7: return Ŝ

obtain an empirical distribution of the test statistic and compute a p-value as

p̂m =
1

B

BX

b=1

I
⇣
eI(b)
m �

eIm
⌘

. (4.13)

After computing p-values p̂1, . . . , p̂d, we perform multiple hypothesis tests. Since

the chance of obtaining false positives increases with the number of hypotheses tested,

we control such false positives by adjusting the p-values; we used the Benjamini-

Hochber (BH) adjustment procedure [Benjamini and Hochberg, 1995] in our experi-

ments. We summarize our feature selection framework in Algorithm 2.

One of the advantages of applying CRT is that if the fitted generative model

equals the true conditional distribution (i.e., L(Xm | X�m) = P(Xm | X�m) for

all m = 1. . . . , d), it can precisely control the the type I error rate to be at most

significance level ↵ [Candes et al., 2018, Section F]. Although learning such gener-
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ative models is di�cult, we experimentally confirmed that our method successfully

controlled the type I error rate to be close to ↵ (Section 4.5.2).

As a disadvantage, performing CRT is computationally expensive: It requires

computing test statistic B times for each feature. Although this computation is

embarrassingly parallelizable, it needs O(Bdrn2) in total, even with our computa-

tionally e�cient estimator of the test statistic. Our future work will investigate how

to further reduce the computation time; for instance, the CRT’s computationally

e�cient variants (e.g., Liu et al. [2021]) might be helpful.

4.4 Related Work

4.4.1 Interpreting Treatment E↵ect Heterogeneity

A growing number of causal inference methods have been developed to accurately

estimate heterogeneous treatment e↵ects using neural networks [Johansson et al.,

2016; Shalit et al., 2017; Yoon et al., 2018], tree-based models [Hahn et al., 2020;

Hill, 2011], and machine learning frameworks called meta-learners [Künzel et al.,

2019; Nie and Wager, 2021].

However, few are designed to elucidate a causal mechanism that yields the treat-

ment e↵ect heterogeneity. The Causal Rule Ensemble method [Lee et al., 2020] seeks

the important features by learning a rule-based model that emulates the input-output

relationship of a fitted treatment e↵ect estimation model. Gilad et al. [2021] con-

sidered a hypothesis test for discovering the treatment e↵ect modifiers from social

network data. However, none of these methods can find the features related to dis-

tributional treatment e↵ect heterogeneity because they are also based on the average

treatment e↵ect and cannot find the features related to other functionals of the joint

distribution of potential outcomes.

To overcome this limitation of the existing mean-based methods, we established

a feature selection framework for discovering the important features related to the

functionals of the joint distribution of potential outcomes.

56



4.5. EXPERIMENTS

4.4.2 MMD between Potential Outcome Distributions

To find distributional treatment e↵ect modifiers, we formulated a weighted estimator

of the MMD that measures the discrepancy between conditional potential outcome

distributions.

Our estimator has a clear advantage in that it can consistently estimate the MMD

between the conditional distributions conditioned on a single feature, P(Y 0
| Xm)

and P(Y 1
| Xm) (m = 1, . . . , d), by addressing the confounders in features X .

The existing estimators cannot consistently estimate such an MMD. The kernel

treatment e↵ect (KTE) [Muandet et al., 2021] and the weighted MMD (WMMD)

[Bellot and van der Schaar, 2021] are designed to quantify the discrepancy between

marginal distributions P(Y 0) and P(Y 1); hence they cannot address the conditional

distributions. Although the conditional distributional treatment e↵ect (CoDiTE)

[Park et al., 2021] measures the MMD between conditional distributions P(Y 0
| X )

and P(Y 1
| X ), we cannot naively apply it by considering the setting where features

X only contain a single feature (i.e., X = {Xm}). This is because this measure

only addresses the confounders that are included in the conditioning variables, and

if setting X = {Xm}, we cannot eliminate the influence of the confounders in X�m.

To consistently estimate the MMD between conditional distributions P(Y 0
| Xm)

and P(Y 1
| Xm), we derived an IPW-based estimator by regarding the MMD as a

function of features X and then averaging out unwanted features X�m (by taking

an integral with respect to P(X�m | Xm)).

4.5 Experiments

4.5.1 Setup

We compared our proposed framework with the following two baselines: (1) the exist-

ing mean-based method called the selective inference method for e↵ect modification

(SI-EM) [Zhao et al., 2022] and (2) a naive variant of our method (Naive), which

samples the values of a synthetic dummy feature corresponding to Xm (m = 1, . . . , d)

from (empirical) marginal distribution P(Xm).

We ran all methods with significance level ↵ = 0.05. As regards our method

and Naive, we set the number of RFFs to r = 1000, selected the values of kernel
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bandwidths hX1 , . . . , hXd
and hY using a well-known heuristic called median heuristic

[Schölkopf et al., 2002], and inferred propensity score e(X ) by fitting a feed-forward

neural network that contains two linear layers with 50 neurons and Rectified Linear

Unit (ReLU) activation functions. With our method, we performed a CRT by setting

the number of resampled datasets to B = 100. Here we formulated generative model

L(Xm | X�m) for each m = 1, . . . , d as a CVAE whose encoders and decoders are

given as the feed-forward neural networks that contain two linear layers with 128

neurons and ReLU functions. We confirmed that the number of neurons did not

greatly a↵ect the performance in Section 4.5.4.

4.5.2 Synthetic Data Experiments

Data: We prepared synthetic datasets as follows. We drew treatment A from the

Bernoulli distribution and features X = [X1, . . . , Xd]> (d = 30) from the Gaussian

distributions:

A ⇠ Ber(0.5),

X | A = 0 ⇠ N (�µ,⌃), and X | A = 1 ⇠ N (µ,⌃),

where Ber and N denote the Bernoulli and Gaussian distributions, respectively,

µ = [0.2, . . . , 0.2]> is a d-dimensional vector, and ⌃ is a d ⇥ d covariance matrix

whose (i, j)-th element is ⌃i,j = �|i�j| (� = 0.2) for each i, j 2 {1, . . . , d}. We

sampled outcome Y = (1 � A)Y 0 + AY 1 by generating potential outcomes Y 0 and

Y 1 with the following four generation processes where five features X1, . . . , X5 are

distributional treatment e↵ect modifiers:

• LinMean:

Y 0
⇠ N (�f(X1, . . . , X5), 1);Y

1
⇠ N (f(X1, . . . , X5), 1),

• NonlinMean:

Y 0
⇠ N (�g(X1, . . . , X5), 1);Y

1
⇠ N (g(X1, . . . , X5), 1),
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• LinVar:

Y 0
⇠ N (�5, 1);Y 1

⇠ N (0, h(f(X1, . . . , X5))
2),

• NonlinVar:

Y 0
⇠ N (�5, 1);Y 1

⇠ N (0, h(g(X1, . . . , X5))
2),

where f , g and h are the following functions:

f(X1, . . . , X5) = 4X1 + 2X2 + X3 + 2X4 + 4X5,

g(X1, . . . , X5) =
5X

j=1

(Xj � 0.5)3 + 3
5X

j=1

Xj � 6,

h(v) = max(v, 1).

Under LinMean and NonlinMean, features X1, . . . , X5 a↵ect the average treatment

e↵ect while under LinVar and NonlinVar, they influence the treatment e↵ect variance.

Results: Using these synthetic datasets, we evaluated the performance of each

method. We computed a true positive rate (TPR) and a false positive rate (FPR),

defined as dTP
dT

and dFP
d�dT

, where dT = 5 is the number of truly relevant features, and

dTP and dFP are the number of truly relevant features that are correctly selected as

such and the number of irrelevant features that are wrongly selected as the relevant

ones, respectively. For each method, we performed 50 experiments with di↵erent syn-

thetic datasets generated with di↵erent random numbers and computed the average

and the standard deviation of TPRs and FPRs over 50 runs.

Figure 4.1 presents the results on the LinMean, NonlinMean, LinVar and Nonlin-

Var datasets. With all of them, our method successfully achieved high TPRs while

controlling FPRs to be close to ↵ = 0.05. Although SI-EM yielded high TPRs with

the LinMean and NonlinMean datasets, since this method is not designed to detect

the features related to treatment e↵ect variance, it failed to find important features

from the LinVar and NonlinVar datasets. With Naive, not only the TPRs but also

the FPRs were higher than our method (especially with the LinMean and LinVar

datasets), indicating that it selected many features; however, many of these were

false positives, which is problematic in practice.
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Figure 4.1: TPRs (left) and FPRs (right) of each method on synthetic data with
sample sizes n = 500, 750, . . . , 2000. Mean and standard deviation (error bars) over
50 runs with di↵erent datasets are shown.

To further illustrate the di↵erence between our method and Naive, consider how

each method approximates the p-value of each feature Xm (m = 1, . . . , d). Both

methods compute the p-value by sampling a synthetic dummy feature that is irrele-

vant to treatment e↵ect heterogeneity; however, its sampling distribution is di↵erent.

While our method samples it from (estimated) conditional distribution P(Xm | X�m)

in the CRT, Naive employs (empirical) marginal distribution P(Xm) without looking

at the values of features X�m. The latter generation process unnecessarily changes

joint distribution P(X ): The joint distribution of a synthetic feature and observed

features X�m is greatly di↵erent from that of the original features X ; this di↵erence
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Figure 4.2: Run time comparison among proposed method (red), SI-EM (blue), and
Exact (purple) on LinMean dataset with sample sizes n = 500, 750, . . . , 2000

is much larger than with our method. Due to such a large change in P(X ), Naive

failed to approximate the test statistic’s distribution and yielded high FPRs. By

contrast, by avoiding greatly changing joint distribution P(X ) with the CRT, our

method e↵ectively evaluated the statistical significance of each feature.

Meanwhile, the use of the CRT requires considerable computation time, as dis-

cussed in Section 4.3.4. To confirm this, we compared the run time of our method

with two baselines: SI-EM and the variant of our method (Exact), which computes

the feature importance measure by Eq. (4.7) without any approximation. Regarding

our method and Exact, we evaluated the total run time, including the training time

of the propensity score model and the CVAE. We ran all methods on a 64-bit CentOS

machine with 2.10 GHz Xeon Gold 6130 (x2) CPUs and 256-GB RAM.

Figure 4.2 shows the run time on the LinMean dataset with sample sizes n =

500, 750, . . . , 2000. When n = 2000, SI-EM and our method required 27 and 10, 360

seconds, respectively, thus exhibiting a notable di↵erence. However, our method

needed far less time than Exact, demonstrating the e↵ectiveness of kernel approxi-

mation with RFFs.

In summary, these results show the following findings:

• Our method poses a computational challenge; however, it successfully found

the features related to average treatment e↵ect and treatment e↵ect variance.

• SI-EM does not need much time; however, it failed to detect the features related

to treatment e↵ect variance.
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Table 4.2: p-values of features selected by our method from NHANES dataset: Mean
and standard deviation are shown for all features with mean p-values less than ↵ =
0.05.

Feature Adjusted p-value

Age 0.0075± 0.0305
Gender 0.0046± 0.0269
Number of cigarettes smoked 0.0± 0.0

Thus, our proposed feature selection framework has made a significant step to-

ward discovering the features related to distributional treatment e↵ect heterogeneity,

which, to the best of our knowledge, is the first attempt in causal inference studies.

A further reduction of computation time is left as our future work, as described in

Section 4.3.4.

4.5.3 Real-World Data Experiments

Data: We used the health records from the National Health and Nutrition Exam-

ination Survey (NHANES).3 Following Zhao et al. [2022], we collected the records

of n = 9677 individuals. Each record contains d = 20 features, such as age, gender,

race, income, and past medical history (e.g., asthma, gout, stroke, and heart disease);

3 of them take continuous values, and the others are discrete.

With this dataset, we investigated which features modify the e↵ects of obesity

on low-grade systemic inflammation by regarding whether body mass index (BMI)

exceeds 25 as treatment A and serum C-reactive protein (CRP) level as outcome

Y . Discovering such features has important medical implications because low-grade

inflammation increases the risk of various chronic diseases, such as cancers and car-

diovascular disease [Rodŕıguez-Hernández et al., 2013].

Since the truly relevant features are unknown, we cannot evaluate the TPRs and

FPRs. For this reason, we compared the features selected by our method and SI-

EM. To take into account the randomness of the CRT, we computed the mean of the

adjusted p-values over 50 runs and used this mean p-value to select the features.

Results: Table 4.2 presents the adjusted p-values for all features that are

selected by our proposed method.

3https://wwwn.cdc.gov/nchs/nhanes/
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Both our method and SI-EM successfully selected age and gender, which were

reported as important in the previous medical studies [Visser et al., 1999]. Although

SI-EM selected only these two features, our method concluded that the number of

cigarettes smoked is also statistically significant. Selecting this feature is interest-

ing and seems reasonable because the synergistic e↵ect of obesity and smoking on

systemic inflammation has been reported in previous studies [Ólafsdóttir et al., 2005].

4.5.4 Additional Experimental Results

In what follows, we present several additional synthetic data experiments to further

evaluate the performance of our method. Section 4.5.4 shows the performance on

the data where the truly relevant features do not a↵ect the discrepancy between

marginal potential outcome distributions, which is our inference target. Section 4.5.4

displays the results when using di↵erent neural network architectures in the models

of propensity score and CVAE.

Examining Counterexamples

This section presents the performance of our method on the synthetic data where the

features do not influence the discrepancy between conditional distributions P(Y 0
|

Xm) and P(Y 1
| Xm) but a↵ect joint distribution P(Y 0, Y 1

| Xm). With such

data, our method does not work well because it relies on the discrepancy between

P(Y 0
| Xm) and P(Y 1

| Xm), as described in Section 4.3.1.

To evaluate the performance, we prepared synthetic data in a similar manner to

Section 4.5.2, which only di↵ers in the generation process of potential outcomes Y 0

and Y 1. Here we set the sample size to n = 2000 and sampled the values of Y 0 and

Y 1 from the following 2-dimensional Gaussian distributions:

• LinCovar:

"
Y 0

Y 1

#
⇠ N

 "
�5

0

#
,

"
1 1� 1

h(f(X1,...,X5))

1� 1
h(f(X1,...,X5))

1

#!
, (4.14)
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Table 4.3: TPRs and FPRs of our method on LinCovar and NonlinCovar datasets.
Mean and standard deviation over 50 runs are shown.

TPR FPR

LinCovar 0.02 ± 0.06 0.02 ± 0.02
NonlinCovar 0.04 ± 0.08 0.02 ± 0.02

• NonlinCovar:

"
Y 0

Y 1

#
⇠ N

 "
�5

0

#
,

"
1 1� 1

h(g(X1,...,X5))

1� 1
h(g(X1,...,X5))

1

#!
, (4.15)

where functions f , g, and h are presented in Section 4.5.2. Under LinCovar and

NonlinCovar, features X1, . . . , X5 only influence the covariance between potential

outcomes Y 0 and Y 1 and do not a↵ect any functionals of the marginal distributions.

We performed 50 experiments and evaluated their mean and standard deviation of

TPRs and FPRs. Table 4.3 presents the results. As expected, our method could not

correctly select features X1, . . . , X5 because their values do not a↵ect the discrepancy

between conditional potential outcome distributions.

Note, however, that selecting these features is extremely challenging because it

is impossible to estimate the covariance since we cannot infer the joint distribution

of potential outcomes, as described in Section 4.3.1. Due to this di�culty, all the

existing mean-based methods also fail, and compared with such methods, ours can

detect a wider variety of features.

Performance Evaluation with Di↵erent Neural Network Architectures

Since our method relies on two neural network models to represent propensity func-

tion e(X ) and CVAE L(Xm | X�m) (m = 1, . . . , d), we confirmed how greatly the

neural network architectures a↵ect the overall feature selection performance.

