
Fast Model Predictive Control of
Robotic Systems with Rigid

Contacts

Sotaro Katayama

Department of Systems Science, Graduate School of Informatics

Kyoto University

A thesis submitted for the degree of

Doctor of Philosophy in Informatics

2022

Supervisor:

Prof. Toshiyuki Ohtsuka

Examination committee:

Prof. Toshiyuki Ohtsuka

Prof. Shin Ishii

Prof. Jun Morimoto

Abstract

Robotic systems such as legged robots are expected to work in a wider

variety of places. Planning and control are key technologies to give them

a certain intelligence for autonomous decision-making.

This thesis pursues this goal by establishing a real-time algorithm for

model predictive control (MPC) of robotics systems, which can be a uni-

fied approach for versatile, efficient, and dynamic planning and control.

However, robotic systems have fast, large-scale, and nonlinear dynamics

and involve switches of dynamics and state jumps, which makes online op-

timization of MPC difficult. In this thesis, we tackle these computational

challenges with the following algorithmic developments.

First, we propose an inverse dynamics-based solution method for the MPC

problem of rigid body systems. It can reduce the computational time

of each Newton-type iteration by leveraging efficient rigid body inverse

dynamics algorithms. Second, we propose a lifted Newton-type method

for MPC problems of rigid body systems with rigid contacts. This method

can reduce the required number of iterations by relaxing high nonlinearity

without additional computational demands and therefore can reduce the

total computational time.

We also propose efficient MPC algorithms for switched systems, which

formally model the robotic systems with rigid contacts under a given con-

tact sequence. First, we present an efficient Riccati recursion for MPC

problems with pure-state equality constraints. We propose a constraint-

transformation method to efficiently treat the pure-state equality con-

straints with the Riccati recursion algorithm. Second, we propose a

structure-exploiting Newton-type method to optimize switching times (i.e.,

contact timings in robotic problems), state, and control input simultane-

ously. The proposed algorithm enables significantly fast computational

time and also improves numerical robustness.

Finally, we implement an MPC of robotic systems built on top of these al-

gorithm developments. We propose a whole-body MPC that can optimize

the switching times, state, and control input in milliseconds range. We

conduct a simulation comparison of the proposed MPC and the conven-

tional MPC with fixed switching times and demonstrate that the proposed

approach expands the ability of MPC of robotic systems. We further con-

duct hardware experiments on a real quadrupedal robot and show that

the proposed method achieves dynamic motions on the real robot.

4

Acknowledgements

First of all, I would like to take the opportunity to express my deepest

gratitude to my supervisor Professor Toshiyuki Ohtsuka. He has con-

sistently given me valuable guidance and great freedom to pursue my

research interests. His deep knowledge of control, system science, and op-

timization also always helps my Ph.D. studies. Thank you for inspiring,

motivating, and supporting my Ph.D. research with boundless enthusi-

asm. I also would like to thank examination committee members Prof.

Toshiyuki Ohtsuka, Prof. Shin Ishii, and Prof. Jun Morimoto for their

helpful advice and suggestions to prepare this thesis.

I would like to thank Associate Professor Kazunori Sakurama and As-

sistant Professor Kenta Hoshino for valuable discussions and suggestions

in the research seminars in Ohtsuka lab. Their comments have always

opened my mind to the wider research world. I am also grateful to Assos.

Prof. Yasuyuki Satoh at Tokyo University of Science and Dr. Masahiro

Doi at Toyota Motor Corporation for supporting my Master’s degree and

my first journal paper gently. I also would like to thank Assoc. Prof.

Yuichi Tazaki at Kobe University and Dr. Masaki Murooka at the Na-

tional Institute of Advanced Industrial Science and Technology (AIST)

for valuable discussion on humanoid robotics research.

I also thank the current and past Ohtuka lab members and staff. Assis.

Prof. Iori at Osaka University had provided me with various interesting

mathematical topics. Dr. Deng indicates to me a direction of practical

MPC algorithm research. I would like to thank all members to let me

spend a great time with delightful conversations at the Ohtsuka lab.

I would also like to thank the JST SPRING and JSPS KAKENHI for the

financial support of my Ph.D. study.

Finally, I would like to thank my parents who always believe in me and

support my challenges.

Contents

Notation 1

1 Introduction 3

1.1 Background . 3

1.2 Overview of Planning and Control of Robotic Systems with Contacts 4

1.2.1 Contact and motion planning 4

1.2.1.1 Sampling-based motion planning 5

1.2.1.2 Optimization-based motion planning 6

1.2.1.3 Hierarchical contact and motion planning 7

1.2.1.4 Simultaneous contact and motion planning 7

1.2.2 Control . 8

1.2.2.1 Reduced-order models for legged robot control 9

1.2.2.2 Whole-body control 10

1.2.2.3 State estimation for legged robots 11

1.2.3 Online motion planning as control: Model predictive control

(MPC) . 11

1.3 Challenges in Real-Time MPC of Robotic Systems 13

1.3.1 Overview of MPC algorithms 13

1.3.2 MPC algorithms for fast and large-scale robotic systems . . . 14

1.3.3 MPC algorithms for switched systems 15

1.4 Outline and Contributions . 16

2 Preliminaries 21

2.1 Rigid Body Systems . 21

2.1.1 Kinematics . 22

2.1.1.1 Forward and differential kinematics 22

2.1.1.2 Contact kinematics 22

2.1.2 Dynamics . 24

i

Contents

2.1.2.1 Inverse dynamics . 24

2.1.2.2 Forward dynamics 24

2.1.2.3 Contact-consistent forward dynamics 25

2.1.2.4 Impulse dynamics 25

2.1.2.5 State space representation 25

2.1.3 Software . 26

2.2 Model Predictive Control . 26

2.2.1 Overview . 26

2.2.2 Numerical optimal control techniques for fast MPC of large-

scale systems . 27

2.2.2.1 Direct multiple shooting method 27

2.2.2.2 Primal-dual interior point method 28

2.2.2.3 Gauss-Newton Hessian approximation 31

2.2.2.4 Riccati recursion . 32

2.2.2.5 Summary of Newton-type method for MPC 33

3 Inverse Dynamics-Based Solution Method of Optimal Control of

Rigid Body Systems 35

3.1 Introduction . 35

3.2 Optimal Control Problem Based on Inverse Dynamics 37

3.2.1 Rigid-body systems . 37

3.2.2 Optimal control problem . 38

3.2.3 KKT conditions . 39

3.3 Solution Method of Optimal Control Problem 40

3.3.1 Linearization for Newton’s method 40

3.3.2 Condensing inverse dynamics 42

3.3.3 Algorithm . 43

3.4 Numerical Experiments . 45

3.4.1 Experimental settings . 45

3.4.2 Computational time . 45

3.4.3 Numerical robustness . 46

3.4.4 MPC for floating base systems 48

3.5 Summary . 48

ii

Contents

4 Lifted Contact Dynamics for Efficient Optimal Control of Rigid

Body Systems with Contacts 50

4.1 Introduction . 50

4.2 Overview of Optimal Control Problems of

Rigid-Body Systems with Contacts 53

4.2.1 Contact dynamics . 53

4.2.2 Impulse dynamics . 55

4.2.3 Conventional formulation of optimal control 56

4.3 Lifted Contact Dynamics in Optimal Control 56

4.3.1 Lifted contact dynamics . 56

4.3.2 Lifted impulse dynamics . 59

4.3.3 Riccati recursion for LQR subproblem 60

4.3.4 Primal-dual interior-point method for inequality constraints . 60

4.3.5 Algorithm . 61

4.3.6 Comparison with existing methods 62

4.3.6.1 Comparison with non-lifted formulations 62

4.3.6.2 Comparison with inverse dynamics-based algorithm . 62

4.4 Numerical Experiments: Whole-Body Optimal Control of Quadrupedal

Gaits . 62

4.4.1 Experimental settings . 62

4.4.2 Results and discussion . 65

4.5 Summary . 66

5 Efficient Riccati Recursion for Optimal Control Problems with Pure-

State Equality Constraints 70

5.1 Introduction . 70

5.2 Transformation of Optimal Control Problem with Pure-State Equality

Constraints . 73

5.2.1 Original optimal control problem 73

5.2.2 Transformation of optimal control problem 74

5.2.3 Optimality conditions . 75

5.3 Riccati Recursion . 76

5.3.1 Linearization for Newton’s method 76

5.3.1.1 Terminal stage . 76

5.3.1.2 Intermediate stages without equality constraint . . . 76

5.3.1.3 Intermediate stage with an equality constraint 77

iii

Contents

5.3.1.4 Initial stage . 77

5.3.2 Derivation of Riccati recursion 77

5.3.2.1 Terminal stage . 78

5.3.2.2 Intermediate stages without an equality constraint . 78

5.3.2.3 Intermediate stage with an equality constraint 78

5.3.3 Algorithm, convergence, and computational analysis 79

5.4 Theoretical Properties of Optimal Control

Problem Transformation . 81

5.5 Numerical Experiments on Whole-Body

Quadrupedal Gaits Optimization . 83

5.5.1 Experimental settings . 83

5.5.2 Trotting gait for different numbers of steps 84

5.5.3 Trotting, jumping, and running gait problems 85

5.6 Summary . 87

6 Structure-Exploiting Newton-Type Method for Optimal Control of

Switched Systems 89

6.1 Introduction . 89

6.2 Problem Formulation . 93

6.3 KKT System for Newton-Type Method 96

6.4 Riccati Recursion to Solve KKT Systems 98

6.4.1 Backward recursion . 99

6.4.1.1 Terminal stage . 99

6.4.1.2 Intermediate stages 99

6.4.1.3 Phase transition stages 102

6.4.2 Forward recursion . 103

6.4.3 Properties of proposed Riccati recursion 103

6.4.4 Reduced Hessian modification via Riccati recursion 105

6.4.5 Algorithm . 107

6.5 State Jumps and Switching Conditions 107

6.5.1 Switching conditions . 109

6.6 Numerical Experiments . 112

6.6.1 Comparison with off-the-shelf solvers 112

6.6.1.1 Problem settings . 112

6.6.1.2 Results . 113

6.6.2 Whole-body optimal control of quadrupedal gaits 114

iv

Contents

6.6.2.1 Problem settings . 114

6.6.2.2 Results . 117

6.7 Summary . 118

7 Whole-Body Model Predictive Control with Rigid Contacts via On-

line Switching Time Optimization 121

7.1 Introduction . 121

7.2 Optimal Control Problem Formulation 124

7.2.1 Rigid body systems with rigid contacts 124

7.2.2 Inequality constraints . 127

7.2.3 Optimal control problem of switched systems 128

7.3 Model Predictive Control with Online Switching Time Optimization . 129

7.3.1 Direct multiple shooting method with mesh-refinement 129

7.3.2 Riccati recursion to compute Newton step 130

7.3.3 Heuristic regularization to improve convergence property . . . 131

7.3.4 Minimum dwell-time constraints 131

7.3.5 Software implementation . 132

7.4 Simulation Study: Comparison to Conventional MPC with Fixed Con-

tact Timings . 132

7.4.1 Experimental settings . 132

7.4.2 Results . 133

7.5 Hardware Experiments on Quadrupedal Robot Unitree A1 135

7.5.1 Experimental settings . 135

7.5.2 Results . 136

7.6 Summary . 137

8 Conclusions 140

8.1 Summary of Contributions . 140

8.2 Discussion and Future Work . 141

8.2.1 Application to a wider variety of robotic problems 141

8.2.2 Improving robustness . 142

A robotoc: Open-Source Software for Whole-Body Model Predictive

Control 145

A.1 Introduction . 145

A.2 Interface Overview . 147

A.2.1 robotoc::Robot . 147

v

Contents

A.2.2 robotoc::CostFunction 148

A.2.3 robotoc::Constraints 148

A.2.4 robotoc::ContactSequence 149

A.2.5 robotoc::STOCostFunction and

robotoc::STOConstraints 150

A.2.6 robotoc::OCP and robotoc::OCPSolver 151

A.3 Implementation Details . 152

A.4 Application Examples . 153

A.4.1 Whole-body MPC of a humanoid robot walking 153

A.4.1.1 Problem settings and MPC design 153

A.4.1.2 Results . 154

A.4.2 Whole-body MPC of quadruped robot gaits 155

A.4.2.1 Problem settings and MPC design 155

A.4.2.2 Results . 155

A.5 Summary . 157

Bibliography 159

List of Publications 173

vi

Notation

For vectors x ∈ Rn and y ∈ Rm, a matrix A ∈ Rn×n, a differentiable scalar function

f(x, y) : Rn × Rm → R, and a differentiable vector-valued function g(x) : Rn → Rp,

we have the following notation:

Notation Meaning

x(i) i-th component of x
∥x∥2 ℓ2 norm of x
A ≻ 0 A is positive-definite
A ⪰ 0 A is positive-semidefinite
fx, ∇xf Gradient vector of a function f(x, y) with respect to x (fx,∇xf ∈ Rn)
fxx, ∇xxf Second-order derivative of a function f(x, y) (fxx,∇2

xxf ∈ Rn×n)
fxy, ∇xyf Second-order derivative of a function f(x, y) (fxy,∇2

xyf ∈ Rn×m)
gx, ∇xg Jacobian matrix of a function g(x) with respect to x (gx,∇xg ∈ Rp×n)
diag(x) Diagonal matrix whose diagonal is the vector x.
I, In Identity matrix, identity matrix with n rows and columns
0, On Zero or zero matrix, zero matrix with n rows and columns
1 Vector all of whose elements are 1

1

Contents

Abbreviations

Abbreviation Meaning
ABA Articulated body algorithm
AL Augmented Lagrangian
CBF Control barrier function
CLF Control Lyapunov function
CITO Contact-implicit trajectory optimization
COM Center of mass
CPU Central processing unit
CRBA Composite rigid-body algorithm
DDP Differential dynamic programming
DMS Direct multiple shooting (method)
DOF Degrees of freedom
EKF Extended Kalman filter
HZD Hybrid zero dynamics
FONC First-order necessary conditions
iLQR Iterative linear quadratic regulator
KKT Karush–Kuhn–Tucker (conditions)
LICQ Linear independence constraint qualification
LQR Linear quadratic regulator
MPC Model predictive control
NLP Nonlinear program/programming
OCP Optimal control problem
PD Proportional-derivative (control)

PDIP Primal-dual interiror point (method)
QP Quadratic program/programming

RNEA Recursive Newton-Euler Algorithm
SOSC Second-order sufficient conditions
SQP Sequential quadratic programming
SRBD Single rigid body dynamics
STO Switching time optimization
TO Trajectory optimization
WBC Whole-body control
ZMP Zero-moment point

2

Chapter 1

Introduction

1.1 Background

Robots are essential for our lives. Industrial robot manipulators do boring and itera-

tive tasks in place of people, typically faster and more accurately than humans. They

can also work in dangerous places such as chemical and pharmaceutical plants.

Nowadays, robots are expected to work in more variety of places. For example,

they are expected to move around us and help our tasks in our daily lives. On the

other hand, they are also expected to enter harsh environments where humans cannot

stay and conduct tasks. A significant requirement is that they have to move to various

places from households to disaster sites. Legged robots such as quadrupedal robots

are promising platforms for this purpose. Another requirement is that they have to

conduct various tasks. Versatility is therefore required as well as industrial robotic

manipulators. Furthermore, these activities are desired to be achieved autonomously.

Toward this goal, in the past decade, there has been drastic progress on hardware

platforms, particularly in legged robots, which can move around in various places. For

example, series elastic actuators have been made for compliant and robust locomotion

(Hutter et al. (2017); Kamikawa et al. (2021)). Also, powerful low-gear ratio motors

have been realized for compliant motions and accurate torque control (Katz, Di Carlo,

and Kim (2019); Unitree Robotics (n.d.)). Based on these actuators, quadrupedal

robots toward dynamic and agile locomotions have been developed, such as ANYmal

(Hutter et al. (2017)), MIT Mini Cheetah (Katz et al. (2019)), Solo (Grimminger et

al. (2020)), Stanford Doggo (Kau, Schultz, Ferrante, and Slade (2019)), Spot (Boston

Dynamics (n.d.-b)), A1 (Unitree Robotics (n.d.)), Tachyon (Kamikawa et al. (2021)),

etc. Humanoid robot hardware also has been evolved, such as iCub (Natale, Bar-

tolozzi, Pucci, Wykowska, and Metta (2017)), TALOS (Stasse et al. (2017)), HRP-5P

(Kaneko et al. (2019)), and Cassie (Agility Robotics (n.d.)), whose performance are

3

Chapter 1. Introduction

siginificantly improved from the past humanoid robot platforms. A symbolical exam-

ple of the hardware evolution is Boston Dynamics Atlas (Boston Dynamics (n.d.-a))

which has surprised the world with its human-level acrobatic motions.

Perception and recognition technologies have also been developed drastically,

which give a certain intelligence to robots. In particular, deep neural networks (DNN)

have been playing a central role in these developments. For example, DNN made

breakthroughs in object detection and reconstruction (Han, Laga, and Bennamoun

(2019); Z.-Q. Zhao, Zheng, Xu, and Wu (2019)). These methods have been suc-

cessfully applied for robotic manipulation problems (Florence, Manuelli, and Tedrake

(2018); Schwarz, Milan, Periyasamy, and Behnke (2018)). Simultaneous localization

and mapping (SLAM), a fundamental technology for autonomy including legged loco-

motion, has also evolved (Mur-Artal, Montiel, and Tardos (2015); Saputra, Markham,

and Trigoni (2018); Zhang and Singh (2014)). Furthermore, terrain mapping, which

is a unique perception problem for legged locomotion on rough terrain, has been de-

veloped (Fankhauser, Bloesch, Gehring, Hutter, and Siegwart (2014); Fankhauser,

Bloesch, and Hutter (2018)).

Another key technology for intelligence is decision-making. The problem is, how

to actuate the joints to achieve desired tasks for given perception and recognition

information. This decision-making problem is formally categorized as planning and

control. In this thesis, we tackle this decision-making problem for robotic systems

with contacts, particularly for legged robots.

1.2 Overview of Planning and Control of Robotic

Systems with Contacts

Next, we provide an overview of the planning and control methods for robotic sys-

tems with contacts. We particularly focus on legged locomotion problems, in which

the dynamical system behaves as a hybrid system and can involve underactuated

dynamics.

1.2.1 Contact and motion planning

First, we introduce planning methods of contacts and motions of robotic systems.

In 1.2.1.1 and 1.2.1.2, we give overviews of sampling-based and optimization-based

motion planning methods, which have been widely utilized, e.g., from traditional ma-

nipulation planning to complicated motion generation of humanoid robots. In general,

the sampling-based methods are suitable for long-horizon and non-convex problems

4

1.2. Overview of Planning and Control of Robotic Systems with Contacts

such as complicated collision avoidance because they do not suffer from the undesired

local minima or numerical ill-conditioning, which often appear in optimization-based

methods. However, the sampling-based methods can only generate kinematically-

feasible motions, i.e., kinodynamic motions (LaValle and Kuffner Jr (2001)). On the

other hand, optimization-based methods can generate dynamically-consistent tra-

jectories and incorporate various performance indices such as energy efficiency. In

practice, the sampling-based method is first utilized to find the feasible configura-

tion path under obstacles. Subsequently, the optimization-based methods seek a

dynamically-consistent and reasonable trajectory to track the paths computed by the

sampling-based methods.

Contact planning has a different characteristic than the above motion planning

problems: the decision-making on contacts, e.g., making/breaking and sticking/slid-

ing contacts, are discrete (binary) decisions while motion planning is formulated as

problems to determine continuous configuration variables. Therefore, in principle,

planning of contact and motion involves decisions on both continuous and discrete

(or binary) variables. To avoid such complicated problems, in practice, we typically

take hierarchical approaches: first determine the contact sequence and subsequently

plan the motions by using methods introduced in 1.2.1.1 and 1.2.1.2. In 1.2.1.3, we

introduce such hierarchical approaches with promising contact planning methods un-

der perceptive information. In contrast to such hierarchical approaches, in 1.2.1.4, we

describe challenging approaches to planning the contact and motion simultaneously,

which involve several issues in practice.

1.2.1.1 Sampling-based motion planning

The sampling-based motion planning methods seek the trajectory of the configura-

tion that satisfies pre-defined constraints from start to goal. Typical sampling-based

methods are probabilistic road-map (PRM) method (Kavraki, Svestka, Latombe, and

Overmars (1996)) and rapidly-exploring random trees (RRT) (LaValle and Kuffner Jr

(2001); LaValle et al. (1998)). The PRM method is a multiple-query planning method

that grows road maps from start to goal via successive random samplings. After con-

structing a road map, we can extract a path from the map, e.g., by using A*. We can

also reuse the road map for the same or similar planning situations. The RRT method

is a single-query method. That is, it focuses on a particular planning problem and

can reduce the number of samples. These methods have been traditionally utilized

for manipulation planning, e.g., of the joint trajectory under obstacles (Kavraki et

al. (1996); Kuffner and LaValle (2000); LaValle et al. (1998)). Furthermore, they can

5

Chapter 1. Introduction

be applied to robotic problems involving contacts such as statically-stable motion

planning of humanoid robots (Kuffner, Kagami, Nishiwaki, Inaba, and Inoue (2002)).

1.2.1.2 Optimization-based motion planning

In optimization-based methods, we plan the trajectory by solving constrained opti-

mization problems, that is, by minimizing a cost function under constraints. This

class of approaches is also known as trajectory optimization (TO) and its character-

istics differ depending on the constraints and cost function. The optimization-based

approaches are versatile because they can consider various physical characteristics

and task specifications as the cost or constraints in a unified manner.

Zucker et al. (2013), Kalakrishnan, Chitta, Theodorou, Pastor, and Schaal (2011),

and Schulman et al. (2014) proposed optimization-based methods for kinematic tra-

jectory optimization problems, which are the same or similar planning problems as the

aforementioned sampling-based planning methods. Zucker et al. (2013) proposed a

planning method that solves the optimization problem by combining gradient informa-

tion and sampling-based methods. Kalakrishnan et al. (2011) proposed a sampling-

based approach without any gradient information to solve the TO problems that

possibly involve non-smooth costs. Schulman et al. (2014) applied sequential convex

programming for motion planning problems under non-convex constraints such as

complex collision avoidance. These approaches can be successfully applied to vari-

ous problems from manipulation in a cluttered environment to the kinematic motion

planning of legged robots with obstacles.

If we incorporate the dynamics of the system into the optimization problem, the

planning problems, i.e., the TO problems, are formulated as optimal control problems

(OCPs) (Betts (2010); Bryson and Ho (1975)). Because the robotic problems typically

involve nonlinear dynamics, non-convex cost, and constraints, the OCPs are approxi-

mately solved by numerical optimization techniques (Betts (2010); Rawlings, Mayne,

and Diehl (2017)). Dai, Valenzuela, and Tedrake (2014) realized highly complicated

motions of a humanoid robot under a given contact sequence by solving the OCP

for the whole-body kinematics and centroidal dynamics model (Orin, Goswami, and

Lee (2013)) with constraints such as collision avoidance and friction cones. Schultz

and Mombaur (2010), Lengagne, Vaillant, Yoshida, and Kheddar (2013), and Posa,

Kuindersma, and Tedrake (2016) successfully generated human-like dynamic motions

of humanoid robots by solving OCPs based on whole-body dynamics of the robots

under a predefined contact sequence. More detailed descriptions of these approaches,

particularly of algorithmic perspective, are described later in 1.2.3.

6

1.2. Overview of Planning and Control of Robotic Systems with Contacts

1.2.1.3 Hierarchical contact and motion planning

Next, we present hierarchical contact and motion planning approaches. The overall

planning starts with common devices to perceive the external environment such as

depth cameras and LIDAR. First, from perceptive data obtained by these devices,

the perception and recognition algorithms reconstruct environment models such as

2D grid map (Thrun (2002)), 2.5D grid-height-map (Fankhauser et al. (2014)), or 3D

environment (Wurm, Hornung, Bennewitz, Stachniss, and Burgard (2010)). Subse-

quently, contact planning methods plan a contact sequence, the sequence of contact

patterns and placements. After determining the contact sequence, the motion plan-

ners introduced in 1.2.1.2 and 1.2.1.1 are typically utilized to determine the robot

trajectory. Practical applications of these hierarchical approaches to complicated

multi-contact planning problems are found in Jenelten, Miki, Vijayan, Bjelonic, and

Hutter (2020); Kuindersma et al. (2016); Mastalli, Havoutis, Focchi, Caldwell, and

Semini (2020).

There are various strategies for contact planning for legged locomotion problems.

An early work (Bretl (2006)) proposed a two-stage sampling planning method, in

which configurations at contacts are first determined and then transitions between

them are planned. As the work only treated simple 2D problem settings, researchers

have tried to solve more complicated and practical planning situations. A successful

approach is to first plan the COM trajectory with reachability analysis on limbs and

then determine the contact sequence (Fernbach, Tonneau, and Täıx (2018); Jenelten

et al. (2020); Mastalli et al. (2020); Tonneau et al. (2018)). The sampling-based

methods such as RRT and PRM are typically used. For further difficult situations

such as foot step-planning on a cluttered terrain, optimization-based methods such

as mixed-integer programming are also effective while it can require a large amount

of computational time (Deits and Tedrake (2014)).

As well as legged locomotion, contact planning is also important in challenging

manipulation planning such as contact-rich manipulation and non-prehensile manip-

ulation. The hierarchical frameworks and sampling-based contact planning such as

PRM and RRT are also utilized in these manipulation problems (Cheng, Huang, Hou,

and Mason (2021); Saut, Sahbani, El-Khoury, and Perdereau (2007)).

1.2.1.4 Simultaneous contact and motion planning

Finally, we introduce an approach to plan the contact sequence and motion simulta-

neously. A well-known approach is contact-implicit trajectory optimization (CITO),

7

Chapter 1. Introduction

which utilizes time-stepping scheme (Stewart and Trinkle (1996)) to simulate the

system dynamics in numerical optimal control. The time-stepping scheme models

the contacts by a set of complementarity constraints. The CITO is then formulated

intomathematical programs with complementarity constraints (MPCC) or bilevel opti-

mization (BO) problems. Pioneer works of the CITO are Yunt and Glocker (2006) and

Yunt (2011), which formulated a BO problem via the augmented Lagrangian method

for the CITO. In Posa, Cantu, and Tedrake (2014), more complicated CITO prob-

lems were formulated as MPCC. Successively, further practical applications of these

methods have been investigated (Carius, Ranftl, Koltun, and Hutter (2018, 2019);

Sleiman, Carius, Grandia, Wermelinger, and Hutter (2019)). However, both MPCC

and BO involve theoretical and practical issues. MPCC inherently lacks constraint

qualifications (Scheel and Scholtes (2000)) such as linear independence constraint

qualification (LICQ), which causes numerical ill-conditionings. Moreover, numerical

alleviations for such problems (Hoheisel, Kanzow, and Schwartz (2013)) often lead to

undesirable stationary points (Nurkanović, Albrecht, and Diehl (2020)). BO problems

are also difficult to solve in general. For example, even a linear bi-level optimization

problem is NP-hard (Hansen, Jaumard, and Savard (1992)).

More computationally cheap but inaccurate contact models were considered in

Neunert et al. (2018), Todorov (2014), and Chatzinikolaidis, You, and Li (2020). Ne-

unert et al. (2018) modeled the contacts via a mass-spring-damper system, which is

simple but leads to stiff and ill-conditioned optimization problems, and inaccurate

solutions. Todorov (2014) proposed an analytically invertible and differentiable con-

tact model. Chatzinikolaidis et al. (2020) investigated its applicability for the TO.

However, the model lacks physical accuracy, e.g., allowing penetration between rigid

objects, as we can see in a contact model comparison of Acosta, Yang, and Posa

(2022).

1.2.2 Control

Next, we provide overviews of control methods of robotic systems with contacts,

particularly of legged robots. For classical tracking control of robot manipulators,

simple methods such as joint-space or task-space proportional-derivative (PD) con-

trollers with gravity compensation work well (Lynch and Park (2017)). However,

such methods cannot work for locomotion or non-trivial nonprehensile manipulation

due to the following reasons. First, the robots (and the manipulated objects in non-

prehensile manipulation) behave as a hybrid system due to contacts. Second, they

8

1.2. Overview of Planning and Control of Robotic Systems with Contacts

can be underactuated due to a floating base of the legged robot or lacking the force-

closure in non-prehensile manipulation. In the following, we introduce methods to

tackle such problems, particularly for legged locomotion. Note that we herein exclude

model predictive control (MPC)-based approaches; instead, we summarize them later

in 1.2.3.

1.2.2.1 Reduced-order models for legged robot control

In the past robot hardware up to the early 2010s, we typically could not control the

joint torques accurately due to low-power and high-gear ratio motors. Therefore,

at the early stage, the legged robot control methods have been developed based on

the position-controlled hardware. Moreover, the performance of CPUs was poor,

and therefore we could not implement complicated algorithms. For these reasons,

researchers have tried to capture simple laws of locomotion from physical perspectives

and construct simple stabilization controllers.

In humanoid robotics, a promising approach has been to model the robot dynamics

by its center of mass (COM) and contact interactions by a contact wrench from the

zero-moment point (ZMP) (Vukobratović and Stepanenko (1972)). Based on the idea,

Sugihara, Nakamura, and Inoue (2002) proposed a stabilizing walking controller for

humanoid robots based on a linear inverted pendulum model (LIPM), which computes

reference ZMP for given velocity commands of COM. Kajita et al. (2003) proposed a

cart-table model for humanoid robots, which computes reference COM trajectory for

a given ZMP trajectory. Although such COM-ZMP-based methods can successfully

generate walking motions in real-time, they are restricted to walking on flat ground.

That is, these methods cannot be applied to a robot walking on uneven terrains or

having multi-contacts with the environment other than the ground.

To achieve stable control even in such a difficult situation, extensions of the COM-

ZMP model have been studied. A successful extension is the divergent component

of motion (DCM) (Takenaka, Matsumoto, and Yoshiike (2009)), which decomposes

the LIPM dynamics into a stable part and an unstable part. DCM enables fur-

ther analysis while it also simplifies the problem formulation. Englsberger, Ott, and

Albu-Schäffer (2015) realized humanoid walking on uneven terrain by a DCM-based

controller. Pratt, Carff, Drakunov, and Goswami (2006) achieved push-recovery con-

trol via the DCM (the DCM is referred to as the capture point in that paper). In

contrast to these approximation model of the COM dynamics, Orin et al. (2013) pro-

posed centroidal momentum matrix, which represents the (exact) translational and

9

Chapter 1. Introduction

rotational dynamics of COM under various contact wrenches, which are essential in

multi-contact situations.

Note that the aforementioned methods compute certain references such as accel-

eration of COM and trajectory of ZMP online but not the joint actuation. Therefore,

a low-level joint controller is required to actuate the full body of the robot. In the

past robot hardware, the joint position commands are first computed by inverse kine-

matics, e.g., to follow the reference position of COM, and then position-controlled

motors track them. As the torque-controllable high-power motors become realistic,

force-based controllers have been developed, such as torque allocation at each limb

(Ott, Roa, and Hirzinger (2011)) and the following whole-body controllers.

1.2.2.2 Whole-body control

In contrast to the above methods with the reduced-order models, whole-body control

(WBC) is based on the whole-body (or full-body) dynamics of the robotic systems.

The WBC has gained attention extensively in recent years along with considerable

developments in torque-controllable robot hardware, CPUs, and efficient quadratic

programming (QP) solvers. The WBC was initially recognized as an extension of

the well-known inverse dynamics control of robot manipulators to a robot with a

floating base and contacts (Nakanishi, Mistry, and Schaal (2007)). Nowadays, in

most studies such as Abe, Da Silva, and Popović (2007) and Saab et al. (2013),

WBC is formulated as a QP; the equation of motion and contact constraints are

regarded as the equality constraints, and additionally inequality constraints such as

joint limitations and friction cones are considered. The QP-based WBC is versatile

because it can incorporate various physical constraints, tasks, and other conditions

in optimization problems as cost or constraints. There are a large number of variants

of QP-based WBC. Ames and Powell (2013) considered the time derivative of the

control Lyapunov function (CLF) directly as inequality constraints of the QP. Nguyen,

Hereid, Grizzle, Ames, and Sreenath (2016) further introduced the control barrier

function (CBF) into the QP in the same manner as the CLF to guarantee certain

safety in the WBC. Ramuzat, Boria, and Stasse (2022) guaranteed the passivity of

the closed-loop system by introducing a kind of storage function as the inequality

constraint of the QP.

While the above WBC methods are promising for robotic systems with contacts,

they are not proven to work well for systems with harsh impacts, which often arise

in dynamic motions. Hybrid zero dynamics (HZD) is a promising virtual-constraint-

based approach that can achieve periodic stability for systems with a floating base

10

1.2. Overview of Planning and Control of Robotic Systems with Contacts

and impacts (Ames, Galloway, Sreenath, and Grizzle (2014); Westervelt, Grizzle, and

Koditschek (2003)). Reher and Ames (2021) successfully realizes QP-based WBC

with HZD on a bipedal robot. However, HZD lacks versatility; it can only treat

periodic motions such as walking on a flat floor. To achieve more versatile and

dynamic motions with WBC, Posa et al. (2016) first solved the TO to compute the

optimal trajectory and a constrained linear quadratic regulator (LQR) to compute

the optimal cost-to-go function offline. They then implemented QP-based WBC to

track the optimized trajectory with the optimal cost-to-go function online.

1.2.2.3 State estimation for legged robots

The QP-based WBC method requires the full state of the robot including the floating

base. Because we cannot measure the position, orientation, and linear velocity of

the floating base directly, estimation of them is necessary to implement the WBC

methods. Legged robots typically equip the joint encoders that measure the joint po-

sitions and an inertia measurement unit (IMU) that can measure the angular velocity

and linear acceleration of the floating base in the body local coordinate. Bloesch et

al. (2013) proposed an extended Kalman filter (EKF) that fuses the IMU measure-

ments and kinematics information. Hartley, Ghaffari, Eustice, and Grizzle (2020)

improved the convergence property of the EKF-based estimation by using invariant

EKF (Barrau and Bonnabel (2016)). Camurri et al. (2017) proposed contact estima-

tion without contact sensors for these EKF-based approaches. Camurri, Ramezani,

Nobili, and Fallon (2020) incorporated additional observations in the sensor fusion

such as the landmarks observed by camera and LIDAR.

1.2.3 Online motion planning as control: Model predictive
control (MPC)

MPC is an advanced control method in which the OCP is solved at every sampling

time for each measured or estimated state (Rawlings et al. (2017)). Since MPC solves

the OCP, it shares the same versatility as the optimization-based motion planning

methods presented in 1.2.1.2; it can consider physical characteristics and task spec-

ifications as the cost or constraints in a unified manner. Meanwhile, a drawback of

MPC is that we have to solve an optimization problem in real-time.

Due to the computational limitation, in the early days, MPC could be imple-

mented only for simple linear quadratic OCPs with low-control frequency, such as

linear MPC based on cart-table-ZMP for reference COM trajectory generation for

11

Chapter 1. Introduction

humanoid walking (Kajita et al. (2003)). However, along with the recent drastic

developments of CPUs and numerical optimization algorithms (Diehl, Ferreau, and

Haverbeke (2009); Kouzoupis, Frison, Zanelli, and Diehl (2018)), MPC has become

to be able to treat more and more complicated problem settings with high control

frequency.

Di Carlo, Wensing, Katz, Bledt, and Kim (2018) achieved fast and highly dynamic

motion of a quadrupedal robot via a linear MPC. In the method, the robot dynamics

are approximated by a linearized single rigid-body dynamics (SRBD) model. The

contact wrenches, i.e., ground reaction forces (GRFs), of the four feet are then treated

as the control input to the system under a given contact sequence. After determining

the GRFs by solving the linear MPC problem, a low-level controller (typically a QP-

based whole-body controller) determines the joint torques to track the GRFs. Such

linearized SRBD-based methods are particularly effective when the weights of limbs

are sufficiently small compared with the fully-body weight and pitch and roll rotations

of the floating base are small. Ding, Pandala, and Park (2019) further improved the

linearization of the rotational motion of SRBD model and achieved acrobatic motion

on a quadrupedal robot.

Bledt and Kim (2019); Bledt, Wensing, and Kim (2017) included the contact

positions as the optimization variables in the linearized SRBD-based MPC, which

yields nonlinear MPC. Rathod et al. (2021) formulated nonlinear MPC based on

the nonlinear SRBD model to capture the rotational dynamics of the SRBD model

and realized robust locomotion that traverses a large object. Farshidian, Jelavic,

Satapathy, Giftthaler, and Buchli (2017) further incorporated the full-kinematics in

the nonlinear SRBD-based nonlinear MPC. The joint velocity and GRFs are treated

as the control input in the method. Sleiman, Farshidian, Minniti, and Hutter (2021)

introduced the centroidal momentum matrix (CMM) (Orin et al. (2013)) instead

of the nonlinear SRBD model to consider exact COM dynamics in the nonlinear

MPC with full-kinematics. These full-kinematics (and CMM) models have realized

versatile tasks such as loco-manipulation (Orin et al. (2013)) and wheeled-legged

control (Bjelonic et al. (2020)).

In recent years, MPC with whole-body (full-body) dynamics, which is called whole-

body MPC (Dantec et al. (2021); Dantec, Taix, and Mansard (2022); Ishihara, Itoh,

and Morimoto (2019); Koenemann et al. (2015); Mastalli et al. (2022); Neunert et al.

(2018)), becomes possible thanks to recently developed efficient algorithms for rigid

body dynamics and their derivatives (Carpentier and Mansard (2018); Giftthaler et al.

(2017)). Since the whole-body MPC is based on accurate full-body robot dynamics,

12

1.3. Challenges in Real-Time MPC of Robotic Systems

it can achieve energy-efficient, reasonable, and highly dynamic motion for a variety

of problems. In particular, the whole-body MPC does not involve limitations on

hardware platforms, working environment, and desired tasks, which often arise in

MPC based on reduced-order models, i.e., the SRBD and centroidal models, due

to the problem approximations. Furthermore, whole-body MPC can determine the

control action with taking the future impact events into account, which cannot be

achieved in the typical QP-based WBC methods. Therefore, the whole-body MPC

is expected to be a unified and versatile approach that can achieve highly dynamic

motions in various hardware platforms.

1.3 Challenges in Real-Time MPC of Robotic Sys-

tems

MPC, particularly whole-body MPC, has the potential to achieve highly dynamic

motions in a unified manner. However, it is still challenging due to computational

limitations. This section introduces these difficulties, which are tackled in this thesis.

1.3.1 Overview of MPC algorithms

Before presenting the challenges in real-time MPC of robotic systems, we herein

review MPC algorithms. In particular, we focus on numerical optimization methods,

which are useful in large-scale and complicated robotic applications. Other methods

such as indirect methods and explicit MPC (see Chapters 8 and 7 of Rawlings et al.

(2017)) are difficult to use for nonlinear and high-dimensional robotic problems and

therefore omitted.

If the dynamical system and constraints are linear and the cost function is quadratic,

the problem is classified as linear MPC problem. The MPC optimization problems

are then formulated as QPs. To solve this class of problems efficiently, dedicated QP

solvers have been developed, such as active-set methods (Ferreau, Kirches, Potschka,

Bock, and Diehl (2014); Frasch, Sager, and Diehl (2015)), interior-point methods

(Frison and Diehl (2020); Pandala, Ding, and Park (2019); Wang and Boyd (2010)),

and alternating direction method of multipliers (ADMM)-based method (Stellato,

Banjac, Goulart, Bemporad, and Boyd (2020)). Their efficiency typically depends on

problem settings, e.g., numbers of optimization variables and inequality constraints.

A historical review of QP solvers for MPC is found in Kouzoupis et al. (2018).

If the dynamical systems and constraints are nonlinear and the cost function is

non-convex, the MPC optimization problem is classified as nonlinear MPC problem.

13

Chapter 1. Introduction

In this case, we typically need to solve nonlinear programs (NLPs) to find an optimal

solution. Ohtsuka and Fujii (1997), Diehl et al. (2002), Ohtsuka (2004), and Diehl,

Bock, and Schlöder (2005) are pioneer works of nonlinear MPC. These two works

utilize tangential predictors to track the solution manifold of the NLP and perform

only one (inexact) Newton iteration to update the solution at each time. Such ideas

are further utilized in Zavala and Biegler (2009) and Zanelli, Quirynen, Jerez, and

Diehl (2017).

Significant efforts also have been made to speed up Newton-type methods for

solving NLPs. In particular, sequential quadratic programming (SQP) methods and

(nonlinear) interior point methods have been developed. In SQP methods, Newton-

type iteration corresponds to solving a QP subproblem which is typically solved by

the aforementioned QP solvers for linear MPC problems. SQP methods, particularly

with active-set QP solvers, can leverage warm-start but can lack efficiency for large-

scale problems. In contrast, interior-point methods can treat large-scale problems ef-

ficiently while they cannot leverage warm-start. Further, interior-point methods have

another computational advantage: in interior-point methods, the QP subproblem of

the Newton-type iteration takes the same structure as the unconstrained time-varying

linear-quadratic OCP. Efficient algorithms that leverage the structure to compute the

Newton steps have been proposed in Rao, Wright, and Rawlings (1998), Wang and

Boyd (2010), Zanelli, Domahidi, Jerez, and Morari (2020), Frison and Diehl (2020),

and Deng and Ohtsuka (2019).

1.3.2 MPC algorithms for fast and large-scale robotic sys-
tems

Robotic systems are fast and large-scale systems. That is, whole-body MPC of

them typically requires millisecond-range control frequency while it involves a high-

dimensional state. Therefore, fast Newton-type algorithms are required to implement

MPC. A promising approach is Riccati recursion approach (Frison (2016); Rao et

al. (1998)), which can perform the Newton-type iteration for unconstrained OCPs in

linear time complexity with respect to the length of the horizon. As it can solve only

the unconstrained OCPs, we have to consider the inequality constraints by methods

other than the active-set methods, e.g., interior point methods.

The Riccati approaches have been implemented in robotic applications. In robotics

community, Riccati recursion-based Newton’s methods are often interpreted as dif-

ferential dynamic programming (DDP) (Jacobson and Mayne (1970)). Its Gauss-

Newton counterpart is called as iterative linear quadratic regulator (iLQR) (Todorov

14

1.3. Challenges in Real-Time MPC of Robotic Systems

and Li (2005)). They are almost identical to the Riccati recursion-based Newton (or

Gauss-Newton) method for the direct single-shooting method in deterministic MPC

problems (see Chapter 8 of Rawlings et al. (2017)). A variant of interior point meth-

ods (Grandia, Farshidian, Ranftl, and Hutter (2019); Hauser and Saccon (2006)) or

augmented Lagrangian method (Howell, Jackson, and Manchester (2019)) are often

used to consider constraints with these methods. In Koenemann et al. (2015), Ne-

unert et al. (2018), Ishihara et al. (2019), Dantec et al. (2021), and Mastalli et al.

(2022), Riccati-based whole-body MPC based on these methods has been successfully

implemented in real-hardware, which shows the efficiency of the Riccati recursion al-

gorithms.

Even though the whole-body MPC is implemented in actual robots, recent liter-

ature still indicates the necessity of further speeding up numerical optimization. In

Dantec et al. (2021), whole-body MPC was implemented for a humanoid robot hav-

ing 28-degrees of freedom (DOF). It reports that we typically need a large number

of iterations until convergence, particularly with constraints, which implies that the

whole-body MPC problems are highly nonlinear. Moreover, per Newton iteration

took a large computational time due to high DOF, which results in a slow sampling

interval from 10 ms to 100 ms. In Mastalli et al. (2022), whole-body MPC successfully

achieved the dynamic and agile motions of a quadrupedal robot. However, the MPC

still required a 10 ms sampling interval for the 18 DOF-robot. In summary, it is still

required to reduce both the number of iterations until convergence and computational

time per iteration.

1.3.3 MPC algorithms for switched systems

There are other difficulties in MPC of robotic systems with contacts. Robotic systems

with contacts involve switches of dynamics and state jumps, which are formally mod-

eled as hybrid systems (Goebel, Sanfelice, and Teel (2012)). A straightforward way

to implement MPC for such systems is to formulate mixed-integer programs (MIPs),

which is unrealistic due to exponentially growing computational time (Belotti et al.

(2013)). Another way is to implement the CITO online. While the whole-body MPC

based on the (approximated) CITO approaches have been implemented (Ishihara et

al. (2019); Koenemann et al. (2015); Neunert et al. (2018)), they have limitations as

discuss in 1.2.1.4. Koenemann et al. (2015) and Ishihara et al. (2019) implemented the

whole-body MPC with smooth approximation model of contacts (Todorov (2014)).

However, it lacks physical accuracy as it allows larger penetrations than other stan-

dard rigid-contact models (Acosta et al. (2022)). Neunert et al. (2018) utilized a

15

Chapter 1. Introduction

simple spring-damper contact approximation model, which also lack accuracy. More-

over, it involves stiff optimization problems, which require very small time-steps of

the numerical integration, i.e., a very large number of optimization variables in MPC.

Therefore, in practice, we have to take a hierarchical strategy composed of a high-

level contact planner and a low-level MPC. The high level contact planner determines

a contact sequence as in 1.2.1.3 and give it to low-level MPC. The low-level MPC then

considers the (bi-lateral) contact constraints explicitly based on the contact sequence.

By considering the contact constraints explicitly, there are no difficulties unique to the

CITO approaches. The resultant MPC optimization problem for the given contact

sequence is classified as OCP of switched systems (Xu and Antsaklis (2004)).

A characteristic of the OCP of the switched systems is that we have to optimize the

switching times as well as the trajectory (Patterson and Rao (2014); Xu and Antsaklis

(2004)). In robotic applications, this corresponds to optimizing contact timings for a

given contact sequence (Farshidian, Kamgarpour, Pardo, and Buchli (2017); Li and

Wensing (2020)). However, existing optimization methods (Farshidian, Kamgarpour,

et al. (2017); Li and Wensing (2020); Patterson and Rao (2014); Xu and Antsaklis

(2004)) for this problem are inefficient and therefore cannot achieve real-time MPC.

Another issue is that robotic systems involve pure-state equality constraints when

making contacts. Riccati recursion algorithms, a class of promising efficient MPC

algorithms for large-scale systems, cannot treat such constraints efficiently. There-

fore, existing robotic applications of the Riccati-based methods including Farshidian,

Kamgarpour, et al. (2017) and Li and Wensing (2020) approximate such constraints

by penalty function or augmented Lagrangian methods, which can lack accuracy or

computational efficiency, and involve troublesome parameter tunings.

1.4 Outline and Contributions

This thesis presents algorithmic developments toward fast whole-body MPC of robotic

systems with rigid contacts. The aforementioned challenges and our approaches are

summarized in Fig. 1.1. Chapter 2 introduces the preliminaries of this thesis: rigid-

body systems and the basics of MPC. Chapter 3 presents a fast optimization algorithm

for the MPC problem (OCP) of rigid body systems using inverse dynamics. Chapter

4 presents a fast optimization algorithm for the MPC problem (OCP) of rigid body

systems with rigid contacts via lifting the optimization problems. Chapter 5 presents

a fast Riccati recursion algorithm for MPC problem (OCP) involving pure-state con-

straint arising in robotic MPC problems. Chapter 6 presents a fast Riccati recursion

16

1.4. Outline and Contributions

0

Challenges in MPC of robotic
systems with contacts

Reducing computational time
of each Newton-type iteration

Reducing required number of
iterations for convergence

Treating pure-state equality
constraint in Riccati recursion

Optimizing switching times
efficiently as well as trajectory

Chapter 3: Inverse dynamics-based
solution method of optimal control of
rigid body systems

Chapter 4: Lifted contact dynamics
for efficient optimal control of rigid
body systems with contacts

Chapter 5: Efficient Riccati recursion
for OCPs with pure-state equality
constraints

Chapter 6: Structure-exploiting
Newton-type method for optimal
control of switched systems

Chapter 7: Whole-body model
predictive control with rigid contacts
via online switching time optimization

Thesis contributions

Figure 1.1: Thesis approaches for MPC of robotic systems with rigid contacts.

algorithm for MPC problem (OCP) involving switching time optimization problems.

Chapter 7 presents a whole-body MPC of a quadrupedal robot using the STO al-

gorithm. We conclude the thesis and present an outlook in Chapter 8. We shortly

discuss the main contributions of each chapter as follows.

Chapter 2 – Preliminaries. This chapter introduces two basics of MPC of

robotic systems which are used throughout this thesis. The first section of this chap-

ter introduces rigid body systems, a modeling framework of real-world robotic sys-

tems such as robot manipulators and legged robots. In particular, we provide an

overview of the mathematical formulation and numerical algorithms of the kinemat-

ics and dynamics of the rigid body systems. The second section of this chapter

introduces off-the-shelf formulations and algorithms for MPC problems. We particu-

larly focus on efficient numerical methods for large-scale systems such as rigid body

systems. Specifically, we utilize the direct multiple shooting method to discretize the

continuous-time problem into non-linear program (NLP) problems, the primal-dual

interior point method to treat inequality constraints, and the Gauss-Newton Hessian

approximation to compute the Hessian matrix. We further introduce the Riccati re-

cursion algorithm that can perform Newton-type iteration in linear-time complexity

with respect to the length of the horizon.

17

Chapter 1. Introduction

Chapter 3 – Inverse dynamics-based solution method of optimal con-

trol of rigid body systems. This chapter presents an solution method of OCPs

for rigid-body systems on the basis of inverse dynamics, which are particulary suit-

able for systems with only few contacts, e.g., robot manipulators. In this method,

we treat all variables, including the state, acceleration, and control input torques,

as optimization variables and treat the inverse dynamics as an equality constraint.

We eliminate the update of the control input torques from the linear equation of

Newton’s method by applying condensing for inverse dynamics. The size of the re-

sultant linear equation is the same as that of the multiple-shooting method based on

forward dynamics except for the variables related to the passive joints and contacts.

Compared with the conventional methods based on forward dynamics, the proposed

method reduces the computational cost of the dynamics and their sensitivities by

utilizing the recursive Newton-Euler algorithm (RNEA) and its partial derivatives.

Numerical experiments show that the proposed method outperforms state-of-the-art

implementations of differential dynamic programming based on forward dynamics in

terms of computational time and numerical robustness.

Chapter 4 – Lifted contact dynamics for efficient optimal control of rigid

body systems with contacts. This chapter presents an efficient lifting approach for

the OCPs of rigid-body systems with contacts to improve the convergence properties

of Newton-type methods. To relax the high nonlinearity, we consider all variables,

including the state, acceleration, contact forces, and control input torques, as opti-

mization variables and the inverse dynamics and acceleration-level contact constraints

as equality constraints. We eliminate the update of the acceleration, contact forces,

and their dual variables from the linear equation to be solved in each Newton-type

iteration in an efficient manner. As a result, the computational cost per Newton-type

iteration is almost identical to that of the conventional non-lifted Newton-type iter-

ation that embeds contact dynamics in the state equation. We conducted numerical

experiments on the whole-body optimal control of various quadrupedal gaits subject

to the friction cone constraints considered in interior-point methods and demonstrated

that the proposed method can significantly increase the convergence speed to more

than twice that of the conventional non-lifted approach.

Chapter 5 – Efficient Riccati recursion for optimal control problems

with pure-state equality constraints. This chapter presents a novel approach

to efficiently treat pure-state equality constraints in OCPs using a Riccati recursion

algorithm. The proposed method transforms a pure-state equality constraint into a

mixed state-control constraint such that the constraint is expressed by variables at a

18

1.4. Outline and Contributions

certain previous time stage. A Riccati recursion algorithm is derived to solve the OCP

using the transformed constraints with linear time complexity in the grid number of

the horizon, in contrast to a previous approach that scales cubically with respect to

the total dimension of the pure-state equality constraints. Numerical experiments on

the whole-body optimal control of quadrupedal gaits that involve pure-state equality

constraints owing to contact switches demonstrate the effectiveness of the proposed

method over existing approaches.

Chapter 6 – Structure-exploiting Newton-type method for optimal con-

trol of switched systems. This chapter presents an efficient Newton-type method

for the optimal control of switched systems under a given mode sequence. A mesh-

refinement-based approach is utilized to discretize continuous-time OCP and formu-

late a NLP, which guarantees the local convergence of a Newton-type method. A

dedicated structure-exploiting algorithm (Riccati recursion) is proposed to perform a

Newton-type method for the NLP efficiently because its sparsity structure is different

from a standard OCP. The proposed method computes each Newton step with linear

time-complexity for the total number of discretization grids as the standard Riccati

recursion algorithm. Additionally, the computation is always successful if the solution

is sufficiently close to a local minimum. Conversely, general quadratic programming

(QP) solvers cannot accomplish this because the Hessian matrix is inherently indef-

inite. Furthermore, a modification on the reduced Hessian matrix is proposed using

the nature of the Riccati recursion algorithm as the dynamic programming for a QP

subproblem to enhance the convergence. A numerical comparison is conducted with

off-the-shelf NLP solvers, which demonstrates that the proposed method is up to two

orders of magnitude faster. Whole-body optimal control of quadrupedal gaits is also

demonstrated and shows that the proposed method can achieve the whole-body MPC

of robotic systems with rigid contacts.

Chapter 7 – Whole-body model predictive control with rigid contacts

via online switching time optimization. This chapter presents a whole-body

MPC of robotic systems built top on the algorithmic developments of Chapters 3–6.

We treat robot dynamics with rigid contacts as a switched system and formulate an

optimal control problem of switched systems to implement the MPC. We utilize the

Newton-type solution algorithm proposed in Chapter 6 for the MPC problem that

optimizes the switching times and trajectory simultaneously. Further, we treat the

switching constraints by the constraint-transformation proposed in Chapter 5 and

lifted algorithm proposed in Chapter in 4. The present efficient algorithm, unlike

inefficient existing methods, enables online optimization as well as switching times.

19

Chapter 1. Introduction

The proposed MPC with online STO is compared over the conventional MPC with

fixed switching times, through numerical simulations of dynamic jumping motions of

a quadruped robot. In the simulation comparison, the proposed MPC successfully

controls the dynamic jumping motions in twice as many cases as the conventional

MPC, which indicates that the proposed method extends the ability of the whole-

body MPC. We further conduct hardware experiments on the quadrupedal robot

Unitree A1 and prove that the proposed method achieves dynamic motions on the

real robot.

20

Chapter 2

Preliminaries

This chapter introduces the preliminaries of model predictive control (MPC) of robotic

systems. The first section introduces rigid body systems, a fundamental model-

ing framework for various real-world robotic systems such as robot manipulators,

quadruped robots, and humanoid robots. The second section introduces the basics

of MPC, in particular, off-the-shelf numerical algorithms of MPC for nonlinear and

large-scale systems, which are utilized throughout of this thesis.

2.1 Rigid Body Systems

The rigid body systems are dynamical systems composed of multiple rigid bodies

and represent various real-world robotic systems. The kinematics and dynamics of

the rigid body systems are fundamentals of planning and control methods including

MPC. In particular, numerical algorithms to compute the kinematics and dynamics

of large-scale rigid body systems have been extensively studied in the past literature.

This section introduces these fundamentals, particularly focusing on useful ones in

our MPC developments. Specifically, we assume a given contact sequence and model

the impact explicitly by means of Newton’s law to formulate tractable OCPs. This

is in contrast to the time-stepping scheme (Stewart and Trinkle (1996)) that models

the unilateral contacts by a set of complementarity constraints.

In the following of this section, we consider the rigid body system whose degree

of freedom (DOF) is n. In general, the configuration, i.e., the generalized coordinate,

of the rigid body system lies in a differentiable manifold, which is expressed as Q.

For example, a legged robot has a floating base that lies in SE(3), that is, the

configuration space of the legged robot contains SE(3). As such, generalized velocity

is not just the time derivative of the configuration: it is defined at the tangent space

of the configuration manifold. Because the tangent space and the Euclidean space

21

Chapter 2. Preliminaries

are equivalent for typical manifolds such as SE(3) (see Solà, Deray, and Atchuthan

(2020) for detailed explanations on Lie groups), we denote the generalized velocity as

v ∈ Rn.

2.1.1 Kinematics

2.1.1.1 Forward and differential kinematics

A position and rotation of a frame of the rigid body system, which we denote as

p(q) ∈ R3 and R ∈ R3×3, are expressed as a differentiable function of the configuration

q. This is called as forward kinematics and we write it as

FK(q) :=

[
R(q) p(q)
0 1

]
: Q→ SE(3). (2.1)

We can compute the forward kinematics (2.1) efficiently by utilizing the tree structure

of the system.

The differential kinematics considers the time-derivative of the forward kinematics.

It mainly describes the relation between the velocity of a frame of interest and the

generalized velocity. The stack of the linear and angular velocity of the frame V ∈ R6

is expressed as

V(q, v) = JFK(q)v (2.2)

where

JFK(q) : Q→ R6×n (2.3)

is the Jacobian of the forward kinematics (2.1) expressed at the tangent space of

Q at q. We can compute the Jacobian (2.1) efficiently in a recursive manner as the

forward kinematics. Detailed introductions of kinematics are found in textbooks such

as Murray, Li, and Sastry (2017) and Lynch and Park (2017).

2.1.1.2 Contact kinematics

Consider that bodies of the rigid body system have contacts with the environment.

Then the configuration q of the system involves a certain constraint due to the con-

tacts. For example, if a walking quadruped robot has a point contact between its foot

and the ground, the position of the foot in the ground coordinate is fixed. That is, q

must satisfy

p(q)− pc = 0, (2.4)

22

2.1. Rigid Body Systems

where pc ∈ R3 is the given contact position. If a walking humanoid robot has a

surface contact between its foot and the ground, the position and orientation of the

foot in the ground coordinate is fixed. That is, q must satisfy

Log(FK−1(q) ◦ FKc) = 0. (2.5)

where FKc ∈ SE(3) is the given contact position and orientation. ◦ denotes the

composition operation on SE(3) and Log(·) is a mapping from SE(3) to Euclidean

space R6 (Solà et al. (2020)). In the following, we describe the stack of these contact

constraints as a differentiable function on q:

p(q) = 0. (2.6)

Next, let us consider the contact constraint (2.6) over a time interval, e.g., in simu-

lations or optimal control problems (OCPs). In this case, instead of considering (2.6)

over the time interval, we can consider the time-derivative of the contact constraint

v(q, v) := ṗ = J(q)v = 0 (2.7)

over the time interval, where J(q) is the contact Jacobian, i.e., Jacobian of (2.6),

provided that the original contact constraint (2.6) is satisfied at a point in the interval.

We can further consider an acceleration-level constraint as

a(q, v, a) := p̈+ 2αṗ+ β2p = J(q)a+ b(q, v), (2.8)

where α and β are weight parameters, and we define

b(q, v) := J̇(q, v)v + 2αJ(q)v + β2p(q). (2.9)

Instead of considering (2.6) over the time interval, we can consider (2.8) over the

time interval provided that the original contact position constraint (2.6) and velocity

constraint (2.7) are satisfied at a point in the interval. The form of (2.8) is called

as Baumgarte’s stabilization method (Baumgarte (1972)) in the sense that we can

stabilize the violation of the original constraint (2.6) by setting α = β > 0 properly

(Flores, Machado, Seabra, and Silva (2011)). Note that with α = β = 0, (2.8) is

reduced to the contact acceleration, i.e., twice-time derivative of (2.6), which can

cause constraint violations of (2.6) in practice.

23

Chapter 2. Preliminaries

2.1.2 Dynamics

Let q ∈ Q, v ∈ Rn, a ∈ Rn, f ∈ Rnf , and u ∈ Rna be the configuration, generalized

velocity, acceleration, stack of the contact forces, and torques of the actuated joints,

respectively. The equation of motion of the rigid-body system is expressed as

M(q)a+ h(q, v)− JT(q)f = STu, (2.10)

whereM(q) ∈ Rn×n denotes the inertia matrix, h(q, v) ∈ Rn encompasses the Coriolis,

centrifugal, and gravitational terms, J(q) ∈ Rnf×n denotes the stack of the contact

Jacobians, and S ∈ Rna×n denotes the selection matrix.

2.1.2.1 Inverse dynamics

The inverse dynamics is the calculation of the torque of a fully-actuated system under

the given configuration, velocity, acceleration, and contact forces:

ID(q, v, a, f) :=M(q)a+ h(q, v)− JT(q)f. (2.11)

The recursive Newton-Euler algorithm (RNEA) (Featherstone (2008)) is an efficient

recursive algorithm to compute the inverse dynamics (2.11). It is worth noting that

an efficient algorithm is proposed to compute the analytical partial derivatives of the

RNEA (Carpentier and Mansard (2018)), which is more efficient than the automatic

differentiation counterpart (Giftthaler et al. (2017)).

2.1.2.2 Forward dynamics

The forward dynamics is the calculation of the acceleration from configuration,

FD(q, v, u, f) :=M−1(q)
{
STu+ h(q, v)− JT(q)f

}
. (2.12)

An approach to compute the forward dynamics (2.12) is to first compute the inertia

matrixM(q) using the composite rigid body algorithm (CRBA) (Featherstone (2008))

and then compute the matrix inversion M−1(q). A more efficient algorithm for large-

scale systems is the articulated body algorithm (ABA) (Featherstone (2008)). An

efficient algorithm to compute the analytical partial derivatives of the forward dy-

namics (2.12) leveraging the analytical partial derivatives of the RNEA is proposed

in Carpentier and Mansard (2018).

24

2.1. Rigid Body Systems

2.1.2.3 Contact-consistent forward dynamics

In numerical simulations and OCPs, we want to compute the acceleration and contact

force for given q, v, and u. The forward dynamics (2.12) is then no longer applicable

because f is not given. In this case, by using both (2.11) and (2.8), we can compute

a and f for given q, v, and u:[
M(q) JT(q)
J(q) O

] [
a
−f

]
=

[
STu− h(q, v)
−b(q, v)

]
. (2.13)

This is called as the contact-consistent forward dynamics or simply as contact dy-

namics in this thesis.

2.1.2.4 Impulse dynamics

When bodies of the rigid body system collide with the other objects, an impulse

change occurs in the generalized velocity of the system. This is expressed by means

of Newton’s law of impact, which is expressed as

M(q)δv − JT(q)Λ = 0, (2.14)

where δv ∈ Rn denotes the impulse change in the generalized velocity, and Λ ∈ Rnf

denotes the stack of the impact forces. Herein, we assume a completely inelastic col-

lision, which results in the contact velocity constraints of the form (2.7) immediately

after the impulse as

v(q, v, δv) := ṗ(q, v + δv) = J(q)(v + δv) = 0. (2.15)

By combining (2.14) and (2.15), we can compute δv and Λ for given q and v:[
M(q) JT(q)
J(q) O

] [
δv
−Λ

]
=

[
0

−J(q)v

]
. (2.16)

It is worth noting that the contact position constraints (2.6) must be satisfied at the

impact instant.

2.1.2.5 State space representation

The state of the rigid body system is composed of the configuration and generalized

velocity as x :=
[
qT vT

]T
. If there is no contact, the discrete-time state equation is

given by

x+ =

[
q ⊕ v∆τ

v + FD(q, v, u, ·)∆τ

]
, (2.17)

25

Chapter 2. Preliminaries

where ∆τ is the time step and ⊕ denotes the addition operator on the manifold Q.

If there are contacts, the state equation is given by

x+ =

 q ⊕ v∆τ

v +
[
I O

] [M(q) JT(q)
J(q) O

]−1 [
STu− h(q, v)

b(q, v)

]
∆τ

 (2.18)

and the state-jump equation is given by

x+ =

 q

v +
[
I O

] [M(q) JT(q)
J(q) O

]−1 [
0

−J(q)v

] . (2.19)

2.1.3 Software

Software have been developed to efficiently compute kinematics and dynamics of rigid

body systems. RBDL (Felis (2017)) is an open-source C++ library implementing

kinematics computation, the CRBA, RNEA, and ABA. RobCoGen (Frigerio, Buchli,

Caldwell, and Semini (2016)) is an open-source C++ code-generation tool supporting

kinematics computation, CRBA, RNEA, ABA, and automatic differentiations of these

algorithms (Giftthaler et al. (2017)). Pinocchio (Carpentier et al. (2019)) is an

open-source C++ library for kinematics, CRBA, RNEA, ABA, and the analytical

derivatives of the RNEA and ABA (Carpentier and Mansard (2018)).

2.2 Model Predictive Control

2.2.1 Overview

This section introduces mathematical formulations and numerical algorithms of MPC.

We particularly focus on numerical optimal control techniques that are efficient for

large-scale nonlinear systems. To provide introductory overview of basics of MPC,

we consider a continuous-time dynamical system of the form of

ẋ(t) = f(x(t), u(t)) (2.20a)

and inequality constraints

g(x(t), u(t)) ≤ 0. (2.20b)

Note that robotic systems such as robot manipulators and legged robots typically

involve switches in dynamics and discontinuous changes in the state (i.e., state jumps)

due to contacts. Therefore, the MPC formulations of these systems differ from (2.20a)

and (2.20b). The details of such formulations are provided in the following chapters.

26

2.2. Model Predictive Control

In this introductory chapter, we consider the following optimal control problem

(OCP).

Problem 2.1. Continuous-time OCP

min
u(·)

J = V (x(t+ T)) +

∫ t+T

t

l(x(τ), u(τ))dτ (2.21a)

s.t.
d

dτ
x(τ) = f(x(τ), u(τ)) τ ∈ [t, t+ T) (2.21b)

g(x(τ), u(τ)) ≤ 0 τ ∈ [t, t+ T), (2.21c)

where V (x) and l(x, u) are terminal cost and stage cost, respectively.

The OCP (2.21) is solved at each time t based on the measured or estimated state

x(t). After solving the OCP, we input the initial value of the optimal control input

to the system. MPC realizes state-feedback control law by repeating this procedure

for each state x(t).

2.2.2 Numerical optimal control techniques for fast MPC of
large-scale systems

In practice, continuous-time OCP (2.21) is approximated into finite-dimensional opti-

mization problems to be solved numerically via Newton-type methods. Therefore, the

solution efficiency of the Newton-type methods is critical for MPC implementation.

In the following, we introduce efficient off-the-shelf numerical solution methods of the

OCP, which are utilized throughout this thesis.

2.2.2.1 Direct multiple shooting method

We discretize the continuous-time OCP (2.21) into a discrete-time OCP that can

be solved by off-the-shelf Newton-type optimization methods. This thesis consis-

tently utilizes the direct multiple shooting (DMS) method (Bock and Plitt (1984))

for discretization which can achieve fast and robust numerical optimization. The

characteristics of the DMS method are: 1) it discretizes the continuous-time OCP

via explicit integration schemes such as the forward Euler method or Runge-Kutta

methods and 2) it explicitly includes the state variables over the horizon in the op-

timization variables as well as control input. For ease of presentation, we choose the

forward Euler method as the integration method in the DMS method. The OCP is

then reduced to the following nonlinear program (NLP) problem.

27

Chapter 2. Preliminaries

Problem 2.2. NLP

min
u0,...,uN−1,x0,...,xN

J = V (xN) +
N−1∑
i=0

l(xi, ui)∆τ (2.22a)

s.t. x(t)− x0 = 0 (2.22b)

xi + f(xi, ui)∆τ − xi+1 = 0, i = {0, ..., N − 1} , (2.22c)

g(xi, ui) ≤ 0, i = {0, ..., N − 1} . (2.22d)

Other popular methods than the DMS method are the direct single-shooting

method and the direct transcription method. The direct single-shooting method

regards only the control input sequence as the optimization variables: the state vari-

ables are treated as the nonlinear function of the initial state x(t) and the control

input sequence u0, ..., uN−1. Although the direct single-shooting method is simple

and easy to implement, the DMS method is superior to it in terms of computational

time and numerical stability. Moreover, DMS can leverage parallel computation, e.g.,

in computation of the state equation (2.22c) while the direct single-shooting method

cannot. The direct transcription can reduce the number of optimization variables and

increase sparsity than the aforementioned shooting methods by representing the state

trajectory via certain polynomials. Therefore, the direct collocation method can be

faster than these two shooting methods if we implement Newton-type methods via

certain linear algebras, e.g., direct matrix inversion of the Newton linear system.

However, with some dedicated structure-exploiting algorithms for the Newton linear

system such as the Riccati recursion algorithm presented in 2.2.2.4, the DMS method

can be faster than the direct collocation method.

2.2.2.2 Primal-dual interior point method

There are two major methods to treat inequality constraints in NLP: the sequential

quadratic programming (SQP) method and the primal-dual interior point (PDIP)

method (Nocedal and Wright (2006)). SQP method can leverage warm-start in MPC.

However, it can lack efficiency when there is a large number of inequality constraints.

PDIP method is a promising approach for large-scale problems and allows subopti-

mal implementation in the sense that the barrier parameter remains moderate value

(Wang and Boyd (2010)). Further, PDIP method is superior to the primal interior

point method, another interior point method, in terms of numerical stability. For ex-

ample, PDIP method can treat the infeasible iterates while the primal interior point

method cannot.

28

2.2. Model Predictive Control

In the PDIP method, we introduce slack variables s0, ..., sN−1 with barrier pa-

rameter ϵ > 0 and reformulate the original NLP problem into the following NLP

subproblem without inequality constraints.

Problem 2.3. Barrier NLP subproblem

min
u0,...,uN−1,x0,...,xN ,s0,...,sN−1

J̃ = V (xN) +
N−1∑
i=0

l(xi, ui)∆τ − ϵ
N−1∑
i=0

ln si (2.23a)

s.t. x(t)− x0 = 0 (2.23b)

xi + f(xi, ui)∆τ − xi+1 = 0, i ∈ {0, ..., N − 1} , (2.23c)

g(xi, ui) + si = 0, i ∈ {0, ..., N − 1} . (2.23d)

In the PDIP method, we repeatedly 1) solve the NLP subproblem (2.23) by a

Newton-type method with fixed ϵ and 2) reduce ϵ. By gradually reducing ϵ to zero,

the NLP solution becomes close to the solution of the original NLP problem (2.22).

To apply Newton-type method for the barrier NLP subproblem (2.23), we introduce

the Lagrangian

L := J̃+λT0 (x(t)−x0)+
N−1∑
i=0

λTi+1(xi+f(xi, ui)∆τ−xi+1)+
N−1∑
i=0

νTi (g(xi, ui)+si), (2.24)

where λ0, ..., λN and ν0, ..., νN−1 are the Lagrange multipliers. The (perturbed) Karush-

Kuhn-Tucker (KKT) conditions of the NLP subproblem are given by the first-order

derivatives of the Lagrangian L, that is, (2.23b), (2.23c), (2.23d),

Vx(xN)− λN = 0, (2.25a)

− λi + λi+1 +HT
x (xi, ui, λi+1)∆τ + gTx (xi, ui)νi = 0, i ∈ {0, ..., N − 1} , (2.25b)

HT
u (xi, ui, λi+1)∆τ + gTu (xi, ui)νi = 0, i ∈ {0, ..., N − 1} , (2.25c)

and

diag(νi) si = ϵ1, i ∈ {0, ..., N − 1} , (2.25d)

where

H(x, u, λ) := l(x, u) + λTf(x, u) (2.25e)

is the Hamiltonian (Bryson and Ho (1975)). Next, we linearize the KKT conditions

with the Newton steps of all optimization variables ∆x0, ...,∆xN , ∆u0, ...,∆uN−1,

∆λ0, ...,∆λN , ∆s0, ...,∆sN−1, and ∆ν0, ...,∆νN−1. We then obtain

x0 +∆x0 = x(t), (2.26a)

29

Chapter 2. Preliminaries

Ai∆xi +Bi∆ui −∆xi+1 + x̄i = 0, i ∈ {0, ..., N − 1} , (2.26b)

Ci∆xi +Di∆ui +∆si + ḡi = 0, i ∈ {0, ..., N − 1} , (2.26c)

Qxx,N∆xN −∆λN + l̄x,N = 0, (2.26d)

Qxx,i∆xi+Qxu,i∆ui+A
T
i ∆λi+1−∆λi+CT

i ∆νi+ l̄x,i = 0, i ∈ {0, ..., N − 1} , (2.26e)

QT
xu,i∆xi +Quu,i∆ui +BT

i ∆λi+1 +DT
i ∆νi + l̄u,i = 0, i ∈ {0, ..., N − 1} , (2.26f)

and

diag(νi)∆si + diag(si)∆νi + diag(νi)si − ϵ1 = 0, i ∈ {0, ..., N − 1} , (2.26g)

where we define Ai := fx(xi, ui), Bi := fu(xi, ui), Ci := gx(xi, ui), Di := gu(xi, ui),

Qxx,i := Hxx(xi, ui, λi+1)∆τ , Qxu,i := Hxu(xi, ui, λi+1)∆τ , andQuu,i := Huu(xi, ui, λi+1)

∆τ . Also, we define x̄i, ḡi, l̄x,i and l̄u,i as the right hands of (2.23c)–(2.25c). From

(2.26c) and (2.26g), we have

∆si = −Ci∆xi −Di∆ui − ḡi, i ∈ {0, ..., N − 1} (2.27a)

and

∆νi = − diag−1(si)diag(νi)∆si − diag−1(si)(diag(νi)si − ϵ1)

= diag−1(si)diag(νi)Ci∆xi + diag−1(si)diag(νi)Di∆ui

+ diag−1(si)diag(νi)ḡi − diag−1(si)(diag(νi)si − ϵ1), i ∈ {0, ..., N − 1} .
(2.27b)

By substituting (2.27a) and (2.27b) into (2.25b)–(2.25c), the Newton-step computa-

tion is reduced to find ∆u0, ...,∆uN−1, ∆x0, ...,∆xN , and ∆λ0, ...,∆λN that satisfy

the linear system (2.26a), (2.26b), (2.26d),

Q̃xx,i∆xi + Q̃xu,i∆ui + AT
i ∆λi+1 −∆λi + l̃x,i = 0, (2.28a)

and

Q̃T
xu,i∆xi + Q̃uu,i∆ui +BT

i ∆λi+1 + l̃u,i = 0, (2.28b)

where

Q̃xx,i := Qxx,i + CT
i diag

−1(si)diag(νi)Ci, (2.28c)

Q̃xu,i := Qxu,i + CT
i diag

−1(si)diag(νi)Di, (2.28d)

Q̃uu,i := Quu,i +DT
i diag

−1(si)diag(νi)Di, (2.28e)

l̃x,i := l̄x,i + CT
i

(
diag−1(si)diag(νi)ḡi − diag−1(si)(diag(νi)si − ϵ1)

)
, (2.28f)

30

2.2. Model Predictive Control

and

l̃u,i := l̄u,i +DT
i

(
diag−1(si)diag(νi)ḡi − diag−1(si)(diag(νi)si − ϵ1)

)
. (2.28g)

After computing ∆u0, ...,∆uN−1, ∆x0, ...,∆xN , and ∆λ0, ...,∆λN , we compute the

remaining Newton steps ∆s0, ...,∆sN−1 and ∆ν0, ...,∆νN−1 from (2.27a) and (2.27b).

The computational advantage of the PDIP method is that the structure of the linear

system corresponds to the unconstrained linear quadratic OCPs and therefore can be

solved efficiently.

After computing all the Newton steps, we determine the step size α ∈ (0, 1] via

fraction-to-boundary rule (Nocedal and Wright (2006); Wächter and Biegler (2006)).

It gives a maximum step size while keeping s0, ..., sN−1 and ν0, ..., νN−1 to be positive

with some margin.

2.2.2.3 Gauss-Newton Hessian approximation

Gauss-Newton Hessian approximation improves computational speed and numerical

robustness for certain tracking-type MPC problems. Suppose that the terminal cost

and stage cost take the form of

V (x) = ϕ(x)Tϕ(x), (2.29)

and

l(x, u) = ϕ(x, u)Tϕ(x, u), (2.30)

respectively. Gauss-Newton Hessian method then approximates the Hessian matrices

as

Qxx,N(xN) = Vxx(xN) ≃ ϕx(xN)
Tϕx(xN), (2.31)[

Qxx,i Qxu,i

Qux,i Quu,i

]
=

[
Hxx(xi, ui, λi+1) Hxu(xi, ui, λi+1)
HT

xu(xi, ui, λi+1) Huu(xi, ui, λi+1)

]
∆τ

≃
[
ϕx(xi, ui)

T

ϕu(xi, ui)
T

] [
ϕx(xi, ui) ϕu(xi, ui)

]
∆τ. (2.32)

The advantage of the Gauss-Newton Hessian approximation is two-fold. 1) We

do not need to compute the twice partial derivatives of V (x), l(x, u), and f(x, u).

The twice partial derivative of f(x, u) is particularly time-consuming in ridig body

systems as we can see in (2.17)–(2.19). 2) The Hessian matrix of the Newton system

is proven to be positive (semi)definite and the Newton-step computation is always

successful. Meanwhile, the exact Hessian matrix can be indefinite and the Newton-

step computation can be ill-conditioned.

31

Chapter 2. Preliminaries

2.2.2.4 Riccati recursion

At each Newton-type iteration, we compute the Newton steps ∆x0, ...,∆xN , ∆u0, ...,

∆uN−1, and ∆λ0, ...,∆λN by solving the linear system (2.26a), (2.26b), (2.26d),

(2.28a), and (2.28b). This is one of the most time-consuming parts of solving the

NLP, for example, the direct Cholesky factorization typically requires the cubic com-

putational burden O(N3). The Riccati recursion (Frison (2016); Rao et al. (1998))

can solve the linear problem with linear-time complexity with respect to N .

The Riccati recursion is derived to find a series of matrices Pi and vectors si such

that

∆λi = Pi∆xi − si (2.33)

holds for all i ∈ {0, ..., N}. We start from the terminal stage (i = N), where we have

(2.33) for i = N with

PN = Qxx,N , sN = −l̄N . (2.34)

At the intermediate stages (i < N), suppose that the we have Pi+1 and si+1 satisfying

(2.33). Then, by substituting (2.26b) and (2.33) into (2.28a) and (2.28b), we have

(2.33) for ∆λi and ∆xi with

Pi := Fi −KT
i GiKi, si := AT

i (si+1 − Pi+1x̄i)− l̄x,i −Hiki, (2.35a)

where

Fi := Qxx,i + AT
i Pi+1Ai, (2.35b)

Hi := Qxu,i + AT
i Pi+1Bi, (2.35c)

Gi := Quu,i +BT
i Pi+1Bi, (2.35d)

and

Ki := −G−1
i HT

i , ki := −G−1
i (BT

i Pi+1x̄i −BT
i si+1 + l̄u,i). (2.35e)

We can repeat this derivation from i = N to i = 0.

The algorithm of the Riccati recursion is composed of backward and forward recur-

sions. For the given Newton system (2.26a), (2.26b), (2.26d), (2.28a), and (2.28b),

first, we perform the backward recursion, i.e., we compute Pi, si, Ki, and ki from

i = N to i = 0 by (2.34)–(2.35e). Next, we perform the forward recursion: we com-

pute ∆x0 from (2.26a), and then we repeatedly compute ∆λi, ∆ui, and ∆xi+1 from

(2.35a),

∆ui = Ki∆xi + ki, (2.36)

and (2.26b), respectively, from i = 0 to i = N .

32

2.2. Model Predictive Control

2.2.2.5 Summary of Newton-type method for MPC

We summarize the aforementioned numerical optimal control techniques in Algorithm

2.1. The NLP (2.22) starts with initial state x(t), initial guess of the optimization

variables, and initial barrier parameter ϵ. The goal is to find a solution such that

the KKT error (i.e., l2-norm of residual in the KKT conditions (2.23b)–(2.25d)) and

barrier parameter are smaller than predefined tolerances γ > 0 and ϵtol > 0. Note that

it is possible to use other criteria for the convergence than the aforementioned one

such as a max-norm of the KKT residual (see Nocedal and Wright (2006)). The outer

while loop (lines 2–25) expresses the NLP subproblem iteration for varying barrier

parameter ϵ and inner while loop (lines 4–23) does the Newton-type iteration for

the fixed barrier parameter. The inner while loop consists of the computation of the

Newton steps of the PDIP method via the Riccati recursion (lines 4–18) and solution

update with the step-size selection via the fraction-to-boundary (lines 19–22). After

solving the inner NLP problem with a fixed barrier parameter, that is, if the KKT

error is smaller than γ, we reduce the barrier parameter, e.g., via ϵ← βϵ with some

0 < β < 1. This procedure is repeated until the barrier parameter is smaller than the

predefined threshold ϵtol.

In practice, the computational time is limited under the sampling period of the

control system. Therefore, the suboptimal MPC is typically employed in which the

iterate is utilized as the actual control input before strictly converging to the optimal

solution. Suboptimal MPC is often implemented by fixing the number of Newton-

type iterations. In interior point methods, this also can be implemented by setting the

barrier parameter threshold ϵtol moderately large or even fixing the barrier parameter

ϵ (Wang and Boyd (2010)).

33

Chapter 2. Preliminaries

Algorithm 2.1 Summary of the Newton-type method for the NLP (2.22)

Input: Initial state x(t), initial guesses of the optimization variables, initial barrier
parameter, and tolerances of KKT error and barrier parameter (γ, ϵtol).

Output: Optimal solution x0, ..., xN , u0, ..., uN−1, λ0, ..., λN , s0, ..., sN−1, and
ν0, ..., νN−1

1: // NLP subproblem iterations.
2: while ϵ > ϵtol do
3: // Newton-type iterations with the fixed barrier
parameter.

4: while The KKT error is larger than γ do
5: for i = 0, · · · , N do in parallel
6: Compute matrices and vectors in (2.26a)–(2.26g).
7: end for
8: // Backward Riccati recursion.
9: for i = N, · · · , 0 do in serial
10: Compute Pi, si, Ki, and ki from (2.35a)–(2.35e).
11: end for
12: // Forward Riccati recursion.
13: for i = 0, · · · , N − 1 do in serial
14: Compute Newton steps ∆λi, ∆ui, and ∆xi+1 from (2.33), (2.36), and

(2.26b), respectively.
15: end for
16: for i = 0, · · · , N − 1 do in parallel or serial
17: Compute Newton steps ∆s0, ...,∆sN−1 and ∆ν0, ...,∆νN−1.
18: end for
19: Determine the step size α ∈ (0, 1] via the fraction-to-boundary rule.
20: for i = 0, · · · , N do in parallel or serial
21: Update variables xi, ui, λi, si, and νi, e.g., as xi ← xi + α∆xi.
22: end for
23: end while
24: Reduce the barrier parameter, e.g., via ϵ← βϵ (0 < β < 1).
25: end while

34

Chapter 3

Inverse Dynamics-Based Solution
Method of Optimal Control of
Rigid Body Systems

1

3.1 Introduction

Optimal control plays a significant role in motion planning and control such as trajec-

tory optimization (TO) and model predictive control (MPC) (Rawlings et al. (2017))

for rigid-body systems. TO can generate dynamically consistent motion under ver-

satile control objectives and constraints even for highly nonlinear systems such as

underactuated systems by solving the optimal control problem (OCP). MPC lever-

ages the same advantages as TO for real-time control by solving the OCP at each

sampling time. However, we still have to improve the computational efficiency and

numerical robustness of the OCP for rigid-body systems whose dynamics are com-

plicated and highly nonlinear. this The computational time of the OCP for rigid-

body systems depends substantially on the computational time of the dynamics and

their sensitivities. Most previous researches on the OCP for rigid-body systems (e.g.,

Koenemann et al. (2015); Mastalli et al. (2020); Neunert et al. (2018)) have been

based on forward dynamics, which is a calculation of the generalized acceleration for

the given configuration, generalized velocity, and generalized torques. These studies

incorporate forward dynamics into the state equation, which is a natural representa-

tion, especially for single-shooting methods such as differential dynamic programming

(DDP) (Tassa, Erez, and Todorov (2012)) and the iterative linear quadratic regulator

1© 2021 IEEE. Reprinted, with permission, from S. Katayama and T. Ohtsuka, “Efficient
solution method based on inverse dynamics for optimal control problems of rigid body systems,”
2021 IEEE International Conference on Robotics and Automation (ICRA 2021), pp. 2070–2076,
2021.

35

Chapter 3. Inverse Dynamics-Based Solution Method of Optimal Control of Rigid
Body Systems

(iLQR) (Todorov and Li (2005)). They utilize the ABA (Featherstone (1983)), an

efficient recursive algorithm to compute forward dynamics, or directly compute the

inverse of the joint inertia matrix, in solving the OCP. In contrast, our previous work

(Katayama and Ohtsuka (2020)) proposed basing the OCP on inverse dynamics to

reduce the computational time compared with that of the OCP based on forward

dynamics. Inverse dynamics are calculations of the generalized torques for a given

configuration, generalized velocity, and generalized acceleration. We can compute

the inverse dynamics with a smaller computational time than with forward dynam-

ics because the RNEA is faster than ABA (Featherstone (2008)). Moreover, we can

compute the sensitivities of inverse dynamics faster than those of forward dynamics

Carpentier and Mansard (2018); Neunert, Giftthaler, Frigerio, Semini, and Buchli

(2016). Therefore, we can reduce the computational cost of the OCP for rigid-body

systems by using inverse dynamics instead of forward dynamics, as illustrated numeri-

cally in Katayama and Ohtsuka (2020). However, our previous approach of Katayama

and Ohtsuka (2020) has a potential drawback when it is utilized for MPC because

it is a single-shooting method; i.e., it regards only the acceleration as the decision

variable, which means it cannot leverage parallel computing and can lack numerical

robustness.

The single-shooting method regards only the control input as decision variables

and computes the state on the horizon by simulating the system’s dynamics based on

the control input at each iteration. Typical examples of the single-shooting method

are DDP and iLQR, which solve the linear equation of Newton’s method by using

Riccati recursion Frison (2016) and are very popular in robotics applications Koen-

emann et al. (2015); Mastalli et al. (2020); Neunert et al. (2018). In contrast, the

multiple-shooting method regards all variables (the state, costate, and control inputs)

as optimization variables and can inherently leverage parallel computing by splitting

the computation of the residual of the Karush–Kuhn–Tucker (KKT) conditions and

the Hessian of the KKT condition into each time stage, which is impossible for the

single-shooting methods due to their expensive serial computational parts, such as

the simulation of the system’s dynamics over the horizon. Even in a single-thread

computation, the computational cost of the multiple-shooting method is almost the

same as that of the single-shooting method even though it has more optimization vari-

ables thanks to structure-exploiting Newton-type methods (Albersmeyer and Diehl

(2010); Bock and Plitt (1984); Frison (2016)). Further, the multiple-shooting method

is empirically known to converge quickly even if the initial guess of the solution is far

36

3.2. Optimal Control Problem Based on Inverse Dynamics

from the (local) optimal solution; In contrast, the single-shooting method converges

slowly or even diverges in such a situation.