To confirm this, we performed additional synthetic data experiments with sample

size n = 1000. We evaluated the mean and standard deviation of TPRs and FPRs

over 50 runs by changing the number of neurons of each layer in the two-layered

neural network models, which is fixed to 50 for propensity score and to 128 for

CVAE in the experiments in Section 4.5.2.
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Table 4.4: TPRs and FPRs of our method with di↵erent numbers of neurons in
propensity score model. Mean and standard deviation over 50 runs are shown.

Number of neurons in propensity score model
25 50 100 200

LinMean
TPR 0.80±0.21 0.79±0.22 0.84±0.14 0.84±0.16
FPR 0.06±0.06 0.06±0.07 0.08±0.06 0.08±0.06

NonlinMean
TPR 0.95±0.10 0.94±0.12 0.98±0.06 0.97±0.08
FPR 0.04±0.04 0.04±0.04 0.03±0.03 0.05±0.04

LinVar
TPR 0.71±0.19 0.73±0.19 0.77±0.16 0.76±0.18
FPR 0.08±0.07 0.07±0.08 0.10±0.07 0.09±0.07

NonlinVar
TPR 0.64±0.25 0.62±0.25 0.63±0.26 0.64±0.25
FPR 0.04±0.04 0.04±0.04 0.04±0.04 0.04±0.04

Table 4.5: TPRs and FPRs of our method with di↵erent numbers of neurons in
CVAE model. Mean and standard deviation over 50 runs are shown.

Number of neurons in CVAE model
16 64 128 256

LinMean
TPR 0.82±0.18 0.82±0.17 0.79±0.22 0.83±0.16
FPR 0.08±0.06 0.07±0.06 0.06±0.07 0.10±0.07

NonlinMean
TPR 0.96±0.09 0.98±0.06 0.94±0.12 0.94±0.05
FPR 0.04±0.04 0.03±0.03 0.04±0.04 0.05±0.04

LinVar
TPR 0.68±0.19 0.66±0.17 0.73±0.19 0.70±0.16
FPR 0.07±0.05 0.06±0.05 0.07±0.08 0.08±0.07

NonlinVar
TPR 0.58±0.25 0.56±0.25 0.62±0.25 0.60±0.20
FPR 0.02±0.03 0.03±0.03 0.04±0.04 0.04±0.05

Tables 4.4 and 4.5 display the results. With all synthetic datasets, the number

of neurons in propensity score and CVAE did not greatly a↵ect the performance.

4.6 Conclusions

We proposed a feature selection framework for discovering the features related to the

distributional treatment e↵ect heterogeneity. The key advantage of our framework

is that it can identify the features whose values influence the functionals of the joint

distribution of potential outcomes if the feature values also a↵ect the discrepancy

between conditional potential outcome distributions. To the best of our knowledge,

this is the first feature selection approach to revealing the causal mechanism that

yields the distributional treatment e↵ect heterogeneity. We experimentally show

that our feature selection framework successfully selected important features and

outperformed the existing method.
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4.7 Proofs

4.7.1 Relationship between Marginal and Joint Distributions

To confirm that our feature importance measure is reasonable, we consider the fol-

lowing two relationships:

• If the discrepancy between marginal potential outcome distributions P(Y 0
|

Xm) and P(Y 1
| Xm) varies with feature Xm’s values, then joint distribu-

tion P(Y 0, Y 1
| Xm) is also changeable depending on Xm’s values.

• If joint distribution P(Y 0, Y 1
| Xm) changes depending on feature Xm’s

values, then some functionals of the joint distribution depend on Xm’s val-

ues.

Since the second relationship is obvious, in this section, we show that the first rela-

tionship holds. For simplicity, we consider binary feature Xm 2 {0, 1}; however, the

following discussion also holds for discrete-valued and continuous-valued Xm.

To prove the first relationship, it is su�cient to show that its contraposition

holds: If P(Y 0, Y 1
| Xm = 0) = P(Y 0, Y 1

| Xm = 1), then the discrepancy between

P(Y 0
| Xm = 0) and P(Y 1

| Xm = 0) equals the one between P(Y 0
| Xm = 1)

and P(Y 1
| Xm = 1). We can easily prove this contraposition. From the equality

of the joint distributions, we have P(Y 0
| Xm = 0) = P(Y 0

| Xm = 1) and P(Y 1
|

Xm = 0) = P(Y 1
| Xm = 1). These equalities imply that the discrepancy between

P(Y 0
| Xm = 0) and P(Y 1

| Xm = 0) equals the one between P(Y 0
| Xm = 1) and

P(Y 1
| Xm = 1). Thus we proved the first relationship.

4.7.2 Counterexamples

As described in Section 4.3.1, there are several counterexamples where our method

cannot find the features related to the functionals of the joint distribution of potential

outcomes.

Let Y 0 and Y 1 be the potential outcomes and X 2 {0, 1} be a binary feature.

Suppose that the discrepancy between marginal distributions P(Y 0
| X) and P(Y 1

|

X) is measured as the MMD [Gretton et al., 2012]. Then we can represent such
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counterexamples as the cases where the following relations hold:

P(Y 0, Y 1
| X = 0) 6= P(Y 0, Y 1

| X = 1)

MMD2(P(Y 0
| X = 0),P(Y 1

| X = 0)) = MMD2(P(Y 0
| X = 1),P(Y 1

| X = 1)).

Letting the potential outcomes be Y 0, Y 1
2 {�1, 0, 1} ⇢ R, we take an example

of joint probability tables that satisfies the above relations in Table 4.6. In this

example, the MMD between marginal distributions remains unchanged:

MMD2(P(Y 0
| X = 0),P(Y 1

| X = 0)) = MMD2(P(Y 0
| X = 1),P(Y 1

| X = 1)) = 0.

By contrast, the joint distribution changes depending on X’s values, as illustrated

in Table 4.6. As a result, although the average treatment e↵ect does not change,

the treatment e↵ect variance and the covariance between potential outcomes vary as

follows:

E[Y 1
� Y 0

| X = 0] = E[Y 1
� Y 0

| X = 1] = 0

Cov[Y 0, Y 1
| X = 0] = 1; Cov[Y 0, Y 1

| X = 1] = �1

Var[Y 1
� Y 0

| X = 0] = 0; Var[Y 1
� Y 0

| X = 1] = 4.

In this example, since we cannot detect any change in the MMD between marginal

distributions, our method fails to find that feature X is related to treatment e↵ect

heterogeneity. Note, however, that the existing mean-based approaches would also

fail because the average treatment e↵ect remains unchanged.

Addressing such counterexamples is extremely di�cult. It requires us to esti-

mate the functionals of the joint potential outcome distribution; however, inferring

such a joint distribution is impossible, as described in Section 4.3.1. One possible

solution is to utilize several techniques for estimating the lower and upper bounds

on these functionals by making additional assumptions [Chen et al., 2016; Russell,

2021; Shingaki and Kuroki, 2021]. Establishing a feature selection framework that

utilizes such lower and upper bounds remains our future work.
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Table 4.6: Joint probability tables of potential outcomes. Nonzero probabilities are
shown in bold. Total expresses marginal potential outcome probabilities.

P(Y 0, Y 1
| X = 0)

Y 0
Y 1

-1 0 1 Total

-1 0.5 0 0 0.5
0 0 0 0 0
1 0 0 0.5 0.5

Total 0.5 0 0.5 1.0

P(Y 0, Y 1
| X = 1)

Y 0
Y 1

-1 0 1 Total

-1 0 0 0.5 0.5
0 0 0 0 0
1 0.5 0 0 0.5

Total 0.5 0 0.5 1.0

4.7.3 Proposition 1

Proof. Recall the following definition of WCMMD2
Xm=x:

WCMMD2
Xm=x

:=EA,A0,X�m,X 0
�m,Y,Y 0|Xm=X0

m=x[w
0(A,X )w0(A0,X 0)kY (Y, Y 0)]

+EA,A0,X�m,X 0
�m,Y,Y 0|Xm=X0

m=x[w
1(A,X )w1(A0,X 0)kY (Y, Y 0)]

�2EA,A0,X�m,X 0
�m,Y,Y 0|Xm=X0

m=x[w
0(A,X )w1(A0,X 0)kY (Y, Y 0)]. (4.5)

We show that the first term in Eq. (4.5) equals the one in D2
m(x) in Eq. (4.2).

Using conditional ignorability and positivity assumptions, we have

EA,A0,X�m,X 0
�m,Y,Y 0|Xm=X0

m=x[w
0(A,X )w0(A0,X 0)kY (Y, Y 0)]

=EX�m,X 0
�m|Xm=X0

m=x


EA,A0,Y,Y 0|X�m,X 0

�m,Xm=X0
m=x


I(A = 0)

1� e(X )

I(A0 = 0)

1� e(X 0)
kY (Y, Y 0)

��

=EX�m,X 0
�m|Xm=X0

m=x[EY 0,Y 00|X�m,X 0
�m,Xm=X0

m=x[kY (Y
0, Y 00)]]

=EY 0,Y 00|Xm=x,X0
m=x[kY (Y

0, Y 00)].

Similarly, the second and third terms in Eq. (4.5) equal those in MMD2(P(Y 0
|

x),P(Y 1
| x)) in Eq. (4.2). Thus we proved Proposition 1. ⇤
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4.7.4 Theorem 1

From Proposition 1, we only have to show that bD2
m(x)

p
! WCMMD2

Xm=x (n ! 1)

under the assumptions of conditional ignorability and positivity:

Assumption 3 (Conditional ignorability). For treatment A, features X, and poten-

tial outcomes Y 0 and Y 1, the following conditional independence relation holds:

{Y 0, Y 1
}??A | X.

Assumption 4 (Positivity). For any value x of features X, propensity score e(X)

satisfies the following support condition:

0 < e(x) < 1.

To prove bD2
m(x)

p
! WCMMD2

Xm=x (n ! 1), we make several additional as-

sumptions and impose the condition that the following symmetric function is square

integrable:

K((A,X , Y ), (A0,X 0, Y 0))

:=(w0(A,X )w0(A0,X 0) + w1(A,X , Y )w1(A0,X 0, Y 0)

� w0(A,X )w1(A0,X 0)� w1(A,X )w0(A0,X 0))kY (Y, Y 0).

Assumption 5. Symmetric function K is square integrable:

EA,A0,X,X0,Y,Y 0 [K((A,X, Y ), (A0,X0, Y 0))] <1.

When Xm is continuous-valued, and !a,x is given by (4.8), we make the following

standard assumptions on kernel function kXm :

Assumption 6. Let KXm be the following kernel function that measures the simi-

larity between two values xm and x?
m on X :

KXm(xm � x?
m) :=

1

hXm

kXm(xm, x?
m).

Then the order of function KXm(u) is given by integer � � 2; in other words, the
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following holds:

Z
u�KXm(u)du <1.

Assumption 7. Bandwidth hXm of kernel function kXm satisfies

hXm ! 0 and nhXm !1. (n!1)

In addition, we impose the smoothness conditions on marginal distribution P(Xm)

and the joint distribution of features P(X ):

Assumption 8. Density functions P(Xm) and P(X) are � times continuously dif-

ferentiable.

Using these assumptions, we prove Theorem 1:

Proof. The case where weight !a,x
i is given by Eq. (4.6):

Let Ki,j := K((ai,x i, yi), (aj,x j, yj)) for i, j 2 {1, . . . , n} and nx :=
Pn

i=1 I(xm,i = x).

Then empirical estimator bD2
m(x) is given as

bD2
m(x) =

1

n2
x

nX

i=1

nX

j=1

I(xm,i = x) I(xm,j = x)Ki,j

=

✓
n

nx

◆2 1

n2

nX

i=1

nX

j=1

I(xm,i = x) I(xm,j = x)Ki,j

=

✓
n

nx

◆2

V x
n ,

where

V x
n :=

1

n2

nX

i=1

nX

j=1

I(xm,i = x) I(xm,j = x)Ki,j

is a V-statistic whose corresponding U-statistic is given as

Ux
n :=

1

nC2

X

i<j

I(xm,i = x) I(xm,j = x)Ki,j.
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We prove the consistency of bD2
m(x) by showing the following three relations:

Ux
n

a.s.
! EA,A0,X ,X 0,Y,Y 0 [I(Xm = x) I(Xm = x)K((A,X , Y ), (A0,X 0, Y 0))] (4.16)

✓
n

nx

◆2

Ux
n

a.s.
! WCMMD2

Xm=x (4.17)

Ux
n � V x

n
p
! 0. (4.18)

Relation (4.16) holds from the Strong Law of Large Numbers for U-statistics [Hoe↵d-

ing, 1961]. By combining this relation with the fact that nx
n = 1

n

Pn
i=1 I(xm,i = x)

a.s.
!

P(Xm = x), we can derive the relation in Eq. (4.17). The relation in Eq. (4.18)

can be shown as follows. Under Assumption 5, since E[K((A,X , Y ), (A0,X 0, Y 0))] 

E[K((A,X , Y ), (A,X , Y ))] < 1, by employing Lemma 5.7.3 in Serfling [2009], we

have E[|Ux
n � V x

n |] = O(n�1), and thus by applying Markov’s inequality, we have

P(|Ux
n � V x

n | � ✏) 
E[|Ux

n � V x
n |]

✏
! 0 as n!1,

which is su�cient to prove the relation in Eq. (4.18).

By combining Eqs. (4.16), (4.17), and (4.18), we have bD2
m(x)

p
!WCMMD2

Xm=x

as n!1. Since Proposition 1 holds under Assumptions 3 and 4, we have bD2
m(x)

p
!

D2
m(x) as n!1. Thus we prove the consistency of bD2

m(x).

The case where weight !a,x
i is given by Eq. (4.8):

In this case, empirical estimator bD2
m(x) is given as

bD2
m(x) =

1
n2h2

Xm

Pn
i=1

Pn
j=1 kXm(xm,i, x)kXm(xm,j, x)Ki,j

1
n2h2

Xm

Pn
i=1

Pn
j=1 kXm(xm,i, x)kXm(xm,j, x)

. (4.19)

From the Strong Law of Large Numbers, as n!1, the numerator in Eq. (4.19)

converges to the following expected value:

EA,A0,X ,X 0,Y,Y 0


1

h2
Xm

KXm

✓
Xm � x

hXm

◆
KXm

✓
X 0

m � x

hXm

◆
K((A,X , Y ), (A0,X 0, Y 0))

�
.

Under Assumptions 6 and 8, we can reformulate this expected value by performing
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a Taylor expansion as follows:

EA,A0,X ,X 0,Y,Y 0


1

h2
Xm

KXm

✓
Xm � x

hXm

◆
KXm

✓
X 0

m � x

hXm

◆
K((A,X , Y ), (A0,X 0, Y 0))

�

=EU=u,V=v[EA,A0,X�m,X 0
�m,Y,Y 0|Xm=x+hXmu,X0

m=x+hXmv[

P(Xm = x + hXmu) P(X 0

m = x + hXmv)KXm(u)KXm(v)K((A,X , Y ), (A0,X 0, Y 0))]]

=EA,A0,X�m,X 0
�m,Y,Y 0|Xm=x,X0

m=x[P
2(Xm = x)K((A,X , Y ), (A0,X 0, Y 0))] + Op

�
h�
Xm

�
.

(4.20)

Regarding the denominator in Eq. (4.19), from the consistency results of the

kernel density estimator in Wied and Weißbach [2012], we have

1

nhXm

nX

j=1

kXm(xm,j, x)
a.s.
! P(Xm = x). (4.21)

By combining Eqs. (4.20) and (4.21), under Assumption 7, we have bD2
m(x)

p
!

WCMMD2
Xm=x as n!1. Using Proposition 1, we have bD2

m(x)
p
! D2

m(x) as n!1.

Thus we proved the consistency of bD2
m(x).

⇤
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Chapter 5

Making Individually Fair

Predictions with Causal Pathways

In this chapter, we consider the problem of learning a fair predictive model by uti-

lizing the causal relationships underlying in the data. Machine learning is being

increasingly used to make algorithmic decisions that have strong societal impact on

people’s lives. Due to their huge societal impact, such algorithmic decisions need to

be accurate and fair with respect to sensitive features, including race, gender, religion,

and sexual orientation. To achieve a good balance between prediction accuracy and

fairness, causality-based methods have been proposed, which utilize a causal graph

with unfair pathways. However, as described in this chapter, none of these methods

can ensure fairness for each individual without making restrictive functional assump-

tions about the data generating processes, which are not satisfied in many cases. To

overcome such a weakness of the existing methods, we propose a far more practical

causality-based framework for learning an individually fair classifier.

5.1 Introduction

Algorithmic decision-making systems based on machine learning have become ubiq-

uitous in our societies. These systems are increasingly used to make decisions that

severely a↵ect people’s lives, e.g., granting loans [Khandani et al., 2010], employment

decisions [Houser, 2019], child abuse assessment [Chouldechova et al., 2018], and re-

cidivism predictions [Angwin et al., 2016]. Since these decisions often have a huge
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societal impact on each individual, machine learning predictions that support them

must be both accurate and fair with respect to such sensitive features as gender,

race, religion, disabilities, and sexual orientation.

To make fair predictions, many methods have been developed that remove the

correlation between sensitive features and predictions [Dwork et al., 2012; Feldman

et al., 2015; Hardt et al., 2016]. However, in complex real-world scenarios, these

methods may impose unnecessary fairness constraints and decrease the prediction

accuracy. Consider hiring decisions for male and female applicants. When applied to

this scenario, traditional correlation-based methods reject male and female applicants

at the same rate [Feldman et al., 2015]. However, in complex real-world scenarios,

the presence of gender di↵erences in rejection rates may sometimes be justified. For

instance, consider hiring decisions for physically demanding jobs. Because the jobs

require physical strength, it is sometimes not discriminatory to reject applicants due

to a lack of physical strength. Since physical strength is often a↵ected by gender,

such rejections produce a gender di↵erence in rejection rates, which is fair and does

not need to be removed. Nevertheless, the aforementioned methods aim to eliminate

such fair di↵erences, thus imposing unnecessary fairness constraints. This implies

that when we have a male and female applicant, even if the man has a much more

physical strength than the woman, these methods may reject him and accept her,

which greatly reduces the prediction accuracy.
;`�T?R

A M Y

Q

*QTv`B;?iÜkyRN Lhh +Q`TX �HH _B;?ib _2b2`p2/X

Figure 5.1: Causal graph
representing a scenario
of hiring decisions for
physically demanding
jobs. Red edge A ! Y
is regarded as unfair
pathway ⇡.

To achieve high prediction accuracy, several

causality-based methods have been proposed that avoid

imposing unnecessary fairness constraints [Chiappa and

Gillam, 2019; Kusner et al., 2017; Nabi and Shpitser,

2018; Zhang et al., 2017]. These methods measure the

unfairness of predictions using a DAG called a causal

graph that contains unfair pathways. For instance, in the

case of hiring decisions for physically demanding jobs, a

causal graph may be expressed as shown in Figure 5.1,

where A, Q, M , and Y represent gender, qualifications,

physical strength, and prediction, respectively. With

this causal graph, we can express our consensus that

prediction Y is unfair if it is based on gender A and fair
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if it is based on physical strength M . To express such a consensus, we regard A! Y

as unfair and A! M ! Y as fair, expressed by unfair pathway ⇡ = {A! Y }. By

utilizing this unfair pathway, we can e↵ectively measure unfair gender di↵erences as

unfair path-specific e↵ects [Avin et al., 2005] of gender A on prediction Y via unfair

pathway ⇡.

However, due to the di�culty of estimating such an unfair e↵ect, no existing

method can ensure fairness for each individual without making restrictive functional

assumptions on the data. To guarantee individual-level fairness, the path-specific

counterfactual fairness (PSCF) method [Chiappa and Gillam, 2019] requires an as-

sumption that the data are generated by a restricted class of functions called additive

noise models [Hoyer et al., 2009]. Unfortunately, this functional assumption is not

satisfied in many cases. Although several existing methods such as the fair inference

on outcome (FIO) method [Nabi and Shpitser, 2018] do not require such demanding

functional assumptions, they cannot ensure fairness for each individual.

In this chapter, we propose a learning framework that guarantees individual-level

fairness without making impractical functional assumptions. We train an individ-

ually fair classifier based on an unfairness measure that can be estimated without

making strong functional assumptions on data. To obtain such an unfairness mea-

sure, we consider the probability of individual unfairness (PIU), i.e., the probability

that an unfair e↵ect takes non-zero values, and derive its upper bound that can

be estimated from data. We train an individually fair classifier by forcing this up-

per bound value to be nearly zero, which can be achieved by solving the penalized

optimization problem.

5.1.1 Contributions

Our contributions are summarized as follows:

• We establish a learning framework that guarantees fairness for each individual

without restrictive functional assumptions on data (Table 5.1). To achieve this,

we force the PIU value to be close to zero by imposing a penalty on its upper

bound, which we can estimate from data.

• We elucidate why imposing such a penalty guarantees individual-level fairness

in Section 5.4. To do so, we compare our penalty with the constraint of the
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Table 5.1: Comparison with existing methods

Method Individually fair Functional assumptions on data

Our method Yes Unnecessary
PSCF [Chiappa and Gillam, 2019] Yes Necessary
FIO [Nabi and Shpitser, 2018] No Unnecessary

existing FIO method, which does not ensure individual-level fairness, from a

viewpoint of feasible regions of (constrained) optimization problems.

• We show how our learning framework can be extended to address challenging

real-world scenarios in Section 5.5. We provide two extensions that allow us to

address cases where there are unobserved variables called latent confounders

(Section 5.5.1) and where the true causal graph is uncertain (Section 5.5.2).

• We experimentally show that our method makes much fairer predictions for

each individual than the existing methods at a slight expense of prediction

accuracy.

The rest of this chapter is organized as follows. Section 5.2 describes our problem

setting, several basic concepts of causality, and the weaknesses of the existing meth-

ods. Section 5.3 presents our proposed learning framework that resolves the weak-

nesses of the existing methods. Section 5.4 illustrates why our framework guarantees

individual-level fairness. Section 5.5 introduces two extensions of our framework for

dealing with challenging real-world scenarios. Section 5.6 shows the performance of

our learning framework (Section 5.3) and its extensions (Section 5.5). Section 5.7

concludes this chapter. All proofs are provided in Section 5.8.

5.2 Background

5.2.1 Problem Statement

We consider a binary classification task that takes the following two inputs. One is

training data that contain the observations of decision outcome Y 2 {0, 1} and the

features of each individual X , including sensitive feature A 2 {0, 1}. The other is

a DAG called a causal graph, whose nodes and edges express random variables in

{X , Y } and causal relationships, respectively [Pearl, 2009]. In most of this chapter,
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we assume that such a graph structure can be depicted by domain experts or inferred

from data using existing causal discovery methods [Glymour et al., 2019]. Although

this assumption is widely used in the existing methods [Chiappa and Gillam, 2019;

Kusner et al., 2017; Nabi and Shpitser, 2018; Zhang and Wu, 2017], it can be violated

if the true causal graph is uncertain, which is possible in practice. To address such

cases, in Section 5.5.2, we consider a variant of the classification task where multiple

candidates of causal graphs are given as input.

Taking training data and causal graph(s) as input, we train classifier h✓ that

predicts decision outcome Y from features X . We seek classifier parameter ✓ that

achieves a good balance between prediction accuracy and fairness with respect to

sensitive feature A. Let L✓ be a loss function that measures prediction errors, and

let G✓ be a penalty function that quantifies the unfairness of predictions. Given n

training instances {(x i, yi)ni=1}, we consider the following optimization problem:

min
✓

1

n

nX

i=1

L✓(x i, yi) + �G✓(x 1, . . . ,xn), (5.1)

where � � 0 is a hyperparameter that controls the penalty on unfairness.

To achieve high prediction accuracy, we must appropriately design penalty func-

tion G✓ in (5.1) to avoid unnecessary penalizations. For instance, in the example of

hiring decisions for physically demanding jobs (Section 5.1), imposing a penalty by

gender di↵erences in rejection rates might be unnecessary because this gender di↵er-

ence is yielded not only by the rejections of applicants based on gender A but also

based on physical strength M ; the latter rejection is sometimes not discriminatory

since the job requires physical strength.

To avoid imposing such an unnecessary penalization, we utilize prior knowledge

about discrimination (e.g., the consensus that rejecting applicants because of the

lack of physical strength is fair only if physical strength is necessary for the job). To

express such prior knowledge, we use unfair pathways ⇡ in the input causal graph,

as illustrated in the next section.

5.2.2 Unfair Pathway Examples

We take examples of unfair pathways based on two scenarios of hiring decisions.

We consider the following features of each applicant: gender A, qualification Q,
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(b): Example 1 (c): Example 2
graph1
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Copyright�2021 NTT corp. All Rights Reserved.

graph1

A D M Y

Q

Copyright�2021 NTT corp. All Rights Reserved.
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(a): Causal graph structure

Figure 5.2: Each hiring decision scenario is expressed by causal graph structure
in (a), where A, Q, M , D, and Y denote gender, qualification, physical strength,
academic background, and prediction. Our prior knowledge about discrimination is
expressed as unfair pathways. (b): In Example 1, solid red edge A ! Y is unfair.
(c): In Example 2, A! Y and dashed red pathway A! D ! Y are unfair.

physical strength M , and academic background D (e.g., field of study). The causal

relationships between these features and prediction Y are represented by the causal

graph structure displayed in Figure 5.2(a).

From the pathways from A to Y in this causal graph, we choose unfair pathways

⇡, whose choice depends on the consensus on discrimination in each scenario. In

what follows, we present the simplest choice of unfair pathways.

Example 1. Let direct pathway A ! Y be unfair (i.e., ⇡ = {A ! Y }), as

illustrated in Figure 5.2(b). With this choice of unfair pathway ⇡, we can express

our consensus that only direct discrimination (i.e., treating someone unfairly

because of gender A) should be prohibited, thus indicating that prediction Y is

discriminatory only if it is based on gender A.

As described in Kusner et al. [2017, Section S4], when only direct pathway ⇡ =

{A ! Y } is regarded as unfair as illustrated in Example 1, we can make fair

predictions by training a predictive model without sensitive feature A. Since several

input features (i.e., academic background D and physical strength M) are a↵ected
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by A, the trained predictive model may still exhibit a large di↵erence of rejection

rates between men and women; however, this gender di↵erence is regarded as fair

in this scenario. There might be cases where a job needs expertise in a particular

academic background and much physical strength.

In more complicated scenarios than Example 1, we cannot achieve fairness only

by removing sensitive feature A from inputs of a predictive model. For instance,

consider the cases where unfair pathways ⇡ contain multiple pathways from A to Y :

Example 2. Let unfair pathways be ⇡ = {A! Y, A! D ! Y } (Figure 5.2(c)).

These unfair pathways imply that we should avoid not only direct discrimination

(A ! Y ) but also indirect discrimination based on academic background D

(A ! D ! Y ). To forbid such indirect discrimination, we need to eliminate

gender di↵erences in rejection rates that are yielded by rejecting applicants based

on whether they have academic expertise in a particular domain (e.g., computer

science) whose number of students exhibits a large gender di↵erence.

In Example 2, although it is unfair to reject applicants based on academic

background D, it is fair to decline their job applications based on physical strength

M because pathway A!M ! Y is not included in unfair pathways ⇡. This might

correspond to hiring decision scenarios for jobs that require much physical strength

(but no particular academic expertise).

A naive approach to ensure fairness in these scenarios is to predict without gender

A or academic background D. This approach, however, may unnecessarily decrease

the prediction accuracy if D is only slightly influenced by gender A and largely

a↵ected by such unobserved important features as logical thinking skills.

To achieve high prediction accuracy, we need to design penalty function G✓ in

(5.1) by measuring the unfairness from data based on unfair pathways ⇡.

5.2.3 Measuring Unfairness from Data

To measure the unfairness of predictions based on data, we utilize the concept of

path-specific e↵ects [Avin et al., 2005], which express how largely an observed variable

a↵ects another variable via pathways in a causal graph. This unfairness measure,

which we call an unfair e↵ect, enables us to quantify how greatly sensitive feature A

influences prediction Y via unfair pathways ⇡.
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Such an unfair e↵ect is defined for each individual as a di↵erence between the

two predicted decision outcomes that are obtained using di↵erent feature attributes.

For instance, when making a hiring decision for a female applicant, an unfair e↵ect

for her is the di↵erence between the two predictions, each of which is made using the

following di↵erent CVs. One is the original CV, which includes her feature attributes.

The other is a counterfactual CV where some of her attributes are modified as if she

were male. This modification of feature attributes depends on unfair pathways ⇡.

For example, in the case of Example 2 with ⇡ = {A! Y, A! D ! Y }, gender A

is changed to male, and academic background D is modified to a counterfactual one

that she would choose if she were male; on the other hand, physical strength M is

left unchanged because it does not appear in ⇡, which means that it is irrelevant to

discrimination.

To express such a counterfactual attribute, we need to formulate how each feature

attribute is determined and express what attributes would be obtained if sensitive

feature attribute were changed. To formulate them, we need an SEM and an interven-

tional SEM that express generating processes of (observed) data and counterfactual

data, respectively.

SEMs and Interventional SEMs

An SEM, which expresses how each random variable value is determined. As de-

scribed in Definition 4 in Section 2.3.1, it is defined as triplet M = (U ,V ,F ), where

U denotes unobserved variables called exogenous variables, V denotes observed vari-

ables called endogenous variables, F denotes deterministic functions. Each observed

variable V 2 V is determined by the following structural equation:

V = fV (pa(V ),U V ), (2.15)

where pa(V ) ✓ V \V are the observed variables that are the parents of V in the

causal graph, and U V ✓ U are unobserved variables that represent external factors,

such as measurement errors and unmeasurable quantities.