In this chapter, we propose an efficient solution method of the OCP for rigid-body

systems based on inverse dynamics and the multiple-shooting method. We treat all

variables, including the state, acceleration, and control input torques, as optimization

variables, and treat the inverse dynamics as an equality constraint. We eliminate the

update of the control input torques from the linear equation of Newton’s method by

applying condensing for inverse dynamics. The size of the resultant linear equation

is the same as that of the multiple-shooting method based on forward dynamics

except for the variables related to the passive joints and contacts. Compared with

the conventional methods based on forward dynamics, the proposed method reduces

the computational cost of the dynamics and their sensitivities by utilizing RNEA and

its partial derivatives. In addition, it increases the sparsity of the Hessian of the KKT

conditions, which reduces the computational cost, e.g., of Riccati recursion. Note that

the inverse dynamics-based formulation is also utilized in a contact-implicit TO (Erez

and Todorov (2012); Todorov (2014)) to alleviate the numerical ill-conditioning due

to an approximation with smooth contact model. In contrast to these studies, our

method is not limited to a specific contact-implicit TO, e.g., it can treat rigid contacts,

as illustrated in a numerical experiment.

This chapter is organized as follows. In Section 3.2, we formulate the OCP based

on inverse dynamics. Section 3.3 introduces the proposed solution method with con-

densing of inverse dynamics. Section 3.4 compares the proposed method with state-

of-the-art implementations of DDP/iLQR and demonstrates its effectiveness in terms

of the computational time and numerical robustness. We conclude in Section 3.5 with

a brief summary and mention of future work.

3.2 Optimal Control Problem Based on Inverse

Dynamics

3.2.1 Rigid-body systems

Let Q be the configuration manifold of the rigid-body system. Let q ∈ Q, v ∈ Rn,

a ∈ Rn, f ∈ Rnf , and u ∈ Rn be the configuration, generalized velocity, acceleration,

stack of the contact forces, and input torques, respectively. The equation of motion

of the rigid-body system is given by

M(q)a+ h(q, v)− JT(q)f = u, (3.1)

37

Chapter 3. Inverse Dynamics-Based Solution Method of Optimal Control of Rigid
Body Systems

where M(q) ∈ Rn×n denotes the inertia matrix, h(q, v) ∈ Rn encompasses Coriolis,

centrifugal, and gravitational terms, and J(q) ∈ Rnf×n denotes the stack of the

contact Jacobians. We write (3.1) as an equality constraint of the inverse dynamics

as follows:

ID(q, v, a, f)− u = 0, (3.2)

where ID(q, v, a, f) is defined by the left-hand side of (3.1) in the formulation of

the OCP. Note that we can efficiently compute ID(q, v, a, f) by using RNEA and its

partial derivatives by using the partial derivatives of RNEA (Carpentier and Mansard

(2018)). We also assume that the input torques u are an n-dimensional vector even

when the system is underactuated, as RNEA and its partial derivatives are well-

defined only for fully actuated systems. As stated in the next subsection, we treat the

underactuated systems by introducing an equality constraint that zeros the elements

of u corresponding to passive joints.

3.2.2 Optimal control problem

We consider an OCP with N time stages. The configuration, velocity, accelera-

tion, external forces, and input torques for N stages are denoted as q0, ..., qN ∈ Q,

v0, ..., vN ∈ Rn, a0, ..., aN−1 ∈ Rn, f0, ..., fN−1 ∈ Rnf , u0, ..., uN−1 ∈ Rn, all of which

are regarded as optimization variables to formulate the OCP based on inverse dynam-

ics. We assume the initial state is given by q̄ and v̄, and then consider the constraints

on the initial state

δ(q̄, q0) = 0, v̄ − v0 = 0, q̄ ∈ Q, v̄ ∈ Rn, (3.3)

where δ(q1, q2) ∈ Rn denotes the subtraction operation of the configurations q2 ∈ Q
from q1 ∈ Q on the manifold Q. The state equation discretized with the forward

Euler method is given by[
δ(qi, qi+1) + vi∆τ
vi − vi+1 + ai∆τ

]
= 0, i = 0, ..., N − 1, (3.4)

where ∆τ is the time step of the discretization given by ∆τ = T/N with the length

of the horizon T . The state equation (3.4) takes a simple form since we consider the

equation of the motion of the system (3.1) as an equality constraint (3.2) in the OCP

and regard the acceleration ai as the optimization variables. In general, we can also

assume an mc-dimensional equality constraint,

C(qi, vi, ai, ui, fi)∆τ = 0, i = 0, ..., N − 1, (3.5)

38

3.2. Optimal Control Problem Based on Inverse Dynamics

and mg-dimensional inequality constraint,

g(qi, vi, ai, ui, fi)∆τ ≤ 0, i = 0, ..., N − 1. (3.6)

Note that we multiply C(·) and g(·) by ∆τ in (3.5) and (3.6) so that the proposed

formulation will correspond to the continuous-time Euler-Lagrange equations dis-

cretized with a time step ∆τ (Bryson and Ho (1975)). If the system is underactuated,

(3.5) contains the elements of the control input torques corresponding to the passive

joints. For example, if the system has a floating base whose joint indices are 1 to

6, C(qi, vi, ai, ui, fi) in (3.5) includes [u
(1)
i u

(2)
i u

(3)
i u

(4)
i u

(5)
i u

(6)
i]T, where u

(j)
i is the j-th

element of ui.

For the above description of the rigid-body system and constraints, the OCP is

given by

min
qi,vi,ai,ui,fi

J = V (qN , vN) +
N−1∑
i=0

l(qi, vi, ai, ui, fi)∆τ,

subject to (3.2)–(3.6), where V (qN , vN) denotes the terminal cost and l(qi, vi, ai, ui, fi)∆τ

denotes the stage cost. We treat the inequality constraints (3.6) by using the primal-

dual interior point (PDIP) method (Nocedal and Wright (2006)), which can treat

large-scale and nonlinear constraints efficiently. The inequality constraint (3.6) is

then transformed into an equality constraint by introducing slack variables si ∈ Rmg ,

g(qi, vi, ai, ui, fi)∆τ + si∆τ = 0, (3.7)

with an additional inequality constraint si ≥ 0.

3.2.3 KKT conditions

Next, we derive the KKT conditions, necessary conditions for optimal control (Bryson

and Ho (1975); Nocedal and Wright (2006)). Let the set of primal variables at stage

i be yi := {qi vi ai fi ui} and the set of primal variables without the control input

torques be ỹi := {qi vi ai fi} for i = 0, ..., N − 1. We then introduce the Lagrangian

of this OCP with PDIP method,

L = V (qN , vN) +
N−1∑
i=0

l(yi)∆τ +

[
λ0
γ0

]T [
δ(q̄, q0)
v̄ − v0

]
+

N−1∑
i=0

[
λi+1

γi+1

]T [
δ(qi, qi+1) + vi∆τ
vi − vi+1 + ai∆τ

]

+
N−1∑
i=0

βT
i (ID(ỹi)− ui)∆τ +

N−1∑
i=0

µT
i C(yi)∆τ +

N−1∑
i=0

νTi (g(yi)∆τ + si∆τ)

−
N−1∑
i=0

ϵ ln si∆τ,

39

Chapter 3. Inverse Dynamics-Based Solution Method of Optimal Control of Rigid
Body Systems

where λi, γi ∈ Rn, µi ∈ Rmc , and νi ∈ Rmg denote the Lagrange multipliers with

respect to the state equation (3.4), the equality constraint (3.5), and the inequality

constraints (3.6), and ϵ > 0 denotes the barrier parameter. The KKT conditions are

then given by (3.2)–(3.5), (3.7),[
LT

qN

LT
vN

]
=

[
V T
qN
(qN , vN)

V T
vN
(qN , vN)

]
+

[
δTqN (qN−1, qN)λN

−γN

]
= 0, (3.8)

and the following equations for i = 0, ..., N − 1,[
LT

qi

LT
vi

]
=

[
lTqi(yi)∆τ
lTvi(yi)∆τ

]
+

[
δTqi(qi, qi+1) On×n

In∆τ In

] [
λi+1

γi+1

]
+

[
IDT

qi
∆τ(ỹi)

IDT
vi
∆τ(ỹi)

]
βi

+

[
CT

qi
∆τ(yi)

CT
vi
∆τ(yi)

]
µi +

[
gTqi∆τ(yi)
gTvi∆τ(yi)

]
νi +

[
δTqi(qi−1, qi)λi
−γi

]
= 0, (3.9)

[
LT

ai

LT
fi

]
=

[
lTai(yi)∆τ
lTfi(yi)∆τ

]
+

[
On×1

γi+1∆τ

]
+

[
IDT

ai
(ỹi)∆τ

IDT
fi
(ỹi)∆τ

]
βi

+

[
CT

ai
(yi)∆τ

CT
fi
(yi)∆τ

]
µi +

[
gTai(yi)∆τ
gTfi(yi)∆τ

]
νi = 0, (3.10)

LT
ui
= lTui

(yi)∆τ − βi∆τ + CT
ui
(yi)µi∆τ + gTui

(yi)νi∆τ = 0, (3.11)

and

diag(si)νi = ϵ1, (3.12)

where ϵ1 denotes an mg-dimensional vector, all of whose elements are ϵ. The last

equation (3.12) denotes the complementarity conditions between the slack variable si

and the Lagrange multiplier νi.

3.3 Solution Method of Optimal Control Problem

3.3.1 Linearization for Newton’s method

The above KKT conditions are linearized for Newton’s method. We apply Gauss-

Newton Hessian approximation because the inverse dynamics constraint (3.2) is com-

plicated enough to make it impractical to compute the second-order partial deriva-

tives of (3.2). Accordingly, the Hessian of the Lagrangian at the terminal stage

is approximated by the Gauss-Newton-approximated Hessian of the terminal cost

and that at the intermediate stage by the Gauss-Newton-approximated Hessian of

the stage cost. For example, when the terminal cost and the stage cost take a

40

3.3. Solution Method of Optimal Control Problem

quadratic form, we have LqN qN ≃ VqN qN and Lqiqi ≃ lqiqi . With the approximated Hes-

sian, (3.8) is linearized into a linear equation with respect to the Newton directions

∆λN ,∆γN ,∆qN ,∆vN ∈ Rn as[
LT

qN

LT
vN

]
+

[
LqN qN LqNvN

LvN qN LvNvN

] [
∆qN
∆vN

]
+

[
δTqN (qN−1, qN)∆λN

−∆γN

]
= 0. (3.13)

As well, (3.9)–(3.11) are linearized into linear equations with respect to the Newton

directions ∆λi+1,∆γi+1,∆qi,∆vi,∆ai,∆ui,∆βi ∈ Rn, ∆fi ∈ Rnf , and ∆µi ∈ Rmc .

Note that the directions related to the PDIP method, ∆si,∆νi ∈ Rmg , are eliminated

explicitly from the linear equations by adding certain terms related to the logarithmic

barrier functions to the Hessians (e.g., Lqiqi) and residuals of the KKT conditions

(e.g., Lqi) (Nocedal and Wright (2006); Wächter and Biegler (2006)). By denoting

such modified Hessians as L̄qiqi and KKT residuals as L̄qi , we obtain[
L̄T

qi

L̄T
vi

]
+

[
L̄qi,yi

L̄vi,yi

]
∆yi +

[
δTqi(qi, qi+1) On×n

In∆τ In

] [
∆λi+1

∆γi+1

]
+

[
IDT

qi
(ỹi)∆τ

IDT
vi
(ỹi)∆τ

]
∆βi

+

[
CT

qi
(yi)∆τ

CT
vi
(yi)∆τ

]
∆µi +

[
δTqi(qi−1, qi)∆λi
−∆γi

]
= 0, (3.14)

[
L̄T

ai

L̄T
fi

]
+

[
L̄aiyi

L̄fiyi

]
∆yi+

[
On×1

∆γi+1∆τ

]
+

[
IDT

ai
(ỹi)∆τ

IDT
fi
(ỹi)∆τ

]
∆βi+

[
CT

ai
(yi)∆τ

CT
fi
(yi)∆τ

]
∆µi = 0, (3.15)

and

L̄T
ui
+ L̄uiyi∆yi −∆βi∆τ + CT

ui
(yi)∆µi∆τ = 0. (3.16)

The constraints, (3.2)–(3.5) and (3.7), are linearized as

δ(q̄, q0) + δq0(q̄, q0)∆q0 = 0, v̄ − v0 −∆v0 = 0, (3.17)

[
δ(qi, qi+1) + vi∆τ
vi − vi+1 + ai∆τ

]
+

[
δqi(qi, qi+1) In∆τ
On×n In

] [
∆qi
∆vi

]
+

[
On×1

∆ai∆τ

]
+

[
δqi+1

(qi, qi+1) On×n

On×n −In

] [
∆qi+1

∆vi+1

]
= 0, (3.18)

IDỹi(ỹ)∆ỹi −∆ui + ID(ỹ)− u = 0, (3.19)

and

Cỹi(yi)∆ỹi + Cu(yi)∆ui + C(yi) = 0. (3.20)

Each Newton iteration consists of solving a linear equation that finds Newton direc-

tions satisfying (3.13)–(3.20).

41

Chapter 3. Inverse Dynamics-Based Solution Method of Optimal Control of Rigid
Body Systems

3.3.2 Condensing inverse dynamics

Next, we condense the inverse dynamics; i.e., we eliminate ∆ui and ∆βi from the

linear equations (3.13)–(3.20). By substituting the expression of ∆ui and ∆βi with

respect to other Newton directions (3.19) and (3.16) into (3.14)–(3.16) and (3.20), we

can obtain a condensed linear equation. For notational simplicity, we introduce the

condensed Hessian,

L̃ziwi
:= L̄ziwi

+ IDT
zi
(ỹi)L̄uiui

IDwi
(ỹi)

+ IDT
zi
(ỹ)L̄uiwi

+ L̄ziui
IDwi

(ỹ) (3.21)

for zi, wi ∈ {qi, vi, ai, fi} and the condensed KKT residual,

L̃T
zi
:= L̄T

zi
+ IDT

zi
(ỹ)L̄T

ui
+ (L̄zi,ui

+ IDT
zi
(ỹ)L̄uiui

)(ID(ỹ)− ui) (3.22)

for zi ∈ {qi, vi, ai, fi}. We also introduce the condensed Jacobian of the equality

constraint,

C̃zi := Czi + Cui
IDzi(qi, vi, ai, fi), (3.23)

for zi ∈ {qi, vi, ai, fi} and the condensed residual of the equality constraint,

C̃ := C + Cui
(ID(qi, vi, ai, fi)− ui). (3.24)

Then, ∆ui and ∆βi are eliminated from (3.14)–(3.16) and (3.20):[
L̃T

qi

L̃T
vi

]
+

[
L̃qiyi

L̃viyi

]
∆yi +

[
δTqi(qi, qi+1) On×n

In∆τ In

] [
∆λi+1

∆γi+1

]
+

[
CT

qi
(yi)

CT
vi
(yi)

]
∆µi +

[
δTqi(qi−1, qi)∆λi
−∆γi

]
= 0, (3.25)

[
L̃T

ai

L̃T
fi

]
+

[
L̃aiyi

L̃fiyi

]
∆yi +

[
On×1

∆γi+1∆τ

]
+

[
CT

ai
(yi)

CT
fi
(yi)

]
∆µi = 0, (3.26)

and

C̃ỹi(yi)∆ỹi + C̃(yi) = 0. (3.27)

After condensing, the linear equation is reduced to find the Newton directions ∆λi,∆γi,

∆qi,∆vi,∆ai,∆fi,∆µi satisfying (3.17), (3.18), (3.13), (3.25)–(3.27).

If the rigid-body system is fully actuated and there are no contacts, the size of

the condensed linear equation is the same as that of the multiple-shooting method

based on forward dynamics. If it is underactuated and there are no contacts, the

size of the condensed linear equation at each time stage is increased from that of the

42

3.3. Solution Method of Optimal Control Problem

multiple-shooting method based on forward dynamics by only twice the number of

the passive joints, since we assume the system is fully actuated and add an equality

constraint to zero the control input torques corresponding to the passive joints. If

there are contacts, the size of the linear equation also increases depending on the way

to treat the contacts.

3.3.3 Algorithm

Algorithm 3.1 is the pseudocode of a single Newton iteration of the proposed method.

The first step (lines 1–3) forms the linear equation consisting of (3.17), (3.18), (3.13),

and (3.25)–(3.27) by computing the condensed KKT residuals and Hessians, such as

L̃qi , L̃qiqi , C̃, and C̃qi . This step is fully parallelizable into each time stage. The

second step (line 4–6) computes the directions ∆λi, ∆γi, ∆ỹi, ∆µi by solving the

linear equation consisting of (3.17), (3.18), (3.13), and (3.25)–(3.27), i.e., inverting

the condensed Hessian. In this step, we can utilize various efficient methods tailored

for the OCP (D. Kouzoupis and Diehl (2018)), e.g., Riccati recursion (Frison (2016))

and a highly parallelizable method (Deng and Ohtsuka (2019)). The third step (lines

7–9) computes the condensed directions, i.e., ∆ui and ∆βi from (3.19) and (3.16), and

∆si and ∆νi according to the PDIP method (Nocedal andWright (2006); Wächter and

Biegler (2006)). The fourth step (line 10) determines the step size, e.g., by using the

fraction-to-boundary rule (Nocedal and Wright (2006); Wächter and Biegler (2006)).

Finally, all variables are updated according to the step size (lines 11–16).

The main advantage of the proposed method appears in the first step (lines 1–3).

It calls RNEA and the partial derivatives of RNEA N −1 times, whereas the forward

dynamics-based method computes ABA (or inverse of the joint-inertia matrix) N − 1

times and the partial derivatives of ABA N − 1 times. Moreover, the proposed

method can reduce the computational cost in the second step (lines 4–6), as our

formulation leads to sparsity in the partial derivatives of the state equation. We

will explain this point below with the Riccati recursion for computing the Newton

directions. Riccati recursion (Frison (2016)) performs a recursive block elimination

to compute the Newton directions with the forward Euler discretization (3.4). In

Riccati recursion, we regard [∆qTi ∆vTi]
T as the state variable and [∆aTi ∆fT

i]
T

as the control input of a linear quadratic regulator subproblem. We also introduce

matrices,

Ai :=

[
δqi(qi, qi+1) In∆τ
On×n In

]
, Bi :=

[
On×n On×nf

∆τIn On×nf

]
,

43

Chapter 3. Inverse Dynamics-Based Solution Method of Optimal Control of Rigid
Body Systems

Algorithm 3.1 Single Newton iteration of primal-dual interior point method with
condensing of inverse dynamics

Input: Initial state q̄, v̄
Output: λ0, ..., λN , γ0, ..., γN , y0, ..., yN−1, qN , vN , µ0, ..., µN−1, β0, ..., βN−1, s0, ...,

sN−1, ν0, ..., νN−1

1: for i = 0, · · · , N do in parallel
2: Compute the condensed Hessian and KKT residual.
3: end for
4: for i = 0, · · · , N do in parallel or serial
5: Compute the Newton directions ∆λi, ∆γi, ∆ỹi, ∆µi by solving the linear

equation (3.17), (3.18), (3.13), (3.25)–(3.27).
6: end for
7: for i = 0, · · · , N − 1 do in parallel
8: Compute the condensed Newton directions ∆ui and ∆βi from (3.19), (3.16),

and ∆si and ∆νi according to Wächter and Biegler (2006).
9: end for
10: Determine the step size α ∈ (0, 1].
11: for i = 0, · · · , N do in parallel
12: Update all variables λi, γi, yi, µi βi, si, νi by
13: λi ← λi + α∆λi, γi ← γi + α∆γi, yi ← yi + α∆yi,
14: µi ← µi + α∆µi, βi ← βi + α∆βi,
15: si ← si + α∆si, νi ← νi + α∆νi
16: end for

where Ai is composed of the partial derivatives of the state equation with respect

to q and v, and Bi is composed of the partial derivatives with respect to a and f .

Riccati recursion serially computes AT
i Pi+1Ai, A

T
i Pi+1Bi, B

T
i Pi+1Bi for a sequence of

matrices Pi that represent the sensitivities of ∆λi and ∆γi with respect to ∆qi and

∆vi. Thanks to the sparsity of Ai and Bi in the proposed formulation, several matrix

products reduce to sums of matrices, and this in turn reduces the computational cost,

especially the cost of the serial computational part.

We have developed an open-source C++ software framework for the OCP for

rigid-body systems, robotoc (Katayama (2020-2022)), that utilizes the above Ric-

cati recursion and ParNMPC, a highly parallelizable method (Deng and Ohtsuka

(2019)). robotoc uses Eigen (Guennebaud, Jacob, et al. (2010)) for linear algebra

and Pinocchio (Carpentier et al. (2019)), an efficient C++ library for rigid-body

dynamics algorithms, to compute RNEA and its partial derivatives. It also employs

the parallel Newton-type method (Deng and Ohtsuka (2019)) with backward Euler

discretization method.

44

3.4. Numerical Experiments

3.4 Numerical Experiments

3.4.1 Experimental settings

To evaluate the computational efficiency and numerical robustness of the proposed

solution method of the OCP, we compared our solver robotoc with Crocoddyl

(Mastalli et al. (2020)), a highly efficient C++ implementation of DDP/iLQR for

rigid-body systems, and Ipopt (Wächter and Biegler (2006)), an off-the-shelf non-

linear optimization solver. Both robotoc and Crocoddyl utilize Pinocchio for

rigid-body dynamics algorithms, Eigen for linear algebra, and OpenMP (Dagum and

Menon (1998)) for parallel computing. Ipopt was customized to solve the OCP for

rigid-body systems based on forward dynamics and the multiple-shooting method

with parallel computing by using Pinocchio and OpenMP. As the algorithm of

robotoc, we used Riccati recursion to compute the Newton directions (we will re-

fer to this method as inverse dynamics-based Riccati recursion (IDRR) hereafter).

Furthermore, we utilized two algorithms from Crocoddyl: the standard DDP with

a Gauss-Newton Hessian approximation, which is identical to iLQR, and feasible-

prone DDP (FDDP) (Mastalli et al. (2020)), a kind of iLQR that improves numerical

robustness by modifying the backward pass of iLQR in a multiple-shooting fashion

(Giftthaler, Neunert, Stäuble, Buchli, and Diehl (2018)) and utilizes a line-search

method based on the Goldstein condition (Nocedal and Wright (2006)). We will

refer to the former as iLQR and the latter as FDDP. In Ipopt, we used the Broy-

den–Fletcher–Goldfarb–Shanno method for the Hessian approximation and Harwell

Subroutine Library MA57 to solve the linear subproblems. All experiments were

conducted on a laptop with quad-core CPU Intel Core i7-10510U @1.8GHz.

3.4.2 Computational time

First, we compared the computational time per iteration of IDRR, iLQR/FDDP, and

Ipopt. In particular, we computed the average computational time over 10,000 trials

for systems with various degrees of freedom (DOF), various numbers of time stages

N , and various numbers of threads (nproc) with the quadratic terminal cost,

V (q, v) =
1

2
qTe Qqqe +

1

2
vTe Qvve, (3.28)

where Qq = In, Qv = In, qe := q − qref , and ve := v − vref with qref , vref ∈ Rn, and the

quadratic stage cost,

l(q, v, a, u) =
1

2
qTe Qqqe +

1

2
vTe Qvve +

1

2
uTeQuue, (3.29)

45

Chapter 3. Inverse Dynamics-Based Solution Method of Optimal Control of Rigid
Body Systems

21.9
22.2

66
68

115
122

N=50 N=100 N=50
DOF = 7

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

co
m

pu
ta

tio
na

l t
im

e
[m

s]

N=50 N=100 N=50
DOF = 18

0

5

10

15

N=50 N=100 N=50
DOF = 32

0

20

40

IDRR (nproc=1)
IDRR (nproc=4)

iLQR/FDDP (nproc=1)
iLQR/FDDP (nproc=4)

Ipopt (nproc=4)

Figure 3.1: Average computational time per iteration [ms] of the proposed method
(IDRR), iLQR/FDDP, and Ipopt, for various degrees of freedom (DOF ∈ {7, 14, 32}),
numbers of time steps (N ∈ {50, 100}), and numbers of threads (nproc ∈ {1, 4})

where Qu = 0.001 × In and ue := u − uref with uref ∈ Rn. Figure 3.1 shows the

computational time per iteration [ms] of each solver. Note that the results of iLQR

and FDDP are shown as one because they had almost the same computational time.

Moreover, the results of Ipopt are only for the fastest case, i.e., the case with N = 50

and nproc = 4, because Ipopt was much slower than the other solvers. As shown in the

figure, for all combinations of N and number of threads (nproc), our IDRR was faster

than iLQR/FDDP and Ipopt. This demonstrates that the inverse dynamics-based

formulation can reduce the computational cost compared with the forward dynamics-

based formulation. We also found that IDRR became faster as the number of the

threads increased, whereas iLQR/FDDP did so only moderately. This is because the

proposed method reduces the computational burden of the serial calculation in the

Riccati recursion, thanks to its multiple-shooting and sparsity structure, as stated in

3.3.3.

3.4.3 Numerical robustness

Second, we investigated the numerical robustness, i.e., the convergence, of the pro-

posed method through the OCP for KUKA iiwa14, a 7-DOF manipulator. We set

the length of the horizon to 1 s and divided it into N = 50 steps, i.e., ∆τ = 0.02[s].

The objective of the OCP is to make the configuration q converge to qref and the ve-

locity v converge to zero given a random initial state q̄ and v̄. We used the quadratic

terminal cost (3.28) and stage cost (3.29) and set qref to [0 π/2 0 π/2 0 π/2 0]T,

46

3.4. Numerical Experiments

0 10
No. of iterations

−15

−10

−5

0
lo
g
10

(K
KT

 e
rro

r)
IDRR

0 10
No. of iterations

−15

−10

−5

0

5

FDDP

0 10
No. of iterations

−15

−10

−5

0

5
iLQR

Figure 3.2: log10 scaled KKT errors of the proposed method (IDRR), FDDP, and
iLQR over 20 random trials.

vref to zero, and uref to the gravity compensation torques at qref . We did not impose

any inequality constraints in this experiment. iLQR and FDDP used a line search

and did not use regularization. IDRR did not use either, while Ipopt used both of

them. We initialized qi and vi in the solution of IDRR, FDDP, and Ipopt by q̄ and

v̄. We randomly selected each element of q̄ from [−1, 1] and each element of v̄ from

[−10, 10]. We ran 20 trials for each solver and computed the l2-norm of the residual of

the KKT conditions, which we will refer to as the KKT error hereafter, and the total

cost to be minimized. Note that the KKT conditions of IDRR are given by (3.2)–

(3.5), (3.7), and (3.8)–(3.12), while those of iLQR/FDDP and Ipopt are composed

of different equations based on forward dynamics and/or single-shooting. Figure 3.2

shows the log10-scaled KKT errors of IDRR, FDDP, and iLQR. Results for Ipopt are

not shown because it converged rather slowly (over 1000 iterations were needed to

reduce the KKT error to under 10−10 in most cases) due to the quasi-Newton Hessian

approximation. Note as well that, as the equations representing the KKT conditions

differ between IDRR and FDDP/iLQR, we cannot directly compare their KKT er-

rors. However, from the graph of FDDP, we can clearly see that FDDP diverged in

two trials. In addition, from the graph of iLQR, we can see that in many trials the

KKT error could not be completely reduced because the iLQR did not produce a

descent direction and the step size became zero. On the other hand, IDRR reduced

the KKT error at each iteration in all cases, including those in which FDDP and

iLQR failed to converge. This indicates that the proposed method is more robust

than single-shooting methods such as iLQR and FDDP.

47

Chapter 3. Inverse Dynamics-Based Solution Method of Optimal Control of Rigid
Body Systems

0 [s] 1 [s] 3 [s]

5 [s] 7 [s] 8 [s]

Figure 3.3: Posture control of ANYmal by whole-body MPC controller.

3.4.4 MPC for floating base systems

Finally, we investigated the applicability of the proposed method to floating base

systems, which are a kind of underactuated system, by simulating MPC implemented

by IDRR for the whole-body control of a quadruped ANYmal. To take the rigid

contacts into account, we treated the contact forces as the optimization variables

and imposed an equality constraint in the form of Baumgarte’s stabilization method

(Baumgarte (1972)) for each contact, i.e., a 12-dimensional equality constraint for

four contacts. We used a quadratic cost function to track the desired configuration.

We also imposed inequality constraints on the joint angle limits, angular velocity

limits, and torque limits and linearized friction cones using the PDIP method. We

set the length of the horizon to 1 s and divided it into N = 20 equal steps. We

set the sampling time to 2.5 ms, and the MPC controller updated the solution once

per sampling period. We utilized RaiSim (Hwangbo, Lee, and Hutter (2018)), an

articulated-body simulator with contacts. Figure 3.3 shows the various postures of

ANYmal controlled by MPC. As can be seen, the proposed method was able to control

the underactuated system. Each control update took around 2.1 ms with four threads

on the same laptop as in 3.4.2 and achieved real-time MPC.

3.5 Summary

We proposed an efficient method of solving the OCP for rigid-body systems on the ba-

sis of inverse dynamics and the multiple-shooting method. In this method, we regard

48

3.5. Summary

all variables, including the state, acceleration, and control input torques, as optimiza-

tion variables and treat the inverse dynamics as an equality constraint. We eliminated

the update in the control input torques from the linear equation of Newton’s method

by applying condensing for inverse dynamics. The size of the resultant linear equation

was the same as that of the multiple-shooting method based on forward dynamics

except for the variables related to the passive joints and contacts. The proposed

method reduces the computational cost of the dynamics and their sensitivities by uti-

lizing RNEA and its partial derivatives. In addition, it increases the sparsity of the

Hessian of the KKT conditions, which further reduces the computational cost, e.g., of

Riccati recursion. Numerical experiments showed that the proposed method is more

than twice as fast as iLQR and a DDP variant based on forward dynamics. They also

showed that it is more numerically robust than these conventional methods.

49

Chapter 4

Lifted Contact Dynamics for
Efficient Optimal Control of Rigid
Body Systems with Contacts

1

4.1 Introduction

Trajectory optimization (TO) and model predictive control (MPC) are promising

frameworks for motion planning and control of rigid-body systems that make rigid

contacts with the environment, e.g., legged robots and robot manipulators, whose

dynamics are highly nonlinear and include discontinuities. The computational time

required to solve optimal control problems (OCPs) remains a critical constraint for

using these two schemes, particularly MPC. The solution methods of such OCPs are

generally classified into two types: contact-implicit and event-driven approaches.

Contact-implicit approaches aim to determine the optimal trajectory without

specifying the contact sequence in advance. The simplest approach is to approxi-

mate the contact forces using spring-damper systems (Neunert et al. (2018)); how-

ever, it lacks accuracy and involves stiff optimization problems. The same problem

typically occurs in other smooth soft-contact models such as in (Chatzinikolaidis et

al. (2020)). More accurate approaches are based on the mathematical programs with

complementarity constraints (MPCCs) (Posa et al. (2014)) or bilevel optimization

(BO) problems (Carius et al. (2018)). However, the MPCCs inherently lack linear

independence constraint qualification, which causes practical and theoretical conver-

gence issues (Nurkanović et al. (2020)). Moreover, the convergence analysis of BO is

1© 2022 IEEE. A substantial portion of this chapter including Figures 4.2, 4.3, and 4.5 and
Table 4.1 is reprinted, with permission, from S. Katayama and T. Ohtsuka, “Lifted contact dynamics
for efficient optimal control of rigid body systems with contacts,” 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2022), 2022.

50

4.1. Introduction

Conventional

Lifted contact
dynamics
(proposed)

Lift the optimization problem
into a higher dimensional space
to relax the high nonlinearity

Linear system
(small)

Quadratic approximation
(Newton-type methods)

Linear system
(small)

Condensing that
leverages the structure of
the contact-dynamics

The size of
the linear
systems are
the same

Quadratic approximation
(Newton-type methods)

Linear system
(large)

OCP to determine
the state, control,
acceleration, and

contact forces

OCP to determine
the state and

control

Figure 4.1: Conceptual diagram of the proposed lifted contact dynamics scheme for
efficient optimal control of rigid body systems with contacts. The conventional opti-
mal control problem (OCP) is lifted into a higher dimensional one to relax the high
nonlinearity. The Newton-type method is carried out efficiently by leveraging the
structure of the contact dynamics.

yet to be discussed (Carius et al. (2018)), which renders the practical applications of

BO difficult.

In contrast, event-driven approaches formulate the OCPs under predefined contact

sequences and model the impacts between the system and the environment explicitly

via Newton’s law of impact. Therefore, event-driven approaches are more accurate

and the continuous-time OCP can be discretized with coarser grids than in contact-

implicit methods, which means that they can be faster. Moreover, they consist of

only smooth optimization problems; therefore, we can solve them efficiently using the

off-the-shelf Newton-type methods for smooth OCPs without being overly cautious

with the LICQ. Although event-driven approaches cannot optimize contact sequences

as contact-implicit methods can, they can optimize the instants of the impacts under

a given contact sequence, as studied in Katayama, Doi, and Ohtsuka (2020); Li and

Wensing (2020).

The contact-consistent forward dynamics, a calculation of the acceleration and

contact forces using the given configuration, velocity, and torques, which we call con-

tact dynamics in this chapter, has been successfully used with Newton-type methods

to efficiently solve event-driven OCPs (Budhiraja, Carpentier, Mastalli, and Mansard

(2018); Li and Wensing (2020); Mastalli et al. (2020); Schultz and Mombaur (2010)).

The contact dynamics formulation is utilized originally in Schultz and Mombaur

(2010) with the direct multiple shooting method (DMS) (Bock and Plitt (1984)).

Budhiraja et al. (2018) and Li and Wensing (2020) combined contact dynamics with

51

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

the iterative linear quadratic regulator (iLQR) (Todorov and Li (2005)). Mastalli

et al. (2020) improved the approach of Budhiraja et al. (2018) using the efficient

analytical derivatives proposed in Carpentier and Mansard (2018) to compute the

sensitivities of contact dynamics. However, such an approach still contains high non-

linearity, which results in slow convergence, particularly when there are costs and

constraints on the contact forces, e.g., friction cone constraints.

The lifted Newton method is a promising option to relax such high nonlinearity.

It involves adding intermediate variables and lifting the optimization problem into

a higher-dimensional one (Albersmeyer and Diehl (2010)). For example, it is well

known in the context of numerical optimal control and MPC that the multiple shoot-

ing method, which considers the state and control input as the optimization variables,

has preferred convergence properties over the single shooting method, which considers

only the control input as the optimization variable (Bock and Plitt (1984)). However,

to the best of our knowledge, no lifting method has previously been used to efficiently

treat the contact forces in event-driven OCPs. For example, in our previous study

of Chapter 3 (and Katayama and Ohtsuka (2021)), we utilized a certain lifted for-

mulation; however, it may be inefficient when the number of contacts is significant.

It is efficient only for systems without contacts or with a few contacts by leveraging

inverse dynamics computation. Moreover, since the focus of the previous study of

Chapter 3 was on the computational time of rigid body systems without contacts, no

discussion or numerical investigation regarding convergence properties under contacts

were conducted.

In this chapter, we propose lifted contact dynamics, a novel and efficient lifting

approach for the optimal control of rigid-body systems with contacts to improve the

convergence properties of Newton-type methods. The proposed lifted contact dynam-

ics scheme is illustrated in Fig. 4.1. To relax the high nonlinearity, we consider all

variables, including the state, acceleration, contact forces, and control input torques,

as the optimization variables and the inverse dynamics and acceleration-level contact

constraints as equality constraints. We eliminate the updating of the acceleration,

contact forces, and their dual variables from the linear equation to be solved in each

Newton-type iteration in an efficient manner. As a result, the computational cost

per Newton-type iteration is almost identical to that of the conventional non-lifted

Newton-type iteration that embeds contact dynamics in the state equation. This

aspect distinguishes this study from our previous inverse dynamics-based algorithm

proposed in Chapter 3, which was inefficient for high-dimensional contact constraints.

52

4.2. Overview of Optimal Control Problems of
Rigid-Body Systems with Contacts

We also propose a similar lifting method for impulse dynamics, which was not consid-

ered in our previous study in Chapter Katayama and Ohtsuka (2021). We conducted

numerical experiments on the whole-body optimal control of various quadrupedal

gaits subject to the friction cone constraints considered in the interior-point methods.

It demonstrated that the proposed method can significantly increase the convergence

speed to more than twice that of conventional approaches based on the non-lifted

contact dynamics. These investigations on convergence properties under the contacts

are included in the contributions of this chapter because it was not discussed in the

past literature Katayama and Ohtsuka (2021). The contributions of this paper are

then summarized as follows:

• A lifted formulation for OCP of robotic systems with contacts to relax the high

nonlinearity.

• Efficient “condensing” algorithms to enable as fast as Newton step computation

as the non-lifted counterpart.

• Numerical studies on the practical quadrupedal locomotion problems.

The remainder of this chapter is organized as follows. In Section 4.2, we review the

contact and impulse dynamics and conventional formulations of event-driven OCPs.

In Section 4.3, we introduce the lifted contact dynamics, a Newton-type method

that efficiently condenses the linear equations to be solved in each Newton iteration.

Section 4.4 compares the proposed method with existing approaches based on the non-

lifted contact dynamics and demonstrates its effectiveness in terms of the convergence

properties. Section 4.5 concludes the chapter and outlines future research directions.

Notation: We denote the partial derivatives of a differentiable function with cer-

tain variables using a function with subscripts; i.e., fx(x) denotes
∂f
∂x
(x) and gxy(x, y)

denotes ∂2g
∂x∂y

(x, y). We denote an n× n identity matrix as In.

4.2 Overview of Optimal Control Problems of

Rigid-Body Systems with Contacts

4.2.1 Contact dynamics

First, we review the components to formulate event-driven direct OCPs, e.g., the

contact dynamics and discretized state equations. LetQ be the configuration manifold

of the rigid-body system. Let q ∈ Q, v ∈ Rn, a ∈ Rn, f ∈ Rnf , and u ∈ Rna be

53

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

the configuration, generalized velocity, acceleration, stack of the contact forces, and

torques of the actuated joints, respectively. The equation of motion of the rigid-body

system is expressed as

M(q)a+ h(q, v)− JT(q)f = STu, (4.1)

whereM(q) ∈ Rn×n denotes the inertia matrix, h(q, v) ∈ Rn encompasses the Coriolis,

centrifugal, and gravitational terms, J(q) ∈ Rnf×n denotes the stack of the contact

Jacobians, and S ∈ Rna×n denotes the selection matrix. The evolution of the state[
qT vT

]T
with time step ∆τ > 0 is expressed as[

q+

v+

]
=

[
q ⊕ v∆τ
v + a∆τ

]
, (4.2)

where ⊕ denotes the increment operator on the configuration manifold Q (Solà et al.

(2020)). We formulate the OCPs based on the DMS and then consider an equivalent

equality constraint: [
δ(q, q+) + v∆τ
v − v+ + a∆τ

]
= 0, (4.3)

where δ(q1, q2) := q1 ⊖ q2 ∈ Rn, and ⊖ denotes the subtraction operator between

the two configurations (Solà et al. (2020)). The system also satisfies the contact

constraints of the form

p(q) = 0, (4.4)

where p(q) ∈ Rnf is the stack of the positions of the contact frames. In event-driven

OCPs, instead of considering (4.4) over a time interval, we typically consider the

acceleration-level constraint over the time interval that is generalized into the form

of Baumgarte’s stabilization method (Baumgarte (1972)):

a(q, v, a) := p̈+ 2αṗ+ β2p = J(q)a+ b(q, v), (4.5)

where α and β are weight parameters, and we define

b(q, v) := J̇(q, v)v + 2αJ(q)v + β2p(q). (4.6)

By setting α = β > 0, we can stabilize the violation of the original constraint (4.4)

over the time interval provided that (4.4) and the equality constraint on the contact

velocity,

ṗ(q, v) = J(q)v = 0, (4.7)

are satisfied at a point on the interval (Flores et al. (2011)). Note that (4.5) is

reduced to the equality constraint on the acceleration of the contact frames with

54

4.2. Overview of Optimal Control Problems of
Rigid-Body Systems with Contacts

α = β = 0. By combining (4.1) and (4.5), we obtain the contact dynamics, i.e., the

contact-consistent forward dynamics:[
M(q) JT(q)
J(q) O

] [
a
−f

]
=

[
STu− h(q, v)
−b(q, v)

]
. (4.8)

In the conventional approaches (Budhiraja et al. (2018); Li and Wensing (2020);

Mastalli et al. (2020); Schultz and Mombaur (2010)), we eliminate a and f as functions

of q, v, and u from the OCP using (4.8). For example, we substitute a with (4.8)

in (4.2) or (4.3) and consider these equations to be the discretized state equation.

We can also eliminate a and f from the cost function and the constraints, e.g., the

friction cone constraints, using (4.8).

4.2.2 Impulse dynamics

Similar to the contact dynamics, the equation of Newton’s law of impact of the

systems is expressed as

M(q)δv − JT(q)Λ = 0, (4.9)

where δv ∈ Rn denotes the impulse change in the generalized velocity, and Λ ∈ Rnf

denotes the stack of the impact forces. The evolution of the state between the impulse

and its equivalent equality constraint considered in the DMS are expressed as[
q+

v+

]
=

[
q

v + δv

]
(4.10)

and [
δ(q, q+)

v − v+ + δv

]
= 0, (4.11)

respectively. Herein, we assume a completely inelastic collision, which results in the

contact velocity constraints of the form (4.7) immediately after the impulse as

v(q, v, δv) := ṗ(q, v + δv) = J(q)(v + δv) = 0. (4.12)

The contact position constraint (4.4) for the frames with impacts is also imposed at

the impulse instant. By combining (4.9) and (4.12), we obtain the impulse dynamics:[
M(q) JT(q)
J(q) O

] [
δv
−Λ

]
=

[
0

−J(q)v

]
. (4.13)

In the conventional formulation, as well as the contact dynamics, δv and Λ are elim-

inated from the OCP as functions of q and v using (4.13), for example, from (4.10)

and (4.11).

55

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

4.2.3 Conventional formulation of optimal control

We summarize the conventional formulation of the optimal control of rigid-body

systems (Budhiraja et al. (2018); Li and Wensing (2020); Mastalli et al. (2020);

Schultz and Mombaur (2010)). We introduce N discretization grids. We define J ⊂
{0, ..., N − 1} which is the set of the impulse stages and define I := {0, ..., N − 1} \J .
For given user-defined terminal cost Vf (·) and stage costs li(·), the conventional OCP

is summarized as follows: determine q0, ..., qN ∈ Q, v0, ..., vN ∈ Rn, and {ui}i∈I ∈ Rm

that minimize a given cost function

J := V (xN) +
∑
i∈I

l(xi, ui, ai, fi) +
∑
j∈J

l(xj, δvi,Λi), (4.14)

where xi :=
[
qTi vTi

]T
is the state, subject to the state equation obtained by eliminat-

ing ai from (4.2) using (4.8), the state equation at the impulse obtained by eliminating

δvj from (4.10) using (4.13), the contact-position constraint (4.4) at the impulse in-

stant, and the other user-defined equality and inequality constraints. In addition,

ai, fi, δvj, and Λj are also eliminated as functions of qi, vi, and ui from the cost

function (4.14) and the constraints other than the state equations, which increases

the nonlinearity. In Schultz and Mombaur (2010), this problem was solved using the

DMS, that is, x0, ..., xN and {ui}i∈I were considered as the optimization variables,

the state equations were considered as the equality constraints, and (4.14) was repre-

sented by x0, ..., xN and {ui}i∈I . In Budhiraja et al. (2018); Li and Wensing (2020);

Mastalli et al. (2020), this problem was solved using the single shooting method, that

is, x0, ..., xN were further eliminated from the optimization problem using the state

equations, and only {ui}i∈I were considered as the decision variables, e.g., (4.14) was

represented only by {ui}i∈I .