In our problem setting, we consider the following SEM, Mp, where superscript

p denotes prediction. With this SEM, by letting V = {X , Y }, we express how

the values of features X and prediction Y are determined. Since prediction Y is

represented using classifier h✓, structural equation over Y is given by Y = h✓(X )
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if it is deterministic; otherwise, Y = h✓(X ,U Y ), where U Y ✓ U denotes the

unobserved random noises used in the classifier. These formulations of structural

equations can be regarded as a special case of (2.15), where function fY 2 F is

replaced with classifier h✓. By contrast, structural equations over features X are

formulated without considering such a special case. To take an example, consider

the causal graph in Figure 5.2(a), where X = {A, Q, D, M}. The parents of each

feature variable are pa(A) = �, pa(Q) = �, pa(D) = {A, Q}, and pa(M) =

{A, Q}, respectively. Based on these parental relationships between variables, we

can express various data generating processes as structural equations. For instance,

using univariate unobserved noises UA, UQ, UM , and UD, the following structural

equations over A, Q, M , and D might be possible:

A = UA, Q = UQ, M = 3A + 0.5Q + UM , D = A + UDQ. (5.2)

If such an SEM is given, we can formulate how attributes for each individual are

determined under a counterfactual situation where their sensitive feature attribute is

changed. To do so, we replace the structural equation over sensitive feature A (e.g.,

A = UA in Eq. (5.2)) with A = a, where a 2 {0, 1} is a constant. As described in Sec-

tion 2.3.2, this replacement of structural equations is called intervention do(A = a),

which forces A’s value to be constant A = a for all individuals. This indicates that

even when some individuals have attribute A 6= a, which is randomly determined by

an original SEM, it is changed to a di↵erent one, A = a, expressing the counterfac-

tual situation. The data generating processes under such counterfactual situations

are characterized by an SEM modified by intervention do(A = a), called an interven-

tional SEM, denoted by M
p
A=a. For instance, when the original SEM is expressed

with structural equations (5.2), interventional SEM M
p
A=a is formulated using the

following structural equations:

A = a, Q = UQ, M(a) = 3a + 0.5Q + UM , D(a) = a + UDQ, (5.3)

where gender A is fixed to constant a, and attributes M(a) and D(a) are a↵ected

by this constant. For individuals with (observed) gender A 6= a, attributes M(a)

and D(a) are not observed; they represent the counterfactual attributes of physical

strength M and academic background D if their gender A were changed to a. By
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contrast, for individuals whose (observed) gender A is expressed as a, attributes

M(a) and D(a) are identical to the observed attributes: M and D.

Using such attributes as M(a) and D(a) in Eq. (5.3), we formulate the unfair

e↵ects in the next section.

Unfair E↵ects

An unfair e↵ect is the di↵erence between two predictions, YA(1k⇡ � YA(0, where

YA(0 and YA(1k⇡ are called potential outcomes.

Potential outcome YA(0 is defined as prediction Y under interventional model

M
p
A=0 with intervention do(A = 0). By contrast, YA(1k⇡ is formulated using two

interventional models, Mp
A=0 and M

p
A=1, whose formulation depends on unfair path-

ways ⇡.1

For instance, for Example 1 in Section 5.2.2, these potential outcomes are for-

mulated to measure unfair e↵ects based on direct pathway ⇡ = {A ! Y }. When

classifier h✓(A, Q, M, D) is deterministic,2 potential outcomes YA(0 and YA(1k⇡ are

expressed:

YA(0 = h✓(0, Q, M(0), D(0)) and (5.4)

YA(1k⇡ = h✓(1, Q, M(0), D(0)), (5.5)

where M(0) and D(0) denote features M and D under intervention do(A = 0), as

presented in Eq. (5.3). In Eq. (5.4), input A = 0 is used. By contrast in Eq. (5.5),

it is switched to A = 1 without changing the other input features (i.e., Q, M(0), and

D(0)). By taking di↵erence YA(1k⇡ � YA(0 based on these inputs, we can measure

the unfairness as path-specific e↵ects via direct pathway ⇡ = {A ! Y }; such path-

specific e↵ects correspond to the measure of direct e↵ects called NDEs [Pearl, 2001],

which is described in Section 2.3.

Unlike NDEs, path-specific e↵ects can quantify unfairness based on multiple path-

ways from A to Y . For example, they can measure the unfairness in Example 2 in

Section 5.2.2, where unfair pathways are ⇡ = {A! Y, A! D ! Y } by formulating

1Here A = 0 can be regarded as a baseline for measuring an unfair e↵ect, and this baseline can
be switched to A = 1, which yields potential outcomes YA(1 and YA(0k⇡.

2When classifier h✓ is not deterministic, potential outcomes are formulated in the same way
using random noise that is employed in the classifier.
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potential outcomes as follows:

YA(0 = h✓(0, Q, M(0), D(0)) and (5.4)

YA(1k⇡ = h✓(1, Q, M(0), D(1)). (5.6)

Here potential outcome YA(0 is given in the same way as in Example 1 because

it does not depend on unfair pathways ⇡. By contrast, potential outcome YA(1k⇡ is

formulated by modifying inputs A = 0 and D(0) in Eq. (5.4) to A = 1 and D(1). By

modifying inputs in this way and taking di↵erence YA(1k⇡ � YA(0, we can measure

the unfairness based on unfair pathways ⇡ = {A! Y, A! D ! Y }.

Intuitively, in the hiring decision scenario, switching several input feature at-

tributes corresponds to modifying a CV, and by computing YA(1k⇡�YA(0 based on

such inputs, we measure the unfair di↵erences of predicted hiring decision outcomes.

In practice, however, we cannot compute such unfair di↵erences because some

input features are not observed for each individual. For instance, to compute po-

tential outcomes based on Eqs. (5.4) and (5.6), we need both input features D(0)

and D(1). They are, however, not jointly observed for each individual as already

described, which makes it impossible to compute an unfair e↵ect for each individual.

For this reason, to learn fair predictive models, existing methods [Chiappa and

Gillam, 2019; Nabi and Shpitser, 2018; Zhang et al., 2017] use the (conditional) mean

unfair e↵ect, which can be estimated from observed data under several assumptions.

Mean Unfair E↵ects and Conditional Mean Unfair E↵ects

Formally, the (conditional) mean unfair e↵ect is defined as the (conditional) expected

value of unfair e↵ects:

Definition 7. For unfair pathways ⇡ and potential outcomes YA(0, YA(1k⇡ 2 {0, 1},

the mean unfair e↵ect is given by

EYA(0,YA(1k⇡ [YA(1k⇡ � YA(0] = P(YA(1k⇡ = 1)� P(YA(0 = 1). (5.7)

Definition 8. For unfair pathways ⇡ and potential outcomes YA(0, YA(1k⇡ 2 {0, 1},

the conditional mean unfair e↵ect (a.k.a. the path-specific counterfactual e↵ect [Wu
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et al., 2019b]) conditioned on input features X = x is given by

EYA(0,YA(1k⇡ [YA(1k⇡ � YA(0 | X = x]

=P(YA(1k⇡ = 1 | X = x)� P(YA(0 = 1 | X = x).
(5.8)

Roughly speaking, while the mean unfair e↵ect is an average of the unfair e↵ects

over all individuals, the conditional mean unfair e↵ect is an average in the subgroup

of individuals who have identical feature attributes X = x .

To estimate the mean unfair e↵ect, we need marginal probabilities P(YA(0 = 1)

and P(YA(1k⇡ = 1) in Eq. (5.7), which can be inferred using several assumptions

such as conditional independence conditions called sequential ignorabilities (See Sec-

tion 5.3.3 for details).

By contrast, as pointed out by Wu et al. [2019b], computing the conditional

mean unfair e↵ect requires additional demanding functional assumptions due to

the di�culty of estimating conditional probabilities P(YA(0 = 1 | X = x ) and

P(YA(1k⇡ = 1 | X = x ) in Eq. (5.8). Suppose that conditioned feature values

X = x contain sensitive feature value A = a (a 2 {0, 1}). To compute conditional

probabilities P(YA(0 = 1 | X = x ) and P(YA(1k⇡ = 1 | X = x ), we need to infer

the distribution of features over individuals with A = a; however, such a distribu-

tion is unavailable because some features are not observed for these individuals. For

instance, in Example 2, either D(0) or D(1) is not observed for individuals with

A = a (a 2 {0, 1}), which prevents us from estimating the conditional probabilities

in Eq. (5.8). If the underlying SEM can be expressed by such simple functions as

additive noise model V = fV (pa(V )) + UV [Hoyer et al., 2009], we can approxi-

mate these conditional probabilities. However, assuming such a simple SEM is too

restrictive because it cannot express most data generating processes. For instance,

additive noise models cannot represent a structural equation over D in Eq. (5.2) due

to multiplicative noise UD. Therefore, in many cases, we cannot correctly estimate

the conditional mean unfair e↵ect.

However, to make individually fair predictions, we need to force the conditional

mean unfair e↵ect value to be zero, as described in the next section.
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5.2.4 Individual-Level Fairness

To achieve fairness for each individual, it is insu�cient to make the mean unfair

e↵ect value (close to) zero. This is because even when it is zero, depending on the

attributes of each individual, X = x , unfair e↵ect YA(1k⇡ � YA(0 might be positive

or negative, which indicates that predictions are discriminatory for individuals with

attributes x . We cannot simply resolve this issue using, e.g., the mean of the absolute

values of the unfair e↵ects because such a quantity requires a joint distribution of

YA(0 and YA(1k⇡; unfortunately, this joint distribution is unavailable because we

cannot obtain both YA(0 and YA(1k⇡ for each individual without an SEM.

For this reason, using the conditional mean unfair e↵ect conditioned on features

X , Wu et al. [2019b] defines individual-level fairness as follows:

Definition 9 (Wu et al. [2019b]). Given unfair pathways ⇡ in a causal graph, clas-

sifier h✓ achieves a (path-specific) individual-level fairness if

EYA(0,YA(1k⇡ [YA(1k⇡ � YA(0 | X = x] = 0 (5.9)

holds for any value of x of input features X.

Definition 9 states that classifier h✓ is individually fair if the conditional mean

unfair e↵ect is zero for any subgroup of individuals with identical feature attributes

X = x . Here the conditional mean unfair e↵ect value depends on classifier parameter

✓ since YA(0 and YA(1k⇡ are expressed using classifier h✓.

To make individually fair predictions, we need to find appropriate ✓ values that

satisfy (5.9). However, finding such ✓ values is extremely challenging due to the

di�culty of estimating the conditional mean unfair e↵ect in (5.9), which requires the

restrictive functional assumptions described in Section 5.2.3.

For this reason, no existing methods can make individually fair predictions with-

out restrictive functional assumptions, as described in the next section.

5.2.5 Related Work

Motivated by recent developments in inferring causal graph structures [Chikahara

and Fujino, 2018a; Glymour et al., 2019], many causality-based approaches to fairness

have been proposed [Chiappa and Gillam, 2019; Kilbertus et al., 2017; Kusner et al.,

85



CHAPTER 5. MAKING INDIVIDUALLY FAIR PREDICTIONS WITH
CAUSAL PATHWAYS

2017, 2019; Nabi and Shpitser, 2018; Nabi et al., 2019; Russell et al., 2017; Salimi et

al., 2019; Wu et al., 2018, 2019a; Xu et al., 2019; Zhang et al., 2017; Zhang and Wu,

2017; Zhang et al., 2018; Zhang and Bareinboim, 2018a,b].

As discussed by Makhlouf et al. [2020], compared with correlation-based ap-

proaches [Dwork et al., 2012; Feldman et al., 2015; Hardt et al., 2016], causality-based

approaches provide more intuitive fairness interpretations because they can deter-

mine whether the correlation between sensitive features and predictions arises from

causation or spurious correlation. Moreover, several causality-based approaches that

utilize path-specific e↵ects can achieve a good balance between prediction accuracy

and fairness in complex real-world scenarios.

However, measuring unfairness as path-specific e↵ects remains challenging due

to the di�culty of estimation. For this reason, the FIO method [Nabi and Shpitser,

2018] uses the mean unfair e↵ect (Definition 7), which can be estimated under rea-

sonable assumptions. In particular, it relies only on the two standard assumtpi-

ons that are needed to marginal potential outcome probabilities P(YA(0 = 1) and

P(YA(1k⇡ = 1) in Eq. (5.7); we detail these assumptions later in Section 5.3.3 be-

cause our proposed method also makes the same assumptions. Unfortunately, forcing

the mean unfair e↵ect to be zero does not ensure that predictions are individually

fair, as described in Section 5.2.4.

To make individually fair predictions, the PSCF method aims to remove the

conditional mean unfair e↵ect (Definition 8). To achieve this, it approximates the

underlying data generating process (i.e., the SEM) by learning a deep generative

model. However, as mentioned by [Kusner et al., 2017], inferring such a data gener-

ating process needs an additional functional assumption that the value of each feature

V 2 X is determined by additive noise model V = fV (pa(V )) + UV [Hoyer et al.,

2009], where unobserved variable UV is assumed to be an additive noise. However, as

illustrated in Section 5.2.3, there are many examples of the data generating processes

that do not satisfy such a functional assumption, and if the data do not satisfy this

assumption, the PSCF method cannot guarantee individual-level fairness.

To resolve these issues, we propose a learning framework that guarantees fairness

for each individual without restrictive functional assumptions.
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5.3 Learning Individually Fair Classifier with Path-

Specific Causal-E↵ect Constraints

5.3.1 Overview of Learning Framework

Given training data and a causal graph with unfair pathways ⇡, by solving the

penalized optimization problem in Eq. (5.1), we train a fair classifier that achieves

the individual-level fairness condition (Definition 9).

To achieve this without demanding functional assumptions, we develop penalty

function G✓ that forces an unfair e↵ect to be (close to) zero for all individuals. To

this end, our penalty function makes the potential outcomes take the same value (i.e.,

YA(0 = YA(1k⇡ = 0 or YA(0 = YA(1k⇡ = 1), regardless of the values of input features

X . Since this condition always implies the zero conditional mean unfair e↵ect, it

is su�cient to guarantee the individual-level fairness condition (Definition 9). It

is also a more severe condition than Definition 9 since under the latter condition,

potential outcomes YA(0 = YA(1k⇡ can take 0 or 1 depending on X ’s values. With

such a severe fairness condition, prediction accuracy might decrease. Nevertheless,

in Section 5.6.2, we experimentally show that our method can achieve comparable

accuracy to the existing method for ensuring individual-level fairness (i.e., the PSCF

method [Chiappa and Gillam, 2019]).

5.3.2 Achieving Individual-Level Fairness with PIU

To make potential outcomes take the same value for all individuals, we formulate

penalty function G✓ in Eq. (5.1) based on the following quantity:

Definition 10. Let ⇡ be the unfair pathways in a causal graph. For potential out-

comes YA(0, YA(1k⇡ 2 {0, 1}, we define the probability of individual unfairness

(PIU) by P(YA(0 6= YA(1k⇡).

PIU is the probability that potential outcomes YA(0 and YA(1k⇡ take di↵erent

values. Unlike the conditional mean unfair e↵ect in Definition 9, PIU is not condi-

tioned on features X of each individual. Nonetheless, PIU can be used to guarantee

individual-level fairness. By constraining PIU to zero, we can guarantee that poten-

tial outcomes take the same value (i.e., YA(0 = YA(1k⇡ = 0 or YA(0 = YA(1k⇡ = 1)
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with probability 1 regardless of the values of X , and with such potential outcome

values, we can ensure individual-level fairness.

Unfortunately, we cannot directly impose constraints on PIU. This is because

estimating a PIU value requires the joint distribution of YA(0 and YA(1k⇡, which is

unavailable, as described in Section 5.2.4. To overcome this issue, instead of PIU, we

utilize its upper bound that can be estimated from data. In particular, we formulate

a penalty function that forces the upper bound on PIU to be nearly zero.

5.3.3 Penalty by Upper Bound on PIU

Deriving Upper Bound on PIU

To reduce the PIU value, we utilize the following upper bound on PIU:

Theorem 2 (Upper bound on PIU). Suppose that potential outcomes YA(0 and

YA(1k⇡ are binary (i.e., YA(0, YA(1k⇡ 2 {0, 1}). Then for any joint distribution of

potential outcomes P(YA(0, YA(1k⇡), PIU is upper bounded as follows:

P(YA(0 6= YA(1k⇡)  2PI(YA(0 6= YA(1k⇡), (5.10)

where PI(YA(0, YA(1k⇡) = P(YA(0) P(YA(1k⇡) is an independent joint distribution;

for binary potential outcomes YA(0, YA(1k⇡ 2 {0, 1}, upper bound 2PI(YA(0 6=

YA(1k⇡) is given as

2PI(YA(0 6= YA(1k⇡)

=2(P(YA(1k⇡ = 1)(1� P(YA(0 = 1)) + (1� P(YA(1k⇡ = 1)) P(YA(0 = 1)).
(5.11)

The proof is described in Section 5.8.1. Theorem 2 states that whatever joint

distribution potential outcomes YA(0 and YA(1k⇡ follow, the resulting PIU value

is at most twice the PIU value that is approximated with independent joint dis-

tribution PI . The equality in (5.10) holds when the joint probability of satisfying

YA(0 6= YA(1k⇡ is zero; that is, when the marginal probabilities are P(YA(0 = 1) =

P(YA(1k⇡ = 1) = 0 or P(YA(0 = 1) = P(YA(1k⇡ = 1) = 1.

Note that this upper bound can exceed 1; if so, the PIU value is not controlled

because PIU is at most 1. However, by making the upper bound close to zero, we

can guarantee that PIU is also close to zero.
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Compared with the existing bounds discussed below, our upper bound has the

following two advantages:

• It can deal with binary potential outcomes YA(0, YA(1k⇡ 2 {0, 1}. If we con-

sider continuous potential outcomes, we can use several bounds on a functional

of the joint distribution of potential outcomes [Fan et al., 2017; Firpo and

Ridder, 2019] because PIU is also such a functional. However, these existing

bounds cannot be used for binary potential outcomes.

• It is much tighter than the existing result derived by Rubinstein and Singla

[2017], which can also be used to derive an upper bound on PIU for binary

potential outcomes. This existing result focuses on a function that takes as

input random variables whose joint distribution is unavailable and obtains a

correlation gap [Agrawal et al., 2010], i.e., the worst-case ratio between two

expected function values, each of whose expectation is taken with respect to an

arbitrary joint distribution and an independent joint distribution that has the

same marginal distributions with the former joint distribution. Since PIU can

also be written as such an expected function value, i.e., EYA(0,YA(1k⇡ [I(YA(0 6=

YA(1k⇡)], where I is an indicator function, we can apply this result to PIU

to obtain its upper bound using independent joint distribution PI in (5.10).

However, the bound obtained with this existing result is much looser than

ours. Although the multiplicative constant in (5.10) is 2, this value becomes

200 with the bound of Rubinstein and Singla [2017]. With such a loose upper

bound, we need to impose an excessively severe penalty on it to ensure that

PIU is close to zero.

Thanks to the first advantage, we can address the problem of learning a fair binary

classifier where unfairness is measured using binary potential outcomes. Moreover,

owing to the second one, we can avoid imposing an excessively severe penalty, thus

preventing an unnecessary decrease in prediction accuracy.

Estimating Upper Bound

We estimate the upper bound on PIU in (5.10) (i.e., 2 PI(YA(0 6= YA(1k⇡)), which

is twice the PIU value that is approximated using independent joint distribution PI .
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This approximated PIU value is given as follows:

PI(YA(0 6= YA(1k⇡)

=P(YA(1k⇡ = 1)(1� P(YA(0 = 1)) + (1� P(YA(1k⇡ = 1)) P(YA(0 = 1).
(5.12)

To estimate marginal probabilities P(YA(0 = 1) and P(YA(1k⇡ = 1) in Eq. (5.12),

we make the two standard assumptions, both of which are widely used in the existing

methods [Chiappa and Gillam, 2019; Nabi and Shpitser, 2018; Zhang and Wu, 2017;

Zhang et al., 2017].

One is an assumption on unfair pathways ⇡, which is expressed using the following

graphical condition called the recanting witness criterion:

Definition 11 (Recanting witness criterion [Avin et al., 2005]). Given pathways ⇡,

let Z be a node in a causal graph that satisfies the following:

1. There is a pathway from A to Z (A! · · ·! Z) in ⇡.

2. There is a pathway from Z to Y (Z ! · · ·! Y ) in ⇡.

3. There is another pathway from Z to Y (Z ! · · ·! Y ) that is in the causal graph

but not in ⇡.

Then pathways ⇡ satisfy the recanting witness criterion with node Z, which is called

a witness.

For example, consider the causal graph in Figure 5.3(a), where the unfair pathway

is ⇡ = {A ! M1 ! M2 ! Y }. Clearly, pathway ⇡ satisfies the recanting witness

criterion with witness M1.

Avin et al. [2005] show that estimating marginal probabilities P(YA(0 = 1) and

P(YA(1k⇡ = 1) requires the assumption that there is no witness node; in other words,

Assumption 9. Pathways ⇡ do not satisfy the recanting witness criterion.

The other is a common assumption in causal inference called sequential ignora-

bility, which requires conditional independence relations between variables.

We formulate this assumption based on the estimators in a previous work [Huber,

2014], which we use in our method, presented in Eq. (5.18). As an example, we show

a formulation based on the causal graph in Figure 5.4 (see Huber [2014] for details).
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Figure 5.3: Two causal graphs that violate Assumptions 9 and 10: Unfair pathways
(a): ⇡ = {A!M1 !M2 ! Y } and (b): ⇡ = {A! Y, A! D ! Y }.

graph1
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Q

Copyright�2021 NTT corp. All Rights Reserved.

Figure 5.4: Causal graph example for illustration of our assumptions (Same graph
structure with Figure 5.2(c))

In what follows, we use the same notations as those in the original paper [Huber,

2014]. Let potential outcomes YA(0 and YA(1k⇡ denote

YA(0 = Y (0, D(0), M(0)) and YA(1k⇡ = Y (1, D(1), M(0)), (5.13)

respectively, where D(0), D(1), and M(0) express counterfactual attributes formu-

lated by Eq. (5.3). Then the sequential ignorability is expressed as follows:

Assumption 10 (Sequential ignorability). For all a, a0, a00
2 {0, 1} and d, m, q in

the supports of D, M , and Q, the following four relations hold:

{Y (a, d, m), D(a0), M(a00)}??A | Q = q (5.14)

Y (a0, d, m)??D | A = a, Q = q (5.15)

Y (a0, d, m)??M | A = a, Q = q (5.16)

P(A = a | Q = q, D = d, M = m) > 0. (5.17)
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To express the potential outcome distributions using the observed data, three

relations, (5.14), (5.15), and (5.16) in Assumption 10 are needed. In particular, rela-

tions (5.15) and (5.16), which are often called cross-world independence assumptions

[Andrews and Didelez, 2020], require the exogenous variables in the structural equa-

tions to be mutually independent. As argued by Huber [2014], such independence

relations between exogenous variables are violated if there is an unobserved variable

called a latent confounder, which is an unobserved parent of the observed variables.

For instance, when the causal graph in Figure 5.3(b) is given, the aforementioned

relations do not hold due to a latent confounder, H (gray node).3 However, even in

the presence of latent confounders, in some cases, our method can achieve individual-

level fairness using an extended penalty function, as described in Section 5.5.1. The

last relation (5.17), which corresponds to the positivity assumption (Assumption 2)

in Section 2.2.3, is used to avoid a division by zero.

There are various estimators that are founded on these assumptions. Among

them, we utilize the computationally e�cient estimator in Huber [2014], which can

be computed in O(n) time, where n is the number of training instances.

This estimator is formulated as a weighted average of conditional probabilities;

this estimation technique is widely used and called inverse probability weighting

(IPW). Let c✓(X ) = P(Y = 1|X ) denote the conditional distribution provided

by classifier h✓; we let c✓(X ) = h✓(X ) 2 {0, 1} if h✓ is a deterministic classifier.

Suppose that training data include the feature attributes of n individuals {x i}
n
i=1

(i 2 {1, . . . , n}), each of which contain sensitive attribute ai. Then P(YA(0 = 1)

and P(YA(1k⇡ = 1) can be estimated as the following weighted averages of c✓ over

individuals with A = 0 and A = 1, respectively:

p̂A(0
✓ =

1

n

nX

i=1

I(ai = 0)ŵA(0
i c✓(x i) and

p̂A(1k⇡
✓ =

1

n

nX

i=1

I(ai = 1)ŵA(1k⇡
i c✓(x i),

(5.18)

where I(·) is an indicator function, and ŵA(0
i and ŵA(1k⇡

i are non-negative weights.

According to Huber [2014], weights ŵA(0
i and ŵA(1k⇡

i are formulated in di↵erent

3Since variable H influences mediator M and outcome Y , it is also called a mediator-outcome
confounder [VanderWeele, 2015, Section 5].
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ways, depending on the causal graph structure and unfair pathways ⇡. For instance,

in case of Example 2 in Section 5.2.2, letting the features of n individuals be {x i}
n
i=1

= {ai, qi, di, mi}
n
i=1, these weights are formulated as follows:

ŵA(0
i =

1

P̂(A = 0|qi)
,

ŵA(1k⇡
i =

P̂(A = 1|qi, di)P̂(A = 0|qi, di, mi)

P̂(A = 1|qi)P̂(A = 0|qi, di)P̂(A = 1|qi, di, mi)
,

(5.19)

where P̂ is a conditional distribution, which we infer in the same way as Zhang and

Bareinboim [2018a], i.e., by learning a statistical model (e.g., a neural network) from

the training data beforehand.4 We derive the formulations of the weighted estimator

(5.18) in Section 5.8.2.

Using the weighted estimators in Eq. (5.18), we formulate penalty function G✓

in our objective function in Eq. (5.1) as

G✓(x 1, . . .xn) = p̂A(1k⇡
✓ (1� p̂A(0

✓ ) + (1� p̂A(1k⇡
✓ )p̂A(0

✓ . (5.20)

In our experiments, we minimize the objective function using the stochastic gradient

descent method [Sutskever et al., 2013].

From the penalty function in Eq. (5.20), we can see why penalizing the upper

bound on PIU guarantees individual-level fairness. As the penalty parameter value

goes to infinity (� ! 1), the marginal probabilities (p̂A(0
✓ , p̂A(1k⇡

✓ ) approach (0, 0)

or (1, 1). This guarantees that the potential outcomes take the same value with

probability 1, which is su�cient to guarantee individual-level fairness.

In practice, we use a finite penalty parameter value � <1. With such a penalty

parameter value, our method reduces the value of penalty function G✓ to close to

zero by controlling the predictions for individuals.

Controlling Predictions with Penalty Function

To reduce the value of penalty function G✓, our method forces the marginal poten-

tial outcome probabilities to be (p̂A(0
✓ , p̂A(1k⇡

✓ ) ⇡ (0, 0) or (1, 1) by controlling the

4Note that the FIO method infers such conditional distributions not by learning statistical
models beforehand but by simultaneously learning them with the predictive model of Y [Nabi and
Shpitser, 2018]. This is because unlike our method, it addresses not only training a classifier but
also learning a generative model of joint distribution P(X, Y ).
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Figure 5.5: Histograms of weight values computed with two real-world datasets: (a)
German dataset and (b) Adult dataset. See Section 5.6.1 for details of these datasets.

predictions for individuals.

In fact, our method can e↵ectively adjust the control on the predictions by uti-

lizing weighted estimators p̂A(0
✓ and p̂A(1k⇡

✓ in Eq. (5.18). With such weighted

estimators, we do not have to push conditional probability c✓(X ) into a constant

(i.e., c✓(X ) = 0 or c✓(X ) = 1); instead, we only have to impose strong penalties on

the predictions for individual i 2 {1, . . . , n} whose weight values ŵA(0
i and ŵA(1k⇡

i

are large. These weight values take di↵erent values depending on individuals, as

illustrated by the histograms computed with the two real-world datasets in Fig-

ure 5.5. The weight values depend on the (estimated) conditional distributions of

sensitive feature A conditioned on a subset of features X (in case of (5.19), P̂(A | qi),

P̂(A | qi, di), and P̂(A | qi, di, mi)). If such conditional distributions are extremely

skewed (i.e., A = 0 or A = 1 is exceedingly concentrated), the weights take extreme

values. Note that these weights are used to accurately infer the marginal poten-

tial outcome probabilities and that their values do not indicate how strongly each

individual will su↵er from discrimination.

5.4 Comparison with Existing Fairness Constraint

To show the e↵ectiveness of our penalty function G✓ in Eq. (5.20), we compare it

with the constraint of the FIO method [Nabi and Shpitser, 2018]. Both our penalty

function and the FIO constraint are formulated using marginal potential outcome

probabilities p̂A(0
✓ and p̂A(1k⇡

✓ . However, our penalty function enables us to achieve

individual-level fairness while the FIO constraint does not. We elucidate this di↵er-

ence from a viewpoint of feasible regions in optimization problems.
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Figure 5.6: Feasible regions of our constraint (red) and FIO (blue) with (�, �0) =
(0.20, 0.10), (0.50, 0.25), (0.80, 0.40)

Suppose that our penalty function forces the upper bound on PIU to satisfy the

following condition:

p̂A(1k⇡
✓ (1� p̂A(0

✓ ) + (1� p̂A(1k⇡
✓ )p̂A(0

✓  �. (5.21)

Here we let constant � be � 2 [0, 1] because otherwise we cannot force the PIU value

to be less than 1.

The FIO constraint limits the mean unfair e↵ect (5.7) to be in

��0  p̂A(1k⇡
✓ � p̂A(0

✓  �0, (5.22)

where �0 2 [0, 1] is a hyperparameter. If �0 = 0, it ensures p̂A(0
✓ = p̂A(1k⇡

✓ .

Figure 5.6 shows the feasible region of our fairness condition (red) and the FIO

constraint (blue), respectively, obtained by graphing the hyperbolic inequality (5.21)

and the linear inequality (5.22). Here, to clarify their di↵erence, we consider the case

where � = 2�0.

While our fairness condition with � ⇡ 0 only accepts region (p̂A(0
✓ , p̂A(1k⇡

✓ ) ⇡

(0, 0) or (1, 1),5 FIO always accepts point (p̂A(0
✓ , p̂A(1k⇡

✓ ) = (0.5, 0.5) with any �0.

Due to the di↵erences of these feasible regions, possible PIU values are largely

di↵erent between two methods. To illustrate this, in what follows, we formulate the

5Obviously, this region is wider than red subregions (p̂A(0
✓ , p̂

A(1k⇡
✓ ) ⇡ (0, 0) and

(p̂A(0
✓ , p̂

A(1k⇡
✓ ) ⇡ (1, 1). This indicates that compared with such naive constraints as

(p̂A(0
✓ , p̂

A(1k⇡
✓ ) ⇡ (0, 0) and (p̂A(0

✓ , p̂
A(1k⇡
✓ ) ⇡ (1, 1), ours can accept more various values of

classifier parameter ✓ to achieve high prediction accuracy.
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lower and upper bounds on the PIU using marginal potential outcome probabilities.

Let the (true) marginal probabilities of the potential outcomes be ↵ = P(YA(0 = 1)

and � = P(YA(1k⇡ = 1), and the (true) joint probabilities of (YA(0, YA(1k⇡) = (0, 0),

(0, 1), (1, 0), and (1, 1) be p00, p01, p10, and p11. With these notations, PIU can

be formulated as p01 + p10, and its lower and upper bounds can be expressed using

marginal probabilities ↵ and � as

|↵� �|  p01 + p10  min{�, 1� ↵}+min{↵, 1� �}, (5.23)

which we prove in Section 5.8.3.

When the marginal probabilities are forced to be (↵, �) ⇡ (0, 0) or (1, 1), since the

upper bound in Eq. (5.23) become close to zero, PIU is constrained to almost zero

(i.e., p01 + p10 ⇡ 0). Hence, with our method, the unfair e↵ect is likely to be zero,

demonstrating how e↵ectively our condition guarantees fairness for each individual.