4.3 Lifted Contact Dynamics in Optimal Control

4.3.1 Lifted contact dynamics

We herein present the lifted contact dynamics to relax the high nonlinearity in OCPs,

of which conceptual diagram is shown in Fig. 4.1. Let i ∈ I, yi := (qi, vi, ai, fi), and

zi := (qi, vi, ai). We first augment the control input to convert the system into a

fully actuated system in the numerical optimization. Without loss of generality, we

assume that S is given by
[
O I

]T
, and we define ũi :=

[
u0i
ui

]
, where u0i ∈ Rn−na

56

4.3. Lifted Contact Dynamics in Optimal Control

denotes the virtual torques on the passive joints. Thus, we can express (4.1) as an

equality constraint of the inverse dynamics as follows:

ID(yi)− ũi = 0, (4.15a)

where ID(yi) is defined by the left-hand side of (4.1) and can be computed efficiently

using the recursive Newton–Euler algorithm (RNEA) (Featherstone (2008)), a fast

algorithm for inverse dynamics, with an additional equality constraint

u0i = S̄Tũi = 0, S̄ :=
[
I O

]T ∈ Rn×n−na . (4.15b)

We consider ai and fi as the optimization variables and (4.1), (4.5), and (4.15b) as

the equality constraints. The first-order derivatives of the Lagrangian L (defined by

augmenting the constraints to the cost function (4.14)) with respect to the variables at

the stage i, that is, the part of the Karush–Kuhn–Tucker (KKT) conditions associated

with the stage i, are given by (4.3), (4.15a), (4.5), and (4.15b),[
LT

qi

LT
vi

]
=

[
lTqi
lTvi

]
+

[
δTqi(qi, qi+1) O
In∆τ In

] [
λi+1

γi+1

]
+

[
IDT

qi
(yi) aT

qi
(zi)

IDT
vi
(yi) aT

vi
(zi)

] [
βi
µi

]
∆τ +

[
δTqi(qi−1, qi)λi
−γi

]
= 0, (4.16a)

[
LT

ai

−LT
fi

]
=

[
lTai
−lTfi

]
+

[
γi+1∆τ

0

]
+

[
IDT

ai
(yi) aT

ai
(zi)

−IDT
fi
(yi) −aT

fi
(zi)

] [
βi
µi

]
∆τ = 0, (4.16b)

and

LT
ũi
:= lTũi

− βi∆τ + S̄νi∆τ = 0, (4.16c)

where λi+1, γi+1, βi ∈ Rn, µi ∈ Rnf , and ν ∈ Rn−m are the Lagrange multipliers with

respect to (4.3), (4.15a), (4.5), and (4.15b), respectively.

In the Newton-type methods, these KKT conditions are linearized into linear

equations with respect to the Newton directions ∆qi, ∆vi, ∆ai, ∆fi, ∆ui, ∆u
0
i , ∆λi+1,

∆γi+1, ∆βi, ∆µi, and ∆νi. However, this problem is significantly larger than the

conventional OCPs based on the non-lifted contact dynamics that considers only

∆qi, ∆vi, ∆ui, ∆λi+1, and ∆γi+1. Thus, we propose an efficient condensing method

to reduce the size of the linear equation. We first observe that the equality constraints

(4.15a) and (4.5) are linearized as[
M(qi) JT(qi)
J(qi) O

] [
∆ai
−∆fi

]
= −

[
IDqi(yi) IDvi(yi)
aqi(zi) avi(zi)

] [
∆qi
∆vi

]
+

[
∆ũi
0

]
−
[
ID(yi)
a(zi)

]
.

(4.17)

57

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

Furthermore, we always set u0i = 0 and obtain from (4.15b)

∆u0i = −u0i = 0. (4.18)

Therefore, we can express ∆ai and ∆fi using the linear combinations of ∆qi, ∆vi,

and ∆ui using (4.17) and (4.18) if we compute[
M(qi) JT(qi)
J(qi) O

]−1

. (4.19)

Next, we observe that (4.16b) and (4.16c) are linearized into[
LT

ai

−LT
fi

]
+

[
Laiyi

−Lfiyi

]
∆yi +

[
∆γi+1∆τ

O

]
+

[
M(qi) JT(qi)
J(qi) O

] [
∆βi
∆µi

]
∆τ = 0 (4.20a)

and

LT
ũiyi

∆yi −∆βi∆τ + S̄∆νi∆τ = 0. (4.20b)

Therefore, we can also express the Newton directions of the dual variables ∆βi, ∆µi,

and ∆νi with the linear combinations of ∆qi, ∆vi, ∆ui, and ∆γi+1 using (4.20a) and

(4.20b) if we compute (4.19). Subsequently, the linear equations to be solved in the

Newton-type iterations at stage i are reduced to that with respect to ∆qi, ∆vi, ∆ui,

∆λi+1, and ∆γi+1, defined as[
F̃q,i

F̃v,i

]
+

[
δqi(qi, qi+1) I∆τ

F̃vq,i F̃vv,i

] [
∆qi
∆vi

]
+

[
O

F̃vu,i

]
∆ui+

[
δqi+1

(qi, qi+1) O
O −I

] [
∆qi+1

∆vi+1

]
= 0,

(4.21a)[
L̃T

qi

L̃T
vi

]
+

[
L̃qiqi L̃qivi

L̃viqi L̃vivi

] [
∆qi
∆vi

]
+

[
δTqi(qi−1, qi)∆λi
−∆γi

]
+

[
δTqi(qi, qi+1) F̃vq,i

In∆τ F̃vv,i

] [
∆λi+1

∆γi+1

]
+

[
L̃qiui

L̃viui

]
∆ui = 0, (4.21b)

and

L̃T
ui
+
[
L̃qiui

L̃viui

] [∆qi
∆vi

]
+ L̃uiui

∆ui + F̃vu,i∆γi+1 = 0, (4.21c)

where the vectors and matrices with a superscript tilde are derived via simple ad-

ditions and multiplications of the original Hessians of the Lagrangian, Jacobians of

the constraints, and residuals in the KKT conditions. We omit their definitions here

because they are excessively long, but they are not hard to derive. Note that our

previous approach (Chapter 3 and Katayama and Ohtsuka (2021)) involves solving

the linear equation with respect to ∆qi, ∆vi, ∆ai, ∆fi, ∆µi, and ∆νi; thus, it can

be inefficient compared with the proposed method. After solving the linear equations

and obtaining ∆qi, ∆vi, ∆ui, ∆λi+1, and ∆γi+1, we can easily compute ∆ai, ∆fi,

∆βi, and ∆µi using (4.17) and (4.20a), which is called an expansion procedure.

58

4.3. Lifted Contact Dynamics in Optimal Control

4.3.2 Lifted impulse dynamics

Next, we present the lifted impulse dynamics. Let j ∈ J , yj := (qj, vj, δvj,Λj), and

zj := (qj, vj, δvj). We express (4.9) as an equality constraint:

Γ(yj) = 0, (4.22)

where r(yi) is defined by the left-hand side of (4.9). We consider δvj and Λj as the

optimization variables and (4.22) and (4.7) as the equality constraints. The first-order

derivatives of the Lagrangian L with respect to the variables at the stage of impulse

j, that is, the part of the KKT conditions associated with the impulse stage j, are

given by (4.11), (4.22), (4.7),[
LT

qj

LT
vj

]
=

[
lTqj
lTvj

]
+

[
δTqj(qj, qj+1) O

O In

] [
λj+1

γj+1

]
+

[
ΓT
qj
(yj) vT

qj
(zj)

ΓT
vj
(yj) vT

vj
(zj)

] [
βj
µj

]
+

[
δTqj(qj−1, qj)λj

−γj

]
= 0, (4.23a)

and [
LT

δvj

−LT
Λj

]
=

[
lTδvj
−lTΛj

]
+

[
γj+1

0

]
+

[
ΓT
aj
(ỹj) vT

δvj
(zj)

−ΓT
fj
(ỹj) −vT

fj
(zj)

] [
βj
µj

]
= 0, (4.23b)

where λj+1, γj+1, βj ∈ Rn, and µj ∈ Rnf are the Lagrange multipliers with respect to

(4.11), (4.22), and (4.7), respectively.

These KKT conditions are also linearized into linear equations with respect to

the Newton directions ∆qi, ∆vi, ∆δvi, ∆Λi, ∆λi+1, ∆γi+1, ∆βi, and ∆µi, which are

larger than those of the non-lifted counterpart with respect to ∆qi, ∆vi, ∆λi+1, and

∆γi+1. Thus, we propose an efficient condensing method to reduce the size of the

linear equation. We first observe that the equality constraints (4.22) and (4.7) are

linearized as[
M(qj) JT(qj)
J(qj) O

] [
∆δvj
−∆Λj

]
= −

[
Γqj(yj) Γvj(yj)
vqj(zj) vvj(zj)

] [
∆qj
∆vj

]
−
[
Γ(yj)
v(zj)

]
. (4.24a)

Therefore, we can express ∆δvj and ∆Λj with the linear combinations of ∆qj and

∆vj if we compute (4.19) for qj. Next, we observe that (4.23b) is linearized into[
LT

δvj

−LT
Λj

]
+

[
Lδvjyj

−LΛjyj

]
∆yj +

[
∆γj+1

0

]
+

[
M(qj) JT(qj)
J(qj) O

] [
∆βj
∆µj

]
= 0. (4.24b)

Therefore, we can also express the Newton directions of the dual variables ∆βj and

∆µj with the linear combinations of ∆qj, ∆vj, and ∆γj+1 if we solve (4.19) for qj.

59

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

Subsequently, the linear equations to be solved in the Newton-type iterations are

reduced with respect to ∆qj, ∆vj, ∆λj+1, and ∆γj+1 and are expressed as[
F̃q,j

F̃v,j

]
+

[
δqj(qj, qj+1) O

F̃vq,j F̃vv,j

] [
∆qj
∆vj

]
+

[
δqj+1

(qj, qj+1) O
O −I

] [
∆qj+1

∆vj+1

]
= 0 (4.25a)

and[
L̃T

qj

L̃T
vj

]
+

[
L̃qjqj L̃qjvj

L̃vjqj L̃vjvj

] [
∆qj
∆vi

]
+

[
δTqj(qj−1, qj)∆λj

−∆γj

]
+

[
δTqj(qj, qj+1) F̃vq,j

O F̃vv,j

] [
∆λj+1

∆γj+1

]
= 0,

(4.25b)

for which we omit the definitions of the terms with a superscript tilde because they

are similar to those of the lifted contact dynamics. After solving the linear equations

and obtaining ∆qj, ∆vj, ∆λj+1, and ∆γj+1, we can easily compute ∆δvj, ∆Λj, ∆βj,

and ∆µj using (4.24a) and (4.24b), which is the expansion procedure of the impulse

stage.

4.3.3 Riccati recursion for LQR subproblem

After performing the above condensing, the Newton step computation is reduced to

solving a set of linear equations with respect to ∆qi, ∆vi, ∆ui, ∆λi, and ∆γi. This

can be seen as the KKT conditions of an LQR subproblem with the state [∆qTi ∆vTi]
T

and control input ∆ui. That is, solving the linear equations after condensing is equiv-

alent to solving the LQR subproblem. We then utilize the Riccati recursion algorithm

(Rawlings et al. (2017)), which can solve the LQR subproblem only with O(N) com-

plexity while the direct inversion of the KKT matrix requires an O(N3) computational

burden. For example, DDP uses the Riccati recursion for single-shooting OCPs with a

nonlinear forward pass and can efficiently solve very large-scale problems (Budhiraja

et al. (2018); Koenemann et al. (2015); Mastalli et al. (2020)).

4.3.4 Primal-dual interior-point method for inequality con-
straints

OCPs of rigid-body systems can contain many inequality constraints, e.g., joint angle

limits, joint angular velocity limits, joint torque limits, and friction cones. To treat

such a large number of inequality constraints including nonlinear ones with the Riccati

recursion algorithm efficiently, we use the primal-dual interior-point (PDIP) method

(Nocedal and Wright (2006)) . In the PDIP method, only certain terms related to

the second- and first-order derivatives of the logarithmic barrier functions are added

to the Hessians Lyiyi and residuals Lyi , respectively, and there are no effects on the

60

4.3. Lifted Contact Dynamics in Optimal Control

Algorithm 4.1 Computation of the Newton direction using the lifted contact dy-
namics

Input: Initial state x(t0), the current solution y0, ..., yN−1, qN , vN , {ui}i∈I , λ0, ..., λN ,
γ0, ..., γN , β0, ..., βN−1, µ0, ..., µN−1, and {νi}i∈I

Output: Newton directions ∆y0, ...,∆yN−1, ∆qN , ∆vN , {∆ui}i∈I , ∆λ0, ...,∆λN ,
∆γ0, ...,∆γN , ∆β0, ...,∆βN−1, ∆µ0, ...,∆µN−1, and {∆νi}i∈I

1: for i = 0, · · · , N do in parallel
2: Compute the Hessian of the Lagrangian (e.g., Lqiqi), Jacobians of the con-

straints (e.g., IDqi and aqi), and residuals in the KKT conditions (e.g., (4.3),
(4.15a), (4.5), (4.15b), and Lqi).

3: Compute the matrix inversion (4.19).
4: Form the condensed Hessians, Jacobians, and KKT residuals (e.g., L̃qiqi , F̃qq,i,

and L̃qi).
5: end for
6: Compute ∆q0, ...,∆qN , ∆v0, ...,∆vN , {∆ui}i∈I , ∆λ0, ...,∆λN , and ∆γ0, ...,∆γN

by solving the LQR subproblem, e.g., using the Riccati recursion.
7: for i = 0, · · · , N − 1 do in parallel
8: Compute the condensed direction (∆ai, ∆fi, ∆βi, ∆µi, and ∆νi for i ∈ I or

∆δvj, ∆Λj, ∆βj, and ∆µj for j ∈ J).
9: end for

proposed condensing method and the LQR subproblem. We can then apply the

Riccati recursion algorithm regardless of the inequality constraints. After solving the

LQR subproblem and obtaining ∆yi, we can efficiently compute the Newton steps of

the slack variables and Lagrange multipliers of the inequality constraints.

4.3.5 Algorithm

We summarize the single Newton iteration, that is, the computation of the Newton

direction of the proposed method, in Algorithm 1. First, we compute the Hessians

of the Lagrangian, Jacobians of the constraints, and residuals in the KKT conditions

(line 2). The modification of the Hessians and KKT residuals due to the PDIP method

is also performed in this step. Second, we compute the matrix inversion (4.19) and

form the condensed Hessians, Jacobians, and KKT residuals (lines 3 and 4). These

two steps are fully parallelizable because of the multiple-shooting formulation. We

then solve the LQR subproblem, e.g., using the Riccati recursion (line 6). Finally, we

compute the condensed directions from the solution of the LQR subproblem (line 8).

The directions of the slack variables and Lagrange multipliers of the PDIP method

are also computed in this step.

61

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

Table 4.1: Settings of the OCPs for the five quadrupedal gaits

Walking Trotting Pacing Bounding Jumping
N 107 57 71 71 71
∆τ 0.02 0.02 0.01 0.01 0.01

4.3.6 Comparison with existing methods

Here, we re-summarize the comparison between the proposed method and the existing

methods:

4.3.6.1 Comparison with non-lifted formulations

The non-lifted formulations (Budhiraja et al. (2018); Li and Wensing (2020); Mastalli

et al. (2020); Schultz and Mombaur (2010)) eliminate ai, fi, δvi, and Λi as (nonlinear)

functions of qi, vi, and ui. Therefore, the costs and constraints including ai, fi, δvi,

and Λi (e.g., the friction cone constraints) can be highly nonlinear. The proposed

method regard ai, fi, δvi as decision variables to alleviate such high nonlinearities.

The computational costs per Newton-type iteration of the proposed method and these

methods are similar owing to the proposed efficient condensing procedure.

4.3.6.2 Comparison with inverse dynamics-based algorithm

The inverse dynamics-based method of Chapter 3 and Katayama and Ohtsuka (2021)

regards ai and fi as the optimization variables: the convergence behavior is identical to

that of the proposed method. However, the proposed condensing method can be more

efficient than that presented in Katayama and Ohtsuka (2021). The proposed method

requires a computational cost of O(n3
a) for solving the linear system to compute the

Newton directions in the Riccati recursion. The method of Katayama and Ohtsuka

(2021) requires O((n + nf)
3), which is inefficient when the numbers of contacts and

passive joints (i.e., nf and n− na) are large.

4.4 Numerical Experiments: Whole-Body Opti-

mal Control of Quadrupedal Gaits

4.4.1 Experimental settings

To demonstrate the effectiveness of the proposed lifting approach over the conven-

tional non-lifting approaches, we conducted numerical experiments on the whole-body

62

4.4. Numerical Experiments: Whole-Body Optimal Control of Quadrupedal Gaits

optimal control of quadrupedal robot ANYmal for five gaits, that is, walking, trot-

ting, pacing, bounding, and jumping, subject to the friction cone constraints. We

considered the polyhedral-approximated friction cone constraint for each contact force

expressed in the world frame [fx fy fz] as
fx +

µ√
2
fz

−fx + µ√
2
fz

fy +
µ√
2
fz

−fy + µ√
2
fz

fz

 ≥ 0, (4.26)

where µ > 0 is the friction coefficient, and we set it as µ = 0.7. The problem settings

of the OCPs for the five gaits are shown in Table I. We compared the following five

methods:

• DMS-LCD: DMS based on the proposed lifted contact dynamics

• DMS-CD: DMS based on the conventional non-lifted contact dynamics (e.g.,

used in Schultz and Mombaur (2010))

• DMS-ID: Inverse dynamics-based DMS algorithm (Chapter 3 and Katayama

and Ohtsuka (2021))

• FDDP: Feasibility-driven DDP (FDDP), a variant of iLQR that improves the

numerical robustness (Mastalli et al. (2020)), based on the conventional non-

lifted contact dynamics

• iLQR: iLQR based on the conventional non-lifted contact dynamics

The following were compared in this study: 1) The convergence property between

the lifted and non-lifted formulations (DMS-LCD vs. DMS-CD); 2) The CPU time

per Newton iteration between the two condensing methods for the lifted formulation

(DMS-LCD vs. DMS-ID); 3) The proposed method with a state-of-the-art OCP solver

(Mastalli et al. (2020)) (DMS-LCD vs. FDDP and iLQR). DMS-LCD, DMS-CD,

and DMS-ID used Gauss–Newton Hessian approximation, the PDIP method method

for inequality constraints, and the Riccati recursion to solve the LQR subproblems.

FDDP and iLQR used the relaxed barrier function (ReB) method (Hauser and Saccon

(2006)), which is a popular constraint-handling approach in DDP-type methods (e.g.,

used in Li and Wensing (2020)) that enables the iteration to lie outside the feasible

region. Note that the ReB method and the PDIP method correspond to the same

barrier function under the same barrier parameter and feasible solution (Hauser and

63

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

Saccon (2006); Nocedal and Wright (2006)). That is, the five methods consider the

same barrier functions for the inequality constraints. We implemented DMS-LCD2,

DMS-ID, and DMS-CD in C++ and used Pinocchio (Carpentier et al. (2019)),

an efficient C++ library used for rigid-body dynamics and its analytical derivatives,

to compute the dynamics and its derivatives of the quadrupedal robot. We used

OpenMP for parallel computing (e.g., lines 1–5 of Algorithm 1). For FDDP and

iLQR, we used the Crocoddyl framework (Mastalli et al. (2020)), which was also

implemented in C++, Pinocchio for rigid-body dynamics, and OpenMP for parallel

computing. FDDP and iLQR consider the Baumgarte’s stabilization method of the

form in (4.8) as well as DMS-based methods.

We designed the cost functions Vf (·) and li(·) in (4.14) as least-square objectives

to track the pre-defined feet and center of mass (CoM) trajectories, e.g.,

1

2
(ϕi(xi)− ϕi,ref)

TW (ϕi(xi)− ϕi,ref),

where ϕi(xi) denotes the stack of the feet and CoM positions. We also imposed simple

quadratic weights on the deviation of qi from the standing pose, vi, and ui . We set

the stabilization parameters in (4.5) as α = β = 25. We approximated the contact

position constraints (4.4) using a quadratic penalty function for simplicity. DMS-

LCD, DMS-CD, and DMS-ID did not use any regularization on the Hessian and

used only the fraction-to-boundary-rule (Nocedal and Wright (2006)) for the step-

size selection. FDDP and iLQR used an adaptive regularization on the Hessian and

a line-search based on the Goldstein condition in the step-size selection, as provided

in the Crocoddyl solver. We conducted all the experiments for the two barrier

parameters ϵ: ϵ = 1.0 × 10−1 and ϵ = 1.0 × 10−4, which represent a large and small

barrier parameter, respectively. ϵ is fixed during each experiment, which corresponds

to suboptimal MPC cases. We set the relaxation parameter of the ReB for each

ϵ and each gait as large as possible while keeping the optimal solution satisfying

(4.26), which means that the ideal ReB (that is, a favorable experimental setting

for ReB-based FDDP and iLQR) was considered in the experiments The experiment

was conducted on a desktop computer with an octa-core CPU Intel Core i9-9900

@3.10 GHz, and all the algorithms were compiled using the GCC compiler with -O3

-DNDEBUG -march=native options. We used eight threads in parallel computing.

2Our open-source implementation of DMS-LCD is available online at Katayama (2020-2022)

64

4.4. Numerical Experiments: Whole-Body Optimal Control of Quadrupedal Gaits

4.4.2 Results and discussion

Figure 4.2 shows log10 scaled l2-norms of the KKT residuals with respect to the

number of iterations of these five methods over the five quadrupedal gaits with the

barrier parameters ϵ = 1.0 × 10−1 and ϵ = 1.0 × 10−4. Note that the convergence

results of DMS-LCD and DMS-ID are illustrated in the same solid lines because

they are identical. As shown in Fig. 4.2, the five methods resulted in a similar

convergence when the barrier parameter was large (ϵ = 1.0 × 10−1). In contrast,

when the barrier parameter was small (ϵ = 1.0 × 10−4), the proposed DMS-LCD

converged significantly faster than the other methods, particularly in the aggressive

gaits (pacing, bounding, and jumping). This is because, in the interior-point methods,

a smaller barrier parameter (i.e., a more accurate solution) corresponds to a slower

and more difficult convergence due to the high nonlinearity (Nocedal and Wright

(2006)). Nevertheless, the lifting methods (DMS-LCD and DMS-ID) achieved fast

convergence even with the small barrier parameter. The faster convergence of DMS-

LCD than DMS-CD particularly shows the effectiveness of the lifted formulation.

Figure 4.3 shows the CPU time per iteration and the total CPU time until con-

vergence of the five methods. First, we observed that the CPU times per iteration

of DMS-LCD and DMS-CD were almost identical and around 1.5 times faster than

those of DMS-ID, which shows the efficiency of the proposed condensing algorithm

over the previous one (Katayama and Ohtsuka (2021)). Furthermore, DMS-LCD and

DMS-CD were 1.6 to 2 times faster than those of FDDP and iLQR because DMS

could leverage parallel computing in the computation of the KKT residual, whereas

single shooting methods such as FDDP and iLQR were required to compute the con-

tact and impulse dynamics (4.8) and (4.13) over the horizon with a single thread.

We compared the total computational time, and DMS-LCD had the fastest computa-

tional time in all the scenarios. It was more than twice as fast as the other non-lifted

methods in several scenarios. Figure 4.4 shows the snapshots of the solution trajec-

tory of the jumping gait and Fig. 4.5 shows the time histories of the contact forces

of the four feet in the motion. Both figures show that the friction cone constraints

(4.26) were active and satisfied during the jumping. A supplemental video including

all the five gaits is available at https://youtu.be/jb7gGnblQ7s.

We further conducted several experiments with the various Baumgarte’s weight

parameters α = β > 0 in (4.5), the details of which are omitted here owing to the

space limitation. We observed that as the weight parameter increased, the proposed

method had greater advantages in terms of the convergence speed. In contrast, if

the weight parameter was small, the proposed method had no such advantages. Note

65

https://youtu.be/jb7gGnblQ7s

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

that a larger weight parameter typically results in a more accurate solution in terms

of the original contact position constraints (4.4). This observation confirms that the

proposed method can address high nonlinearity because the large Baumgarte’s weight

parameters cause high nonlinearity (Flores et al. (2011)).

4.5 Summary

We proposed a novel lifting approach for optimal control of rigid-body systems with

contacts to improve the convergence properties of Newton-type methods. To re-

lax the high nonlinearity, we considered the acceleration and contact forces as the

optimization variables and the inverse dynamics and acceleration-level contact con-

straints as equality constraints. We eliminated the update of these additional vari-

ables from the linear equation for Newton-type method in an efficient manner. As a

result, the computational cost per Newton-type iteration is almost identical to that

of the conventional non-lifted one that embeds contact dynamics in the state equa-

tion. We conducted numerical experiments on the whole-body optimal control of

various quadrupedal gaits subject to the friction cone constraints considered in the

interior-point methods and demonstrated that the proposed method can significantly

increase the convergence speed to more than twice that of the conventional non-lifted

approaches.

66

4.5. Summary

0 10 20
No. of Iterations

−5

0

5

lo
g
10
k (

KK
T

re
s.)

 k
2 ²=1:0£ 10¡1

DMS-LCD, DMS-ID DMS-CD FDDP iLQR

0 50 100 150
No. of Iterations

−5

0

5

²=1:0£ 10¡4
Walking

0.0 2.5 5.0 7.5 10.0
No. of Iterations

−5

0

5

lo
g
10
k (

KK
T

re
s.)

 k
2 ²=1:0£ 10¡1

0 5 10 15 20
No. of Iterations

−5

0

5

²=1:0£ 10¡4
Trotting

0 10 20 30 40
No. of Iterations

−5
0
5

lo
g
10
k (

KK
T

re
s.)

 k
2 ²=1:0£ 10¡1

0 50 100 150
No. of Iterations

−5
0
5

²=1:0£ 10¡4
Pacing

0 20 40 60
No. of Iterations

−5
0
5

lo
g
10
k (

KK
T

re
s.)

 k
2 ²=1:0£ 10¡1

0 100 200 300 400
No. of Iterations

−5
0
5

²=1:0£ 10¡4
Bounding

0 20 40 60 80
No. of Iterations

−5
0
5

lo
g
10
k (

KK
T

re
s.)

 k
2 ²=1:0£ 10¡1

0 100 200
No. of Iterations

−5
0
5

²=1:0£ 10¡4
Jumping

Figure 4.2: log10 scaled l2-norms of the KKT residuals (KKT res. in short) of DMS-
LCD and DMS-ID (solid lines), DMS-CD (dashed lines), FDDP (dash-dotted lines),
and iLQR (dotted lines) over the five quadrupedal gaits subject to the friction cone
constraints considered in the interior-point methods with the fixed barrier parameters
ϵ = 1.0× 10−1 and ϵ = 1.0× 10−4.

67

Chapter 4. Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body
Systems with Contacts

0

2

4

CP
U

tim
e

[m
s]

Per iteration

DMS-LCD DMS-CD DMS-ID FDDP iLQR

0

25

50

Total (²=1:0£ 10¡1)

0

200

Total (²=1:0£ 10¡4)
Walking

0

1

2

CP
U

tim
e

[m
s]

Per iteration

0

10

Total (²=1:0£ 10¡1)

0

20

40
Total (²=1:0£ 10¡4)

Trotting

0

1

2

CP
U

tim
e

[m
s]

Per iteration

0

50

100

Total (²=1:0£ 10¡1)

0

200

400

Total (²=1:0£ 10¡4)
Pacing

0

1

2

CP
U

tim
e

[m
s]

Per iteration

0

50

100

Total (²=1:0£ 10¡1)

0

500

1000
Total (²=1:0£ 10¡4)

Bounding

0

1

2

CP
U

tim
e

[m
s]

Per iteration

0

50

100

Total (²=1:0£ 10¡1)

0

250

500

Total (²=1:0£ 10¡4)
Jumping

Figure 4.3: CPU time per iteration and the total CPU time until convergence of
DMS-LCD, DMS-CD, DMS-ID, FDDP, and iLQR over the five quadrupedal gaits
subject to the friction cone constraints considered in the interior-point methods with
the fixed barrier parameters ϵ = 1.0× 10−1 and ϵ = 1.0× 10−4.

68

4.5. Summary

Figure 4.4: Snapshots of the whole-body optimal control of the jumping motion of
ANYmal subject to the friction cone constraints. The contact forces are indicated by
the yellow arrows and linearized friction cones by the blue polyhedrons.

0.0 0.2 0.4 0.6

−200

0

200

Left-front leg

0.0 0.2 0.4 0.6

−200

0

200

Left-hip leg

0.0 0.2 0.4 0.6
Time [s]

−200

0

200

Right-front leg

0.0 0.2 0.4 0.6
Time [s]

−200

0

200

Right-hip leg

fx[N] fy[N] fz[N]

Figure 4.5: Time histories of the contact force expressed in the world frame [fx fy fz]
of each leg in the jumping motion. The infeasible regions of fx and fy due to the
friction cone constraints (4.26) are the filled gray hatches. The infeasible region of
fz ≥ 0 is the lower-half space of each plot.

69

Chapter 5

Efficient Riccati Recursion for
Optimal Control Problems with
Pure-State Equality Constraints

1

5.1 Introduction

Optimal control underlies the motion planning and control of dynamical systems such

as trajectory optimization (TO) and model predictive control (MPC) (Rawlings et

al. (2017)). TO achieves versatile and dynamically consistent planning by solving

optimal control problems (OCPs). MPC leverages the same advantages as TO in

real-time control by solving an OCP online within a particular sampling interval. It

is essential, particularly for MPC, to solve direct OCPs within a short computational

time, even if they involve highly complicated dynamics, a large dimensional state,

and a long horizon.

Newton-type methods are the most practical methods used for solving OCPs in

terms of the convergence speed. One of the most efficient algorithms that implement

the Newton-type methods to solve both the single-shooting and multiple-shooting

OCPs of large-scale systems is the Riccati recursion algorithm (Frison (2016); Rawl-

ings et al. (2017)). The Riccati recursion algorithm scales only linearly with respect

to the number of discretization grids of the horizon, in contrast to the direct methods

(i.e., methods applying the Cholesky decomposition directly to the entire Hessian

matrix) that scale cubically. For example, it was successfully applied to solve OCPs

even for significantly complex systems such as legged robots with large degrees of

1© 2022 IEEE. This chapter is reprinted, with permission, from S. Katayama and T. Ohtsuka,
“Efficient Riccati recursion for optimal control problems with pure-state equality constraints,” 2022
American Control Conference (ACC 2022), pp. 3579–3586, 2022.

70

5.1. Introduction

freedom within very short computational times (Koenemann et al. (2015); Mastalli

et al. (2020); Neunert et al. (2018)).

However, there is a drawback of the Riccati recursion algorithm: it cannot effi-

ciently treat pure-state equality constraints, which often arise, for example, in way-

point constraints, terminal constraints, switching constraints in hybrid systems such

as legged robots (Farshidian, Neunert, Winkler, Rey, and Buchli (2017); Li and Wens-

ing (2020)), and inequality constraints handled by active-set methods (Sideris and

Rodriguez (2011)). Sideris and Rodriguez (2011) extended the Riccati recursion al-

gorithm for pure-state equality constraints and illustrated its effectiveness over the

direct method for certain quadratic programming problems. However, the compu-

tational time of this method scales cubically with respect to the total dimension of

pure-state equality constraints over the horizon, and it is inefficient when the total

dimension is large. Giftthaler and Buchli (2017) proposed a projection approach to

treat pure-state equality constraints with the Riccati recursion algorithm efficiently.

However, this approach can only treat the equality constraints whose relative degree

is 1, for example, velocity-level constraints of second-order systems, and cannot treat

position-level constraints for such systems, which is a very common and practical

class of constraints.

Other popular constraint-handling methods used with the Riccati recursion algo-

rithm are the penalty function method and the augmented Lagrangian (AL) method.

For example, Farshidian et al. (2017) used the penalty function method and Li and

Wensing (2020) used the AL method to treat pure-state equality constraints represent-

ing the switching constraints arising in OCPs involving quadrupedal gaits. A trans-

formation of the linear-quadratic OCP into a dual problem for the efficient Riccati

recursion (Axehill (2005)) also used the penalty function method to treat the pure-

state constraints. However, the penalty function method practically yields only the

approximated solution, as illustrated by the numerical results obtained in Farshidian

et al. (2017). The AL method can treat constraints better than the penalty function

method, for example, it converges to the optimal solution even if the penalty parame-

ter remains at a finite value. However, it generally lacks convergence speed compared

with the Newton-type methods that achieve superlinear or quadratic convergence.

The AL method essentially achieves linear convergence and it yields superlinear con-

vergence only if the penalty parameter goes to infinity (Bertsekas (2016)), which is an

impractical assumption. For example, Li and Wensing (2020) used the AL method

to consider the switching constraints in an OCP of quadruped bouncing motion. The

AL method required a large number of the iterations (up to 300), although a simple

71

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

2D robot model was used and only one cycle of the bouncing motion was considered,

which led to very low-dimensional (only four dimensions in all) pure-state equality

constraints.

In this chapter, we propose a novel approach to efficiently treat pure-state equal-

ity constraints in OCPs using a Riccati recursion algorithm. The proposed method

transforms a pure-state equality constraint into a mixed state-control constraint such

that the constraint is expressed by variables at a certain previous time stage. We show

a relationship between an OCP with the original pure-state constraint (the original

OCP) and an OCP with the transformed mixed state-control constraint (the trans-

formed OCP); if the solution satisfies the first-order necessary conditions (FONC)

and/or second-order sufficient conditions (SOSC) of the transformed OCP, then the

solution also satisfies the FONC and/or SOSC of the original OCP. Therefore, if we

find a solution that satisfies the SOSC of the transformed OCP, it is a local minimum

of the original OCP. We then derive a Riccati recursion algorithm to solve the trans-

formed OCP with linear time complexity in the grid number of the horizon, in contrast

with the previous approach of Sideris and Rodriguez (2011) that scales cubically with

respect to the total dimension of pure-state equality constraints. Moreover, because

the proposed method is in substance a Newton’s method for an optimization prob-

lem with equality constraints, the proposed method achieves superlinear or quadratic

convergence, which distinguishes our approach from the penalty function method and

the AL method in terms of convergence speed. We present numerical experiments of

the whole-body optimal control of quadrupedal gaits that involve pure-state equality

constraints owing to contact switches, which represent the position-level constraints

of a second-order system, and demonstrate the effectiveness of the proposed method

over the existing approaches, that is, the approach of Sideris and Rodriguez (2011)

and the AL method.

This chapter is organized as follows. In Section 5.2, we transform an OCP with a

pure-state equality constraint into an OCP with a mixed state-control equality con-

straint. In Section 5.3, we derive a Riccati recursion algorithm to apply Newton’s

method efficiently to the OCP with transformed mixed state-control equality con-

straints. In Section 5.4, the theoretical properties of the proposed transformation of

OCPs are described. In Section 5.5, the proposed method is compared with existing

methods and its effectiveness is demonstrated in terms of computational time and

convergence speed. In Section 5.6, we conclude with a brief summary and mention of

future work.

72

5.2. Transformation of Optimal Control Problem with Pure-State Equality
Constraints

Notation: We describe the partial derivatives of a differentiable function with

respect to certain variables using a function with subscripts; that is, fx(x) denotes
∂f
∂x
(x) and gxy(x, y) denotes

∂2g
∂x∂y

(x, y).

5.2 Transformation of Optimal Control Problem

with Pure-State Equality Constraints

5.2.1 Original optimal control problem

We consider the following discrete-time OCP: Find the state x0, ..., xN ∈ Rnx and the

control input u0, ..., uN−1 ∈ Rnu minimizing the cost function

J = V (xN) +
N−1∑
i=0

L(xi, ui) (5.1a)

subject to the state equation

xi + f(xi, ui)− xi+1 = 0, i ∈ {0, ..., N − 1} , (5.1b)

a pure-state equality constraint

ϕ(xk) = 0, ϕ(xk) ∈ Rnc , (5.1c)

and the initial state constraint

x0 − x̄ = 0, x̄ ∈ Rnx . (5.1d)

In the following, we assume the form of the state as xi =
[
qTi vTi

]T
, where qi ∈ Rn and

vi ∈ Rn represent the generalized coordinates and velocity of the system, respectively,

and assume the form of the state equation as follows:

f(xi, ui) :=

[
f (q)(xi)

f (v)(xi, ui)

]
, f (q)(xi), f

(v)(xi, ui) ∈ Rn. (5.2)

We also assume that k ≥ 2, nu ≤ n, nc ≤ n, and that the constraint (5.1c) depends

only on the generalized coordinate, that is, its Jacobian is expressed as follows:

ϕx(xk) =
[
ϕq(qk) O

]
, ϕq(qk) ∈ Rnc×n. (5.3)

The state equation (5.2) mainly represents a second-order Lagrangian system with n

degrees of freedom, and a constraint (5.1c), whose Jacobian is of form (5.3) represents

a position-level constraint (that is, the relative degree of the constraint with respect

to the control input is 2), which is a very common and practical class of problem

settings.

73

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

5.2.2 Transformation of optimal control problem

To solve the aforementioned OCP efficiently, we transform the original pure-state

equality constraint (5.1c) into a mixed state-control equality constraint that is equiv-

alent to (5.1c) as long as (5.1b) is satisfied. If (5.1b) is satisfied,

xk = xk−2 + f(xk−2, uk−2) + f(xk−2 + f(xk−2, uk−2), uk−1)

holds and therefore

ϕ(xk−2 + f(xk−2, uk−2) + f(xk−2 + f(xk−2, uk−2), uk−1)) = 0 (5.4)

is equivalent to (5.1c). Furthermore, because ϕ(·) only depends on the generalized

coordinate, (5.4) is equivalent to

ϕ(xk−2 + f(xk−2, uk−2) + g(xk−2 + f(xk−2, uk−2))) = 0, (5.5a)

where we define

g(x) :=

[
f (q)(x)

0

]
. (5.5b)

Therefore, the constraint (5.5a) is equivalent to (5.1c) if (5.1b) is satisfied. Therefore,

we consider (5.5a) instead of (5.1c) in the following. We herein summarize the original

and transformed OCPs as follows:

Problem 5.1. - Original OCP: Find the solution x0, ..., xN , u0, ..., uN−1 minimizing

(5.1a) subject to (5.1b)–(5.1d).

Problem 5.2. - Transformed OCP: Find the solution x0, ..., xN , u0, ..., uN−1 min-

imizing (5.1a) subject to (5.1b), (5.1d), and (5.5a).

In fact, we have the following relations between the transformed OCP and the

original OCP: If the solution x0, ..., xN , u0, ..., uN−1 satisfies the FONC of the trans-

formed OCP, it also satisfies the FONC of the original OCP. If the solution x0, ..., xN ,

u0, ..., uN−1 satisfies the SOSC of the transformed OCP, it also satisfies the SOSC of

the original OCP. Therefore, if we find the solution x0, ..., xN , u0, ..., uN−1 that sat-

isfies the SOSC of the transformed OCP, it is a local minimum of the original OCP.

We show these theoretical points later in Section 5.4.

It should be noted that it is trivial to apply the proposed approach to constraints

of relative degree 1: we transform (5.1c) into a mixed state-control constraint rep-

resented by xk−1 and uk−1 in the same manner as mentioned before. Therefore, our

approach comprises the approach of Giftthaler and Buchli (2017) that also involves

74

5.2. Transformation of Optimal Control Problem with Pure-State Equality
Constraints

constraint transformation but can treat only constraints of relative degree 1. The

difference between our approach and that of Giftthaler and Buchli (2017) is that we

introduce the constraint transformation in the original nonlinear problem and lever-

age the structure of the system (5.1b), whereas in approach of Giftthaler and Buchli

(2017), constraint transformation is introduced in the linear subproblem arising in the

Newton-type iterations without any assumptions in the state equation. As a result,

only our approach can treat the practically important constraints of relative degree

2 with a theoretical justification for the transformation.

It should also be noted that the proposed approach is completely different from the

classical transformation of pure-state equality constraints in continuous-time OCPs

by considering their derivatives with respect to time, for example, in Section 3.4

of (Bryson and Ho (1975)). To explain this difference, we consider that there is a

pure-state constraint of the form of (5.1c) over a time interval. The classical method

then transforms the pure-state constraint over the interval into a combination of the

pure-state equality constraints (5.1c) and d
dt
ϕ(x) = 0 at a point on the interval and

the mixed state-control constraint d2

dt2
ϕ(x) = 0 over the interval, where d

dt
and d2

dt2

yield a kind of Lie derivative. Therefore, the classical method still needs to consider

the pure-state equality constraints, whereas our approach transforms all pure-state

equality constraints into the corresponding mixed state-control constraints.

5.2.3 Optimality conditions

We derive the optimality conditions, known as FONC, of the transformed OCP. We

first define the Hamiltonian

H(x, u, λ) := L(x, u) + λTf(x, u)

and

H̃(x, u, λ, ν) := H(x, u, λ) + νTϕ(x+ f(x, u) + g(x+ f(x, u))).

We also define the intermediate time stages in which the constraint is not active as

Ī := {1, ..., k − 3, k − 1, ..., N − 1}. The optimality conditions are then derived as

follows (Bryson and Ho (1975)):

V T
x (xN)− λN = 0, (5.6)

HT
x (xi, ui, λi+1) + λi+1 − λi = 0 (5.7)

and

HT
u (xi, ui, λi+1) = 0 (5.8)

75

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

for i ∈ Ī,

H̃T
x (xk−2, uk−2, λk−1, ν) + λk−1 − λk−2

= HT
x (xk−2, uk−2, λk−1) + λk−1 − λk−2 + (I + fT

x (xk−2, uk−2))(I + gTx)ϕ
T
x ν = 0,

(5.9)

and

H̃T
u (xk−2, uk−2, λk−1, ν)

= HT
u (xk−2, uk−2, λk−1) + fT

u (xk−2, uk−2)(I + gTx)ϕ
T
x ν = 0, (5.10)

where λ0, ..., λN are the Lagrange multipliers with respect to (5.1d) and (5.1b), and ν

is that with respect to (5.5a). It should be noted that we have omitted the arguments

from ϕx and gx in (5.9) and (5.10).

5.3 Riccati Recursion

5.3.1 Linearization for Newton’s method

To apply Newton’s method for the transformed OCP, we linearize the optimality

conditions. It should be noted that we adopt the direct multiple shooting method

(Bock and Plitt (1984)), that is, we consider x0, ..., xN , u0, ..., uN−1, λ0, ..., λN , and ν

as the optimization variables.

5.3.1.1 Terminal stage

At the terminal stage (i = N), we have

Qxx,N∆xN −∆λN + l̄x,N = 0, (5.11)

where we define Qxx,N := Vxx(xN). Further, we define l̄x,N using the left-hand side of

(5.6).

5.3.1.2 Intermediate stages without equality constraint

In the intermediate stages without an equality constraint (i ∈ Ī), we have

Ai∆xi +Bi∆ui −∆xi+1 + x̄i = 0, (5.12a)

Qxx,i∆xi +Qxu,i∆ui + AT
i ∆λi+1 −∆λi + l̄x,i = 0, (5.12b)

and

QT
xu,i∆xi +Quu,i∆ui +BT

i ∆λi+1 + l̄u,i = 0, (5.12c)

76

5.3. Riccati Recursion

where we define Ai := I + fx(xi, ui), Bi := fu(xi, ui), Qxx,i := Hxx(xi, ui, λi+1), Qxu,i

:= Hxu(xi, ui, λi+1), Quu,i := Huu(xi, ui, λi+1). Further, we define x̄i, l̄x,i, and l̄u,i using

the left-hand sides of (5.1b), (5.7), and (5.8), respectively.

5.3.1.3 Intermediate stage with an equality constraint

At the intermediate stages with an equality constraint (i = k − 2), we have (5.12a)

for i = k − 2 and have

Qxx,k−2∆xk−2 +Qxu,k−2∆uk−2 +AT
k−2∆λk−1 −∆λk−2 + CT∆ν + l̄x,k−2 = 0, (5.13a)

QT
xu,k−2∆xk−2 +Quu,k−2∆uk−2 +BT

k−2∆λk−1 +DT∆ν + l̄u,k−2 = 0, (5.13b)

and

C∆xk−2 +D∆uk−2 + ϕ̄ = 0, (5.13c)

where we defineQxx,k−2 := H̃xx(xk−2, uk−2, λk−1, ν), Qxu,k−2 := H̃xu(xk−2, uk−2, λk−1, ν),

Quu,k−2 := H̃uu(xk−2, uk−2, λk−1, ν), C := ϕx(I + gx)Ak−2, D := ϕx(I + gx)Bk−2. We

further define l̄x,k−2, l̄u,k−2, and ϕ̄ using the left-hand sides of (5.9), (5.10), and (5.5a),

respectively.

5.3.1.4 Initial stage

Finally, we have

∆x0 + x0 − x̄ = 0. (5.14)

It should be noted that we can apply the Gauss-Newton Hessian approximation,

which improves the computational speed when the constraints (5.1b) and (5.5a) are

too complicated for their second-order derivatives to be computed. Qxx,N and Qxx,i,

Qxu,i, and Quu,i for i ∈ {0, ..., N − 1} are then approximated using only the cost

function (5.1a) and do not depend on the Lagrange multipliers.

5.3.2 Derivation of Riccati recursion

We derive a Riccati recursion algorithm to solve the linear equations for Newton’s

method (5.11)–(5.14) efficiently. As the standard Riccati recursion algorithm (Frison

(2016); Rawlings et al. (2017)), our goal is to derive a series of matrices Pi and vectors

si such that

∆λi = Pi∆xi − si (5.15)

holds.

77

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

5.3.2.1 Terminal stage

At the terminal stage (i = N), we have

PN = Qxx,N , sN = −l̄N . (5.16)

In the forward recursion, we have ∆xN , and we compute ∆λN from (5.15).

5.3.2.2 Intermediate stages without an equality constraint

At the intermediate stages without an equality constraint (i ∈ Ī), we have the follow-
ing standard backward Riccati recursion (Frison (2016); Rawlings et al. (2017)) for

given Pi+1 and si+1 satisfying (5.15):

Fi := Qxx,i + AT
i Pi+1Ai, (5.17a)

Hi := Qxu,i + AT
i Pi+1Bi, (5.17b)

Gi := Quu,i +BT
i Pi+1Bi, (5.17c)

Ki := −G−1
i HT

i , ki := −G−1
i (BT

i Pi+1x̄i −BT
i si+1 + l̄u,i), (5.17d)

and

Pi := Fi −KT
i GiKi, si := AT

i (si+1 − Pi+1x̄i)− l̄x,i −Hiki. (5.17e)

In the forward recursion, for a particular value of ∆xi, we compute ∆ui from

∆ui = Ki∆xi + ki, (5.17f)

∆λi from (5.15), and ∆xi+1 from (5.12a).

5.3.2.3 Intermediate stage with an equality constraint

At the intermediate stage with an equality constraint (i = k − 2), we first define

(5.17a)–(5.17e) for i = k − 2 for the specific values of Pk−1 and sk−1 that satisfies

(5.15). We then have the relations that are used in the forward recursion for k− 1 as

follows: [
∆uk−2

∆ν

]
=

[
Kk−2

M

]
∆xk−2 +

[
kk−2

m

]
, (5.18a)

where we define [
Kk−2

M

]
:= −

[
Gk−2 DT

D O

]−1 [
HT

k−2

C

]
(5.18b)

and [
kk−2

m

]
:= −

[
Gk−2 DT

D O

]−1 [
BT

k−2Pk−1x̄k−2 −BT
k−2sk−1 + l̄u,k−2

ϕ̄

]
. (5.18c)

78

5.3. Riccati Recursion

We then obtain the backward recursions

Pk−2 := Fk−2 −
[
KT

k−2 MT
] [Gk−2 DT

D O

] [
Kk−2

M

]
(5.18d)

and

sk−2 := AT
k−2(sk−1 − Pk−1x̄k−2)− l̄x,k−2 −Hk−2kk−2 − CTm. (5.18e)

5.3.3 Algorithm, convergence, and computational analysis

We summarize the single Newton iteration, that is, the computation of the Newton

direction for a particular solution, using the proposed Riccati recursion algorithm

(Algorithm 5.1). In the first step, we formulate the linear equations of Newton’s

method, that is, we compute the coefficient matrices and residuals of (5.11)–(5.14)

(line 1). This step can leverage parallel computing. Second, we perform the backward

Riccati recursion and compute Pi and zi for i ∈ {0, ..., N} (lines 4–11). Third, we

perform the forward Riccati recursion and compute the Newton directions for all the

variables (lines 12–20).

Because the proposed method is in substance a Newton’s method for an optimiza-

tion problem with equality constraints, it achieves superlinear or quadratic conver-

gence, for example, by Proposition 4.4.3 of Bertsekas (2016), which distinguishes the

convergence behavior of the proposed method from that of the AL method, popularly

used to treat the pure-state equality constraints with the Riccati recursion algorithm.

The AL method achieves superlinear convergence only if the penalty parameter goes

to infinity, which is an impractical assumption; otherwise, its convergence rate is just

linear.

It should be noted that we can trivially apply the proposed method to OCPs with

multiple pure-state equality constraints on the horizon. When there are multiple time

stages involving constraint (5.1c) on the horizon, we compute the coefficient matrices

and residuals in (5.13a)–(5.13c) for each of the time stages in line 1 of Algorithm

5.1, apply line 7 of Algorithm 5.1 for each of the time stages in the backward Riccati

recursion, and apply line 15 of Algorithm 5.1 for each of the time stages in the forward

Riccati recursion.

The proposed method is particularly efficient when there are several stages with

pure-state equality constraints on the horizon. Suppose that there is an nc,i-dimensional

pure-state equality constraint at each time stage i of the horizon (nc,i = 0 if there

is no constraint at stage i). The proposed method then computes the inverse of a

matrix whose size is (nu + nc,i) × (nu + nc,i) at each time stage in the backward re-

cursion. In contrast, the previous approach of Sideris and Rodriguez (2011) requires

79

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

Algorithm 5.1 Computation of Newton direction using proposed Riccati recursion

Input: Initial state x(t0), the current solution x0, ..., xN , u0, ..., uN−1, and Lagrange
multipliers λ0, ..., λN , ν.

Output: Newton directions ∆x0, ..., ∆xN , ∆u0, ..., ∆uN−1, ∆λ0, ..., ∆λN , and ∆ν.
1: for i = 0, · · · , N do in parallel
2: Computes the matrices and residuals in (5.11)–(5.14).
3: end for
4: Compute PN and zN from (5.16).
5: for i = N, · · · , 0 do in serial
6: if i = k − 2 then
7: Computes Pk−2 and zk−2 from (5.17a)–(5.17c), (5.18b), (5.18c), and

(5.18e).
8: else
9: Computes Pi and zi from (5.17a)–(5.17e).
10: end if
11: end for
12: Compute ∆x0 from (5.14).
13: for i = 0, · · · , N − 1 do in serial
14: if i = k − 2 then
15: Compute ∆uk−2, ∆ν, ∆λk−2, and ∆xk−1 from (5.18a), (5.15), and (5.12a).
16: else
17: Compute ∆ui, ∆λi, and ∆xi+1 from (5.17f), (5.15), and (5.12a).
18: end if
19: end for
20: Compute ∆λN from (5.15).

the computation of the inverse of a matrix of size (
∑N

i=0 nc,i)× (
∑N

i=0 nc,i). Broadly

speaking, the computational burden of the proposed method with respect to the grid

number N is O(N), whereas that of the approach in Sideris and Rodriguez (2011) is

O(N3).

It should be noted that it is easy to apply the proposed method to the single-

shooting methods, which are popular in robotic applications (Farshidian et al. (2017);

Koenemann et al. (2015); Li and Wensing (2020); Neunert et al. (2018)), by consider-

ing only u0, ..., uN−1 and ν as the decision variables. In the single-shooting methods,

before line 1 of Algorithm 1, we first compute x0, ..., xN based on x(t0) and u0, ..., uN−1

using the state equation (5.1b) sequentially. Further, we compute λN , ..., λ0 using

(5.6), (5.7), and (5.9) based on u0, ..., uN−1, ν, and x0, ..., xN , respectively, in the

backward recursion (lines 5–11 of Algorithm 1). We can then compute the Newton

directions ∆u0, ...,∆uN−1 and ∆ν using the same (or a similar) forward recursion

(lines 12–20 of Algorithm 1).

80

5.4. Theoretical Properties of Optimal Control
Problem Transformation

5.4 Theoretical Properties of Optimal Control

Problem Transformation

We show the theoretical relationships between the transformed OCP and the original

OCP in this section. The first theorem concerns a stationary point of the transformed

OCP and a stationary point of the original OCP.

Theorem 5.1. Suppose that x0, ..., xN , u0, ..., uN−1, λ0, ..., λN , and ν satisfy the

FONC of the transformed OCP. Then, there exist the Lagrange multipliers λ∗0, ..., λ
∗
N

and ν∗ such that x0, ..., xN , u0, ..., uN−1, λ
∗
0, ..., λ

∗
N , and ν

∗ satisfy the FONC of the

original OCP.

Proof. First, we define the intermediate time stages without the active constraints of

the original OCP as Ĩ := {0, ..., k − 1, k + 1, ..., N − 1}. The FONC of the original

OCP is then expressed by (5.1b)–(5.1d), (5.6), and (5.7) for i ∈ Ĩ,

HT
x (xk, uk, λ

∗
k+1) + ϕT

x ν
∗ + λ∗k+1 − λ∗k = 0, (5.19)

and (5.8) for i ∈ {0, ..., N − 1}, in which (5.1b)–(5.1d) are trivially satisfied because

x0, ..., xN and u0, ..., uN−1 satisfy the FONC of the transformed OCP. It should be

noted that because x0, ..., xN and u0, ..., uN−1 satisfy (5.1b) and ϕx(·) only depends

on the generalized coordinate,

ϕx(xk) = ϕx(xk−2 + f(xk−2, uk−2) + g(xk−2 + f(xk−2, uk−2))) (5.20)

holds. Therefore, we describe both the left- and right-hand sides of (5.20) as ϕx in

this proof. Let

λ∗i = λi, i ∈ {0, ..., k − 2, k + 1, ..., N} . (5.21)

Then, (5.6), (5.7) for i ∈ {0, ..., k − 3, k + 1, ..., N}, and (5.8) for i ∈ {0, ..., k − 2,

k + 1, ..., N} of the original OCP are reduced to those of the transformed OCP and

are, therefore, satisfied. Furthermore, let

ν∗ = ν, λ∗k = λk + ϕT
x ν

∗, λ∗k−1 = λk−1 + (I + gTx)ϕ
T
x ν

∗. (5.22)

Then, (5.7) and (5.8) for i = k−2, k−1 and (5.19) of the original OCP are also reduced

to (5.9), (5.10), (5.7) and (5.8) for i = k − 1, and (5.7) for i = k of the transformed

OCP, respectively, noting that ϕxfx(xk−1, uk−1) = ϕxgx and ϕxfu(xk−1, uk−1) = O,

and are, therefore, satisfied, which completes the proof.

81

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

From the proof of Theorem 4.1, we can obtain the Lagrange multipliers at a

stationary point of the original OCP corresponding to those of the transformed OCP.

The following theorem concerns the sufficiency of the optimality.

Theorem 5.2. Suppose that x0, ..., xN , u0, ..., uN−1, λ0, ..., λN , and ν satisfy the

SOSC of the transformed OCP. Then, there exist the Lagrange multipliers λ∗0, ..., λ
∗
N ,

and ν∗ such that x0, ..., xN , u0, ..., uN−1, λ
∗
0, ..., λ

∗
N , and ν∗ satisfy the SOSC of the

original OCP.

Proof. Because x0, ..., xN , u0, ..., uN−1, λ0, ..., λN , and ν also satisfy the FONC of the

transformed OCP, we have λ∗0, ..., λ
∗
N and ν∗ defined by (5.21) and (5.22) such that

x0, ..., xN , u0, ..., uN−1, λ
∗
0, ..., λ

∗
N , and ν

∗ satisfy the FONC of the original OCP from

Theorem 4.1. From the assumption of the SOSC of the transformed OCP, we have

δxTNQxx,NδxN +
N−1∑
i=0

[
δxTi
δuTi

]T [
Qxx,i Qxu,i

QT
ux,i Quu,i

] [
δxi
δui

]
> 0 (5.23)

for arbitrary δxi and δui satisfying δx0 = 0, (I + fx,i)δxi + fu,iδui − δxi+1 = 0

for i ∈ {0, ..., N − 1} and ϕx(I + gx)(I + fx,k−2)δxk−2 + ϕx(I + gx)fu,k−2δuk−2 = 0,

where we describe fx,i := fx(xi, ui) and fu,i := fu(xi, ui) for i ∈ {0, ..., N − 1}. We

introduce the Hessians of the original OCP as Q∗
xx,N := Vxx(xN) = Qxx,N and Q∗

xx,i

:= Hxx(xi, ui, λ
∗
i+1), Q

∗
xu,i := Hxu(xi, ui, λ

∗
i+1), and Q

∗
uu,i := Huu(xi, ui, λ

∗
i+1) for i ∈ Ĩ.

Further, we introduce Q∗
xx,k := Hxx(xk, uk, λ

∗
k+1, ν

∗), Q∗
xu,k := Hxu(xk, uk, λ

∗
k+1, ν

∗),

and Q∗
uu,k := Huu(xk, uk, λ

∗
k+1, ν

∗). We can then complete the proof if

δx∗N
TQ∗

xx,Nδx
∗
N +

N−1∑
i=0

[
δx∗i

T

δu∗i
T

]T [
Q∗

xx,i Q∗
xu,i

Q∗
ux,i

T Q∗
uu,i

] [
δx∗i
δu∗i

]
> 0 (5.24)

holds for arbitrary δx∗i and δu∗i satisfying δx∗0 = 0, (I + fx,i)δx
∗
i + fu,iδu

∗
i − δx∗i+1 = 0

for i ∈ {0, ..., N − 1} and ϕxδx
∗
k = 0. First, we can see that the subspace of the

feasible variations δx∗i and δu∗i is identical to that of δxi and δui because (5.20)

holds. Then, we consider δx∗i and δu∗i as being identical to δxi and δui. Next,

by substituting (5.21) and (5.22) into the Hessians of the original OCP, we obtain

Q∗
xx,i = Qxx,i, Q

∗
xu,i = Qxu,i, and Q

∗
uu,i = Quu,i for i ∈ {0, ..., k − 3, k + 1, ..., N − 1},

Q∗
xx,k = Qxx,k+ν ·ϕxx, Q

∗
xu,k = Qxu,k, Q

∗
uu,k = Quu,k, Q

∗
xx,k−1 = Qxx,k−1+(ϕT

x ν)·fxx,k−1,

Q∗
xu,k−1 = Qxu,k−1 + (ϕT

x ν) · fxu,k−1, Q
∗
uu,k−1 = Quu,k−1 + (ϕT

x ν) · fuu,k−1,

Q∗
xx,k−2 = Qxx,k−2 − (I + fT

x,k−2)((ϕ
T
x ν) · gxx)(I + fx,k−2)

− (I + fT
x,k−2)(I + gTx)(ν · ϕxx)(I + gx)(I + fx,k−2),

82

5.5. Numerical Experiments on Whole-Body
Quadrupedal Gaits Optimization

Q∗
xu,k−2 = Qxu,k−2 − (I + fT

x,k−2)((ϕ
T
x ν) · gxx)fu,k−2

− (I + fT
x,k−2)(I + gTx)(ν · ϕxx)(I + gx)fu,k−2,

and

Q∗
uu,k−2 = Quu,k−2 − fT

u,k−2(I + gTx)(ν · ϕxx)(I + gx)fu,k−2,

where fxx,i := fxx(xi, ui), fxu,i := fxu(xi, ui), fuu,i := fuu(xi, ui), and the notation

“·” denotes vector–tensor multiplication. Since the FONC of the original OCP holds

and ν · ϕxx =

[
ν · ϕqq O
O O

]
, we have (ν · ϕxx)(I + fx,k−1) = (ν · ϕxx)(I + gx) and

(ν ·ϕxx)fu,k−1 = O, which yields δxTk (ν ·ϕxx)δxk = δxTk−1(I+g
T
x)(ν ·ϕxx)(I+gx)δxk−1.

In addition, from the structures of (5.2), (5.3), and (5.5b), we have (ϕT
x ν) · fxx,k−1 =

(ϕT
x ν) · gxx, (ϕT

x ν) · fxu,k−1 = O, and (ϕT
x ν) · fuu,k−1 = O. By substituting these

relations, the left-hand side of (5.24) is reduced to the left-hand side of (5.23), which

completes the proof.

We summarize the property of the proposed transformation in the next proposi-

tion:

Proposition 5.3. Suppose that x0, ..., xN , u0, ..., uN−1, λ0, ..., λN , and ν satisfy the

SOSC of the transformed OCP. Then, the solution x0, ..., xN , u0, ..., uN−1 is a strict

local minimum of the original OCP.

Proof. Because the solution x0, ..., xN , u0, ..., uN−1 with the Lagrange multipliers satis-

fies the SOSC of the original OCP, as indicated by Theorem 4.2, the solution x0, ..., xN ,

u0, ..., uN−1 is a strict local minimum of the original OCP.

5.5 Numerical Experiments on Whole-Body

Quadrupedal Gaits Optimization

5.5.1 Experimental settings

To demonstrate the effectiveness of the proposed method over existing methods, we

conducted numerical experiments on the whole-body optimal control of a quadrupedal

robot ANYmal for various gaits. The equation of motion of the full 3D model of the

quadrupedal robot is of the form of (5.2). Moreover, a pure-state constraint whose

Jacobian is of the form (5.3) is imposed just before each impact between the leg and

the ground, which is termed the switching constraint (Farshidian et al. (2017); Li and

Wensing (2020)). We compare the following three Riccati recursion algorithms based

83

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

on the direct-multiple shooting method and Gauss-Newton Hessian approximation

with various constraint handling methods:

• The proposed method

• The Riccati recursion with pure-state constraints (Sideris and Rodriguez (2011))

• The AL method (Nocedal and Wright (2006))

We implemented these three algorithms in C++ and used Pinocchio (Carpentier et

al. (2019)), an efficient C++ library used for rigid-body dynamics and its analytical

derivatives, to compute the dynamics and its derivatives of the quadrupedal robot.

We used OpenMP (Dagum and Menon (1998)) for parallel computing (e.g., line 1

of Algorithm 1) and four threads through the following experiments. To consider

the practical situation, we also imposed inequality constraints on the joint angle

limits, joint angular velocity limits, and joint torque limits of each joint. We used

the primal-dual interior point method (Wächter and Biegler (2006)) with fixed barrier

parameters for the inequality constraints. None of the three methods used line search;

they only used the fraction-to-boundary rule (Wächter and Biegler (2006)) for step-

size selection. We fixed the instants of the impact between the robot and the ground

in the following experiments and did not treat them as optimization variables as in

Farshidian et al. (2017); Li and Wensing (2020), to focus on the evaluation of the

constraint-handling methods. All experiments were conducted on a laptop with a

hexa-core CPU Intel Core i9-8950HK @2.90 GHz.

In the following two experiments, we considered that the OCP converges when the

l2-norm of the residuals in the Karush—Kuhn–Tucker (KKT) conditions, which we

refer to as the KKT error, becomes smaller than a prespecified threshold. The KKT

conditions are composed of the FONC and primal and dual residuals in the inequality

constraints. For example, the KKT conditions of the proposed method are composed

of (5.1b), (5.1d), (5.5a), (5.6)–(5.10), and the residuals in the inequality constraints.

The KKT conditions of the Riccati recursion with pure-state constraints Sideris and

Rodriguez (2011) and the AL method are only slightly different depending on the

method used to treat pure-state equality constraints.

5.5.2 Trotting gait for different numbers of steps

First, we evaluated the performances of the three methods for different total dimen-

sions of pure-state equality constraints by considering the trotting gaits of ANYmal

with different numbers of trotting steps. A six-dimensional (three-dimensional for

84

5.5. Numerical Experiments on Whole-Body
Quadrupedal Gaits Optimization

Table 5.1: Settings of OCPs for each number of trotting steps

No. of trotting steps 2 4 6 8 10

Horizon length T 1.55 2.55 3.55 4.55 5.55
No. of grids N 35 59 83 107 131

Total dim. of (5.1c) 12 24 36 48 60

each impact leg) pure-state equality constraint (switching constraint) was imposed

on the OCPs for each trotting step. We chose the number of trotting steps from

2, 4, 6, 8, and 10 and measured the CPU time per Newton iteration and the total

CPU time until convergence (we chose 1.0×10−10 as the convergence tolerance of the

KKT errors). The settings used for the OCPs (horizon length T , number of grids N ,

and total dimension of equality constraints (5.1c)) are listed in Table I. We carefully

tuned the parameters of the AL method (Nocedal and Wright (2006)). For example,

we chose the initial penalty parameter as p = 5 and the penalty update value as

β = 8; that is, the AL method updates the penalty parameter as p ← βp when the

KKT error excluding the constraint violation (5.1c) is smaller than a tolerance that

is also tuned carefully (Nocedal and Wright (2006)).

Figure 5.1 depicts the CPU time per Newton iteration (left figure) and the total

CPU time until convergence (right figure) of each method. As depicted in the left

figure of Fig. 5.1, the CPU time per Newton iteration in the proposed method was

almost the same as that in the AL method, whereas the Riccati recursion with pure-

state constraints (Sideris and Rodriguez (2011)) took more computational time when

compared with the other two methods. The right figure of Fig. 5.1 also indicates

that the proposed method achieved the fastest convergence.

The proposed method took exactly the same number of iterations (approximately

20) until convergence as the Riccati recursion with pure-state constraints (Sideris and

Rodriguez (2011)) in all the cases. Therefore, the proposed method was faster than

it in terms of the total CPU time as in the case of the per Newton iteration. The AL

method was significantly slower than the other two methods with respect to the total

CPU time because it required approximately 80 iterations in all the cases, although

we carefully tuned the AL algorithm.

5.5.3 Trotting, jumping, and running gait problems

Next, we investigated the performances of the proposed method in three different

quadrupedal gaits: trotting, jumping, and running gaits, of which the jumping and

85

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

2 4 6 8 10
No. of Trotting Steps

0

2

4

6

8

10

CP
U

Ti
m

e
Pe

r I
te

ra
tio

n
[m

s]

2 4 6 8 10
No. of Trotting Steps

0.0

0.1

0.2

0.3

0.4

0.5

To
ta

l C
PU

 T
im

e
[s

]

Proposed Pure-state AL

Figure 5.1: (Left) CPU time per Newton iteration and (right) total CPU time until
convergence for different numbers of trotting steps in the proposed method (Pro-
posed), Riccati recursion with pure-state constraints (Sideris and Rodriguez (2011))
(pure state), and the AL method (AL).

running gaits are particularly highly nonlinear and complicated problems. Each jump-

ing step imposes a 12-dimensional pure-state equality constraint, and each running

step imposes a 6-dimensional one. We summarize the settings of each problem (hori-

zon length T , number of grids N , number of steps, total dimension of equality con-

straints (5.1c), tolerance of convergence, and initial penalty parameter of the AL

method pinit) in Table II. As done in the preceding example, we carefully tuned the

parameters of the AL method, that is, pinit and the update rule of the penalty and the

Lagrange multiplier, for each problem. We measured the KKT errors with respect

to the number of iterations, and the total number of iterations and CPU time until

convergence.

Figure 5.2 depicts the log10-scaled KKT error of each method for the three gait

problems with respect to the number of iterations. We can see that the convergence

behavior of the proposed method was almost the same as that of the Riccati re-

cursion with pure-state constraints (Sideris and Rodriguez (2011)). In contrast, the

AL method resulted in significantly slow convergence because it needs to update the

penalty parameter and Lagrange multiplier to reduce the constraint violation, which

we can see in the peaks in the KKT error of the AL method in Fig. 5.2. Figure

5.3 indicates the number of iterations and total CPU time until convergence of each

method. We can see that the total number of iterations of the proposed method was

almost the same as that of the Riccati recursion with pure-state constraints (Sideris

and Rodriguez (2011)), whereas the AL method required a significantly large num-

86

5.6. Summary

Table 5.2: Settings of OCPs for trotting, jumping, and running gaits.

Gait type Trotting Jumping Running

Horizon length T 6.05 5 7
No. of grids N 143 107 346
No. of steps 11 3 26

Total dim. of (5.1c) 66 36 156
KKT tolerance 1.0× 10−10 1.0× 10−10 1.0× 10−8

pinit 5 1000 5

0 10 20
No. of Iterations

−10

−5

0

lo
g
10

 (K
KT

 e
rro

r)

Trotting

0 100
No. of Iterations

−10

−5

0

5
Jumping

0 200
No. of Iterations

−7.5

−5.0

−2.5

0.0

2.5

Running

Proposed Pure-state AL

Figure 5.2: log10-scaled KKT errors of the proposed method (Proposed), the Riccati
recursion with pure-state constraints (Sideris and Rodriguez (2011)) (Pure-state),
and the AL method (AL) for the three gait problems with respect to the number
of iterations. It should be noted that the KKT errors include the violations of the
switching constraints. The graphs of the AL method have peaks when the penalty
parameter and Lagrange multipliers are updated.

ber of iterations. In addition, as each iteration of the proposed method was faster

than that of the Riccati recursion with pure-state constraints (Sideris and Rodriguez

(2011)), as in the previous experiment, the proposed method achieved the fastest

convergence.

A supplemental video including these gaits is available at https://youtu.be/

uX1 58QvPUg.

5.6 Summary

We proposed a novel approach to efficiently treat pure-state equality constraints in

OCPs with a Riccati recursion algorithm. The proposed method transforms a pure-

state equality constraint into a mixed state-control constraint such that the constraint

87

https://youtu.be/uX1_58QvPUg
https://youtu.be/uX1_58QvPUg

Chapter 5. Efficient Riccati Recursion for Optimal Control Problems with
Pure-State Equality Constraints

80 1,000 2,800

0

10

20

 N

o.
 o

f I
te

ra
tio

ns

0

50

100

150

0

100

200

300

Proposed Pure-state AL

0.5 5.0 42.0

Trotting
0.0

0.1

0.2

 T

ot
al

 C
PU

 T
im

e
[s

]

Jumping
0.0

0.5

1.0

Running
0.0

2.5

5.0

7.5

Figure 5.3: Number of iterations and total CPU time until convergence of the pro-
posed method (Proposed), the Riccati recursion with pure-state constraints (Sideris
and Rodriguez (2011)) (Pure-state), and the AL method (AL) for the three gaits
problems.

is expressed by variables at a certain previous time stage. We derived a Riccati re-

cursion algorithm to solve the transformed OCP with linear time complexity in the

grid number of the horizon, in contrast to the previous approach (Sideris and Ro-

driguez (2011)), which scaled cubically with respect to the total dimension of the

pure-state equality constraints. Because the proposed method is essentially a New-

ton’s method for an optimization problem with equality constraints, the proposed

method achieves superlinear or quadratic convergence, which distinguishes our ap-

proach from the penalty function method and the AL method in terms of the con-

vergence property. We showed that if the solution satisfies the FONC and/or SOSC

of the transformed OCP, then the solution also satisfies the FONC and/or SOSC

of the original OCP. Therefore, if we find a solution that satisfies the SOSC of the

transformed OCP, it is a local minimum of the original OCP. We performed numeri-

cal experiments on the whole-body optimal control of quadrupedal gaits that involve

pure-state equality constraints owing to contact switches and demonstrated the effec-

tiveness of the proposed method over the approach of Sideris and Rodriguez (2011)

and the AL method.

88

Chapter 6

Structure-Exploiting Newton-Type
Method for Optimal Control of
Switched Systems

6.1 Introduction

Switched systems are a class of hybrid systems consisting of a finite number of sub-

systems and switching laws of active subsystems. Many practical control systems

are modeled as switched systems, such as real-world complicated process systems

(Bürger, Zeile, Altmann-Dieses, Sager, and Diehl (2019)), automotive systems with

gear shifts (Robuschi, Zeile, Sager, and Braghin (2021)), and robotic systems with

rigid contacts (Farshidian, Kamgarpour, et al. (2017); Li and Wensing (2020)). It

is difficult to solve the optimal control problems (OCPs) of such systems because

these OCPs generally involve mixed-integer nonlinear programs (MINLPs) (Belotti

et al. (2013)). Therefore, model predictive control (MPC) (Rawlings et al. (2017)),

in which OCPs must be solved in real-time, is particularly difficult for switched sys-

tems. One of the most practical approaches for solving the OCPs of switched systems

is the combinatorial integral approximation (CIA) decomposition method (Bürger et

al. (2019); Sager, Jung, and Kirches (2011)). CIA decomposition relaxes the MINLP

into a nonlinear program (NLP) in which the binary variables are relaxed into contin-

uous variables. Subsequently, the integer variables are approximately reconstructed

from the relaxed NLP solution by solving a mixed-integer linear program. However,

vanishing constraints, which typically model mode-dependent path constraints, raise

numerical issues due to the violation of the linear independence constraint qualifica-

tion (LICQ) (Jung, Kirches, and Sager (2013)). A similar smoothing approach is used

for discrete natures when solving OCPs for mechanical systems with rigid contacts,

89

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

which are often approximately formulated as mathematical programs with comple-

mentarity constraints (MPCCs) (Posa et al. (2014); Yunt (2011)). However, this case

has the same LICQ problem as the vanishing constraints, requiring a great deal of

computational time to alleviate the numerical ill-conditioning. Furthermore, it often

suffers from undesirable stationary points (Nurkanović et al. (2020)).

Another tractable and practical approach for the optimal control of switched sys-

tems is to fix the switching (mode) sequence. For example, in robotics applications, a

high-level planner computes the feasible contact sequence taking perception into ac-

count. Subsequently, the sequence is provided to a lower-level optimal control-based

dynamic motion planner or MPC controller (Grandia, Taylor, Ames, and Hutter

(2021); Jenelten et al. (2020); Kuindersma et al. (2016)). The lower-level dynamic

planner or MPC then discovers the optimal switching times and optimal control input.

An advantage of this approach over the CIA decomposition and MPCC approaches is

that the optimization problem is smooth and can therefore be efficiently solved with-

out suffering from the LICQ problem. For example, Johnson and Murphey (2011) and

Stellato, Ober-Blöbaum, and Goulart (2017) proposed efficient Newton-type methods

for OCPs of switched systems with autonomous subsystems. That is, the switched

systems only included a switching signal but no continuous control input, which is

called the switching-time optimization (STO) problem. The STO approach can be

more efficient than the CIA decomposition because the STO problem can be formu-

lated as a smooth and tractable NLP, as numerically shown in Stellato et al. (2017).

However, once the switched system includes a continuous control input, the efficient

methods of Johnson and Murphey (2011) and Stellato et al. (2017) cannot be ap-

plied. To the best of our knowledge, there is no efficient numerical method for OCPs

of such systems. As a result, many real-world robotic applications are limited to

focusing on dynamic motion planning with fixed switching instants (Di Carlo et al.

(2018); Farshidian, Jelavic, et al. (2017); Mastalli et al. (2020)).

The two-stage approach has been studied for the OCPs of switched systems

with continuous control input (Farshidian, Kamgarpour, et al. (2017); Fu and Zhang

(2021); Li and Wensing (2020); Xu and Antsaklis (2002); Xu and Antsaklis (2004)).

A general two-stage approach was proposed in Xu and Antsaklis (2002) and Xu and

Antsaklis (2004). In this approach, the optimization problem to determine the con-

trol input and switching instants was decomposed into an STO problem with a fixed

control input (upper-level problem) and standard OCP that only determined the

control input with fixed switching instants (lower-level problem). In this framework,

off-the-shelf OCP solvers can be used for a lower-level problem. Xu and Antsaklis

90

6.1. Introduction

(2002) and Xu and Antsaklis (2004) used an indirect OCP solver to compute an

accurate solution of a lower level problem. Farshidian, Kamgarpour, et al. (2017)

and Li and Wensing (2020) formulated a lower-level problem as a direct OCP and

solved it using off-the-shelf Newton-type methods. However, these studies still lack

convergence speed because each of these two stages does not take the other stage

into account when solving its own optimization problem. As a result, the application

examples of Farshidian, Kamgarpour, et al. (2017) and Li and Wensing (2020) were

limited to off-line computation for the trajectory optimization problems of simplified

robot models. Moreover, they could not guarantee the local convergence or address

inequality constraints. Fu and Zhang (2021) was the first study that guaranteed con-

vergence with a finite number of iterations and treated inequality constraints within

a two-stage framework. However, it still required extensive computational time until

convergence, even for a very simple linear quadratic example.

Other approaches simultaneously optimized the switching instants and other vari-

ables, such as the state and control input (Betts (2010); Katayama et al. (2020);

Katayama and Ohtsuka (2021b); Patterson and Rao (2014)). A multi-phase tra-

jectory optimization Betts (2010); Patterson and Rao (2014) naturally incorporated

the STO problem into the direct transcription, solving the NLP to simultaneously

determine all variables (including the state, control input, and switching instants)

using general-purpose off-the-shelf NLP solvers, such as Ipopt (Wächter and Biegler

(2006)). However, the computational speed of general-purpose linear solvers used

in off-the-shelf NLPs can typically be further improved, particularly for large-scale

systems, because they have a certain sparsity structure (Rao et al. (1998); Wang and

Boyd (2010); Zanelli et al. (2020)). In Katayama et al. (2020), we applied the si-

multaneous approach with the direct single-shooting method and achieved real-time

MPC for a simple walking robot using the Newton-Krylov type method (Ohtsuka

(2004)). In Katayama and Ohtsuka (2021b), we formulated an NLP using the direct

multiple-shooting method (Bock and Plitt (1984)) and proposed a Riccati recursion

algorithm for the NLP, which achieved faster computational time compared with the

two-stage methods. However, these methods lacked the convergence guarantee due

to the irregular discretization of the continuous-time OCP, which changed the prob-

lem structure throughout the Newton-type iterations. As a result, the method from

Katayama and Ohtsuka (2021b) could only converge when the initial guess of the

switching instants was close to the optimal one in the numerical example.

This chapter proposes an efficient Newton-type method for optimal control of

switched systems under a given mode sequence. First, a mesh-refinement-based ap-

91

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

proach is proposed to discretize the continuous-time OCP using the direct multiple-

shooting method (Bock and Plitt (1984)) to formulate an NLP that facilitates the local

convergence of the Newton-type methods. Second, a dedicated efficient structure-

exploiting algorithm (Riccati recursion algorithm (Rao et al. (1998))) is proposed for

the Newton-type method because the sparsity structure of the NLP is different from

the standard OCP. The proposed method computes each Newton step with linear

time-complexity of the total number of the discretization grids as the standard Ric-

cati recursion algorithm. Additionally, it can always solve the Karush-Kuhn-Tucker

(KKT) systems arising in the Newton-type method if the solution is sufficiently close

to a local minimum, so that the second-order sufficient condition (SOSC) holds. This

is in contrast to some general quadratic programming (QP) solvers that cannot treat

the proposed formulation because the Hessian matrix is inherently indefinite. Third,

a modification on the reduced Hessian matrix is proposed to enhance the convergence

using the nature of the Riccati recursion algorithm as the dynamic programming

(Bertsekas (2005)) for a QP subproblem. Two numerical experiments are conducted

to demonstrate the efficiency of the proposed method: a comparison with off-the-

shelf NLP solvers and testing the whole-body optimal control of quadrupedal gaits.

The comparison with off-the-shelf NLP solvers showed that the proposed method

could solve the OCPs that the sequential quadratic programming (SQP) method

with qpOASES (Ferreau et al. (2014)) or OSQP (Stellato et al. (2020)) failed to

solve and was up to two orders of magnitude faster than a general NLP solver Ipopt

(Wächter and Biegler (2006)). The whole-body optimal control of quadrupedal gaits

showed that the proposed method achieved the whole-body MPC of robotic systems

with rigid contacts.

The remainder of this chapter is organized as follows. A mesh-refinement-based

discretization method of the continuous-time OCP is presented in Section 6.2. The

KKT system to be solved to compute the Newton-step is discussed in Section 6.3

and the Riccati recursion algorithm to solve the KKT system and its convergence

properties are described in Section 6.4. The reduced Hessian modification using the

Riccati recursion algorithm is also described in this section. The above formulations

and Riccati recursion algorithm are extended to switched systems with state jumps

and switching conditions in Section 6.4, representing robotic systems with contacts.

A numerical comparison of the proposed method with off-the-shelf NLP solvers and

examples of whole-body optimal control of a quadrupedal robot are presented in

Section 6.6. Finally, a brief summary and mention of future work are presented in

Section 6.7.

92

6.2. Problem Formulation

𝑡! 𝑡" 𝑡# 𝑡$%"𝑡&

Δ𝜏"

Δ𝜏#
Δ𝜏&

⋯

⋯

𝑥

Figure 6.1: Proposed discretization method for the OCPs of switched systems.

Notation and preliminaries: The Jacobians and Hessians of a differentiable func-

tion using certain vectors are described as follows: ∇xf(x) denotes
(
∂f
∂x

)T
(x), and

∇xyg(x, y) denotes ∂2g
∂x∂y

(x, y). A diagonal matrix whose elements are a vector x is

denoted as diag(x). A vector of an appropriate size with all components presented

by α ∈ R is denoted as α1. All functions are assumed to be twice-differentiable.

6.2 Problem Formulation

We consider a switched system consisting of K + 1 (K > 0) subsystems, which is

expressed as:

ẋ(t) = fk(x(t), u(t)), t ∈ [tk−1, tk], k ∈ K. (6.1)

The system also contains constraints, which are expressed as:

gk(x(t), u(t)) ≤ 0, t ∈ [tk−1, tk], k ∈ K, (6.2)

where x(t) ∈ Rnx denotes the state, u(t) ∈ Rnu denotes the control input, fk :

Rnx × Rnu → Rnx , and gk : Rnx × Rnu → Rng . K := {1, ..., K + 1} denotes the

given indices of the active subsystems. Note that the index k is also referred to as a

phase in this chapter. t0 and tK+1 denote the fixed initial and terminal times of the

horizon, respectively. tk, k ∈ {1, ..., K} denotes the switching instant from phase k

to phase k + 1. The OCP of the switched system for a given initial state x(t0) ∈ Rnx

is expressed as:

min
u(·),t1,...,tK

J = Vf (x(tK+1)) +
K+1∑
k=1

∫ tk

tk−1

lk(x(τ), u(τ))dτ (6.3a)

s.t. (6.1), (6.2),

tk−1 +∆k ≤ tk, k ∈ {1, ..., K} , (6.3b)

93

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

where ∆k ≥ 0, k ∈ K is the minimum dwell-time.

Next, a discretization method and mesh-refinement-based solution approach are

proposed for the OCP to guarantee the local convergence. The OCP is discretized

with the direct multiple-shooting method (Bock and Plitt (1984)) based on the for-

ward Euler method so that all the time-steps in phase k ∈ K are equal. Note that it is

easy to extend the proposed method for higher-order explicit integration schemes to

the direct multiple-shooting method, such as the fourth-order explicit Runge-Kutta

method, as long as the Riccati recursion algorithm can be applied to the integra-

tion schemes. We introduce N grid points over the horizon, the discretized state

X := {x0, ..., xN}, discretized control input U := {u0, ..., uN−1}, and switching in-

stants T := {t1, ..., tK}. The NLP is then expressed as:

min
X,U,T

J = Vf (xN) +
∑
k∈K

∑
i∈Ik

lk(xi, ui)∆τk (6.4a)

s.t. x0 − x̄ = 0, (6.4b)

xi + fk(xi, ui)∆τk − xi+1 = 0, i ∈ Ik, k ∈ K, (6.4c)

gk(xi, ui) ≤ 0, i ∈ Ik, k ∈ K, (6.4d)

tk−1 +∆k − tk ≤ 0, k ∈ {1, ..., K} , (6.4e)

where Ik is the set of stage indices at phase k (that is, the set of time stages where

the subsystem equation fk(xi, ui) is active). ∆τk is the time step at phase k, defined

as:

∆τk :=
tk − tk−1

Nk

, k ∈ {1, ..., K} . (6.4f)

Note that the last stage N is not included in any Ik and that the initial state condition

is lifted as (6.4b) for an efficient MPC implementation (Diehl et al. (2005)).

The continuous-time OCP (6.3) is solved using an adaptive mesh-refinement ap-

proach (Betts (2010)), which consists of a solution of the NLP (6.4) using a Newton-

type method and mesh-refinement due to the changes of ∆τk, as shown in Algorithm

6.1. After solving the NLP, the size of the discretization steps ∆τk is checked for each

k ∈ K. If the step is too large, that is, if it exceeds the specified threshold ∆τmax,

the solution at phase k may be not accurate. Therefore, the number of grids for

phase k is increased. Conversely, if the step is too small (∆τ < ∆τmin), the number

of grids for phase k is reduced to decrease the computational time of the next NLP

step. The algorithm terminates if some criteria (for example, l2 norm of the KKT

residual), which is denoted as ”NLP error” in Algorithm 6.1, is smaller than a prede-

fined threshold ϵ > 0 and the discretization steps pass the checks. By appropriately

94

6.2. Problem Formulation

Algorithm 6.1 Adaptive mesh-refinement approach for the optimal control of
switched systems (6.3)

Input: The initial state x(t0), initial guess of the solution X, U , T , initial guess
of the Lagrange multipliers, maximum and minimum discretization step sizes
∆τmax > ∆τmin > 0, and convergence tolerance ϵ > 0.

Output: Optimal solution X, U , T .
1: while NLP error > ϵ do
2: if ∆τk < ∆τmin then
3: Mesh-refinement for phase k (decrease grids).
4: end if
5: Solve the NLP (6.4) using the Newton-type method.
6: if ∆τk > ∆τmax then
7: Mesh-refinement for phase k (increase grids).
8: end if
9: end while

choosing ∆τmin, the NLP dimension is almost constant throughout Algorithm 6.1.

This is an advantage of the proposed method over direct transcription methods, such

as Patterson and Rao (2014), whose NLP dimension is unknown before being solved.

It is worth noting that the NLP (6.4) is smooth and its structure does not change

within each NLP step. Therefore, the Newton-type method for the NLP (6.4) is

always tractable.

Remark 6.1. It is trivial to show the local convergence of Newton-type methods for

the NLP (6.4) under some reasonable assumptions (Nocedal and Wright (2006)).