By contrast, at point (↵, �) = (0.5, 0.5), the lower and upper bounds in Eq. (5.23)

become 0 and 1, respectively: 0  p01 + p10  1. This implies that with FIO, it is

completely uncertain whether the PIU value is high since the joint probabilities are

unknown in practice. Therefore, FIO cannot ensure that the unfair e↵ect is zero for

each individual, which is insu�cient to guarantee individual-level fairness.

5.5 Extensions for Complex Real-World Scenarios

So far, we have made the following two assumptions:

• The marginal probabilities of potential outcomes can be estimated from data.

• The causal graph structure is given as input.

However, these assumptions might not hold in complex real-world scenarios. The for-

mer is not satisfied if there is a latent confounder [Pearl, 2009] (i.e., an unobserved

variable that influences two (or more) observed variables and yields a spurious cor-

relation), and the latter does not hold if domain experts do not know the true causal

relationships between variables and if they cannot be inferred from data.

Although addressing such complications is extremely challenging, in some cases,

we can achieve individual-level fairness by applying the extensions described below.
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Figure 5.7: Example of causal graph containing latent confounder H (gray node),
which a↵ects R and prediction Y . Red pathway represents unfair pathway ⇡.

5.5.1 Dealing with Latent Confounders

The presence of latent confounders yields a cumbersome spurious correlation between

sensitive feature and decision outcome. For this reason, it becomes much more

challenging to estimate marginal potential outcome probabilities.

However, even in such cases, our method can ensure individual-level fairness if

the lower and upper bounds on marginal probabilities are available. Suppose that

marginal probabilities P(YA(0 = 1) and P(YA(1k⇡ = 1) are bounded by

l̂A(0
✓  P(YA(0 = 1)  ûA(0

✓ ,

l̂A(1k⇡
✓  P(YA(1k⇡ = 1)  ûA(1k⇡

✓ ,

where l̂A(0
✓ , ûA(0

✓ , l̂A(1k⇡
✓ , and ûA(1k⇡

✓ are the estimated lower and upper bounds.

Then for any marginal probability values, the upper bound on PIU in Eq. (5.10) is

always at most twice the value of

G✓(x 1, . . .xn) = ûA(1k⇡
✓ (1� l̂A(0

✓ ) + (1� l̂A(1k⇡
✓ )ûA(0

✓ . (5.24)

Therefore, by making this penalty function value nearly zero, we can achieve individual-

level fairness.

To formulate the penalty function in Eq. (5.24), several existing lower and upper

bounds can be used [Robins and Richardson, 2010; Tchetgen and Phiri, 2014; Miles

et al., 2017]. For instance, the result in Miles et al. [2017] can be used when a feature

a↵ected by sensitive feature A, which is called a mediator, takes discrete values. An

example causal graph structure is shown in Figure 5.7, where M is a mediator, R is

an observed confounder,6 and H is a latent confounder (a.k.a. a mediator-outcome

6More precisely, R is an exposure-induced confounder [VanderWeele, 2015, Chapter 5], i.e., an
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confounder [VanderWeele, 2015, Section 5]). Under this causal graph, conditional

ignorability in Assumption 10 does not hold due to the presence of latent confounder

H; hence, we cannot represent the marginal potential outcome probabilities with

the observed variable distributions. However, by applying the result of Miles et al.

[2017], lower and upper bounds on P(YA(1k⇡ = 1) can be expressed as7

l̂A(1k⇡ =
X

m

max{0, P(M = m|A = 0)� 1

+
X

r

P(Y = 1|A = 1, m, r) P(R = r|A = 1)},

ûA(1k⇡ =
X

m

min{P(M = m|A = 0),
X

r

P(Y = 1|A = 1, m, r) P(R = r|A = 1)}.

With conditional distribution c✓(1, M, R) = P(Y = 1|A = 1, M, R) provided by

classifier h✓, these bounds can be expressed as the functions of parameter ✓:

l̂A(1k⇡
✓ =

X

m

max{0, P̂(M = m|A = 0)� 1 +
X

r

c✓(1, m, r)P̂(R = r|A = 1)}

(5.25)

ûA(1k⇡
✓ =

X

m

min{P̂(M = m|A = 0),
X

r

c✓(1, m, r)P̂(R = r|A = 1)}. (5.26)

Here conditional distributions P̂(M = m|A = 0) and P̂(R = r|A = 1) can be

estimated by learning statistical models (e.g., logistic regression or neural networks)

from the training data beforehand. As with Eqs. (5.25) and (5.26), we can formulate

the estimated lower and upper bounds on marginal probability P(YA(0 = 1) as

follows:

l̂A(0
✓ =

X

m

max{0, P̂(M = m|A = 0)� 1 +
X

r

c✓(0, m, r)P̂(R = r|A = 0)} (5.27)

ûA(0
✓ =

X

m

min{P̂(M = m|A = 0),
X

r

c✓(0, m, r)P̂(R = r|A = 0)}. (5.28)

By representing the lower and upper bounds with classifier parameter ✓ in this

observed variable that is a↵ected by sensitive feature A and that influences multiple observed
variables. An exposure-induced confounder is also a mediator. Unlike a mediator, however, it
yields a spurious correlation among the observed variables.

7According to Miles et al. [2017], the lower and upper bounds coincide when the potential
outcome and the potential mediator are degenerate.
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way, we can formulate a penalty function in Eq. (5.24), which allows us to achieve

fairness for each individual in the presence of latent confounders.

5.5.2 Addressing Uncertain Causal Graphs

Even without an unobserved confounder, it might be di�cult in practice to depict

the true causal graph structure. If domain experts cannot depict it, we need to infer

this causal graph structure from the data. It is, however, a challenging task without

making functional assumptions on the underlying SEM [Glymour et al., 2019].

To alleviate this issue, we extend our learning framework so that it can take as

input multiple candidates of causal graphs with unfair pathways. This idea is inspired

by the Multi-World Fairness (MWF) algorithm in Russell et al. [2017], which achieves

fairness based on multiple SEM candidates. MWF expresses an unfairness function

based on each SEM and takes the sum of the unfairness functions to formulate a

penalty function. Unfortunately, formulating an SEM candidate requires not only a

causal graph candidate but also a formulation of data generating processes, which is

unrealistic in practice. Therefore instead of using SEMs, we utilize multiple causal

graph structures, each of which contains unfair pathways.

Let the number of causal graph candidates be nG > 1. For j-th causal graph (j 2

{1, . . . , nG}), suppose that marginal potential outcome probabilities are estimated

as p̂A(0(j)
✓ and p̂A(1k⇡(j)

✓ , which are di↵erently formulated, depending on the causal

graph structure (e.g., which variables are confounders, which pathways are unfair,

etc). Using nG marginal probability pairs, we formulate our penalty function as

G✓(x 1, . . .xn) =
1

nG

nGX

j=1

G(j)
✓ (x 1, . . .xn), (5.29)

where G(j)
✓ is the following function that measures unfairness based on j-th causal

graph, expressed as:

G(j)
✓ (x 1, . . .xn) = p̂A(1k⇡(j)

✓ (1� p̂A(0(j)
✓ ) + (1� p̂A(1k⇡(j)

✓ )p̂A(0(j)
✓ . (5.30)

Penalty function G✓ depends on the weights in estimators p̂A(0(j)
✓ and p̂A(1k⇡(j)

✓

(j 2 {1, . . . , nG}), whose weight values are assigned to each individual.

Lowering the value of G✓ in (5.29) implies imposing the average of penalty func-
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tion G(j)
✓ over causal graph candidate j = 1, . . . , nG. In Section 5.6.3, we experi-

mentally confirm that this average-based penalty function allows us to make fairer

predictions than the original one in (5.20).

5.6 Experiments

Through synthetic and real-world data experiments, we evaluated the performance

of our method. This section is organized as follows. In Section 5.6.1, we describe the

experimental settings. In Section 5.6.2, we present the performance of our learning

framework described in Section 5.3. Finally, in Section 5.6.3, we show the e↵ective-

ness of our extended framework presented in Section 5.5.

5.6.1 Experimental Settings

Baseline Methods

We compared the performance of our method with the following four baselines:

1. FIO [Nabi and Shpitser, 2018], which aims to reduce the mean unfair e↵ect in

Definition 7;

2. PSCF [Chiappa and Gillam, 2019], which can achieve individual-level fairness

if the data are generated by additive noise models;

3. Unconstrained, which does not use any constraints or penalty terms related

to fairness;

4. Remove [Kusner et al., 2017, Section S4], which removes unfair e↵ects simply

by making predictions without input features that correspond to the nodes on

unfair pathways ⇡.

We show the performance of each method when using the two classifiers: a feed-

forward neural network and logistic regression. The feed-forward neural network is

composed of two linear layers with 100 and 50 hidden neurons, whose activation

function, an output layer, and loss function are given by a sigmoid function, a log

softmax function, and cross-entropy loss, respectively.
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We train these classifiers using the stochastic gradient descent method [Sutskever

et al., 2013]. We set the minibatch size to 100 or 1, 000; with the German dataset,

since the number of training samples is less than 1, 000, we set the minibatch size to

100, and with the other datasets, we set it to 1, 000. We stopped the training after

1, 000 epochs. The penalty parameter value is selected using a grid search with a

0.25 grid size from [0.0, 5.0].

Data and Causal Graphs

For a performance evaluation, we used synthetic and real-world datasets, whose

characteristics are summarized in Table 5.2.

We sampled four synthetic datasets (Synth1, Synth2, Synth3, and Synth4) from

di↵erent SEMs.

Synth1 dataset is generated from the following SEM:

A = UA, UA ⇠ Bernoulli(0.6),

Q = bUQc, UQ ⇠ N (2, 52),

D = A + b0.5QUDc, UD ⇠ TrN (1, 0.52, 0.1, 3.0),

M = 3A + 0.4QUM , UM ⇠ TrN (1.5, 0.52, 0.1, 3.0),

Y = h(A, Q, D, M),

(5.31)

where Bernoulli,N , and TrN represent the Bernoulli, Gaussian, and truncated Gaus-

sian distributions, respectively, and b·c is a floor function that returns an integer by

removing the decimal places. To output outcome Y , we used function h, which is a

logistic regression model that provides the following conditional distribution:

P(Y = 1 | A, Q, D, M) = Bernoulli(&(�10 + 5A + Q + D + M)),

where &(x) = 1/(1 + exp(�x)) is a standard sigmoid function. Note that this SEM

does not satisfy the functional assumption of the PSCF method because the struc-

tural equations over D and M are not expressed by additive noise models [Hoyer et

al., 2009] due to multiplicative noises UD and UM .

Synth2 dataset is sampled from the following SEM, which follows the functional
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Figure 5.8: Causal graphs for four synthetic datasets: (a) Synth1 and Synth2
datasets, (b) Synth3 dataset, and (c) Synth4 dataset. Unfair pathways (a): A! Y
(solid red edge) and A ! D ! Y (dashed red pathway); (b): A ! Y (solid red
edge); (c): A! Y (solid red edge) and A! D ! Y (dashed red pathway).
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Figure 5.9: Causal graphs for real-world datasets: (a) German credit dataset, (b)
Adult dataset, and (c) COMPAS dataset. Unfair pathways (a): direct pathway
A! Y (solid red edge; A: gender; Y : predicted credit risk) and pathway via financial
information S , i.e., A! S ! Y (dashed red pathway); (b): direct pathway A! Y
(solid red edge; A: gender; Y : predicted income) and those that go via marital status
M , i.e., A ! M ! · · · ! Y (dashed red pathways); (c) direct pathway A ! Y
(solid red edge; A: race; Y : predicted recidivism) and pathway via COMPAS score
S, i.e., A ! S ! Y (dashed red pathway).

assumption of the PSCF method:

A = UA, UA ⇠ Bernoulli(0.6),

Q = bUQc, UQ ⇠ N (5, 2.52),

D = A + b0.1Q + UDc, UD ⇠ bN (1, 0.52)c,

M = 3A + 0.4Q + UM , UM ⇠ bN (1, 0.52)c,

Y = h(A, Q, D, M),

(5.32)

where function h is given by the following conditional distribution:

P(Y = 1 | A, Q, D, M) = Bernoulli(&(�10 + 2A + 2Q + 2D + 2M)).

Synth3 dataset is drawn from the following SEM, which contains latent con-
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founder H:

A = UA, UA ⇠ Bernoulli(0.6),

R = 3A + b10Hc+ bURc, UR ⇠ N (1, 0.52),

M = A + R + bUMc, UM ⇠ N (1, 0.52),

Y = h(A, R, M, H),

(5.33)

where H denotes a latent confounder, which is sampled by H ⇠ N (1, 0.52), and

function h is expressed by the following conditional distribution:

P(Y = 1 | A, R, M, H) = Bernoulli(&(�15 + 3A + R + M + 5H)).

Synth4 dataset is prepared using the following SEM:

A = UA, UA ⇠ Bernoulli(0.6),

Q1 = bUQ1c, UQ1 ⇠ N (2, 12),

Q2 = bUQ2c, UQ2 ⇠ N (2, 12),

Q3 = A + bUQ3c, UQ3 ⇠ N (0, 12),

D = A + b0.1(Q1 + Q2)UDc, UD ⇠ N (1, 0.52)

M = 2A + b0.01exp(Q1) + 0.2 · (Q2 + Q3))c+ bUMc, UM ⇠ N (1, 12),

Y = h(A, Q1, Q2, Q3, D, M),

(5.34)

where function h is given by the following conditional distribution:

P(Y = 1|A, Q1, Q2, Q3, D, M)

= Bernoulli(&(�5 + 2A + 0.5(Q1 + Q2 + Q3) + 0.5D + 2M)).

The SEMs in Eqs. (5.31), (5.32), (5.33), and (5.34) are associated with the

causal graphs presented in Figure 5.8. Through all synthetic data experiments, we

used 5, 000 samples to train the classifier and 1, 000 samples to test the performance.

In real-world data experiments, we used three datasets: the German credit

dataset, the Adult dataset [Bache and Lichman, 2013], and the dataset about a

risk assessment tool called Correctional O↵ender Management Profiling for Alterna-
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Table 5.2: Dataset characteristics: number of training instances ntr, number of test
instances nte, number of input features s, ratio A = 1:A = 0, and ratio Y = 1:Y = 0.

Data ntr nte s Ratio of A (%) Ratio of Y (%)

Synth1 5000 1000 4 60:40 47:53
Synth2 5000 1000 4 60:40 64:36
Synth3 5000 1000 3 60:40 76:24
Synth4 5000 1000 6 60:40 55:45
German 900 100 9 69:31 70:30
Adult 34001 10870 9 67:33 25:75
COMPAS 4278 1000 7 40:60 47:53

tive Sanctions (COMPAS).8 The German credit dataset consists of the records of

loan applicants that contain gender A, financial information S (i.e., savings amount,

checking account balance, and housing (rent or own)), information about debts R

(i.e., amount of credit debt and repayment duration), and other attributes C (i.e.,

age and loan’s purpose). With this dataset, we predicted the risk of each loan ap-

plicant (Y ), where 900 and 100 samples were used as training and test data. On

the other hand, the Adult dataset is comprised of US census data that contain such

features of as marital status M , education L, occupation information R (e.g., weekly

working hours), age and nationality C . Using this dataset, we predicted whether an-

nual income exceeds $50,000 (Y ), where 34, 001 and 10, 870 samples were employed

as training and test data. To measure the unfairness of the predictions, following

Chiappa and Gillam [2019], we used the causal graphs in Figure 5.9(a) and (b). Re-

garding the COMPAS dataset, we provide its detail in Section 5.6.3, including the

causal graph in Figure 5.9(c).

5.6.2 Evaluation of Proposed Framework

In this section, we present the performance of our proposed learning framework

described in Section 5.3.