Moreover, if the solution guess after the mesh-refinement of Algorithm 6.1 is suffi-

ciently close to a local minimum of the NLP after the mesh-refinement (that is, the

mesh-refinement is sufficiently accurate), then the local convergence of the overall Al-

gorithm 6.1 is also guaranteed. In contrast, previous methods cannot guarantee the

local convergence, such as the two-stage approaches (Farshidian, Kamgarpour, et al.

(2017); Li and Wensing (2020); Xu and Antsaklis (2002); Xu and Antsaklis (2004))

and simultaneous approaches with the other discretization methods (Katayama et al.

(2020); Katayama and Ohtsuka (2021b)).

Note that it is assumed throughout this chapter that the state equations (6.1),

inequality constraints (6.2), and cost function (6.3a) do not depend on the time.

That is, they are time invariant for notational simplicity. However, it is easy to

extend the proposed method to time-varying cases, where the time of each grid i

that depends on the switching times t1, ..., tK in (6.1), (6.2), and (6.3a) must be

taken into account. Therefore, additional sensitivities of (6.1), (6.2), and (6.3a) with

95

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

respect to the switching times are introduced in the KKT conditions and systems,

which are derived in the next section. The formulations and methods of this chapter

can be directly applied because such additional sensitivities do not change the NLP

structure.

6.3 KKT System for Newton-Type Method

Next, the KKT system is derived to compute the Newton step of the NLP (6.4).

The inequality constraints are treated with the primal-dual interior point method

(Nocedal and Wright (2006); Wächter and Biegler (2006)). That is, the slack variables

z0, ..., zN−1 ∈ Rng and w1, ..., wK ∈ R are introduced for (6.4d) and (6.4e), respectively.

The equality constraints are then considered, which are expressed as:

rg,i := gk(xi, ui) + zi = 0, i ∈ Ik, k ∈ K, (6.5a)

r∆,k := tk−1 +∆k − tk + wk = 0, k ∈ {1, ..., K} (6.5b)

instead of the inequality constraints (6.4d) and (6.4e). The barrier functions

−ϵ
∑N−1

i=0 ln zi−ϵ
∑K

k=1 lnwk are also added to the cost function (6.4a), where ϵ > 0 is

the barrier parameter. The perturbed KKT conditions (Nocedal and Wright (2006))

are obtained by introducing the Lagrange multipliers. λ0, ..., λN ∈ Rnx are introduced

as the Lagrange multipliers with respect to (6.4b) and (6.4c), ν0, ..., νN−1 ∈ Rng are

with respect to (6.5a), and υ0, ..., υK+1 ∈ R are with respect to (6.5b). The perturbed

KKT conditions are expressed as:

rx,N := ∇xVf (xN)− λN = 0, (6.6a)

rx,i := ∇xHk(xi, ui, λi+1)∆τk+∇xg
T
k (xi, ui)νi+λi+1−λi = 0, i ∈ Ik, k ∈ K, (6.6b)

ru,i := ∇uHk(xi, ui, λi+1)∆τk +∇ug
T
k (xi, ui)νi = 0, i ∈ Ik, k ∈ K, (6.6c)

rz,i := diag(zi)νi − ϵ1 = 0, i ∈ Ik, k ∈ K, (6.6d)

rw,k := wkυk − ϵ = 0, k ∈ K, (6.6e)

and

1

Nk

∑
i∈Ik

Hk(xi, ui, λi+1)−
1

Nk+1

∑
i∈Ik+1

Hk+1(xi, ui, λi+1) + υk − υk+1 = 0,

k ∈ {2, ..., K + 1} , (6.6f)

where

Hk(xi, ui, λi+1) := lk(xi, ui) + λTi+1fk(xi, ui) (6.6g)

96

6.3. KKT System for Newton-Type Method

is the Hamiltonian at phase k ∈ K. Next, the KKT system is derived to compute

the Newton steps of all variables, that is, ∆x0, ...,∆xN ∈ Rnx , ∆u0, ...,∆uN−1 ∈ Rnu

∆t1, ...,∆tK ∈ R, and ∆λ0, ...,∆λN ∈ Rnx . Note that the KKT system is herein

considered as the standard primal-dual interior point method (Nocedal and Wright

(2006); Wächter and Biegler (2006)), in which the Newton directions regarding the

inequality constraints are eliminated (that is, ∆z0, ..., zN−1,∆ν0, ...,∆νN−1 ∈ Rng and

∆w0, ...,∆wK+1,∆υ0, ...,∆υK+1 ∈ R). The KKT system of interest is then expressed

as:

∆x0 + x0 − x̄ = 0, (6.7a)

Ai∆xi +Bi∆ui + fi(∆tk −∆tk−1)−∆xi+1 + x̄i = 0, i ∈ Ik, k ∈ K, (6.7b)

Qxx,i∆xi +Qxu,i∆ui + AT
i ∆λi+1 −∆λi + hx,i(∆tk −∆tk−1) + l̄x,i = 0,

i ∈ Ik, k ∈ K, (6.7c)

QT
xu,i∆xi+Quu,i∆ui+B

T
i ∆λi+1+hu,i(∆tk−∆tk−1)+ l̄u,i = 0, i ∈ Ik, k ∈ K, (6.7d)

1

Nk

∑
i∈Ik

(
hTx,i∆xi + hTu,i∆ui + fT

i ∆λi+1 + h̄i
)

− 1

Nk+1

∑
i∈Ik+1

(
hTx,i∆xi + hTu,i∆ui + fT

i ∆λi+1 + h̄i
)

+Qtt,k(∆tk −∆tk−1) + q̄t,k = 0, k ∈ {1, ..., K} , (6.7e)

and

Qxx,N∆xN −∆λN + l̄x,N = 0, (6.7f)

where

Qxx,i := ∇xxHk(xi, ui, λi+1)∆τk +∇xg
T
k (xi, ui)diag(zi)

−1diag(νi)∇xg
T
k (xi, ui),

Qxu,i := ∇xuHk(xi, ui, λi+1)∆τk +∇xg
T
k (xi, ui)diag(zi)

−1diag(νi)∇ug
T
k (xi, ui),

Quu,i := ∇uuHk(xi, ui, λi+1)∆τk +∇ug
T
k (xi, ui)diag(zi)

−1diag(νi)∇ug
T
k (xi, ui),

l̄x,i := rx,i +∇xg
T
k (xi, ui)diag(zi)

−1(diag(νi)rg,i − rz,i),

l̄u,i := ru,i +∇ug
T
k (xi, ui)diag(zi)

−1(diag(νi)rg,i − rz,i),

Qtt,k := w−1
k υk, q̄t,k := w−1

k (υkr∆,k − rw,k),

Ai := I +∇xfk(xi, ui)∆τk, Bi := ∇xfk(xi, ui)∆τk,

fi :=
1

Nk

fk(xi, ui), hi :=
1

Nk

Hk(xi, ui, λi),

97

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

and

hx,i :=
1

Nk

∇xHk(xi, ui, λi), hu,i :=
1

Nk

∇uHk(xi, ui, λi).

In addition, x̄i is residual in (6.4c). Note that some of the phase index k is omitted

from the KKT system equations (6.7) because the matrices and vectors (other than

the Newton steps in (6.7)) are fixed once they are computed and therefore do not

depend on the phase index k to solve the KKT system.

Note that the KKT system (6.7) is equivalent to the KKT conditions of a QP

subproblem

min
∆u0,...,∆uN−1
∆t1,...,∆tK+1

∑
k∈K

∑
i∈Ik,i ̸=N

1

2


∆tk −∆tk−1

∆xi
∆ui

T  0 hTx,i hTu,i
hx,i Qxx,i Qxu,i

hu,i Qux,i Quu,i

∆tk −∆tk−1

∆xi
∆ui



+

 h̄il̄x,i
l̄u,i

T ∆tk −∆tk−1

∆xi
∆ui




+
∑
k∈K

{
1

2
Qtt,k∆t

2
k −Qtt,k∆tk∆tk−1 + q̄t,k∆tk

}
+∆xTNQxx,N∆xN + l̄Tx,N∆xN

s.t. (6.7a), (6.7b), (6.8)

which is a quadratic approximation of the NLP (6.4). Subsequently, ∆λ0, ...,∆λN can

be regarded as the Lagrange multiplier of the QP with respect to (6.7a) and (6.7b)

(Nocedal and Wright (2006)).

Remark 6.2. The Hessian matrix of (6.8) is inherently indefinite, which makes solv-

ing the KKT system (6.7) difficult when using off-the-shelf QP solvers because they

typically require a positive definite Hessian matrix. This can be explained with a block

diagonal of the Hessian matrix (6.8), expressed as: 0 hTx,i hTu,i
hx,i Qxx,i Quu,i

hu,i QT
xu,i Quu,i

 . (6.9)

This is indefinite due to the off-diagonal terms hx,i and hu,i, even when:

[
Qxx,i Quu,i

QT
xu,i Quu,i

]
≻

O.

6.4 Riccati Recursion to Solve KKT Systems

In this section, a Riccati recursion algorithm is presented to compute the Newton

step of the NLP (6.4) by solving the KKT system (6.7). The sparsity structure of the

98

6.4. Riccati Recursion to Solve KKT Systems

KKT system (6.7) is no longer the same as the standard OCP, which prevents ap-

plying the off-the-shelf efficient Newton-type algorithms for OCPs (Rao et al. (1998);

Wang and Boyd (2010); Zanelli et al. (2020)). Moreover, as stated in Remark 6.2,

the Hessian matrix of the KKT system is indefinite and unsolvable using general QP

solvers. Motivated by these problems, we propose a Riccati recursion algorithm that

efficiently solves the KKT system, specifically with O(N) computational time, when-

ever the SOSC holds. Moreover, a reduced Hessian modification method is proposed

to enhance the convergence when the SOSC does not hold, that is, when the reduced

Hessian matrix is indefinite. As the standard Riccati recursion (Rao et al. (1998)), the

proposed method is composed of backward and forward recursions, which recursively

eliminate the variables from the KKT system (6.7) backward in time and recursively

compute the Newton step forward in time, respectively.

6.4.1 Backward recursion

In the backward recursion, the Newton steps are recursively eliminated from stages N

to 0. Specifically, expressions of ∆xi+1, ∆ui, and ∆λi are derived at each stage i ∈ Ik
for ∆xi, ∆tk, and ∆tk−1, respectively, from (6.7b)–(6.7d). Moreover, variables are

recursively eliminated from (6.7e) using these expressions. When the stage of interest

changes from k to k− 1, ∆tk is further eliminated from (6.7e). That is, an expression

of ∆tk is derived with respect to ∆xik and ∆tk−1, where ik := min Ik. This can be

seen as the extension of the standard Riccati recursion that also recursively derives

expressions of ∆xi+1, ∆ui, and ∆λi with respect to ∆xi (Rao et al. (1998); Rawlings

et al. (2017)).

6.4.1.1 Terminal stage

From (6.7f) at stage N , we obtain:

∆λN = PN∆xN − sN , (6.10a)

where

PN = Qxx,N , sN = −l̄x,N . (6.10b)

6.4.1.2 Intermediate stages

Consider i, i + 1 ∈ Ik, k ∈ K. Suppose that we have the expression of ∆λi+1 with

respect to ∆xi+1, ∆tk, and ∆tk−1 as

∆λi+1 = Pi+1∆xi+1 − si+1 +Ψi+1(∆tk −∆tk−1) + Φi+1(−∆tk), (6.11a)

99

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

where Pi+1 ∈ Rnx×nx and si+1, Ψi+1, Φi+1 ∈ Rnx . Suppose also that we have the

equations (6.7e) for k and k − 1 in which ∆xj for j ≥ i + 2, ∆uj for j ≥ i + 1, and

∆λj for j ≥ i + 1 are eliminated, that is, the equations (6.7e) for k and k − 1 are

reduced to∑
j∈Ik, j≤i

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

+ΨT
i+1∆xi+1 + ξi+1(∆tk −∆tk−1) + χi+1(−∆tk) + ηi+1

− ΦT
i+1∆xi+1 − χi+1(∆tk −∆tk−1)− ρi+1(−∆tk)− ιi+1 = 0, (6.11b)

and ∑
j∈Ik−1

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

−
∑

j∈IK , j≤i

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

−ΨT
i+1∆xi+1 − ξi+1(∆tk −∆tk−1)− χi+1(−∆tk)− ηi+1 = 0, (6.11c)

where ξi+1, χi+1, ρi+1, ηi+1, ιi+1 ∈ R. Note that Ψi+1 = 0, Φi+1 = 0, ξi+1 = 0, χi+1 = 0,

ρi+1 = 0, ηi+1 = 0, and ιi+1 = 0 at stage i = N − 1. Moreover, Ψi+1 = 0, ξi+1 = 0,

χi+1 = 0, and ηi+1 = 0 at stages i = min Ik − 1 and k ∈ {2, ..., K}, as explained in

6.4.1.3. First, the following equations are introduced:

Fi := Qxx,i + AT
i Pi+1Ai, (6.12a)

Hi := Qxu,i + AT
i Pi+1Bi, (6.12b)

Gi := Quu,i +BT
i Pi+1Bi, (6.12c)

ψx,i := hx,i + AT
i Pi+1fi + AT

i Ψi+1, (6.12d)

ψu,i := hu,i +BT
i Pi+1fs +BT

i Ψi+1, (6.12e)

and

ϕx,i := AT
i Φi+1, ϕu,i := BT

i Φi+1. (6.12f)

Second, ∆λi+1 and ∆xi+1 are eliminated from (6.7d) using (6.11a) and (6.7b). Sub-

sequently, we can express ∆ui using ∆xi, ∆tk, and ∆tk−1 as:

∆ui = Ki∆xi + ki + Ti(∆tk −∆tk−1) +Wi(−∆tk), (6.13a)

where

Ki := −G−1
i HT

i , (6.13b)

100

6.4. Riccati Recursion to Solve KKT Systems

ki := −G−1
i (BT

i Pi+1x̄i −BT
i zi+1 + l̄u,i), (6.13c)

and

Ti := −G−1
i ψu,i, Wi := −G−1

i ϕu,i. (6.13d)

Third, ∆λi+1, ∆xi+1, and ∆ui are eliminated from (6.7c) using (6.11a), (6.7b), and

(6.13a), respectively. As a result, ∆λi using ∆xi, ∆tk, and ∆tk−1 is expressed as:

∆λi = Pi∆xi − si +Ψi(∆tk −∆tk−1) + Φi(−∆tk), (6.14a)

where

Pi := Fi −KT
i GiKi, (6.14b)

si := −
{
l̄x,i + AT

i (Pi+1x̄i − si+1) +Hiki
}
, (6.14c)

and

Ψi := ψx,i +Kiψu,i, Φi := ϕx,i +Kiϕu,i. (6.14d)

Moreover, by eliminating ∆λi+1, ∆xi+1, and ∆ui from (6.11b) and (6.11c) using

(6.11a), (6.7b), and (6.13a), we obtain:∑
j∈Ik, j≤i−1

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

+ΨT
i ∆xi + ξi(∆tk −∆tk−1) + χi(−∆tk) + ηi

− ΦT
i ∆xi − χi(∆tk −∆tk−1)− ρi(−∆tk)− ιi = 0 (6.15a)

and ∑
j∈Ik−1

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

−
∑

j∈IK , j≤i−1

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

−ΨT
i ∆xi − ξi(∆tk −∆tk−1)− χi(−∆tk)− ηi = 0, (6.15b)

where

ξi := ξi+1 + fT
i (Pi+1fi + 2Ψi+1) + ψT

u,iTi, (6.16a)

ηi := ηi+1 + h̄i + fT
i (Pi+1x̄i − si+1) + ΨT

i+1x̄i + ψT
u,iki, (6.16b)

χi := χi+1 + ΦT
i+1fi + ψT

u,iWi, (6.16c)

ρi := ρi+1 + ϕT
u,iWi, (6.16d)

and

ιi := ιi+1 + ΦT
i+1x̄i + ϕT

u,iki. (6.16e)

Therefore, we have equations (6.14a), (6.15a), and (6.15b) for stage i in the same

form as equations (6.11) for stage i+ 1.

101

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

6.4.1.3 Phase transition stages

Here, we consider phase k ∈ {1, ..., K} and stage ik := min Ik. In this stage, the

phase of interest changes from k to k − 1 when k > 1, and the backward recursion

terminates when k = 1. The equations (6.11) until ik are expressed as:

∆λik = Pik∆xik − sik +Ψik(∆tk −∆tk−1) + Φik(−∆tk), (6.17a)

ΨT
ik
∆xik + ξik(∆tk −∆tk−1) + χik(−∆tk) + ηik

− ΦT
ik
∆xik − χik(∆tk −∆tk−1)− ρik(−∆tk)− ιik = 0, (6.17b)

and ∑
j∈Ik−1

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)
−ΨT

ik
∆xik

− ξik(∆tk −∆tk−1)− χik(−∆tk)− ηik = 0. (6.17c)

Note that ∆tk−1 = ∆t0 = 0 when k = 1. Therefore, from (6.17b), ∆tk is determined

as:

∆tk = −σ−1
ik
(Ψik − Φik)

T∆xik − σ−1
ik
(ξik − χik)(−∆tk−1)− σ−1

ik
(ηik − ιik). (6.18)

Here, the following is defined:

σik := ξik − 2χik + ρik . (6.19)

The backward recursion is completed when k = 1 because i1 = min I1 = 0. When

k > 1, (6.18) is further substituted into (6.17a) and (6.17c), which produces:

∆λiK = P̃iK∆xiK − s̃iK + Ψ̃iK (−∆tk−1) (6.20a)

and ∑
i∈IK−1

(
hTx,i∆xi + hTu,i∆ui + fT

i ∆λi+1 + h̄i
)
− Φ̃T

ik
∆xik − ρ̃ik(−∆tk−1)− ι̃ik = 0,

(6.20b)

where

P̃ik := Pik − σ−1
ik
(Ψik − Φik)(Ψik − Φik)

T, (6.20c)

s̃ik := sik + σ−1
ik
(ηik − ιik)(Ψik − Φik), (6.20d)

Φ̃ik := Ψik − σ−1
ik
(ξik − χik)(Ψik − Φik), (6.20e)

102

6.4. Riccati Recursion to Solve KKT Systems

ρ̃ik := ξik − σ−1
ik
(ξik − χik)

2, (6.20f)

and

ι̃ik := ηik − σ−1
ik
(ξik − χik)(ηik − ιik). (6.20g)

Therefore, together with an equation (6.7e) for k − 1, we obtain equations (6.14a),

(6.15a), and (6.15b) for stage ik in the same form as equations (6.11) for stage i+ 1

with Pi+1 = P̃ik , si+1 = s̃ik , Ψi+1 = 0, Φi+1 = Ψ̃ik , ξi+1 = 0, χi+1 = 0, ρi+1 = ρ̃ik ,

ηi+1 = 0, and ιi+1 = ι̃ik .

6.4.2 Forward recursion

After the backward recursion up to the initial stage (i = 0), all Newton directions

are recursively computed from stage 0 to N forward in time using the results of the

backward recursion. First, the initial state direction ∆x0 is computed from (6.7a).

Second, the direction of the first switching time ∆t1 is computed from (6.18) with

∆t0 = 0. Third, ∆λi, ∆ui, and ∆xi+1 are computed forward in time in each phase k

using (6.11a), (6.13a), and (6.7b), respectively. Fourth, after this procedure, ∆tk+1 is

computed using (6.18) until stage ik+1− 1 = min Ik+1− 1. The third and forth steps

are repeated from phase k = 1 to k = K + 1, and the forward recursion is completed

by computing ∆λN using (6.10a).

6.4.3 Properties of proposed Riccati recursion

Next, we demonstrate that the proposed Riccati recursion always successfully solves

the KKT system (6.7) if the solution is sufficiently close to the local minimum. This

is in contrast to general QP solvers that fail to solve the KKT system because the

Hessian matrix is inherently indefinite, as stated in Remark 6.2. We first explain that

the proposed backward recursion is the same as dynamic programming for the QP

subproblem (6.8), which is a quadratic approximation of the NLP (6.4). The following

lemma states the equivalence of the dynamic programming and the proposed Riccati

recursion:

Lemma 6.1. Consider a phase k ∈ K and stage i ∈ Ik. Suppose that Gj ≻ O for all

j ≥ i, and σil > 0 for all l > k, where Gj and σil are defined in (6.12c) and (6.19),

respectively. Then, the cost-to-go function of stage i of dynamic programming for the

103

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

QP (6.8) is expressed as:

1

2

 −∆tk
∆tk −∆tk−1

∆xi

T ρi χi ΦT
i

χi ξi ΨT
i

Φi Ψi Pi

 −∆tk
∆tk −∆tk−1

∆xi

+

 ιi
ηi
−si

T  −∆tk
∆tk −∆tk−1

∆xi

 ,
(6.21)

where ξi, ρi, Φi, Ψi, Pi, ιi, ηi, and si are defined by the Riccati recursion algorithm

presented in subsection 6.4.1. Moreover, the subproblem of the dynamic programming

to determine ∆ui is represented by

min
∆ui

1

2


−∆tk

∆tk −∆tk−1

∆xi
∆ui


T  Qtt,i hTx,i hTu,i

hx,i Qxx,i Qxu,i

hu,i Qux,i Quu,i




−∆tk
∆tk −∆tk−1

∆xi
∆ui



+

 h̄il̄x,i
l̄u,i


T 

−∆tk
∆tk −∆tk−1

∆xi
∆ui


+

1

2

 −∆tk
∆tk −∆tk−1

∆xi+1

T ρi+1 χi+1 ΦT
i+1

χi+1 ξi+1 ΨT
i+1

Φi+1 Ψi+1 Pi+1

 −∆tk
∆tk −∆tk−1

∆xi+1


+

 ιi+1

ηi+1

−si+1

T  −∆tk
∆tk −∆tk−1

∆xi+1


s.t. Ai∆xi +Bi∆ui + fi(∆tk −∆tk−1)−∆xi+1 + x̄i = 0, (6.22)

and determining ∆tk is expressed as:

min
∆tk

(6.21). (6.23)

Proof. The proof is achieved by induction. At the terminal stage (i = N), the cost-

to-go function is represented by (6.21) with ΨN = ΦN = 0 and ξN = χN = ρN =

ηN = ιN = 0. Next, suppose that we have the cost-to-go function (6.21) of stage i+1.

Then, it is clear that the subproblem of the dynamic programming is represented by

(6.22). ∆ui can be uniquely determined from (6.22) as (6.13) because Gi ≻ O. The

cost-to-go function of stage i is represented by (6.21), where Pi, si, Ψi, Φi, ξi, χi, ρi,

ηi, and ιi are defined as (6.12), (6.13), (6.14), and (6.16). When i = ik := min Ik, ∆tk

can be further uniquely determined by solving (6.23) under the assumption σik > 0

after determining ∆uik and obtaining the cost-to-go function of stage ik (6.21). Then,

the cost-to-go function of stage ik is in the form of (6.21), where Pik , sik , Φik , ρik , and

104

6.4. Riccati Recursion to Solve KKT Systems

ιik are defined as (6.20), Ψik = 0, ξik = 0, χik = 0, and ηik = 0, respectively, which

completes the proof.

Note that the equivalence cannot be shown without the positive definiteness of

Gi and σik : if they are not positive definite, a unique solution does not exist and

the cost-to-go function is not defined. The following theorem is obtained based on

Lemma 6.1. Note that the discussion herein is restricted to the exact Hessian matrix

to analyze the SOSC.

Theorem 6.1. We suppose that the SOSC and LICQ hold at the current iterate and

consider that the exact Hessian matrix is used. Then, Gi, as defined in (6.12c), is

positive definite for all i ∈ {0, ..., N − 1}. Moreover, σik , as defined in (6.19), satisfies

σik > 0 for all k ∈ {0, ..., K}.

Proof. The QP subproblem (6.8) with an exact Hessian matrix must have a unique

global solution because the SOSC and LICQ hold (Nocedal and Wright (2006)).

Therefore, the dynamic programming subproblems (6.22) and (6.23) must have unique

solutions. Subsequently, the Hessian matrix with respect to ∆ui in (6.22) must be

positive definite, and the quadratic term with respect to ∆tk in (6.23) must be posi-

tive. Then, Lemma 6.1 recursively shows that the Hessian matrix is Gi with respect

to ∆ui. Additionally, the lemma also shows that the quadratic term with respect to

∆tk is σik , which completes the proof.

Theorem 6.1 indicates that G−1
i can always be efficiently computed using Cholesky

factorizations if the current iterate is sufficiently close to a local minimum. This fact

also leads to the local convergence of the proposed method for NLP (6.4) under the

SOSC and LICQ. The proof for this is omitted because it is trivial.

6.4.4 Reduced Hessian modification via Riccati recursion

The recused Hessian matrix can be indefinite when the solution is not sufficiently

close to a local minimum, such that the SQSC does not hold. Subsequently, the KKT

matrix is no longer invertible and the local convergence is not guaranteed. Efficient

Cholesky factorization cannot be used to compute G−1
i . Therefore, an algorithmic

modification of the Riccati recursion is proposed to make the algorithm numerically

robust and efficient for such situations, which can be considered a modification on

the reduced Hessian matrix. To consider practical situations, Hessian approximations

are allowed in the following, while Theorem 6.1 analyzes the exact Hessian matrix.

First, we introduce the following practical assumption:

105

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

Assumption 6.1.

[
Qxx,i Qxu,i

QT
xu,i Quu,i

]
⪰ O and Quu,i ≻ O for all i ∈ {0, ..., N − 1},

Qtt,k ≥ 0 for all k ∈ {0, ..., K}, and Qxx,N ⪰ O.

This assumption is easily satisfied with the Gauss-Newton Hessian approximation

or, more generally, with sequential convex programming (Messerer, Baumgärtner,

and Diehl (2021)) for∇xxHk(xi, ui, λi+1),∇xuHk(xi, ui, λi+1), and∇uuHk(xi, ui, λi+1).

Under Assumption 6.1, a unique solution of the dynamic programming subproblem

(6.22) exists (that is, Gi ≻ O) and Pi ⪰ O if Pi+1 ⪰ O, which is the same discussion

as the dynamic programming for standard linear quadratic OCPs (Bertsekas (2005)).

The solution to (6.23) also exists if σik > 0. Based on these observations, a modifica-

tion of the Riccati recursion algorithm is proposed, whereby P̃ik is updated at each

phase-transition stage ik = min Ik. This is expressed as:

P̃ik = Pik (6.24)

instead of (6.20c). Then, P̃ik ⪰ O, as long as Pik ⪰ O. Note that a different method of

(6.24) can be used to make P̃ik ⪰ O, which eliminates the negative curvature from Pik

through an eigenvalue decomposition (Quirynen et al. (2014)). However, this requires

much more computational time than (6.24). Nevertheless, the computationally cheap

modification (6.24) works surprisingly well in practice. We also modify σik instead of

(6.19), which is expressed as:

σ̃ik =

{
σik σik > σmin

|σik |+ σ̄ σik ≤ σmin

, (6.25)

where σmin ≥ 0 and σ̄ > 0. A practical rule to choose σmin and σ̄ is as follows.

We empirically observed that numerical ill-conditioning in the Newton-type method

produced a large ∆ts, that is, a too small σik in (6.18). From this observation, a

desired maximum absolute value of ∆ts was chosen as ∆ts,max > 0. Subsequently,

σmin and σ̄ were chosen such that the absolute value of σ−1
ik
(ηik − ιik) did not exceed

∆ts,max. This is expressed as:

σmin = σ̄ = ∆t−1
s,max|ηik − ιik | (6.26)

for each k ∈ K. For example, it was discovered that choosing ∆ts,max from a range of

0.1 to 1.0 worked well in practice.

The following Theorem claims that the proposed algorithmic modification makes

the reduced Hessian matrix of the KKT system (6.7) positive definite and the KKT

matrix invertible:

106

6.5. State Jumps and Switching Conditions

Theorem 6.2. Suppose that Assumption 6.1 holds. Then, the reduced Hessian matrix

of the KKT system (6.7) with the modifications (6.24) and (6.25) is positive definite.

If, in addition, the LICQ holds, then the KKT matrix is invertible.

Proof. Under Assumption 6.1 and with the Hessian modifications (6.24) and (6.25),

Pi ⪰ O for all i = 0, ..., N , Gi ≻ O for all i = 0, ..., N − 1, and σik > 0 for all

k = 1, ..., K hold. Therefore, the QP subproblems of the dynamic programming

(6.22) and (6.23) always have unique global solutions. Theorem 16.2 of Nocedal and

Wright (2006) completes the first claim. The second claim then directly follows from

Theorem 16.1 of Nocedal and Wright (2006).

Remark 6.3. The KKT matrix is always invertible under Assumption 6.1 and the

proposed reduced Hessian modifications. Therefore, the local convergence of the Newton-

type method is ensured if the resultant reduced Hessian is sufficiently close to the exact

one (Messerer et al. (2021); Nocedal and Wright (2006)) and the LICQ holds.

6.4.5 Algorithm

The single Newton iteration using the proposed Riccati recursion algorithm is summa-

rized in Algorithm 6.2. After computing the KKT system (6.7) (line 1), the proposed

method recursively eliminates the Newton steps from the KKT system (6.7) in the

backward recursion (lines 3–14) and recursively computes the Newton steps in the

forward recursion (lines 16–27). Finally, the Newton steps of the slack variables and

Lagrange multipliers are computed from the other Newton steps (line 28) according

to the primal-dual interior point method (Nocedal and Wright (2006); Wächter and

Biegler (2006)). Calculations in the proposed algorithm, such as matrix inversions

or matrix-matrix multiplications, do not grow with respect to the length of the hori-

zon N . Therefore, the computational time of the proposed method is O(N) as the

standard Riccati recursion algorithm (Rao et al. (1998)).

6.5 State Jumps and Switching Conditions

In this section, the proposed NLP formulations and Riccati recursion algorithm are

further extended to switched systems involving state jumps and switching conditions,

which have not yet been considered. Some classes of switched systems involve state

jumps at the same time as the switch, which is expressed as:

x(tk) = fj(x(tk−)), fj : Rnx → Rnx , (6.27)

107

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

where tk− is the instant immediately before tk. We also consider that there is a

stage cost on the state immediately before the state jump. That is, it is assumed

that lj(x(tk−)) is added to the cost function (6.3a). Moreover, such switches are

often state-dependent, that is, the switch occurs if the state satisfies some condition

(hereafter called the switching condition), which is expressed as:

e(x(tk−)) = 0, e : Rnx → Rne . (6.28)

For example, a legged robot can be modeled as a system with switches involving state

jumps and switching conditions. When the distance between the robot’s foot and the

ground becomes zero (the switching condition), the generalized velocity instantly

changes due to the impact (the state jump) (Farshidian, Kamgarpour, et al. (2017);

Li and Wensing (2020)).

If there is a state jump at the kth switch, a new grid point ik− is introduced

corresponding to time tk−, which is added to the KKT conditions and expressed as:

xik = fj(xik−) (6.29a)

and

∇xlj(xik−) +∇xf
T
j (xik−)λik − λik− = 0. (6.29b)

The KKT systems regarding the state jump are therefore expressed as:

∆xik = Aik−∆xik− + x̄ik− (6.30a)

and

∆λik− = Qxx,ik−∆xik− + AT
ik−∆λik + l̄x,ik−, (6.30b)

where Aik− := ∇xfj(xik−) and Qxx,ik− is the Hessian of the Lagrangian with respect

to xik−. x̄ik and l̄x,ik− are the residuals in (6.29a) and (6.29b), respectively. When

(6.30a) and (6.30b) are considered in the backward recursion, we have the equations

until stage ik = min Ik. That is, the equations are in the form of (6.20a), (6.20b), and

(6.7e), with the phase index k replaced with k − 1. By eliminating ∆λik and ∆xik
from these equations using (6.30a) and (6.30b), we then obtain:

∆λik− = Pik−∆xik− + Φik−(−∆tk−1)− sik−, (6.31a)

∑
i∈Ik−1

(
hTx,i∆xi + hTu,i∆ui + fT

i ∆λi+1 + h̄i
)

− ΦT
ik−∆xik− − ξik−(∆tk−1)− ηik− = 0, (6.31b)

108

6.5. State Jumps and Switching Conditions

and ∑
i∈Ik−2

(
hTx,i∆xi + hTu,i∆ui + fT

i ∆λi+1 + h̄i
)

−
∑

i∈Ik−1

(
hTx,i∆xi + hTu,i∆ui + fT

i ∆λi+1 + h̄i
)
= 0, (6.31c)

where

Pik− := Qxx,ik− + AT
ik−P̃ikAik−, (6.31d)

Φik− := AT
ik−Φ̃ik , (6.31e)

sik− := AT
ik−(s̃ik − P̃ik x̄ik−)− l̄x,ik−, (6.31f)

and

ξik− = ξ̃ik , ηik− = η̃ik + Φ̃T
ik
x̄ik−. (6.31g)

Therefore, the same equation as (6.14) is achieved at stage ik−, and we can proceed

to stage ik− 1. In the forward recursion, ∆xik− is computed from ∆xik−1 and ∆uik−1

using (6.7b) at stage ik−1. Then, ∆xik and ∆λik− are computed from ∆xik− according

to (6.30a) and (6.14a) for i = ik− with Ψik = 0.

6.5.1 Switching conditions

The switching conditions are typically presented as pure-state equality constraints,

which are difficult to treat efficiently with the Riccati recursion algorithm (specifically

with the O(N) computational burden) as discussed in Chapter 5. In this section, we

assume that the state is partitioned into the generalized coordinate and velocity as

x =
[
qT vT

]T
, q, v ∈ Rn and the state equation of each subsystem is expressed as:

f(x, u) :=

[
f (q)(x)
f (v)(x, u)

]
, (6.32)

where f (q) : Rnx → Rn and f (v) : Rnx × Rnu → Rn. Moreover, we assume that the

pure-state equality constraints representing the switching conditions have a relative

degree of two, that is, the Jacobian of (6.28) is expressed as:

∇xe(x) =
[
∇qe(q) O

]
, ∇qe(q) ∈ Rne×n. (6.33)

These assumptions mainly represent the position-level constraints on mechanical sys-

tems, such as robotic systems with rigid contacts. To perform the Newton-type

method with O(N) complexity under these assumptions, we did not consider the

pure-state equality constraint

e(xik−) = 0 (6.34)

109

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

directly as Sideris and Rodriguez (2011). Instead, the constraint was transformed

into a mixed state-input constraint at the two-stage grid point before the switch (see

Chapter 5), which is expressed as:

ei := e (xi + f(xi, ui)∆τk + g(xi + f(xi, ui)∆τk)∆τk) = 0, (6.35)

where i is two-stage before the grid ik−, that is, i satisfies i+2 = ik−. The Lagrange
multiplier is introduced with respect to (6.35), ζi ∈ Rne . The KKT conditions re-

garding this stage are then represented by (6.4c), (6.35), r̃x,i := rx,i + CT
i ζi = 0, and

r̃u,i := ru,i +DT
i ζi = 0, where Ci := ∇xe(·) and Di := ∇ue(·). Furthermore, the KKT

conditions of (6.6f) related to tk−1 are replaced with:

ET
i ζi +

1

Nk−1

∑
j∈Ik−1

Hk−1(xj, uj, λj+1)−
1

Nk

∑
i∈Ik

Hk(xj, uj, λj+1) + υk−1 − υk = 0

and

1

Nk−2

∑
j∈Ik−2

Hk−2(xj, uj, λj+1)− ET
i ζi

− 1

Nk−1

∑
i∈Ik−1

Hk−1(xj, uj, λj+1) + υk−2 − υk−1 = 0,

where Ei :=
1

Nk−1
∇tke(·). The KKT systems regarding this stage are then represented

by (6.7b) and expressed as:

Ci∆xi +Di∆ui + Ei(∆tk −∆tk−1) + ēi = 0, (6.36a)

Qxx,i∆xi+Qxu,i∆ui+A
T
i ∆λi+1+C

T
i ∆ζi−∆λi+hx,i(∆tk−∆tk−1)+ l̃x,i = 0, (6.36b)

and

QT
xu,i∆xi +Quu,i∆ui +BT

i ∆λi+1 +DT
i ∆ζi + hu,i(∆tk −∆tk−1) + l̃u,i = 0, (6.36c)

where

l̃x,i := r̃x,i +∇xg
T(xi, ui)diag(zi)

−1(diag(νi)rg,i − rz,i)

and

l̃u,i := r̃u,i +∇ug
T(xi, ui)diag(zi)

−1(diag(νi)rg,i − rz,i).

In addition, ēi is residual in (6.35). In the backward recursion at stage i, we have

(6.11a), ∑
j∈Ik−1, j≤i

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

+ ET
i (∆ζi + ζi) + ΨT

i+1∆xi+1 + ξi+1(∆tk−1 −∆tk−2)

+ χi+1(−∆tk−1) + ηi+1 − ΦT
i+1∆xi+1

− χi+1(∆tk−1 −∆tk−2)− ρi+1(−∆tk−1)− ιi+1 = 0, (6.37a)

110

6.5. State Jumps and Switching Conditions

and∑
j∈Ik−2

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

−
∑

j∈IK−1, j≤i

(
hTx,j∆xj + hTu,j∆uj + fT

j ∆λj+1 + h̄j
)

−ΨT
i+1∆xi+1 − ξi+1(∆tk−1 −∆tk−2)− χi+1(−∆tk−1)− ηi+1 + ET

i (∆ζi + ζi) = 0.
(6.37b)

∆ui and ∆ζi are then eliminated, resulting in:[
∆ui
∆ζi

]
=

[
KT

i

Mi

]
∆xi +

[
Ti
Li

]
(∆tk−1 −∆tk−2) +

[
Wi

Ni

]
(−∆tk−1) +

[
ki
mi

]
, (6.38a)

where [
Ki

Mi

]
:= −

[
Gi DT

i

Di

]−1 [
HT

i

Ci

]
, (6.38b)[

Ti
Li

]
:= −

[
Gi DT

i

Di

]−1 [
ψu,i

Ei

]
, (6.38c)[

Wi

Ni

]
:= −

[
Gi DT

i

Di

]−1 [
ϕu,i

0

]
, (6.38d)

and [
ki
mi

]
:= −

[
Gi DT

i

Di

]−1 [
Bi

T(Pi+1x̄i − si) + l̃u,i
ēi

]
. (6.38e)

Therefore, we obtain the form equations of (6.14a), (6.15a), and (6.15b) for stage i

with the following:

Pi = Fi −
[
Ki

Mi

]T [
Gi DT

i

Di

] [
Ki

Mi

]
, (6.39a)

si = −
{
l̃x,i + AT

i (Pi+1x̄i − si+1) +Hiki + CT
i mi

}
, (6.39b)

and

Ψi = ψx,i +

[
Ki

Mi

]T [
ψu,i

Ei

]
, Φi = ϕx,i +

[
Ki

Mi

]T [
ϕu,i

0

]
. (6.39c)

ξi = ξi+1 + fT
i (Pi+1fi + 2Ψi+1) + ψT

u,iTi + ET
i Li, (6.40a)

ηi = ηi+1 + h̄i + ET
i ζi + fT

i (Pi+1x̄i − si+1) + ΨT
i+1x̄i + ψT

u,iki + ET
i mi, (6.40b)

χi = χi+1 + ΦT
i+1fi + ψT

u,iWi + ET
i Ni, (6.40c)

ρi = ρi+1 + ϕT
u,iWi, (6.40d)

and

ιi = ιi+1 + ΦT
i+1x̄i + ϕT

u,iki. (6.40e)

At the forward recursion, ∆ui and ∆ζi are computed using (6.38a) instead of only

computing ∆ui as (6.13a).

111

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

6.6 Numerical Experiments

6.6.1 Comparison with off-the-shelf solvers

6.6.1.1 Problem settings

The effectiveness of the proposed method was demonstrated through two numerical

experiments. The first experiment was a comparison with off-the-shelf NLP solvers

on the switched system, consisting of three nonlinear subsystems treated in Xu and

Antsaklis (2002); Xu and Antsaklis (2004). The dynamics of the subsystems are

expressed as:

f1(x, u) =

[
x1 + u1 sin(x1)
−x2 − u1 cos(x2)

]
,

f2(x, u) =

[
x2 + u1 sin(x2)
−x1 − u1 cos(x1)

]
,

and

f3(x, u) =

[
−x1 − u1 sin(x1)
x2 + u1 cos(x2)

]
.

The stage cost is expressed as:

lk(x, u) =
1

2
||x− xref ||2 + ||u||2, k ∈ {1, 2, 3} .

In addition, the terminal cost is expressed as:

Vf (x) =
1

2
||x− xref ||2,

where xref = [1, −1]T. The initial and terminal times of the horizon are denoted by

t0 = 0 and t3 = 3, respectively. The initial state is denoted by x(t0) = [2, 3]T.

Benchmarks were set for the solution times of the NLP (6.4) example against the

Ipopt (Wächter and Biegler (2006)) and a SQP methods with qpOASES (Ferreau et

al. (2014)), both of which were used through the CasADi (Andersson, Gillis, Horn,

Rawlings, and Diehl (2019)) interface. The mesh-refinement was not considered in

this comparison in order to focus on a pure comparison of the abilities to solve the

NLP problems. That is, only the single NLP step of Algorithm 6.1 was considered.

Ipopt was used with the default settings of CasADi. For example, MUMPS (Amestoy,

Duff, Koster, and L’Excellent (2001)) was used to solve the linear systems. The built-

in SQP solver of CasADi was used with the exact Hessian matrix and qpOASES as

the backend QP solver. The Hessian regularization was enabled within the qpOASES

options and the Hessian type was set to “indefinite”. The proposed method was

written in C++, used Eigen (Guennebaud et al. (2010)) for the linear algebra, and

112

6.6. Numerical Experiments

Table 6.1: Average computational time (ms) of each solver for different total number
of grids

N Proposed Ipopt SQP with qpOASES
10 0.08 4.3 failed
50 0.27 24.6 failed
100 0.47 45.1 failed
500 1.93 127 failed

used an exact Hessian matrix and reduced Hessian modifications (6.24) and (6.25)

throughout the experiments. σmin and σ̄ were chosen using (6.26) with ∆tk,max = 0.5.

The proposed method only used the fraction-to-boundary rule (Nocedal and Wright

(2006); Wächter and Biegler (2006)) for the step size selection and monotonically

decreased the barrier parameter ϵ when the l2 norm of the KKT residual (in the

perturbed KKT conditions (6.6)) was smaller than 0.1. The solution times were

compared for these algorithms with the total number of grids set as N = 10, 50,

100, and 500. N was divided into N1, N2, and N3, so that each phase had an

almost equal number of discretization grids. The values of [N1, N2, N3] were set to

[4, 3, 3], [17, 17, 16], [34, 33, 33], and [167, 167, 166] for N = 10, 50, 100, and 500,

respectively. The minimum dwell-times were set as ∆1 = ∆2 = ∆3 = 0.01 in the

constraints (6.4e) to avoid ill-conditioned problems. The initial guess of the solution

was set as x0 = x1 = · · · = xN = x(t0), u0 = u1 = · · ·uN−1 = 0, t1 = 1.0, and

t2 = 2.0 for all solvers. It was assumed that the proposed method converged when

the solution satisfied the default convergence criteria of Ipopt (max norm of the

residual in the unperturbed KKT conditions (Nocedal and Wright (2006); Wächter

and Biegler (2006))). All solvers were run 100 times for each N on a laptop with

a quad-core CPU Intel Core i7-10510U @1.80 GHz, and the average computational

time until convergence was measured.