Accuracy and Fairness

We tested the performance of each method using Synth1 dataset, generated by an

SEM that does not satisfy the functional assumption of the PSCF method, and two

real-world datasets: the German credit dataset and the Adult dataset.
8We used the modified COMPAS dataset included in R package ”fairness” [Kozodoi and V.

Varga, 2021].
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Table 5.3: Test accuracy (%) on each dataset when using feed-forward neural network
(DNN) and logistic regression (LR). PSCF is not shown with LR because it is a
neural network-based method.

Method
Synth1 German Adult

DNN LR DNN LR DNN LR

Proposed 80.1 ± 0.6 78.0 ± 1.3 74.0 ± 2.4 72.3 ± 1.4 75.4 ± 0.4 75.2 ± 0.8
FIO 84.5 ± 0.5 83.5 ± 1.3 71.9 ± 3.1 69.4 ± 1.5 80.3 ± 0.5 76.3 ± 1.6
PSCF 75.3 ± 1.2 - 75.1 ± 1.3 - 74.2 ± 0.9 -
Unconstrained 88.0 ± 0.9 87.4 ± 0.4 77.1 ± 1.2 73.7 ± 0.8 83.2 ± 0.3 78.8 ± 1.2
Remove 76.6 ± 1.3 75.9 ± 0.9 71.1 ± 1.7 67.0 ± 1.6 74.8 ± 0.1 72.5 ± 1.9

Table 5.4: AUC on each dataset when using feed-forward neural network (DNN)
and logistic regression (LR). PSCF is not shown with LR because it is a neural
network-based method.

Method
Synth1 German Adult

DNN LR DNN LR DNN LR

Proposed 0.786 ± 0.003 0.790 ± 0.004 0.638 ± 0.007 0.632 ± 0.009 0.618 ± 0.003 0.644 ± 0.008
FIO 0.845 ± 0.011 0.842 ± 0.009 0.673 ± 0.008 0.705 ± 0.007 0.702 ± 0.006 0.723 ± 0.007
PSCF 0.720 ± 0.015 - 0.592 ± 0.012 - 0.642 ± 0.013 -
Unconstrained 0.874 ± 0.006 0.872 ± 0.003 0.722 ± 0.012 0.735 ± 0.004 0.801 ± 0.005 0.773 ± 0.006
Remove 0.760 ± 0.005 0.756 ± 0.007 0.595 ± 0.008 0.622 ± 0.012 0.604 ± 0.009 0.585 ± 0.001

We evaluated the test accuracy, the area under the curve (AUC), and four statis-

tics of unfair e↵ects: (i) the mean unfair e↵ect (Definition 7), (ii) the standard

deviation in the conditional mean unfair e↵ects conditioned on the features of each

individual (Definition 8), (iii) the upper bound on PIU (Theorem 2), and (iv) the

PIU (Definition 10).

Tables 5.3 and 5.4 present the test accuracy and the AUC measures when us-

ing the neural network and logistic regression, and Figures 5.10 and 5.11 show the

four statistics of the unfair e↵ects that are obtained with the neural network and

logistic regression, respectively. We performed 20 experiments by randomly splitting

each dataset into training and test data and evaluated the means and the standard

deviations. In Figures 5.10 and 5.11, statistics (ii) and (iv) are not displayed for

the German and Adult datasets because computing them requires true SEMs, which

are unavailable for these real-world datasets. Regarding PSCF, statistics (i) and (i

ii) are not shown in Figure 5.10 because they are not well-defined for this method,

and the performance when using logistic regression is not presented in Table 5.3 and

Figure 5.11 since it is a neural network-based method.
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Figure 5.10: Four statistics of unfair e↵ects on test data when using feed-forward neu-
ral network: The closer they are to zero, the fairer predictions are. With Remove,
all statistics are zero (not shown). With PSCF, (i) and (iii) are not well-defined.
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Figure 5.11: Four statistics of unfair e↵ects on test data when using logistic regression
model: The closer they are to zero, the fairer predictions are. With Remove, all
statistics are zero (not shown). PSCF is not shown because it is a neural network-
based method.

With Proposed using the neural network and logistic regression, all the statistics

of the unfair e↵ects were su�ciently close to zero, demonstrating that it made fair

predictions for all individuals. This is because by imposing a penalty on the upper

bound on PIU, Proposed forced unfair e↵ect values to be close to zero for all

individuals, guaranteeing that the other statistics were close to zero.

By contrast, regarding FIO and PSCF, the unfair e↵ect values were much larger.

With FIO, although the mean unfair e↵ect (i.e., (i)) was close to zero, the other

statistics deviated from zero, indicating that constraining the mean unfair e↵ect

did not ensure individual-level fairness. PSCF failed to reduce the value of the

standard deviation in the conditional mean unfair e↵ects (i.e., (ii)). This is because
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the data are not generated from additive noise models (see Section 5.6.1 for the data),

violating the functional assumption of PSCF. Since the large values of (ii) imply that

unfair e↵ects are greatly a↵ected by the attributes of input features X , these results

indicate that FIO and PSCF made unfair predictions based on these attributes.

With real-world datasets, FIO provided large upper bound values of PIU (i.e., (iii)).

Since these values represent the upper bound, they do not necessarily imply that the

predictions are unfair for some individuals. However, we cannot state with certainty

that the predictions are individually fair, which might be problematic in practice.

The test accuracy and the AUC of Proposed were lower than FIO, higher than

Remove, and comparable to PSCF. This result is reasonable because FIO imposes

a much weaker fairness constraint than Proposed, Remove, and PSCF, all of

which aim to guarantee individual-level fairness unlike FIO. By contrast, since Re-

move removes all informative input features that are a↵ected by the sensitive feature

to guarantee individual-level fairness, it provided the lowest accuracy. A comparison

of Proposed and PSCF indicates that although our method employs a more severe

fairness condition than PSCF, it barely sacrifices accuracy, demonstrating that it

strikes a better balance between individual-level fairness and accuracy.

Since most methods achieved better performance with the neural network than

with logistic regression, in the rest of this section, we present the experimental results

when using the neural network.

Performance on Synthetic Data that Satisfy Functional Assumptions

We further compared the performance of Proposed with PSCF using the Synth2

dataset, which satisfies the functional assumptions of PSCF. With such data, we

expect that both methods can learn an individually fair classifier.

Table 5.5 shows the test accuracy and the AUC, and Figure 5.12 presents the

standard deviation in the conditional mean unfair e↵ects and the PIU values on the

Synth2 dataset. The test accuracy and the AUC of Proposed and PSCF were

almost the same, which were lower than Unconstrained. Their PIU values were

much close to zero than Unconstrained. These results demonstrate that if the

data generating processes satisfy the functional assumptions of PSCF, Proposed

and PSCF can achieve almost the same performance.
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Table 5.5: Test accuracy (%) and AUC on Synth2 dataset

Method Test accuracy (%) AUC

Proposed 72.3 ± 0.9 0.760 ± 0.007
PSCF 72.5 ± 0.5 0.765 ± 0.004
Unconstrained 79.4 ± 1.1 0.816 ± 0.003

Synth2Synth2
0

PIUStd. in conditional 
mean unfair effects

(ii) (iv)

0.2

0.1

0

Proposed PSCF Unconstrained

0.2

0.1

Figure 5.12: Two statistics of unfair e↵ects on test data in Synth2 dataset: The
closer they are to zero, the fairer predictions are.

E↵ectiveness of Proposed Upper Bound on PIU

As described in Section 5.3.3, our proposed learning framework utilizes an upper

bound on PIU, which is much tighter than the existing bounds. To demonstrate its

tightness, we compared the performance of Proposed with Oracle, which uses true

PIU values as penalties during the training phase with the same penalty parameter

value. Using a two-layered neural network as a classifier, we evaluated the test

accuracy, the AUC, and the PIU value on the Synth1 dataset.

Table 5.6 presents the result. None of the test accuracy, the AUC, and the PIU

value greatly di↵er, even if we have an oracle access to the true PIU values. This

demonstrates that our upper bound is an e↵ective alternative to the true PIU, whose

value is unavailable in real-world scenarios.

Table 5.6: Test accuracy, AUC, and PIU value on Synth1 dataset

Method Test accuracy (%) AUC PIU (⇥10�2)

Proposed 80.1 ± 0.6 0.786 ± 0.003 6.04 ± 2.21
Oracle 79.2 ± 0.7 0.774 ± 0.011 3.15 ± 1.12
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Table 5.7: Test accuracy and AUC on Synth3 dataset

Method Test accuracy (%) AUC

Proposedlc 85.1 ± 0.4 0.822 ± 0.008
Proposed 86.0 ± 0.9 0.856 ± 0.011
FIO 87.5 ± 0.8 0.872 ± 0.005
PSCF 84.2 ± 1.2 0.809 ± 0.012
Unconstrained 89.1 ± 1.0 0.886 ± 0.003
Remove 83.8 ± 0.9 0.782 ± 0.010

0.25

0.20

0.15

0.10

0.05

0

0.10

0.08

0.06

0.04

0.02

0

Std. in conditional 
mean unfair effects

(ii)
PIU

(iv)

Proposed FIO Unconstrained

Synth3 Synth3
Proposedlc

Figure 5.13: Two statistics of unfair e↵ects on test data: The closer they are to zero,
the fairer predictions are. With PSCF and Remove, both statistics are zero.

5.6.3 Testing Extended Frameworks

Here we show the performance of our extended learning framework described in

Section 5.5. Section 5.6.3 presents the experimental results on synthetic data that

are a↵ected by latent confounders, and Section 5.6.3 illustrate the performance when

using multiple candidates of causal graph structures.

Performance in Presence of Latent Confounders

We tested our extended framework (Proposedlc), which addresses cases with latent

confounders. We evaluated the performance with the Synth3 dataset, generated

based on the causal graph in Figure 5.8(b) that contains a latent confounder.

To evaluate the unfairness of the predictions, we computed (ii) the standard devi-

ation in the conditional mean unfair e↵ects and (iv) the PIU. For a fair comparison,

we did not evaluate the other two statistics (i.e., (i) and (iii)) because they depend

on marginal potential outcome probabilities, whose estimators are formulated in dif-

ferent ways between Proposedlc and the other methods.
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Figure 5.14: Two causal graph candidates for Synth4 dataset: (a): True causal
graph; (b) Misspecified causal graph.

We present the test accuracy and the AUC in Table 5.7 and the two statistics of

unfair e↵ects in Figure 5.13. Note that not only Remove but also PSCF reduce

the unfair e↵ects to exactly zero. This is because PSCF makes predictions using

the same A’s value for all individuals, which completely removes unfair e↵ects if the

unfair pathways are only direct pathway, ⇡ = {A! Y }, as in the case of the causal

graph in Figure 5.8(b).

With Proposedlc, both unfair-e↵ect statistics were closer to zero than Proposed

and FIO because it uses more reliable estimators of marginal potential outcome

probabilities, which are designed for dealing with latent confounders. These results

demonstrate that in the presence of latent confounders, our proposed extension makes

fairer predictions than those methods.

The test accuracy and the AUC of Proposedlc exceeded PSCF and Remove,

both of which completely eliminate unfair e↵ects, indicating that our Proposedlc

can strike a better balance between prediction accuracy and fairness.

Achieving a good balance between accuracy and fairness in the presence of latent

confounders remains an open problem. Nevertheless, these experimental results sug-

gest that if reliable estimators of lower and upper bounds on marginal probabilities

are available, our proposed extension can strike a good balance between individual-

level fairness and prediction accuracy.

Synthetic Data Experiments under Uncertain Causal Graph Structure

Using synthetic data, we tested our extension, which aims to achieve individual-

level fairness when multiple causal graphs are given as input. We compared its

performance with the original one that has oracle access to the true causal graph.

We used Synth4 dataset, whose true causal graph is shown in Figure 5.14(a). As
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Table 5.8: Test accuracy and AUC on Synth4 dataset

Method Test accuracy (%) AUC

Proposedab 70.5 ± 2.5 0.708 ± 0.019
Proposeda 71.4 ± 1.4 0.741 ± 0.013
Proposedb 71.2 ± 1.1 0.733 ± 0.015
Unconstrained 86.3 ± 1.1 0.868 ± 0.012
Remove 68.3 ± 1.2 0.650 ± 0.015

Synth4Synth4

0.3

0.2

0.1

0

PIUStd. in conditional 
mean unfair effects

1.0

0.8

0.6

0.4

0.2

0 Synth4Synth4

0

0.2

0.4
Upper bound on PIUMean unfair effect

(i) (iii)(ii) (iv)

0.2

0.1

0

Proposedab Proposedb Unconstrained

-0.4

-0.2

Proposeda

Figure 5.15: Four statistics of unfair e↵ects on test data in Synth4 dataset: The
closer they are to zero, the fairer predictions are. Proposeda uses true causal graph,
Proposedab takes two causal graphs, and Proposedb employs misspecified causal
graph. With Remove, all statistics are zero (not shown).

with Russell et al. [2017], for simplicity, we focus on the case where there are two

causal graph candidates. Our extended framework (Proposedab) takes as input the

two causal graphs in Figure 5.14(a) and (b): the true causal graph for Synth4 dataset

and the misspecified causal graph whose mediators and confounders are di↵erent from

those of the true causal graph. To test Proposedab, we add the following baselines:

1. Proposeda: Our method employing the true causal graph (Figure 5.14(a)).

2. Proposedb: Our method using the misspecified causal graph (Figure 5.14(b)).

Note that in this experiment, we did not compare our method with FIO [Nabi and

Shpitser, 2018] and PSCF [Chiappa and Gillam, 2019] since these methods are not

designed for multiple causal graph candidates.

We show the test accuracy and the AUC in Table 5.8 and display the four statistics

of the unfair e↵ects in Figure 5.15.

111



CHAPTER 5. MAKING INDIVIDUALLY FAIR PREDICTIONS WITH
CAUSAL PATHWAYS

(a) (b) (c)

graph1

A M

C S

Y

Copyright�2022 NTT corp. All Rights Reserved.

graph1

A

CM S

Y

Copyright�2022 NTT corp. All Rights Reserved.

(d) (e)

graph1

A M

C S

Y

Copyright�2022 NTT corp. All Rights Reserved.

graph1

A

CM S

Y

Copyright�2022 NTT corp. All Rights Reserved.

graph1

A M S Y

C

Copyright�2022 NTT corp. All Rights Reserved.

Figure 5.16: Causal graphs for COMPAS dataset: (a) true graph structure and (b)-
(e) incorrect graph structures. A, M , C , S, and Y denote race, prior conviction,
age and gender, COMPAS score, and predicted recidivism.

As expected, our extended framework (Proposedab) made fairer predictions than

the original one with the misspecified causal graph (Proposedb) and maintained

similar test accuracy. With Proposedab, all the statistics of the unfair e↵ects were

comparable to those of Proposeda, and three statistics, (ii), (iii), and (iv), were

much closer to zero than Unconstrained.

Real-World Data Experiments under Uncertain Causal Graph Structure

To further evaluate the performance of our proposed extension, we performed real-

world data experiments using the dataset about a risk assessment tool for prisoners

called COMPAS [Angwin et al., 2016].

This dataset contains the records of prisoners including race A, prior conviction

M , age and gender C , COMPAS score S, and recidivism Y . The news media called

Propublica [Angwin et al., 2016] provided a report on COMPAS score S that the

scoring by the COMPAS, which evaluates the probability of recidivism Y from the

attributes of each prisoner, was discriminatory with respect to race A. Based on this

report, we tested each method by evaluating the performance of predicting recidivism

Y from features X = {A,M ,C , S}. Following Russell et al. [2017], we regarded the

causal graph in Figure 5.16(a) as the true causal graph structure and tested our

method.

To test our proposed extension, we used five causal graph candidates presented
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Table 5.9: Test accuracy and AUC on COMPAS dataset

Method Test accuracy (%) AUC

Proposedabcde 63.4 ± 1.1 0.614 ± 0.009
Proposeda 63.1 ± 0.9 0.615 ± 0.011
Proposedb 62.5 ± 1.3 0.614 ± 0.013
Proposedc 62.0 ± 0.9 0.604 ± 0.009
Proposedd 61.2 ± 1.3 0.600 ± 0.012
Proposede 62.5 ± 1.0 0.610 ± 0.004
Unconstrained 67.6 ± 1.3 0.674 ± 0.013
Remove 58.8 ± 0.9 0.581 ± 0.013

in Figure 5.16. Here the causal graphs in Figure 5.16(b)-(e) are incorrect: all these

causal graphs illustrate that COMPAS score S is not a↵ected by the attributes of

each prisoner; however, this contradicts the truth because COMPAS score S is com-

puted from these attributes. Using such causal graph candidates, we compared the

performance of our proposed extension (Proposedabcde) with the following baselines:

1. Proposeda: Our method using the true causal graph structure in Figure 5.16(a).

2. Proposedb, Proposedc, Proposedd, and Proposede: Our method employ-

ing the incorrect causal graph structures Figure 5.16(b), (c), (d), and (e),

respectively.

We display the test accuracy and the AUC of each method in Table 5.9 and show

the unfairness of the predictions in Figure 5.17.

All variants of our proposed method achieved higher test accuracy and AUC than

Remove and made fairer predictions than Uncosntrained, whose mean unfair

e↵ect and the upper bound on PIU of Unconstrained were �0.195 ± 0.006 and

0.886± 0.003, respectively (not shown in Figure 5.17).

Compared with other variants, the test accuracy and AUC of our proposed ex-

tension Proposedabcde did not greatly di↵er. However, we observed that the unfair

e↵ects of Proposedabcde were closer to the case of using the true causal graph struc-

ture (Proposeda) than the misspecified cases (i.e., Proposedb, Proposedc, Pro-

posedd, and Proposede). These results demonstrate that our proposed extension

achieves a good tradeo↵ between accuracy and fairness.
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Figure 5.17: Two statistics of unfair e↵ects on test data in COMPAS dataset: The
close they are to zero, the fairer predictions are.

5.7 Conclusion

We proposed a learning framework for guaranteeing individual-level fairness without

impractical functional assumptions. Based on a concept called path-specific e↵ects,

we defined a quantity called PIU and derived its upper bound that can be estimated

from data without making restrictive functional assumptions. By forcing this upper

bound value to be nearly zero, our framework trains an individually fair classifier.

Furthermore, we show that this framework can be extended to deal with challenging

real-world scenarios where there are unobserved variables called latent confounders

and where the causal graph is uncertain. From a viewpoint of the feasible regions of

optimization problems, we illustrate why making the upper bound value (close to)

zero guarantees individual-level fairness. We experimentally show that our method

makes individually fairer predictions than the existing methods at a slight cost of

accuracy, indicating that it strikes a better balance between fairness and accuracy.

Our proposed learning framework indicates that even if estimating the causality-

based unfairness measure is di�cult, by utilizing its bounds, we can learn fair pre-

dictive models. Although deriving such bounds is often challenging, once we obtain

them, they allow us to achieve fairness in complex real-world scenarios.
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5.8 Proofs

We derive the upper bound on PIU (Theorem 2), the estimators of marginal potential

outcome probabilities in Eq. (5.18), and the lower bound on PIU in Eq. (5.23).

5.8.1 Upper Bound on PIU (Theorem 2)

Proof. Let the marginal potential outcome probabilities be ↵ = P(YA(0 = 1) and

� = P(YA(1k⇡ = 1), and let their joint probabilities of (YA(0, YA(1k⇡) = (0, 0), (0, 1),

(1, 0), and (1, 1) be p00, p01, p10, and p11, respectively. Then we have

p10 + p11 = ↵, p00 + p01 = 1� ↵,

p01 + p11 = �, and p10 + p00 = 1� �.
(5.35)

Using marginal probabilities ↵ and �, joint probability PI(YA(0 6= YA(1k⇡) can be

represented as

PI(YA(0 6= YA(1k⇡) = �(1� ↵) + ↵(1� �).

As a result, the right-hand side in Eq. (5.10) can be written as 2(�(1�↵)+↵(1��)).

Therefore, our goal is to prove

p01 + p10  2(�(1� ↵) + ↵(1� �)).

Since all the joint probabilities in Eq. (5.35) are non-negative, p01 and p10 become

at most min{�, 1� ↵} and min{↵, 1� �}, respectively; this implies

p01 + p10  min{�, 1� ↵}+min{↵, 1� �}. (5.36)

Hence, it su�ces to prove

min{�, 1� ↵}+min{↵, 1� �}  2�(1� ↵) + 2↵(1� �). (5.37)

Since both sides in inequality (5.37) are symmetric with respect to lines � = ↵

and � = 1 � ↵, it is su�cient to consider the case when ↵  �  1 � ↵, which is

illustrated in Figure 5.18 as the red triangle. In this case, since min{�, 1� ↵} = �
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Figure 5.18: Red triangle represents region where marginal probability values ↵ and
� satisfy ↵  �  1� ↵.

and min{↵, 1� �} = ↵, inequality (5.37) can be written as

� + ↵  2�(1� ↵) + 2↵(1� �), ↵ + � � 4↵� � 0. (5.38)

Since ↵ + �  1 holds in this case, we have inequality ↵ + � � (↵ + �)2 � 0. Using

this inequality, inequality (5.38) can be proven as follows:

↵ + � � 4↵� = ↵ + � � (↵ + �)2 + (↵� �)2 � 0. (5.39)

Thus, we obtain Theorem 2. ⇤

5.8.2 Marginal Potential Outcome Probabilities in Eq. (5.18)

Following the original paper [Huber, 2014], we derived the following formulation of

the existing estimators of the marginal potential outcome probabilities:

p̂A(0
✓ =

1

n

nX

i=1

I(ai = 0)ŵA(0
i c✓(ai, qi, di, mi),

p̂A(1k⇡
✓ =

1

n

nX

i=1

I(ai = 1)ŵA(1k⇡
i c✓(ai, qi, di, mi),

(5.18)
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where c✓(X ) = P(Y = 1 | X ) is the conditional distribution given by classifier h✓,

I(·) is an indicator function, and ŵA(0
i and ŵA(1k⇡

i are the following weights:

ŵA(0
i =

1

P̂(A = 0 | qi)
,

ŵA(1k⇡
i =

P̂(A = 1|qi, di)P̂(A = 0 | qi, di, mi)

P̂(A = 1 | qi)P̂(A = 0 | qi, di)P̂(A = 1 | qi, di, mi)
,

(5.19)

where P̂ is the conditional distribution that is estimated by learning the statistical

models (e.g., neural networks) to the training data beforehand.

Following the notations in the original paper [Huber, 2014], let the potential

outcomes denote YA(0 = Y (0, D(0), M(0)) and YA(1k⇡ = Y (1, D(1), M(0)).

Then with the causal graph in Figure 5.2(c), marginal probability P(YA(1k⇡ = 1)

can be written as

P(YA(1k⇡ = 1)

=P(Y (1, D(1), M(0)) = 1)

=EQ[ED(1)|Q[EM(0)|Q,D(1)[P(Y (1, d, m) = 1 | A = 1, Q = q, D(1) = d, M(0) = m)]]].

Using Assumption 10, this can be rewritten as

P(YA(1k⇡ = 1)

=EQ[ED|A=1,Q[EM |A=0,Q,D[P(Y (1, d, m) = 1 | A = 1, Q = q, D = d, M = m)]]].

With Bayes’ theorem, this can be expressed as

P(YA(1k⇡ = 1)

=EQ[ED|Q[EM |Q,D[!
A(1k⇡ P(Y = 1 | dA = 1, Q = q, D = d, M = m)]]],

where !A(1k⇡ is expressed as follows:

!A(1k⇡ =
P(A = 1 | Q = q, D = d) P(A = 0 | Q = q, D = d, M = m)

P(A = 1 | Q = q) P(A = 0 | Q = q, D = d)
.
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With indicator function I(·), this can be formulated as

P(YA(1k⇡ = 1) = E[I(A = 1)wA(1k⇡ P(Y = 1 | A = 1, q, d, m)], (5.40)

where weight w0 is expressed as

wA(1k⇡ =
1

P(A = 1 | Q = q, D = d, M = m)
!A(1k⇡.

In a similar manner, marginal probability P(YA(0 = 1) can be represented as

P(YA(0 = 1) = E[I(A = 0)wA(0 P(Y = 1 | A = 0, q, d, m)], (5.41)

where weight wA(0 is formulated as

wA(0 =
1

P(A = 0 | Q = q)
.

Given empirical distribution, by plugging conditional distribution c✓ into P(Y =

1 | A = 1, Q = q, D = d, M = m), we can estimate (5.41) and (5.40) as (5.18).

5.8.3 Lower Bound on PIU in Eq. (5.23)

Since we already proved the upper bound in (5.36), below we derive the lower bound.

Since ↵ and � are marginal probabilities, we have

p10 + p11 = ↵, p01 + p11 = �,

which are equivalent to

p10 = ↵� p11, p01 = � � p11,

respectively. By summing up both, we have

p01 + p10 = ↵ + � � 2p11.
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Since joint probability p11 is less than marginal probabilities ↵ and �, we have p11 

min{↵, �}. Therefore,

p01 + p10 � ↵ + � � 2min{↵, �} = |↵� �|. (5.42)

Combined with the upper bound on p01 + p10 in (5.36), we obtain (5.23).
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Chapter 6

Conclusion

6.1 Contribution Summary

In this dissertation, we have established the three causal inference frameworks for

accelerating scientific discoveries and improving the reliability of machine learning

predictions. Below we discuss the contribution of each framework.

Causal Discovery from Time Series Data (Chapter 3)

Complex nonlinear time series are common in various scientific fields, such as bioin-

formatics, neuroscience, and meteorology. Inferring the causal relationships in them

is challenging, especially when the data are scarce. To tackle this challenge, we have

proposed a supervised learning approach that can improve the inference accuracy

using training data, i.e., the time series data whose causal relationships are obvious.

To further ameliorate the inference accuracy, we would need to overcome the

three limitations of proposed method:

1. As can be seen from the definition of Granger causality, our supervised learning

framework cannot detect an instantaneous causal relationship (a.k.a. contem-

poraneous causal relationship), where one variable influences another at the

same time t (i.e., Xt ! Yt). This limitation is crucial especially when the time

series data are infrequently sampled.

2. Our framework cannot correctly infer the causal relationship between time-

dependent variables X and Y if more than one variable acts as their common
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cause (i.e., confounders Z1, Z2, . . . such that X  Z1, Z2, · · · ! Y ) because

our extended feature representation is designed for trivariate time series data.

3. Related to the above, our framework wrongly outputs the results if there are

unobserved common cause variables (a.k.a. unobserved confounders).

The first two limitations have already been resolved by the context-aware Depen-

dency to Causality (caD2C) algorithm [Bontempi, 2020], which is a recently pro-

posed supervised learning approach that is motivated by ours. However, it cannot

overcome limitation 3; indeed, correctly inferring the causal relationships in presence

of unobserved confounders is extremely challenging in causal discovery.

Hence, it would be interesting to investigate how to develop a supervised learn-

ing approach that avoids outputting incorrect causal relationships by inferring the

maximal ancestral graph (MAG) [Richardson and Spirtes, 2002], which displays the

possibility of the presence of unobserved confounders by bi-directed edge $.

Interpretable Treatment E↵ect Estimation (Chapter 4)

When the treatment e↵ects are di↵erent across individuals, elucidating why such

heterogeneity exists is a common interest in many scientific fields, such as medicine

and economics. To deepen the understanding of the causal mechanisms that yield

heterogeneous treatment e↵ects, we have developed a feature selection framework for

discovering distributional treatment e↵ect modifiers. By utilizing the distributional

information, our method can find a wider variety of important features related to

treatment e↵ect heterogeneity, compared with the existing mean-based methods.

This advantage leads to better understanding of the underlying causal mechanisms

and thus is helpful for making scientific discoveries.

As future work, it would be interesting to tackle large p and small n problems,

i.e., the cases where there are much more features than the number of observed data

points. Such cases are common in various tasks related to bioinformatics, such as

biomarker selection and toxicogenomics selection. However, as can be seen from

the experimental results in Section 4.5.2, the performance of proposed method is

not su�ciently good under a low-sample setting. Hence, establishing a statistical

framework for dealing with large p and small n problems is left as our future work.
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Making Accurate and Fair Predictions based on Causality

(Chapter 5)

Causality-based fairness criteria have got increasing attention in the field of machine

learning and fairness. However, learning fair predictive models based on these cri-

teria is challenging due to the di�culty of estimating the causality-based unfairness

measure. To overcome this di�culty, we have proposed a learning framework that

e↵ectively utilizes the upper bound on the unfairness measure. We show that such an

idea of bounding the unfairness measure can be extended to complex settings, such

as the presence of unobserved confounders and the cases where the causal graph

structure is uncertain. Experimental results show that our framework makes much

fairer predictions for each individual than the existing methods at a slight expense

of prediction accuracy.

Thus, our learning framework indicates that we can overcome the di�culty of

estimating unfair causal e↵ects by imposing a constraint on the bound on the func-

tional of the joint distribution of potential outcomes. Indeed, deriving such a bound

has been actively studied recently [Fan et al., 2017; Firpo and Ridder, 2019; Shingaki

and Kuroki, 2021]. An interesting future work direction is to utilize these bounds

for achieving a better balance between fairness and accuracy.

6.2 Conclusion and Future Directions

Throughout this dissertation, we have discussed the two ultimate goals of causal

inference: scientific discoveries and fairness-aware machine learning.

To accomplish these ultimate goals, taking an interdisciplinary approach that

combines various tools and concepts in statistics, machine learning, and causal in-

ference is crucially important. All the three causal inference frameworks presented

in this dissertation indicate the importance of such an interdisciplinary viewpoint.

In Chapter 3, we have solved the traditional statistical problem of Granger causality

identification via supervised learning. In Chapter 4, we have improved the selection

accuracy of treatment e↵ect modifiers by utilizing the kernel MMD, which is a com-

mon distributional discrepancy measure in machine learning. And in Chapter 5, we

have shown that we can make much better balance between fairness and accuracy

by utilizing the causality concepts.
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From a broader perspective, we would need to focus our attention on the task

dependency among causal discovery, treatment e↵ect estimation, and fairness-aware

machine learning. That is, causal discovery is helpful for treatment e↵ect estimation

(because the correct identification of confounders is a prerequisite for the estima-

tion), and treatment e↵ect estimation contributes to making fair predictions (since

an accurate causal-e↵ect estimator allows us to precisely measure the unfairness of

predictions). This task dependency tells us that taking a higher viewpoint might be

important in achieving the ultimate goals. For instance, to create an ideal future

where machine learning predictions are used with no concern for fairness, it might be

essential to tackle fundamental causal inference challenges: improving the inference

accuracy of causal discovery and developing an accurate treatment e↵ect estimator.

We believe that the lens of causality has infinite potential toward making scientific

discoveries and achieving trustworthy machine learning. To unfold this potential,

however, we would still need to overcome enormous challenges and resolve many

methodological limitations. Taking these challenges and limitations from a broad

and interdisciplinary perspective will lead to the future success in causal inference.
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