6.6.1.2 Results

The average computational times of each solver for the different total number of grids

N are listed in Table 6.1. As shown in the table, the proposed method converged the

fastest of all the cases, and was up to two orders of magnitude faster than Ipopt. The

proposed method was extremely fast because the dimension of the control input of

each subsystem was 1 and it did not involve any explicit matrix inversions. The SQP

method with qpOASES failed to converge for all cases, even the regularization and

113

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

Stance SwingLF
LH
RF
RH

L-O1 T-D1 L-O2 T-D2

Stance Swing

L-O T-D

Trotting Jumping

Stance SwingLF
LH
RF
RH

L-O1 T-D1 L-O2 T-D2

Stance Swing

L-O T-D

Trotting Jumping

(a) Trotting (b) Jumping

Figure 6.2: Contact patterns of trotting and jumping motions. Gray and white cells
indicate the intervals where the leg is standing and swinging, respectively. LF, LH,
RF, and RH denote left-front, left-hind, right-front, and right-hind foot in contact,
respectively. Black triangles indicate the switches (lift-off: L-O, touch-down: T-D).

indefinite-Hessian mode were enabled. Note that another QP solver OSQP (Stellato

et al. (2020)) was also tested, but it failed to treat the indefinite Hessian matrix.

The total computational time of Algorithm 6.1 until convergence was also mea-

sured, including the mesh-refinement steps. The thresholds for the discretization step

sizes were ∆τmax = 0.35, 0.065, 0.035, and 0.0065 for cases N = 10, 50, 100, and 500,

respectively. The total computational times of Algorithm 6.1 for N = 10, 50, 100, and

500, were 0.13, 0.57, 0.92, and 4.3 ms, respectively. The mesh-refinements were only

conducted a few times in each case, and a similar solution was achieved compared

to that of the continuous-time counterpart reported in Xu and Antsaklis (2004). As

expected, the solution accuracy improved as N increased.

6.6.2 Whole-body optimal control of quadrupedal gaits

6.6.2.1 Problem settings

Numerical experiments on the whole-body optimal control of a quadrupedal robot

ANYmal (Hutter et al. (2017)) were conducted to demonstrate the efficiency of the

proposed method in practical and complicated examples. A trotting motion with a

step length of 0.15 m and aggressive jumping motion with a jump length of 0.8 m also

investigated. The contact patterns of the trotting and jumping motions are shown in

Fig. 6.2. The state equation of the robot switched based on the combination of the

support feet, that is, it switched when the feet lifted off from the ground or touched

down onto the ground. Therefore, the trotting motion had four switches and the jump

motion had two switches over the horizon, as shown in Fig. 6.2. The lift-off did not

include the state jump or the switching condition, but the touch-down included both

(Farshidian, Kamgarpour, et al. (2017); Li and Wensing (2020); Schultz and Mombaur

(2010)). The switching condition were treated using the proposed method in Section

114

6.6. Numerical Experiments

6.5.1: the switching conditions were position constraints on the foot whose Jacobians

took the form of (6.33) and the state equation of the robot under an acceleration-level

rigid-contact constraint took the form of (6.32). The details of the above formula-

tions can be found in Li and Wensing (2020); Schultz and Mombaur (2010). Note also

that the acceleration-level contact-consistent dynamics of the robot were lifted to im-

prove the convergence speed without changing the structure of the KKT system (6.7)

(Katayama and Ohtsuka (2021a)). To consider a practical situation, the limitations

that were imposed on the joint angles, velocities, and torques were considered to be

the inequality constraints. The polyhedral-approximated friction cone constraint was

also considered for each contact force expressed in the world frame [fx fy fz] as:
fx +

µ√
2
fz

−fx + µ√
2
fz

fy +
µ√
2
fz

−fy + µ√
2
fz

fz

 ≥ 0, (6.41)

where µ > 0 is the friction coefficient, which was set as µ = 0.7. Note that the

friction cone constraint (6.41) also switched depending on the active subsystems (that

is, depending on the combination of the support feet). The initial and terminal times

of the horizon were set as t0 = 0 and t5 = 1.0 for the trotting problem and t0 = 0 and

t2 = 1.7 for the jumping problem, respectively.

To design the stage cost of the trotting motion, the state x ∈ R36 was partitioned

into the generalized coordinate and velocity [qT vT]T, q, v ∈ R18. Additionally, the

position (i.e., forward kinematics) of the foot i ∈ {Left-front, Left-hip, Right-front,
Right-hip} was considered in the world frame pi(q) ∈ R3. The stage cost was then

designed for the trotting motion, which is expressed as:

1

2
(q − qref)TWq(q − qref) +

1

2
(v − vref)TWv(v − vref) +

1

2
aTWaa

+
∑

i∈{Swing legs}

1

2
(pi(q)− pi,ref)TWp(pi(q)− pi,ref), (6.42)

where a ∈ R18 is the generalized acceleration, qref , vref ∈ R18 and pi,ref ∈ R3 are refer-

ence values, and Wq,Wv,Wa ∈ R18×18 and Wp ∈ R3×3 are diagonal weight matrices.

qref was chosen as the generalized coordinate of the standing pose of the robot. We

set the desired translational velocity of the floating base of the robot as vref and set

the other element of vref as zero. The plane coordinate of pi,ref was set as a middle

point of the two successive predefined ground locations of the foot, and its vertical

115

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

coordinate was set as the desired height of the swing foot. The last term in (6.42)

changed depending on the swing legs, that is, the stage cost also switched as the

active subsystem. The terminal cost Vf (xN) and impulse cost l(xik−) were set as the

sums of the first and second terms of (6.42), respectively. Similarly, the stage cost

was designed for the jumping motions, which is expressed as:

1

2
(q − qref)TWq(q − qref) +

1

2
vTWvv +

1

2
aTWaa. (6.43)

In addition, the terminal cost Vf (xN) and impulse cost l(xik−) were set as the sums of

the first and second terms of (6.43), respectively, but with different weight parameters.

The minimum-dwell times in (6.4e) for the trotting motion were set as ∆1 = ∆3 =

∆5 = 0.02 and ∆2 = ∆4 = 0.2. The minimum-dwell times were set for the jumping

motion as ∆1 = ∆2 = 0.15 and ∆3 = 0.65. A large ∆3 was set in the jumping motion

to sufficiently observe the whole-body motion after touch-down. This was because the

optimizer tended to make the touch-down time very close to the end of the horizon

to minimize the overall cost of the OCP without a large ∆3.

The proposed algorithms were implemented in C++ and Eigen was used for the

linear algebra. The efficient Pinocchio C++ library was used (Carpentier et al.

(2019)) for rigid-body dynamics (Featherstone (2008)) and its analytical derivatives

(Carpentier and Mansard (2018)) in order to compute the dynamics and its deriva-

tives of the quadrupedal robot. The Gauss-Newton Hessian approximation was used

to avoid computing the second-order derivatives of the rigid-body dynamics. The

reduced Hessian modifications (6.24) and (6.25) were used in the proposed Riccati

recursion. σmin and σ̄ were chosen using (6.26) with ∆tk,max = 0.1. Only the fraction-

to-boundary rule (Nocedal and Wright (2006); Wächter and Biegler (2006)) was used

for the step size selection. The barrier parameter was fixed at ϵ = 1.0×10−3, which is

a common suboptimal MPC setting (Wang and Boyd (2010)). OpenMP (Dagum and

Menon (1998)) was used for parallel computing of the KKT system (6.7) in stage-wise

and eight threads through the following experiments. These two experiments were

conducted on a desktop computer with an octa-core CPU Intel Core i9-9900 @3.10

GHz. ∆τmax = 0.02 was used for the mesh refinement. The total number of horizon

grids were fixed to N = 50 and N = 90 for the trotting and jumping problems, re-

spectively. That is, when grids were added to the mesh-refinement phase, the same

number of grids were removed from the other phases. The proposed method con-

verged when the l2 norm of the KKT residual was smaller than a sufficiently small

threshold 1.0 × 10−7 and each ∆τk was smaller than ∆τmax. Mesh refinement was

performed when the l2 norm of the KKT residual became moderately small (smaller

116

6.6. Numerical Experiments

0 20 40
No. of Iterations

0.0
0.2
0.4
0.6
0.8
1.0
1.2

t k
[s
]

t1[s]

t2[s]

t3[s]

t4[s]

0 20 40
No. of Iterations

−7.5

−5.0

−2.5

0.0

2.5

lo
g
10
k (

KK
T

re
sid

ua
l)
k 2

Figure 6.3: Convergence of the proposed method for the trotting motion of a
quadrupedal robot: (a) switching instants and (b) l2 norm of the residual in the
perturbed KKT conditions over the iterations. Vertical dotted lines indicate that the
mesh refinement was carried out.

than 0.1). This implementation is available online as a part of our efficient optimal

control solvers for robotic systems, called robotoc (Katayama (2020-2022)).

6.6.2.2 Results

The convergence results of the trotting and jumping motions are shown in Figs. 6.3

and 6.4, respectively. For the trotting motion that included a mesh-refinement step,

the proposed method converged after 46 iterations. The total computational time

was 60 ms (1.3 ms per Newton iteration). For the jumping motion that included

two mesh-refinement steps, the proposed method converged after 147 iterations. The

total computational time was 308 ms (2.1 ms per Newton iteration). The snapshots

of the solution trajectory of the aggressive jumping motion are shown in Fig. 6.5,

and the time histories of the contact forces of the four feet in the jumping motion

are shown in Fig. 6.6. We can see that the contact forces lie inside the friction cone

constraints throughout the jumping motion. These two figures show that the friction

cone constraints (6.41) were active at time intervals immediately before and after the

jumping, and the solution strictly satisfied the constraints.

The above results showed that the proposed method could achieve fast convergence

and computational times per Newton iteration, even for large-scale (36-dimensional

state, 12-dimensional control input) and complicated problems. In MPC, the shorter

length of the horizon and smaller number of discretization grids can typically be

considered, and warm-starting can be leveraged. For example, it can be expected

that the computational time per Newton iteration for the trotting problem would be

117

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

0 50 100 150
No. of Iterations

0.0

0.5

1.0

1.5
t k
[s
]

t1[s] t2[s]

0 50 100 150
No. of Iterations

−7.5
−5.0
−2.5

0.0
2.5
5.0

lo
g
10
k (

KK
T

re
sid

ua
l)
k 2

Figure 6.4: Convergence of the proposed method for the jumping motion of the
quadrupedal robot: (a) switching instants and (b) l2 norm of the residual in the
perturbed KKT conditions over the iterations. Vertical dotted lines indicate that the
mesh refinement was carried out.

Figure 6.5: Snapshots of solution trajectory of the whole-body optimal control of
ANYmal’s 0.8 m aggressive jumping motion. The yellow arrows and blue polyhedrons
represent the contact forces and friction cone constraints, respectively, which are not
illustrated while the robot is flying.

less than half of 1.3 ms if the number of grids was reduced to 20. Therefore, the

proposed method is a promising approach that can achieve the whole-body MPC of

robotics systems with rigid contacts within a milliseconds-range sampling time.

6.7 Summary

This chapter proposed an efficient Newton-type method for optimal control of switched

systems under a given mode sequence. A direct multiple-shooting method with

adaptive mesh refinement was formulated to guarantee the local convergence of the

Newton-type method for the NLP. A dedicated structure-exploiting Riccati recursion

algorithm was proposed that performed the Newton-type method for the NLP with

the linear time-complexity of the total number of discretization grids. Moreover, the

118

6.7. Summary

0.0 0.5 1.0 1.5−200

−100

0

100

200
Left-front leg

0.0 0.5 1.0 1.5−200

−100

0

100

200
Left-hip leg

0.0 0.5 1.0 1.5
Time [s]

−200

−100

0

100

200
Right-front leg

0.0 0.5 1.0 1.5
Time [s]

−200

−100

0

100

200
Right-hip leg

fx[N] fy[N] fz[N]

Figure 6.6: Time histories of the contact force expressed in the world frame [fx fy fz]
of each leg in the jumping motion. The infeasible regions of fx (solid lines) and fy
(dashed lines) due to the friction cone constraints are the filled gray hatches. The
infeasible region of fz ≥ 0 (dash-dotted lines) is in the lower-half of each plot.

proposed method could always solve the KKT systems if the solution was sufficiently

close to a local minimum. Conversely, general QP solvers cannot be guaranteed to

solve the KKT systems because the Hessian matrix is inherently indefinite. More-

over, to enhance the convergence, a modification on the reduced Hessian matrix was

proposed using the nature of the Riccati recursion algorithm as the dynamic program-

ming for a QP subproblem. A numerical comparison was conducted with off-the-shelf

solvers and demonstrated that the proposed method was up to two orders of magni-

tude faster. Whole-body optimal control of quadrupedal gaits was also investigated

and it was demonstrated that the proposed method could achieve the whole-body

MPC of robotic systems with rigid contacts.

A possible future extension of the proposed method is OCPs with free-final time,

including minimum-time OCPs (Bryson and Ho (1975)), because the NLP structure

of such problems is expected to be similar to the proposed formulation.

119

Chapter 6. Structure-Exploiting Newton-Type Method for Optimal Control of
Switched Systems

Algorithm 6.2 Computation of Newton step via proposed Riccati recursion

Input: Initial state x(t0) and the current iterate x0, ..., xN , xs, u0, ..., uN−1, us, λ0,
..., λN , λs, and ts.

Output: Newton directions ∆x0, ..., ∆xN , ∆xs, ∆u0, ..., ∆uN−1, ∆us, ∆λ0, ...,
∆λN , ∆λs, and ∆ts.

1: Compute the KKT system (6.7).
2: // Backward recursion
3: Compute PN and zN from (6.10).
4: for k = K + 1, · · · , 1 do
5: for i = max Ik, · · · ,min Ik do
6: Compute Ki, ki, Ti, and Wi from (6.13) .
7: Compute Pi, zi, Ψi, and Φi from (6.14).
8: Compute ξi, ξi, ρi, ηi, and ιi, from (6.16).
9: end for
10: if k < K + 1 then
11: Compute P̃ik , s̃ik , Φ̃ik , ρ̃ik , and ι̃ik from (6.20) optionally with modifications

(6.24) and (6.25).
12: end if
13: Set Ψik , ξik , χik , and ιik to zero.
14: end for
15: // Forward recursion
16: Compute ∆x0 from (6.7a).
17: Compute ∆t1 from (6.18).
18: for k = 1, · · · , K + 1 do
19: for i = min Ik, · · · ,max Ik do
20: Compute ∆ui and ∆λi from (6.13) and (6.14a), respectively.
21: Compute ∆xi+1 from (6.7b)
22: end for
23: if k < K + 1 then
24: Compute ∆tk+1 from (6.18)
25: end if
26: end for
27: Compute ∆λN from (6.10).
28: Compute ∆zi, ∆νi, ∆wi, and ∆υi for i = 0, ..., N − 1 from the other Newton

steps.

120

Chapter 7

Whole-Body Model Predictive
Control with Rigid Contacts via
Online Switching Time
Optimization

1

7.1 Introduction

A fundamental difficulty in controlling robotic systems lies in discrete events involved

in their dynamics. Essential tasks of robots such as manipulation and locomotion in-

volve contacts with the environment. Making and breaking contacts result in switches

of their dynamics and impulsive changes in their state. Therefore, robot systems are

inherently modeled as hybrid dynamical systems. Furthermore, some classes of robots

such as quadrupedal robots and humanoid robots are underactuated. Owing to these

difficulties, most analytical model-based controllers focus on only particular classes of

problems. For example, the hybrid zero dynamics controller is a successful approach

focusing on bipedal locomotion (Reher and Ames (2021); Westervelt et al. (2003)).

However, once we consider more complicated cases: acrobatic jumping, walking on

uneven terrain, and multi-contact situations in the real world, such analytical con-

struction of controllers are still difficult.

Model predictive control (MPC) (Rawlings et al. (2017)), which solves trajectory

optimization problems online, is expected to be a unified model-based approach to

control the robotic systems with contacts; hence, if we can solve the MPC problem

1© 2022 IEEE. A substantial portion of this chapter including Figures 7.1–7.8 is reprinted,
with permission, from S. Katayama and T. Ohtsuka, “Whole-body model predictive control with
rigid contacts via online switching time optimization,” 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2022), 2022.

121

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

! ! + #

$

! ! + #

$

Conventional MPC with
fixed switching times

Proposed MPC with online
switching time optimization

$ → $!"# $ → $!"#

!$ → !$,!"#!& → !&,!"#
!& !$

Figure 7.1: Conceptual diagram of comparison between (left) the conventional model
predictive control (MPC) with fixed switching times and (right) the proposed MPC
with online switching time optimization. The proposed MPC optimizes the switch-
ing times t1, t2 and trajectory x simultaneously, while the conventional MPC solely
optimizes the trajectory under the fixed switching times.

for the hybrid systems online, we can realize the robot control systems considering

the future discrete event (e.g., interactions with the environment). However, the

hybrid MPC problem is generally formulated as a mixed-integer nonlinear program

(MINLP), which is an NP-hard problem owing to its combinatorial nature (Belotti

et al. (2013)). A remarkable approach that can avoid the combinatorial nature is the

contact-implicit trajectory optimization (CITO) (Yunt (2011)), which is often formu-

lated as mathematical programs with complementarity constraints (MPCC) (Posa et

al. (2014)) or bi-level optimization problems (Carius et al. (2018)). However, MPCC

inherently lacks constraint qualifications such as the linear independence constraint

qualification (LICQ), and this leads to numerical ill-conditioning. In addition, nu-

merical alleviations for the LICQ problem often cause undesirable stationary points

(Nurkanović et al. (2020)); thus, it is difficult to even solve MPCC off-line. Bi-level

optimization is also difficult to solve in general, for example, even a linear bi-level

optimization problem is NP-hard (Hansen et al. (1992)). There are other heuristic

approximation methods toward CITO (Chatzinikolaidis et al. (2020); Neunert et al.

(2018); Todorov (2014)), which can be seen as kinds of soft contact models. However,

once the problem involves rigid contacts, these approximation methods can cause

non-physical artifacts (Acosta et al. (2022)) or their convergence performance can be

significantly decreased.

Another tractable and still practical approach is to fix the contact sequence. In

practical situations, a robot has a high-level planner that computes the feasible con-

tact sequence, considering information from perception systems (e.g., safe regions in

122

7.1. Introduction

terrain for foot placements) (Kuindersma et al. (2016); Mastalli et al. (2020)). A

low-level motion planner or the MPC controller then optimizes the trajectory, based

on the contact sequence. In this case, the low-level optimization problem is defined,

to determine the trajectory and instants of each discrete event (making or breaking

the contacts). The optimization problem to determine the instants of discrete events

is particularly known as the switching time optimization (STO) problem. However,

it has been difficult to solve the optimal control problem (OCP) involving the STO

problem efficiently (Fu and Zhang (2021); Xu and Antsaklis (2004)). Accordingly, the

application of the STO approach remains the offline trajectory optimization of sim-

plified robot models (Farshidian, Kamgarpour, et al. (2017); Li and Wensing (2020)).

Therefore, recent successful applications of MPC to robotic systems have still been

limited to the case with the fixed switching instants (Li, Frei, and Wensing (2021);

Wolfslag et al. (2020)). However, in practical situations, the behavior of the robot

can be different from the predicted one, and the pre-computed switching instants can

become infeasible or unreasonable during control, due to model mismatches, distur-

bances, and dynamic changes in the environment that are not predicted in advance.

In such cases, the control performance deteriorates or the MPC optimizer fails to

converge to a feasible solution.

It is worth noting that there are heuristics to adapt the contact timings online

(Caron and Pham (2017); Smaldone, Scianca, Lanari, and Oriolo (2021)). However,

such heuristics can lack versatility; the resultant motions can be conservative and

cannot treat multi-objective cost and constraints (for example, the approach of Caron

and Pham (2017) does not consider the friction cone constraints). Moreover, the MPC

optimizer can still fail to determine a feasible solution with the heuristic timings.

In this chapter, we propose a whole-body MPC of robots with rigid contacts us-

ing the online STO. Figure 7.1 illustrates the conceptual diagram of the comparison

between the existing MPC framework and proposed MPC. We utilize an efficient

Newton-type algorithm for the OCPs involving STO problems proposed in Chapter

6. The algorithm enables us to efficiently optimize the trajectory and switching times

simultaneously. However, the applicability of the method for MPC is not discussed

in Chapter 6, it only demonstrates offline trajectory optimization problems involv-

ing the STO problem. This chapter implements MPC utilizing the STO algorithm,

and proposes several ways to improve the numerical robustness of the MPC, e.g.,

heuristic regularization and minimum dwell-time constraints. We conducted numeri-

cal simulations on dynamic jumping of a quadrupedal robot and demonstrated that

the proposed whole-body MPC with online STO successfully controls the dynamic

123

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

motions, while conventional MPC with fixed switching times cannot find a feasible

solution, thereby failing in the control. This advantage is observed in various simu-

lation settings, which demonstrates that the proposed method extends the ability of

MPC for robots with rigid contacts. We further conducted hardware experiments of

our MPC with online STO on quadruped robot Unitree A1 (Unitree Robotics (n.d.)),

and demonstrated that the proposed MPC with online STO achieved dynamic control

of a real robotic system that involves disturbances and model mismatches.

The contributions of this chapter are then summarized as follows:

• To the best of our knowledge, this is the first study that realizes the whole-body

MPC of robots with rigid contacts using the online STO.

• We conducted simulation studies on dynamic jumping control of a quadrupedal

robot, and demonstrated that the proposed whole-body MPC with the online

STO extends the ability of MPC for robots with rigid contacts.

• We conducted hardware experiments of our MPC with online STO on quadruped

robot Unitree A1.

The remainder of this chapter is organized as follows: Section 7.2 models the robot

dynamics with rigid contacts as a switched system and formulates its OCP. Section

7.3 describes the MPC with online STO for the OCP described in Section 7.2. Section

7.4 demonstrates the effectiveness of the proposed MPC with online STO over the

conventional MPC with fixed switching times, through numerical simulation of the

whole-body control of a quadruped robot jumping. Section 7.5 conducts hardware

experiments on the quadrupedal robot Unitree A1 and demonstrates that the pro-

posed method achieves dynamic motions on the real robot. Finally, a brief summary

and mention of future studies are presented in Section 7.6.

7.2 Optimal Control Problem Formulation

7.2.1 Rigid body systems with rigid contacts

First, we model a rigid body system with rigid contacts (a robot having contacts with

the environment) as a switched system, and formulate its OCP, as originally presented

in Schultz and Mombaur (2010) and further studied in Budhiraja et al. (2018); Li

and Wensing (2020); Mastalli et al. (2020). To formulate an OCP of the switched

systems without the combinatorial nature or complementarity constraints, we assume

that the contact sequence (the sequence of the active contacts) is given, for example,

124

7.2. Optimal Control Problem Formulation

it is provided by a higher-level planner. Let q, v, a ∈ Rn, f ∈ Rnf , and u ∈ Rm

be the configuration, generalized velocity, acceleration, stack of the contact forces,

and joint torques, respectively. Note that the presented formulation can consider

the configuration space including SE(3) to model the floating base as Katayama and

Ohtsuka (2021a), while this chapter assumes the Euclidian configuration space for

notational simplicity. Also note that the contact dimension nf alters depending on

combinations of the active contacts. The equation of motion of the rigid-body system

is then expressed as:

M(q)a+ h(q, v)− JT(q)f = STu, (7.1)

whereM(q) ∈ Rn×n denotes the inertia matrix, h(q, v) ∈ Rn encompasses the Coriolis,

centrifugal, and gravitational terms, J(q) ∈ Rnf×n denotes the stack of the contact

Jacobians, and S ∈ Rm×n denotes the selection matrix. Because the contact sequence

is provided, we can treat the contact constraints as a bilateral constraint of the form

p(q) = 0, (7.2)

where p(q) ∈ Rnf is the stack of the positions (and includes rotations for active

surface contacts) of the active contact frames. Furthermore, instead of considering

(7.2) over a time interval, we consider the acceleration-level constraint over the time

interval (Baumgarte (1972)):

a(q, v, a) := p̈+ 2αṗ+ β2p = J(q)a+ b(q, v), (7.3a)

where α and β are weight parameters, and we define

b(q, v) := J̇(q, v)v + 2αJ(q)v + β2p(q). (7.3b)

Then the original position constraint (7.2) is satisfied over the time interval provided

that (7.2) and the equality constraint on the contact velocity,

ṗ(q, v) = J(q)v = 0, (7.4)

are satisfied at some point (Flores et al. (2011)). Equation (7.3) is reduced to twice

the time derivative of (7.2) with α = β = 0; however, the constraint violation of

the original position constraint (7.2) can be accumulated because of the numerical

computation. α = β > 0 is typically chosen to stabilize the violation of the original

constraint (7.2). By combining (7.1) and (7.3), we obtain the contact-consistent

forward dynamics: [
a
−f

]
=

[
M(q) JT(q)
J(q) O

]−1 [
STu− h(q, v)
−b(q, v)

]
. (7.5)

125

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

We define the state vector and state equation as

x :=

[
q
v

]
, (7.6)

and we have a state equation in the form of

ẋ = f(x, u) :=

[
v

a(x, u)

]
, (7.7)

where a(x, u) ∈ Rn is a function of x and u as defined in (7.5).

We would like to emphasize that the state equation (7.7) switches depending

on the combination of active contacts, which we also refer to contact mode in the

following. That is, the rigid body system with contacts is a switched system. We

express the state equations (7.7) for each contact mode as

ẋ = fk(x, u),

where k denotes the index of the contact mode. We refer to k as the index of an

active subsystem of the switched system in the following.

When the bodies of the system and environment collide, the generalized velocity

of the system alters according to the equation of Newton’s law of impact:

M(q)δv − JT(q)Λ = 0, (7.8)

where δv ∈ Rn denotes the impulsive change in the generalized velocity and Λ ∈ Rnf

denotes the stack of the impact forces. The evolution of the state between the impact

is expressed as [
q+

v+

]
=

[
q−

v− + δv

]
, (7.9)

where q−, v− ∈ Rn denote the configuration and velocity immediately before the

impulse and q+, v+ ∈ Rn do immediately after the impulse, respectively. The con-

tact position constraint (7.2) for the frames with the impact is also imposed at the

impulse instant, which corresponds to switching or guard conditions of the hybrid

systems (Reher and Ames (2021); Westervelt et al. (2003)). We assume a completely

inelastic collision, in that the contact velocity constraints (7.4) holds for the velocity

immediately after the impulse v = v− + δv, i.e.,

v(q−, v−, δv) := ṗ(q−, v− + δv) = J(q−)(v− + δv) = 0. (7.10)

By combining (7.8) and (7.10), we obtain the impulse dynamics:[
δv
−Λ

]
=

[
M(q−) JT(q−)
J(q−) O

]−1 [
0

−J(q−)v−
]
. (7.11)

126

7.2. Optimal Control Problem Formulation

With these settings, the state jump equation is expressed as

x+ = ψ(x−) =

[
q−

v− + δv−(x−)

]
, (7.12)

where δv−(x−) ∈ Rn is a function of x−, as defined in (7.11). Note that the impulse

forces occur only for bodies that have impacts with the environment. Therefore, (7.2)

and (7.12) change depending on the contact modes immediately before and after the

collision (k − 1 and k), which are expressed as

pk−1,k(x
−) = 0

and

x+ = ψk−1,k(x
−),

respectively.

7.2.2 Inequality constraints

The robot system involves several physical limitations, such as joint position, veloc-

ity, and torque limits. Furthermore, contact force must lie inside the friction cone;

otherwise, the resultant solution can be physically-infeasible (for example, the solu-

tion allows negative-direction normal contact forces). We thus introduce polyhedral-

approximated friction cone constraint for each contact force, and it can be expressed

in the world frame [fx fy fz] as:
fx +

µ√
2
fz

−fx + µ√
2
fz

fy +
µ√
2
fz

−fy + µ√
2
fz

fz

 ≥ 0, (7.13)

where µ > 0 is the friction coefficient. Note that the friction cone constraint (7.13)

is solely imposed for each active contact. Therefore, the collection of the inequality

constraints imposed at a time instant also switches depending on the contact situ-

ations. We summarize the collection of the inequality constraints for each contact

mode (that is, for each active subsystem k) as

gk(x, u) ≤ 0.

127

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

7.2.3 Optimal control problem of switched systems

We herein summarize the modeling of the rigid body system as a switched system and

formulate an OCP for the system. Without loss of generality, let K = {1, ..., K + 1}
(K > 0) be the given indices of active subsystems over the horizon of the OCP, i.e.,

K is the given contact sequence. The continuous-time OCP is provided as follows.

We consider a switched system comprising K + 1 subsystems

ẋ(t) = fk(x(t), u(t)), t ∈ [tk−1, tk), k ∈ K, (7.14a)

with state jumps and switching conditions

x(tk) = ψk−1,k(x(tk−)), pk−1,k(x(tk−)) = 0, j ∈ Kj, (7.14b)

and constraints

gk(x(t), u(t)) ≤ 0, t ∈ [tk−1, tk], k ∈ K, (7.14c)

where Kj ⊂ K denotes the set of contact modes that involve impacts between the

system and environment at the switch from k ∈ Kj to k + 1. Subsequently, K − Kj

denotes the indices that do not involve state jumps, i.e., the switch from k ∈ K−Kj

to k+1 only involve breaking the contacts. Note that we also refer to the index k as

phase in this chapter. t0 and tK+1 denote the fixed initial and terminal times of the

horizon and tk, k ∈ {1, ..., K} denotes the switching instant from phase k to phase

k + 1. For a given initial state x(t0) ∈ Rnx , we consider the OCP of the switched

system of the form of

min
u(·),t1,...,tK

J = Vf (x(tK+1)) +
K+1∑
k=1

∫ tk

tk−1

lk(x(τ), u(τ))dτ (7.15a)

s.t. (7.14a)− (7.14c),

tk−1 +∆k ≤ tk, k ∈ K (7.15b)

where Vf (·) and lk(·) are user-defined terminal cost and stage cost for phase k, re-

spectively. ∆k ≥ 0, k ∈ K is the minimum dwell-time, i.e., the last constraints in

(7.15b) are the minimum dwell-time constraints.

128

7.3. Model Predictive Control with Online Switching Time Optimization

!! !" !# !$%"!&

Δ#" Δ##

⋯

⋯

%

%'!

%'!(

Figure 7.2: Conceptual diagram of the proposed discretization method of the
continuous-time OCP of a switched system. Solid lines illustrate the continuous
transition of the state. The switch from phase 2 to phase 3 involves a state jump
(i.e., 2 ∈ Kj), which is illustrated as a dotted curve arrow. A white circle indicates a
new grid representing the state immediately before the state jump.

7.3 Model Predictive Control with Online Switch-

ing Time Optimization

7.3.1 Direct multiple shooting method with mesh-refinement

The OCP (7.15) includes the switching instants as the optimization variables, as

well as the state and control trajectory. The first key point for efficient and robust

numerical computation is the discretization method of the continuous-time OCP. We

discretize the continuous-time OCP using the direct multiple shooting (DMS) method

(Bock and Plitt (1984)) to equalize the all-time steps in a phase. A conceptual

diagram of the discretization method is illustrated in Fig. 7.2. We introduce N grid

points over the horizon, discretized state X :=
{
x0, ..., xN , x

−
ik
, ..., x−ij

}
, discretized

control input U := {u0, ..., uN−1}, and switching instants T := {t1, ..., tK}. The

resultant nonlinear program (NLP) is given as

min
X,U,T

J = Vf (xN) +
∑
k∈K

∑
i∈Ik

lk(xi, ui)∆τk (7.16a)

s.t. x0 − x̄ = 0, (7.16b)

xi + fk(xi, ui)∆τk − xi+1 = 0, i ∈ Ik, k ∈ K, (7.16c)

xik = fj(xik−), pj(xik−) = 0, k ∈ Kj, (7.16d)

gk(xi, ui) ≤ 0, i ∈ Ik, k ∈ K, (7.16e)

tk−1 +∆k − tk ≤ 0, k ∈ {1, ..., K} , (7.16f)

129

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

where ∆τk is the time step at phase k, defined as

∆τk :=
tk − tk−1

Nk

, k ∈ {1, ..., K} . (7.16g)

An advantage over the two-stage methods (Xu and Antsaklis (2004)), which have been

applied to robot systems in Farshidian, Kamgarpour, et al. (2017); Li and Wensing

(2020), of the NLP formulation (7.16) is that the local convergence of the Newton-

type method for the NLP (7.16) is guaranteed. After solving the NLP (7.16), each

discretization step-size ∆τk can change before solving it because the switching times

are optimized. Therefore, after the NLP, we check the step-size ∆τk for the all-phase

k ∈ K. If it is too large, we perform mesh-refinement to increase the accuracy of the

solution in terms of the continuous-time counterpart, i.e., we add grids on the phase

k where ∆τk is large.

7.3.2 Riccati recursion to compute Newton step

We solve the NLP (7.16) using primal-dual interior point method (Nocedal andWright

(2006)) with Gauss-Newton Hessian approximation. The Newton-step computation

(solution of a linear system) is then reduced to that of the unconstrained OCP by

eliminating the Newton-step of the slack and dual variables of the inequality con-

straints. Subsequently, the Riccati recursion algorithm for the OCP of switched

systems proposed in Katayama and Ohtsuka (2021c) is adopted for the Newton-step

computation. The method has the following three characteristics:

• Its computational time is linear-time complexity with regards to the number of

the discretization grids N . The per Newton-step computation is approximately

the same computational cost as the conventional Riccati recursion algorithm

for Newton-type methods of unconstrained OCPs, which is efficient for large

scale systems, therefore, it is often adopted for complicated robotic applications

(Budhiraja et al. (2018); Farshidian, Kamgarpour, et al. (2017); Li and Wensing

(2020); Mastalli et al. (2020)).

• It only requires the positive semi-definiteness of the reduced Hessian matrix

obtained by multiplying the null-space matrix of the Jacobian of constraints to

the Hessian matrix. Therefore, the Riccati recursion algorithm can treat the

NLP (7.16) whose Hessian matrix is inherently indefinite. Conversely, some

general QP solvers require the positive definiteness of the Hessian matrix and

cannot treat the NLP (7.16).

130

7.3. Model Predictive Control with Online Switching Time Optimization

• It improves the numerical stability by modifying the reduced Hessian matrix

positive definite without additional computational burden.

We treat the pure-state constraints (7.2) efficiently within the Riccati recursion algo-

rithm using a constraint-transformation of Katayama and Ohtsuka (2022). Further-

more, we lift the contact-consistent forward dynamics (7.5) and impulse dynamics

(7.11) to relax the high nonlinearity of the NLP and improve convergence property,

without increasing the additional computational burden (Katayama and Ohtsuka

(2021a)).

7.3.3 Heuristic regularization to improve convergence prop-
erty

Even with the Hessian modification of the Riccati recursion algorithm (Katayama

and Ohtsuka (2021c)), the Newton-step computation can be ill-conditioned owing to

the non-convex nature of the NLP. We then heuristically introduce a large penalty on

the update of the switching times when the iterate is not close to a local minimum.

That is, we add a large constant to the diagonal element of the Hessian matrix

corresponding twice to the partial derivatives with respect to a switching time.

7.3.4 Minimum dwell-time constraints

The minimum dwell-time constraints (7.15b) play an important role in practice. We

observe that the convergence speed increases as the minimum dwell-time ∆k increases,

because it reduces search ranges of tk. However, too large ∆k can reduce the opti-

mality and ill condition the problem. Therefore, we have to carefully choose ∆k.

Moreover, in MPC implementation, the optimized switching times can be pro-

crastinated depending on the problem settings (e.g., the given contact sequence and

cost function). That is, with certain problem settings, the cost of the switching is

high and the switching times always lie near the terminal of the horizon. As a result,

predicted discrete events (i.e., making or breaking the contacts) never happen on the

real system. This issue is illustrated in the upper figure of Fig. 7.3. To prevent this

phenomenon in MPC, at each sampling time, we gradually increase the minimum-

dwell time of the last phase ∆K+1, which is illustrated in the lower figure of Fig. 7.3.

For example, at each sampling time, we increase ∆K+1 as

∆new
K+1 ← ∆K+1 + (sampling period). (7.17)

131

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

! ! + #

$

!!

$

!!

! ! + #

$

!!

$

!!

Constant minimum dwell-times

Increasing minimum dwell-times

Δ" Δ"

Δ" Δ"#$%

$

!!

$

!!

Δ"

Δ"#$%

! ! + # ! ! + #

! ! + # ! ! + #

Figure 7.3: Effects of increasing the minimum dwell-time constraints. The upper
figure illustrates a situation where the switching time t1 is kept at the end of the
horizon owing to the fixed minimum dwell-time. The lower figure illustrates a solution
for this problem by increasing the minimum dwell-time ∆K+1. t denotes the sampling
instant, i.e., the initial time of the horizon, and T denotes the length of the horizon.

7.3.5 Software implementation

We implement the proposed MPC algorithm as an open-source software robotoc, an

efficient optimal control solver for robotic systems (Katayama (2020-2022)), which is

written in C++, uses Eigen (Guennebaud et al. (2010)) for linear algebra, OpenMP

(Dagum and Menon (1998)) for stage-wise parallel computation of the cost, con-

straints, and their derivatives of the NLP, and Pinocchio (Carpentier et al. (2019))

for the rigid body dynamics and its derivatives computations. The details of the

software are presented in Appendix A.

7.4 Simulation Study: Comparison to Conventional

MPC with Fixed Contact Timings

7.4.1 Experimental settings

We demonstrated the effectiveness of the proposed whole-body MPC with online STO

over the conventional whole-body MPC with the fixed switching instants through

numerical simulations. We refer to the former as MPC-STO and the latter just

as MPC in the following. We considered the 0.6 m jumping of quadrupedal robot

132

7.4. Simulation Study: Comparison to Conventional MPC with Fixed Contact
Timings

Unitree A1, a torque-controlled quadruped robot whose degree of freedom (DOF) is

12.

We designed the cost functions Vf (·) and lk(·) as simple quadratic weights on the

deviation of the configuration from the reference standing pose, generalized velocity,

and acceleration that is defined as the function of x and u as (7.5). That is, we did

not impose any costs on the pre-defined jump trajectory but just specified landing

contact locations by the contact constraints (7.2)–(7.3b). The jumping motions were

induced mainly by these contact constraints.

We imposed inequality constraints comprising the joint position, velocity, torque

limits, and the polyhedral-approximated friction cone constraints (7.13). We set the

MPC settings as follows: the horizon length was 0.8 s, the number of the discretiza-

tion grids N was 20, the number of the Newton-type iterations per sampling time

was 2. We fixed the barrier parameter of the primal-dual interior point method as

1.0 × 10−3 throughout the simulation, which is a common and practical strategy of

suboptimal MPC (Wang and Boyd (2010)). We provided the same initial guess of

the solution including the switching instants to the two MPC controllers. We inves-

tigated the control results for various initial guesses of the switching instants, i.e.,

lift-off and touch-down times. This investigation corresponds to the situation where

pre-computed optimal switching time is not appropriate owing to disturbances. We

ran the simulations on physical simulator PyBullet (Coumans and Bai (2016–2022))

and the MPC-STO and MPC at a 400 Hz sampling rate (2.5 ms sampling period).

In MPC-STO, we updated the minimum-dwell time constraints according to (7.17),

for each initial guesses of the switching instants.

7.4.2 Results

Figure 7.4 illustrates the snapshots of the simulation results in which the initial

guesses of the lift-off and touch-down times are given by 0.2 s and 0.5 s, respectively.

The upper five pictures are taken from the proposed whole-body MPC controller la-

beled as MPC-STO. The lower five pictures are from the proposed whole-body MPC

controller labeled as MPC. As illustrated in Fig. 7.4, the conventional MPC failed

in whole-body jumping control of the quadruped, whereas our MPC-STO succeeded.

Figure 7.5 illustrates the predicted switching times of both the proposed MPC-STO

and conventional STO at each simulation time. As illustrated in Fig. 7.5, the pro-

posed method optimized the switching times immediately, which led to success in the

control of the dynamic jumping motion.

133

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

Figure 7.4: Snapshots of the 0.6 m jumping control simulations of quadruped robot
Unitree A1 by whole-body MPC-STO (proposed) and whole-body MPC (conven-
tional), in which the initial guesses of lift-off and touch-down times are given by 0.2 s
and 0.5 s, respectively. The upper successful simulation (labeled as MPC-STO) is with
the proposed whole-body MPC controller with online STO. The lower failing simula-
tion (labeled as MPC) is with the conventional whole-body MPC controller with fixed
switching times. Pictures with the same column are taken from the same simulation
instant. A supplemental video is found at https://youtu.be/SureDVDFbfM.

Figure 7.6 illustrates the control results of the proposed MPC-STO and conven-

tional MPC controllers for various initial guesses of the switching times. The proposed

MPC-STO succeeded more than twice as many cases as the conventional MPC, which

demonstrates that the proposed method extends the ability of whole-body MPC. This

means that the proposed MPC-STO can achieve various control even though there

are large disturbances that make the pre-computed switching instants meaningless.

The average computational time of the control updates at each sampling time of both

MPC and MPC-STO was approximately 1.3 ms, i.e, each Newton-type iteration took

0.65 ms, on octa-core CPU Intel Core i9-11900H @2.50 GHz with six threads in the

parallel computation of the DMS. In the failure cases of MPC-STO, the solver could

not converge to the optimal solution owing to the limited number of Newton-type

iterations per sampling time (2 Newton-type iterations). If we can reduce the com-

putational time per Newton-type iteration, the controller can take a greater number

of the iterations, and we then expect that MPC-STO can succeed even with worse

initial guesses. Therefore, improving the computational speed is still an important

future study.

Note that the present MPC-STO can easily be applied to other kinds of dynamic

motions. To show this, we further conducted simulations of several jumping motions.

We used the almost same simple cost function as the above experiments: we only

changed the reference values of the quadratic cost on the configuration. Figure 7.7

shows the snapshots of dynamic lateral jumping, jumping to back, and rotational

jumping by the proposed whole-body MPC controller. Our MPC algorithm with

134

https://youtu.be/SureDVDFbfM

7.5. Hardware Experiments on Quadrupedal Robot Unitree A1

0.0 0.2 0.4 0.6 0.8
Simulation time [s]

0.0

0.2

0.4

0.6

0.8

P
re

di
ct

ed
 s

w
itc

hi
ng

 ti
m

e
[s

]

Lift-off
(MPC-STO)
Touch-down
(MPC-STO)
Lift-off
(MPC)
Touch-down
(MPC)

Figure 7.5: Predicted switching times at each simulation time of whole-body MPC-
STO (proposed) and whole-body MPC (conventional) for whole-body jumping control
of quadruped robot Unitree A1 in which the initial guesses of lift-off and touch-down
times are given by 0.2 s and 0.5 s, respectively.

online STO successfully controlled these motions only with the simple cost function

without efforts to construct complicated cost functions specialized to each motion or

heuristics to determine the switching times.

7.5 Hardware Experiments on Quadrupedal Robot

Unitree A1

7.5.1 Experimental settings

We further validated the proposed MPC on the real hardware of the quadrupedal

robot Unitree A1. We applied the proposed MPC for successive dynamic jumping

control of the quadruped robot. The overall control framework is illustrated in Fig.

7.8. We implemented a state estimator to estimate the state of the floating base

using encoders and an inertial measurement unit (IMU). Specifically, we estimate

the contact state from joint torque measurements (Camurri et al. (2017)) and then

estimate the state of the floating base by fusing IMUmeasurements and the contact leg

kinematics (Hartley et al. (2020)). We also implemented a cascaded controller using

the whole-body MPC-STO and joint PD controllers to compensate model-mismatches

such as joint frictions and estimation errors. That is, we send the desired joint angle

and joint velocity computed by the MPC-STO as well as the feedforward joint torques

(qJ,cmd, q̇J,cmd, and τff in Fig. 7.8, respectively) to the build-in joint PD controller of

the robot. We also utilize the state-feedback gain obtained by the Riccati recursion

135

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

0.0 0.2 0.4 0.6

Initial guess of lift-off time [s]

0.4

0.6

0.8
In

iti
al

 g
ue

ss
 o

f
to

uc
h-

do
w

n
tim

e
[s

]
MPC-STO

0.0 0.2 0.4 0.6

MPC

Success Failure

Figure 7.6: Simulation results (success or failure) of the whole-body MPC-STO
(proposed) and whole-body MPC (conventional) for whole-body jumping control of
quadruped robot Unitree A1 for various initial guesses of the lift-off and touch-down
times.

algorithm of the MPC-STO as the joint PD gains (KP and KD in Fig. 7.8) because

it can be seen as the optimal state-feedback gain of a linear-quadratic approximation

of the NLP (7.16).

The MPC-STO and state estimator are run at 400 Hz on off-board laptop Ubuntu,

with the PREEMPT RT kernel on octa-core CPU Intel Core i9-11900H @2.50 GHz

with six threads in the parallel computing for the DMS in the MPC. The joint PD

controller is run on the onboard PC of Unitree A1.

7.5.2 Results

Figure 7.9 illustrates the snapshots of jumping motions via the proposed whole-body

MPC controller. As illustrated in the figure, the proposed method successfully realizes

the successive dynamic jumps of the quadruped robot. Figure 7.10 shows the time-

histories of measurements and commands of three joints in the LH-leg. It showed that

each motor could not exactly track the commanded position, velocity, and torques

provided by the proposed MPC due to the un-modeled factors such as joint frictions,

i.e., disturbances. In addition, there could be state-estimation errors and modeling

errors in the robot models. Nevertheless, the proposed controller achieved the control

thanks to the fast MPC feedback and cascaded joint PD controller.

Future work is to realize longer jumps. One of the difficulties in jumping control

comes from the state estimation; in the flying phase, the leg odometry is not available

and state estimation becomes inaccurate. This is a common issue among legged

136

7.6. Summary

Figure 7.7: Snapshots of dynamic 0.4 m lateral jumping (upper), 0.3 m jumping to
back (middle), and 30-degree yaw-rotational jumping (lower) control of quadrupedal
robot Unitree A1 by whole-body MPC-STO.Hardware experiments

Ø Controller:

Ø Feedback gain C5, C6 from the Riccati recursion (solution algorithm of MPC)

• The Riccati recursion solves LQ MPC problem that approximates the original
MPC problem around the nominal trajectory

• “Local optimal state feedback gain” is a by-product of the Riccati recursion!

35

Joint PD
controller

Whole-body
MPC-STO

J22 /
+
+

I-,678,
İ-,678,
P3, P4I, K

IMUState
estimator Encoder

Figure 7.8: Block diagram of the whole-body MPC-STO control framework of
quadruped robot Unitree A1.

motions with a flight phase. Improving the robustness of the MPC for this type of

problem is our future study.

7.6 Summary

In this chapter, we presented a whole-body MPC of robotic systems with rigid contacts

under a given contact sequence using the online STO. We treated the robot dynamics

with rigid contacts as a switched system and formulated an OCP of switched systems

to implement the MPC. We utilized the efficient solution algorithm for the MPC

involving the STO problem that optimizes the switching times and trajectory simul-

taneously. The present algorithm is efficient to enable online optimization, unlike the

137

Chapter 7. Whole-Body Model Predictive Control with Rigid Contacts via Online
Switching Time Optimization

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 7.9: Snapshots of successive four-times dynamic jumping of quadruped robot
Unitree A1 by the proposed whole-body MPC-STO. A supplemental video is found
at https://youtu.be/SureDVDFbfM.

existing methods because of their inefficiency. We demonstrated the effectiveness of

the proposed MPC with online STO over the conventional MPC with fixed switching

times, through numerical simulation on dynamic jumping motions of a quadruped

robot. Accordingly, the proposed MPC succeeded in the control more than twice as

many cases as the conventional MPC. We further conducted hardware experiments

on the quadrupedal robot Unitree A1 and demonstrated that the proposed method

achieves dynamic motions on the real robot.

A possible limitation of our method is that it requires the pre-defined contact

sequence and contact locations. The Methodology for their determination and syn-

thesis, with the proposed STO strategy are included in future studies.

138

https://youtu.be/SureDVDFbfM

7.6. Summary

0.0

0.2

0.4
q J
;q
J
;c
m
d
[r
ad
]

LH hip joint

qJ

qJ; cmd

−5

0

5

_ q J
;
_ q J
;c
m
d
[r
ad
=s
]

_qJ

_qJ; cmd

0 1 2 3 4
Time [s]

−20

0

¿;
¿ f
f
[N
m
]

¿J

¿ff

0.5

1.0

q J
;q
J
;c
m
d
[r
ad
]

LH thigh joint

qJ

qJ; cmd

−10

0

_ q J
;
_ q J
;c
m
d
[r
ad
=s
]

_qJ

_qJ; cmd

0 1 2 3 4
Time [s]

0

20

¿;
¿ f
f
[N
m
] ¿J

¿ff

−1.6

−1.4

q J
;q
J
;c
m
d
[r
ad
]

LH knee joint

qJ

qJ; cmd

0

10

_ q J
;
_ q J
;c
m
d
[r
ad
=s
]

_qJ

_qJ; cmd

0 1 2 3 4
Time [s]

0

20

¿;
¿ f
f
[N
m
] ¿J

¿ff

Figure 7.10: Time histories of joint measurements and commands in the LH leg in
the successive jumping control by the proposed whole-body MPC-STO.

139

Chapter 8

Conclusions

8.1 Summary of Contributions

In this thesis, we have proposed algorithm developments toward fast model predictive

control (MPC) of robotic systems with rigid contacts. MPC is expected to be a unified

control approach that can realize versatile, efficient, and dynamic motions of robotic

systems with rigid contacts. However, it has been challenging because they are fast

and large-scale nonlinear systems, and contacts cause switches in dynamics and state

jumps. This thesis has consistently tackled these challenges to establish dedicated

fast MPC algorithms for robotic systems.

In Chapter 3, we have proposed an inverse-dynamics-based solution method for op-

timal control problems (OCPs). It improves the computational speed of each Newton-

type iteration by leveraging rigid-body inverse dynamics algorithms. In Chapter 4,

we have proposed lifted contact dynamics to improve the convergence properties by

relaxing the high nonlinearity. The approach realizes efficient lifting by leveraging the

structure of the rigid-body dynamics with contacts. In Chapter 5, we have proposed a

constraint-transformation approach to treat pure-state equality constraints in OCPs,

which arise in OCPs of robots with contacts. It enables us to treat the constraints

with the Riccati recursion algorithm efficiently. In Chapter 6, we have proposed a

Riccati-based fast and robust Newton-type algorithm to optimize the switching times

and trajectory simultaneously. The algorithm computes the Newton-step linear time

complexity with respect to the horizon. It also improves the numerical robustness by

modifying reduced Hessian efficiently. In Chapter 7, we have implemented whole-body

MPC built on top of the aforementioned approaches and demonstrated the effective-

ness of the proposed approaches by numerical simulation and hardware experiments

of a quadrupedal robot. These experiments demonstrate that the proposed MPC

achieves milliseconds-range computational time and highly dynamic motion control.

140

8.2. Discussion and Future Work

8.2 Discussion and Future Work

Finally, we discuss the limitations of our approaches and future work for these prob-

lems.

8.2.1 Application to a wider variety of robotic problems

In Chapter 7, we have successfully applied the proposed MPC to quadrupedal lo-

comotion over flat floors both on the physical simulation and real-world hardware.

However, challenges in the control of robotic systems vary depending on the hard-

ware platform, working environment, and desired tasks. Because the proposed MPC

is based on whole-body dynamics and rigid-contact models, it can potentially treat

a wide range of problems. It is therefore included in our future work to investigate

the effectiveness of the proposed method in a wide variety of robotic applications. In

more detail, the effectiveness of the whole-body dynamics and rigid contact model

must be investigated through comparison with MPC based on different formulations

such as SRBD/centroidal models (Di Carlo et al. (2018); Farshidian, Jelavic, et al.

(2017); Sleiman et al. (2021)) and approximated contact models (Koenemann et al.

(2015); Neunert et al. (2018)) over various robotic problems.

An example of such robotic applications other than quadrupedal locomotion is

humanoid (bipedal) control. Humanoid robots involve surface contacts, which have

more complicated physical constraints (e.g., contact wrench cone (Caron, Pham, and

Nakamura (2015))) than the friction cone of the point contacts of quadruped locomo-

tion. Further, while some quadrupedal robots such as MIT mini cheetah (Katz et al.

(2019)) are designed so that each limb is light compared with the total weight, this

is not the case for typical humanoid robots. Therefore, the whole-body dynamics-

based MPC is expected to work remarkably better than the SRBD-based MPC for

humanoid robots. However, the humanoid robots often have large degrees of freedom,

e.g., typically have more than twice as much as these of typical quadrupedal robots.

Therefore, real-time optimization of MPC is still challenging for humanoid robots as

the existing research (Dantec et al. (2021)) took a huge computational for whole-body

MPC. A possible approach is to introduce an appropriate model-reduction, e.g., fixing

some redundant joints that have little effect on the performance in MPC.

Another example is loco-manipulation (Ferrolho, Ivan, Merkt, Havoutis, and Vi-

jayakumar (2022); Sleiman et al. (2021); Wolfslag et al. (2020)), which is a multi-

contact problem for humanoid robots and quadrupedal robots equipped with robot

141

Chapter 8. Conclusions

arms. In this problem, the robot must conduct manipulation tasks while simulta-

neously leveraging its locomotion skills. It can involve complicated contact models

depending on the manipulation problems. Further, manipulation requires various

whole-body postures, in which the SRBD-model becomes inaccurate (Sleiman et al.

(2021)). Therefore, the whole-body dynamics-based MPC is expected to be also

valuable for this problem.

8.2.2 Improving robustness

The simulation and hardware experiments in Chapter 7 assume the perfect knowledge

of the environment, e.g., we assume that the terrain is flat. However, in practice, there

are uncertainties in the environment model. For example, there are steps and rough

terrains in the real world. Moreover, it is difficult to predict friction coefficients

accurately. Also, the ground can be soft and the impact is not completely inelastic,

which is different from our rigid-contact assumption. These uncertainties can affect

the performance of our MPC controller. There are several possible research directions

to tackle this problem and we introduce them in the following.

Robust and stochastic MPC: First, we can use robust (tube or min-max) non-

linear MPC (Köhler, Soloperto, Müller, and Allgöwer (2020); Raimondo, Limon,

Lazar, Magni, and ndez Camacho (2009); Zanelli, Frey, Messerer, and Diehl (2021)) or

stochastic nonlinear MPC techniques (Mesbah, Streif, Findeisen, and Braatz (2014)).

These methods can prevent the violation of inequality constraints under certain un-

certainties. Further, analysis of the robust stability of these methods can be a key

perspective for designing the cost function of MPC under uncertainties. However,

applying these methods is still challenging due to their computational inefficiency,

particularly for fast and large-scale robotic systems. Therefore, algorithm develop-

ments of robust and stochastic MPC are future work in these approaches.

Machine learning techniques: The second possible approach to improve the

robustness of MPC is introducing machine-learning techniques. In particular, do-

main randomaization is a well-known technique in sim-to-real reinforcement learning

(RL) to improve the robustness against parameter uncertainties (Tobin et al. (2017);

W. Zhao, Queralta, and Westerlund (2020)). Recently, these are incredible robotic

applications of RL by this methods (Andrychowicz et al. (2020); Miki et al. (2022)).

It is in principle possible to use the same methodology for our MPC controller.

For example, we can automatically tune the parameters of MPC such as weight

142

8.2. Discussion and Future Work

parameters in the cost function and length of the horizon by using the Bayesian

optimization (BO) (Muratore, Eilers, Gienger, and Peters (2021)). It is also possible

to apply RL methods such as Q-learning or actor-critic (Sutton and Barto (2018))

to tune MPC parameters by regarding the MPC as a function approximator of both

policy and the action value-function (Bøhn, Gros, Moe, and Johansen (2021); Gros

and Zanon (2019)). These methods are also valuable in that they automate the

troublesome tuning of MPC parameters.

Another possible approach is to incorporate neural networks (NN) into the MPC.

A most intuitive way is to introduce the value-function approximation as a terminal

cost of MPC. It is proved that, if the terminal cost is exactly the same as the value-

function, the control policy of finite-horizon MPC yields the optimal policy for infinite-

horizon MPC, which is an ideal control policy for a given reward or stage cost (Gros

and Zanon (2019)). Several researchers have pointed out the usage of the value-

function approximation in RL as the terminal or stage costs of MPC (Erez, Tassa,

and Todorov (2012); Hoeller, Farshidian, and Hutter (2020); Karnchanachari, Valls,

Hoeller, and Hutter (2020); Lowrey, Rajeswaran, Kakade, Todorov, and Mordatch

(2019)).

A challenge in applying the aforementioned RL methods for complicated robotic

MPC problems is that the stage cost, a candidate of the reward function of the RL

methods, of robotic MPC problems is typically time-varying. Further, the dynamics

switch depending on the contact mode. Therefore, a practical way to apply RL

methods for tuning MPC parameters or value-function approximation in the robotic

problems is non-trivial and included in future work.

Incorporating contact information feedback A key point both in the above

two approaches is to incorporate the feedback of the contact information. Typical

robots have force sensors in the end-effectors or torque sensors in joints. In such

cases, we can measure or estimate the contact forces. The contact force values or

estimations also include information such as whether the contacts in end-effectors

are active or not. In typical model-based methods including MPC, such information

is only used to estimate the floating base of the robot Camurri et al. (2017) and it

is ignored in the controller. This is also the case for value-based machine learning

approaches including the existing combination of MPC and RL (Erez et al. (2012);

Hoeller et al. (2020); Karnchanachari et al. (2020); Lowrey et al. (2019)). In contrast,

recent successful RL applications to robotic problems such as Andrychowicz et al.

(2020) and Miki et al. (2022) leverages the contact information with policy iterations.

143

Chapter 8. Conclusions

Therefore, incorporating contact information feedback is an important future work

both in model-based approaches (robust and stochastic MPC) and machine-learning

approaches (e.g., value-function learning).

144

Appendix A

robotoc: Open-Source Software
for Whole-Body Model Predictive
Control

A.1 Introduction

In the main chapters of this thesis, we have developed algorithms to efficiently solve

optimal control problems (OCPs) of robotic systems toward real-time whole-body

model predictive control (MPC). However, its implementation is complicated. Typical

MPC problems are often implemented via existing software such as general-purpose

nonlinear programming (NLP) modeling tool CasADi (Andersson et al. (2019)) or

general nonlinear MPC tool acados (Verschueren et al. (2021)), both of which rely

on symbolic expressions in formulating the OCPs. However, such tools are impracti-

cal for complicated robotic MPC problems because it is difficult to represent whole-

body dynamics or full-body kinematics by symbolic expressions. In addition, direct

symbolic or automatic differentiation of the forward kinematics and inverse/forward

dynamics typically lack efficiency compared with the dedicated recursive algorithms

such as recursive kinematic Jacobian computation (Lynch and Park (2017)) or ana-

lytical derivatives of the dynamics (Carpentier and Mansard (2018)). Moreover, since

the robotic systems are switched systems, the problem structures (e.g., dimensions of

the control input, state equation, cost function, and constraints) change dynamically

during control, which further makes it difficult to implement MPC for robotic systems

with the general NLP or MPC tools.

To interface these difficulties, we have developed an open-source software frame-

work robotoc, an efficient optimal control framework for robotic systems (Katayama

(2020-2022)) based on the algorithms presented throughout this thesis. robotoc

145

Appendix A. robotoc: Open-Source Software for Whole-Body Model Predictive
Control

aims to solve the OCPs defined as (7.1)–(7.16). It is consistently written in C++ for

efficiency together with Python interfaces for ease of prototyping. Note that there

are other software for numerical optimal control and MPC of robotic systems, such as

ocs2 (Farshidian (2017-2022)) and Crocoddyl (Mastalli et al. (2020)). Compared

with these existing frameworks, our robotoc employs advanced algorithms that have

been developed so far in this thesis. The characteristics of robotoc, particularly

compared with these existing frameworks, are summarized as follows:

• Direct multiple-shooting method (Bock and Plitt (1984)) for time-discretization.

This is more efficient and robust than the single-shooting methods in ocs2

and Crocoddyl (specifically, the variants of differential dynamic programming

(Jacobson and Mayne (1970))).

• Primal-dual interior point method for inequaliy constraints (Wächter and Biegler

(2006)). robotoc can treat nonlinear inequality constraints regorously and ef-

ficiently. In contrast, ocs2 and Crocoddyl only treat them as soft constraints

and cannot guarantee the feasibility of the solution.

• Riccati recursion (Rao et al. (1998)) / ParNMPC (Deng and Ohtsuka (2019))

to compute the Newton steps.

• The inverse dynamics-based method presented in Chapter 3 for robotic systems

without contacts or a floating base.

• The lifted contact dynamics scheme presented in Chapter 4 for robotic systems

with contacts.

• Pure-state constraint handling by the constraint-transformation presented in

Chapter 5 for the position-level switching constraints due to contacts. This is

treated by the augmented Lagrangian method in ocs2 and is approximated by

a penalty function method in Crocoddyl.

• The Riccati recursion for the switching time optimization (STO) problems pre-

sented in Chapter 6. With this algorithm, only our framework can achieve

efficient and robust optimization of the switching times and the trajectory si-

multaneously.

In the remainder of this appendix, we first introduce an overview of the interfaces

of our framework robotoc. Next, we present some implementation details that

make robotoc efficient. Finally, we provide some robotic application examples of

robotoc.

146

A.2. Interface Overview

Interface overview (advanced)

0

robotoc::Robot

robotoc::CostFunction

robotoc::Constraints

robotoc::ContactSequence

robotoc::OCP

robotoc::OCPSolver

robotoc::SolverOption

robotoc::STOCostFunction

robotoc::STOConstraints

Figure A.1: Overview of interfaces of robotoc.

A.2 Interface Overview

In this section, we give an overview of the interfaces of robotoc, which is illustrated

in Fig. A.1. The interfaces are available both in C++ and Python.

A.2.1 robotoc::Robot

robotoc::Robot is a robot model and describes the kinematics and dynamics of the

robot. We construct the robot model robotoc::Robot from an URDF (universal

robot description format) file. If the robot involves contacts, we further specify the

contact frames, contact types, and parameters (the time step or weight parameters)

of the Baumgarte’s stabilization method (Baumgarte (1972); Flores et al. (2011)).

The below shows an example to construct a quadruped robot model.

const std::string path_to_urdf = ...;
const std::vector<std::string> contact_frames{"LF_FOOT", "LH_FOOT", "

RF_FOOT", "RH_FOOT"}; // frame names in the URDF file
const std::vector<robotoc::ContactType> contact_types(contact_frames.

size(), robotoc::ContactType::PointContact);
const double baumgarte_time_step = 0.05;
robotoc::Robot robot(path_to_urdf, robotoc::BaseJointType::FloatingBase,
contact_frames, contact_types, baumgarte_time_step);
};

Listing A.1: C++ example of constructing a quadruped robot

147

Appendix A. robotoc: Open-Source Software for Whole-Body Model Predictive
Control

A.2.2 robotoc::CostFunction

In robotoc, we create the cost function, robotoc::CostFunction, by combin-

ing various cost components. Each of the cost components inherits the interface class

robotoc::CostFunctionComponentBase and users can readily implement new

cost component. The followings are examples of new cost components with C++ and

Python.

class NewCostComponent final : public robotoc::CostFunctionComponentBase
{

// override methods to compute the cost value, and derivatives, and
Gauss-Newton Hessian

};

Listing A.2: C++ example of a new cost component

class NewCostComponent(robotoc.CostFunctionComponentBase):
def __init__(self, ...):
super().__init__()
...
override methods to compute the cost value, and derivatives, and Gauss

-Newton Hessian

Listing A.3: Python example of a new cost component

Further, robotoc provides basic and useful cost components such as regarding

the configuration-space variables, the task-space positions, and the CoM positions.

The following shows an example of constructing the cost function with the provided

cost components in C++.

auto config_cost = std::make_shared<robotoc::ConfigurationSpaceCost>(
robot);

auto task_space_cost = std::make_shared<robotoc::TaskSpace3DCost>(robot,
"ee_frame", task_3d_ref);

auto com_cost = std::make_shared<robotoc::CoMCost>(robot, com_ref);
auto cost = std::make_shared<robotoc::CostFunction>();
cost->push_back(config_cost);
cost->push_back(task_space_cost);
cost->push_back(com_cost);

Listing A.4: C++ example of the cost function

A.2.3 robotoc::Constraints

As well as the cost function, we create the constraints, robotoc::Constraints,

by combining various constraint components. Each of the constraint components

inherits the interface class robotoc::ConstraintComponentBase and users can

readily implement new constraint component. The followings are examples of new

cost components with C++ and Python.

148

A.2. Interface Overview

class NewConstraintComponent final : public robotoc::
CostFunctionComponentBase {

// override methods to compute the constraint and its derivatives
};

Listing A.5: C++ example of a new constraint component

class NewConstraintComponent(robotoc.ConstraintFunctionComponentBase):
def __init__(self, ...):
super().__init__()
...
override methods to compute the constraint and its derivatives

Listing A.6: Python example of a new constraint component

Further, robotoc provides basic and useful constraint components such as joint

position limits, joint velocity limits, joint torque limits, and friction cones. The fol-

lowing shows an example of constructing the constraints with the provided constraint

components in C++.

auto joint_position_lower = std::make_shared<robotoc::
JointPositionLowerLimit>(robot);

auto joint_position_upper = std::make_shared<robotoc::
JointPositionUpperLimit>(robot);

auto joint_velocity_lower = std::make_shared<robotoc::
JointVelocityLowerLimit>(robot);

auto joint_velocity_upper = std::make_shared<robotoc::
JointVelocityUpperLimit>(robot);

auto joint_torques_lower = std::make_shared<robotoc::
JointTorquesLowerLimit>(robot);

auto joint_torques_upper = std::make_shared<robotoc::
JointTorquesUpperLimit>(robot);

const double friction_coeff = 0.6;
auto friction_cone = std::make_shared<robotoc::FrictionCone>(robot,

friction_coeff);
auto constraints = std::make_shared<robotoc::Constraints>();
constraints->push_back(joint_position_lower);
constraints->push_back(joint_position_upper);
constraints->push_back(joint_velocity_lower);
constraints->push_back(joint_velocity_upper);
constraints->push_back(joint_torques_lower);
constraints->push_back(joint_torques_upper);
constraints->push_back(friction_cone);

Listing A.7: C++ example of the constraints

A.2.4 robotoc::ContactSequence

The contact sequence, robotoc::ContactSequence, describes the sequence of

the contact status. The contact status, robotoc::ContactStatus, includes the

information of the contacts such as which candidates of the contact frames have active

149

Appendix A. robotoc: Open-Source Software for Whole-Body Model Predictive
Control

contacts and the positions of the active contacts. For each contact phase, we add the

contact status into the contact sequence. When adding a new contact status, we

input the instant of the switch from an old contact phase to the new contact phase.

The below shows an example of a quadrupedal trotting.

auto contact_sequence = std::make_shared<robotoc::ContactSequence>(robot
);

auto contact_status_standing = robot.createContactStatus();
// configure contact status...
contact_sequence->init(contact_status_standing);
contact_sequence->push_back(contact_status_lhrf_swing, swing_start_time)

;
contact_sequence->push_back(contact_status_rhlf_swing, swing_start_time+

swing_time);
...

Listing A.8: C++ example of the contact sequence

If we want to optimize the switching times, i.e., for the switching time optimization

(STO), we specify it when we add the contact status to the contact sequence as

const bool enable_sto = true;
contact_sequence->push_back(contact_status_lhrf_swing, swing_start_time,

enable_sto);
contact_sequence->push_back(contact_status_rhlf_swing, swing_start_time+

swing_time, enable_sto);
...

Listing A.9: C++ example of the contact sequence for the STO

For a given contact sequence, the OCP solver of robotoc automatically constructs

the structure of the OCP such as the dimension of the contact forces, the dynamics of

the robot (i.e., the state equation), state jumps, switching constraints, cost function,

and constraints (e.g., friction cones for active contacts). That is, in robotoc, we do

not need to care about complicated problem structures of OCPs of robotic systems.

A.2.5 robotoc::STOCostFunction and
robotoc::STOConstraints

If we want to optimize the switching times, we need to define the cost and con-

straints regarding the switching times. We call the cost and constraints associated

with the switching times as STO cost and the constraints as STO constraints in

the following. The STO cost function, robotoc::STOCostFunction, is con-

structed with the cost component on the switching times (currently no implemen-

tations of the cost component for the STO problems are provided). The STO con-

straints, robotoc::STOConstraints, is a collection of the minimum dwell-time

150

A.2. Interface Overview

constraints of each phase. The below shows a C++ example of the STO cost and

STO constraints.

auto sto_cost = std::make_shared<robotoc::STOCostFunction>();
const std::vector<double> min_dwell_times = ...;
auto sto_constraints = std::make_shared<robotoc::STOConstraints>(

min_dwell_times);

Listing A.10: C++ example of the STO cost and STO constraints

A.2.6 robotoc::OCP and robotoc::OCPSolver

There are three types OCPs and OCP solvers in robotoc:

• robotoc::OCP, robotoc::OCPSolver: The OCP solver for a robotic sys-

tem with/without a floating base or contacts.

• robotoc::UnconstrOCP, robotoc::UnconstrOCPSolver: The OCP

solver for a robotic system without a floating base or contacts (i.e., uncon-

strained dynamics).

• robotoc::UnconstrParNMPC, robotoc::UnconstrParNMPCSolver:

The OCP solver for a robotic system without a floating base or contacts (i.e., un-

constrained dynamics) with ParNMPC algorithm (Deng and Ohtsuka (2019)).

Here, we provide an example of robotoc::OCP and robotoc::OCPSolver. The

definition of the OCP, robotoc::OCP, is constructed by passing the aforementioned

robot model, cost function, and constraints. The OCP solver is then constructed by

passing the OCP and solver options, robotoc::SolverOptions, which includes,

e.g., termination criteria. The following example illustrates it.

robotoc::OCP ocp(robot, cost, constraints, contact_sequence, T, N);
auto solver_options = robotoc::SolverOptions::defaultOptions();
robotoc::OCPSolver ocp_solver(ocp, solver_options, nthreads);

Listing A.11: C++ example of the OCP and OCP solver

If we want to optimize the switching times as well as the state and control input

trajectory, we further have to pass the STO cost and constraints to the OCP as

follows.

robotoc::OCP ocp(robot, cost, constraints, sto_cost, sto_constraints,
contact_sequence, T, N);

auto solver_options = robotoc::SolverOptions::defaultOptions();
robotoc::OCPSolver ocp_solver(ocp, solver_options, nthreads);

Listing A.12: C++ example of the OCP and OCP solver for a STO problem

151

Appendix A. robotoc: Open-Source Software for Whole-Body Model Predictive
Control

The OCP is solved for given initial time and initial state. The following shows an

example of solving an OCP.

const double t = ...; // initial time
Eigen::VectorXd q = ...; // initial configuration
Eigen::VectorXd v = ...; // initial velocity
ocp_solver.setSolution("q", q); // warm start
ocp_solver.setSolution("v", v); // warm start
ocp_solver.initConstraints(t); // initialize the constraints
ocp_solver.solve(t, q, v); // solves the OCP

Listing A.13: C++ example of solving an OCP

A.3 Implementation Details

Basic linear algebra Overall linear algebra are based on Eigen (Guennebaud

et al. (2010)). We can easily obtain high-performance matrix calculations by en-

abling vectorization with -march=native compilation command. In robotoc,

we pre-allocate memories of matrices and vectors of Eigen to let dynamic mem-

ory allocations be as small as possible during solving the OCPs. We also utilize

Eigen::LLT, a fast matrix inversion of symmetric positive-definite (SPD) matrices

by Cholesky factorization. We consistently use Gauss-Newton Hessian approximation

and therefore we face only matrix inversions of SPD matrices via Eigen::LLT.

Rigid body kinematics and dynamics computation We rely on the Pinocchio

(Carpentier et al. (2019)) for efficient rigid body kinematics and dynamics compu-

tation. We compute the forward kinematics, kinematics Jacobian, inverse dynamics,

and derivatives of the dynamics by using Pinocchio. Pinocchio also provides

classes and functions to treat SE(3) in the numerical optimization, which is useful,

e.g., when considering the cost of the task-space.

Parallel computation with direct multiple shooting method The Newton-

type iteration of a nonlinear program (NLP) consists of three steps: 1) computation

of the residual of the Karush–Kuhn–Tucker (KKT) conditions and KKT matrix, 2)

computation of the Newton steps (via Riccati recursion or ParNMPC algorithm in

robotoc), 3) step size selection (fraction-to-boundary rule in robotoc) and update

the iterate. In robotoc, we fully parallelize step 1 stage-wise, which is one of the

most time-consuming parts of Newton-type iterations, thanks to the direct multiple

shooting method. We utilize OpenMP (Dagum and Menon (1998)) for the paral-

lel computation. In robotoc::UnconstrParNMPCSolver, parallel computing is

152

A.4. Application Examples

3

Stance SwingL
R

Figure A.2: The contact pattern of the iCub walking. L denotes the left foot in
contact and R does the right foot in contact.

also applied for step 2, which enables fast Newton-step computation with a larger

number of processors in exchange for convergence speed and robustness.

A.4 Application Examples

Here, we introduce application examples of robotoc. Note that implementations of

the following examples can be found in Katayama (2020-2022).

A.4.1 Whole-body MPC of a humanoid robot walking

A.4.1.1 Problem settings and MPC design

The first example was a whole-body MPC of a walking control of a humanoid robot

iCub (Natale et al. (2017)). iCub has 28 degrees of freedom (DOF), which is still

too large to implement real-time whole-body MPC. Therefore, we considered a robot

model whose joints in the upper half of the body are fixed. We then treated the robot

model that has the 18 DOF, i.e., the configuration of the lies in SE(3) × R12 and

the control input is 12-dimensional. It has a floating base and can have two surface

contacts with two feet. The objective of the bipedal walking control was to track the

reference linear and angular CoM velocity commands that are expressed in the local

coordinate of the floating base.

In this example, we designed the walking control based on a predefined constant

walking period. That is, we did not consider optimizing the switching times. First,

we designed the contact sequence with the predefined footstep timings to track the

reference linear and angular CoM velocity. The contact pattern is illustrated in

Fig. A.2. Successively, we designed the cost function with a simple cost on the

configuration-space variables, costs on the swing foot trajectory, and cost on the

CoM trajectory based on the contact sequence. We imposed the constraints with joint

limits such as joint position limits, joint velocity limits, and joint torque limits. We

also imposed contact wrench cone constraints (Caron et al. (2015)) for the two surface

contacts on the two feet. We set the friction coefficient as 0.4 and the rectangular

size of the wrench cone as 0.05 [m] and 0.025 [m], respectively. We set the length

of the MPC horizon as 0.7 s, which is the same as the walking period of the robot.

153

Appendix A. robotoc: Open-Source Software for Whole-Body Model Predictive
Control

−0.2

−0.1

0.0

0.1

0.2

Lin
ea

r C
oM

 v
el

oc
ity vx[m=s]

vy[m=s]

vz[m=s]

vx; cmd[m=s]

vy; cmd[m=s]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1

0

1

An
gu

la
r C

oM
 v

el
oc

ity wx[rad=s]

wy[rad=s]

wz[rad=s]

wz; cmd[rad=s]

Figure A.3: (Upper) snapshots of walking control of a humanoid robot iCub by the
robotoc’s whole-body MPC and (lower) time histories of the linear and angular
CoM velocities of the robot (solid lines) and reference command velocities (dashed
lines) both of which are expressed in the local coordinate of the floating base.

We also set the discretization number of the horizon from 20 to 22, which can vary

during the control depending on the number of discrete events on the horizon.

A.4.1.2 Results

We simulated the proposed MPC on the physical simulator Pybullet (Coumans

and Bai (2016–2022)) with 400 Hz control frequency. Figure A.3 shows the snapshots

of the iCub walking by our whole-body MPC implemented with robotoc and the

time histories of the linear and angular CoM velocity of the robot. As shown in Fig.

A.3, the proposed MPC realized walking control that tracked the reference linear

and angular CoM velocity commands. Our MPC controller performed a Newton-type

154

A.4. Application Examples

2

Stance SwingLF
LH
RF
RH

Stance SwingLF
LH
RF
RH

Stance SwingLF
LH
RF
RH

2

Stance SwingLF
LH
RF
RH

Stance SwingLF
LH
RF
RH

Stance SwingLF
LH
RF
RH

2

Stance SwingLF
LH
RF
RH

Stance SwingLF
LH
RF
RH

Stance SwingLF
LH
RF
RH

(a) Pace (b) Flying-trot (c) Trot

Figure A.4: The contact pattern of the (a) pace gait, (b) flying trot gait, and (c) trot
of A1. LF, LH, RF, and RH denote left-front, left-hind, right-front, and right-hind
foot in contact, respectively.

iteration at each sampling period of 2.5 ms and it took almost 0.5 ms on octa-core CPU

Intel Core i9-9900 @3.10 GHz with six threads in the parallel computing. Therefore,

our framework enables real-time whole-body MPC with a sufficient margin.

A.4.2 Whole-body MPC of quadruped robot gaits

A.4.2.1 Problem settings and MPC design

The second example is a whole-body MPC of various gaits of a quadruped robot

Unitree A1 (Unitree Robotics (n.d.)). The robot model has an 18 DOF, i.e., its state

lies in SE(3)× R12 and it has a 12-dimensional control input. It has a floating base

and can have four point contacts with four feet. The objective was to control the

quadrupedal gaits to track the reference linear and angular velocity commands.

As in the previous example, we designed the contact sequence, cost function, and

constraints based on a predefined constant walking period for each gait. That is, we

first designed the contact sequence with the predefined footstep timings to track the

reference linear and angular CoM velocity. We then designed the cost function with

a simple cost on the configuration-space variables, costs on the swing foot trajectory,

and cost on the CoM trajectory based on the contact sequence. We also imposed the

constraints with joint limits such as joint position limits, joint velocity limits, joint

torque limits, and friction cone constraints. We set the length of the MPC horizon

as 0.5 s and the discretization number of the horizon from 18 to 20, the latter of

which can vary during the control depending on the number of discrete events on the

horizon.

A.4.2.2 Results

We simulated the proposed MPC for pace gait, flying trot gait, and trot gait on rough

terrain on Pybullet with a 400 Hz control frequency. The contact patterns of these

gaits are shown in Fig. A.4. Figure A.5 shows the snapshots of the pace gait by our

whole-body MPC implemented with robotoc and the time histories of the linear

155

Appendix A. robotoc: Open-Source Software for Whole-Body Model Predictive
Control

−0.4

−0.2

0.0

0.2

0.4

Lin
ea

r C
oM

 v
el

oc
ity vx[m=s]

vy[m=s]

vz[m=s]

vx; cmd[m=s]

vy; cmd[m=s]

0 1 2 3 4 5
Time [s]

−1

0

1

An
gu

la
r C

oM
 v

el
oc

ity wx[rad=s]

wy[rad=s]

wz[rad=s]

wz; cmd[rad=s]

Figure A.5: (Upper) snapshots of pace gait control of a quadruped robot A1 by
the robotoc’s whole-body MPC and (lower) time histories of the linear and angular
CoM velocities of A1 expressed in the body local coordinate (solid lines) and reference
command velocities (dashed lines).

and angular CoM velocity of the robot. Figures A.6 and A.7 show the results of the

flying trot gait and trot gait on rough terrain, respectively. As shown in these figures,

the proposed MPC realized various gaits even under the disturbances (i.e., the rough

terrain) that tracked the reference linear and angular CoM velocity commands. Our

MPC controller performed two Newton-type iterations at each sampling period of 2.5

ms and it took almost 1.1 ms on octa-core CPU Intel Core i9-9900 @3.10 GHz with

six threads in the parallel computing. Therefore, our framework can realize real-time

whole-body MPC with a sufficient margin.

156

A.5. Summary

−0.4

−0.2

0.0

0.2

0.4

Lin
ea

r C
oM

 v
el

oc
ity vx[m=s]

vy[m=s]

vz[m=s]

vx; cmd[m=s]

vy; cmd[m=s]

0 1 2 3 4 5
Time [s]

0

1

2

3

An
gu

la
r C

oM
 v

el
oc

ity wx[rad=s]

wy[rad=s]

wz[rad=s]

wz; cmd[rad=s]

Figure A.6: (Upper) snapshots of flying-trot gait control of a quadruped robot A1 by
the robotoc’s whole-body MPC and (lower) time histories of the linear and angular
CoM velocities of A1 expressed in the body local coordinate (solid lines) and reference
command velocities (dashed lines).

A.5 Summary

In this appendix, we have presented robotoc, our software framework for optimal

control and whole-body MPC of robotic systems. Our framework provides efficient

and robust algorithms presented throughout this thesis while it also gives the inter-

faces that mitigate complicated configuration of OCPs by users. We have reviewed

interfaces that are available both in C++ and Python. We also have introduced

implementation details of robotoc, which enables efficient numerical computations.

Finally, we demonstrated practical complicated robotic examples via robotoc, of

which implementations are also available in Katayama (2020-2022), and showed that

our framework can achieve real-time whole-body MPC for a variety of problems.

157

Appendix A. robotoc: Open-Source Software for Whole-Body Model Predictive
Control

−0.2

0.0

0.2

Lin
ea

r C
oM

 v
el

oc
ity vx[m=s]

vy[m=s]

vz[m=s]

vx; cmd[m=s]

vy; cmd[m=s]

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

An
gu

la
r C

oM
 v

el
oc

ity wx[rad=s]

wy[rad=s]

wz[rad=s]

wz; cmd[rad=s]

Figure A.7: (Upper) snapshots of trot gait control of a quadruped robot A1 on rough
terrain by the robotoc’s whole-body MPC and (lower) time histories of the linear
and angular CoM velocities of A1 expressed in the body local coordinate (solid lines)
and reference command velocities (dashed lines).

158

References

Abe, Y., Da Silva, M., & Popović, J. (2007). Multiobjective control with frictional
contacts. In 2007 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (pp. 249–258).

Acosta, B., Yang, W., & Posa, M. (2022). Validating robotics simulators on real-world
impacts (Vol. 7) (No. 3).

Agility Robotics. (n.d.). Cassie website. https://www.agilityrobotics.com/
robots.

Albersmeyer, J., & Diehl, M. (2010). The lifted Newton method and its application
in optimization. SIAM Journal on Optimization, 20 (3), 1655–1684.

Ames, A. D., Galloway, K., Sreenath, K., & Grizzle, J. W. (2014). Rapidly exponen-
tially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE
Transactions on Automatic Control , 59 (4), 876–891.

Ames, A. D., & Powell, M. (2013). Towards the unification of locomotion and
manipulation through control Lyapunov functions and quadratic programs. In
Control of Cyber-Physical Systems (pp. 219–240). Springer.

Amestoy, P., Duff, I. S., Koster, J., & L’Excellent, J.-Y. (2001). A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on
Matrix Analysis and Applications , 23 (1), 15–41.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019).
CasADi – A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 11 (1), 1–36.

Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki, J.,
Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin,
J., Welinder, P., Weng, L., & Zaremba, W. (2020). Learning dexterous in-hand
manipulation. The International Journal of Robotics Research, 39 (1), 3–20.

Axehill, D. (2005). Applications of integer quadratic programming in control and
communication (Unpublished doctoral dissertation). Institutionen för sys-
temteknik.

Barrau, A., & Bonnabel, S. (2016). The invariant extended Kalman filter as a stable
observer. IEEE Transactions on Automatic Control , 62 (4), 1797–1812.

Baumgarte, J. (1972). Stabilization of constraints and integrals of motion in dynam-
ical systems. Computer Methods in Applied Mechanics and Engineering , 1 (1),
1–16.

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., & Mahajan, A. (2013).
Mixed-integer nonlinear optimization. Acta Numerica, 22 , 1—131.

159

https://www.agilityrobotics.com/robots
https://www.agilityrobotics.com/robots

References

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control (3rd ed., Vol. I).
Athena Scientific.

Bertsekas, D. P. (2016). Nonlinear Programming (3rd ed.). Athena Scientific.
Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation Using

Nonlinear Programming (2rd ed.). Cambridge University Press.
Bjelonic, M., Grandia, R., Harley, O., Galliard, C., Zimmermann, S., & Hutter, M.

(2020). Whole-body MPC and online gait sequence generation for wheeled-
legged robots. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 8388–8395).

Bledt, G., & Kim, S. (2019). Implementing regularized predictive control for si-
multaneous real-time footstep and ground reaction force optimization. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(pp. 6316–6323).

Bledt, G., Wensing, P. M., & Kim, S. (2017). Policy-regularized model predictive
control to stabilize diverse quadrupedal gaits for the MIT cheetah. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(pp. 4102–4109).

Bloesch, M., Hutter, M., Hoepflinger, M. A., Leutenegger, S., Gehring, C., Remy,
C. D., & Siegwart, R. (2013). State estimation for legged robots-consistent
fusion of leg kinematics and IMU. In Robotics: Science and systems (Vol. 17,
pp. 17–24). MIT Press.

Bock, H., & Plitt, K. (1984). A multiple shooting algorithm for direct solution of
optimal control problems. In the 9th IFAC World Congress (pp. 1603–1608).

Bøhn, E., Gros, S., Moe, S., & Johansen, T. A. (2021). Optimization of the model pre-
dictive control meta-parameters through reinforcement learning. arXiv preprint
arXiv:2111.04146 .

Boston Dynamics. (n.d.-a). Atlas website. https://www.bostondynamics
.com/atlas.

Boston Dynamics. (n.d.-b). Spot website. https://www.bostondynamics.com/
products/spot.

Bretl, T. (2006). Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem. The International Journal of
Robotics Research, 25 (4), 317–342.

Bryson, A. E., & Ho, Y.-C. (1975). Applied Optimal Control: Optimization, Estima-
tion, and Control. CRC Press.

Budhiraja, R., Carpentier, J., Mastalli, C., & Mansard, N. (2018). Differential
dynamic programming for multi-phase rigid contact dynamics. In 2018 IEEE-
RAS International Conference on Humanoid Robots (Humanoids).

Bürger, A., Zeile, C., Altmann-Dieses, A., Sager, S., & Diehl, M. (2019). Design,
implementation and simulation of an MPC algorithm for switched nonlinear
systems under combinatorial constraints. Journal of Process Control , 81 , 15–
30.

Camurri, M., Fallon, M., Bazeille, S., Radulescu, A., Barasuol, V., Caldwell, D. G.,
& Semini, C. (2017). Probabilistic contact estimation and impact detection for
state estimation of quadruped robots. IEEE Robotics and Automation Letters ,

160

https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/products/spot
https://www.bostondynamics.com/products/spot

References

2 (2), 1023–1030.
Camurri, M., Ramezani, M., Nobili, S., & Fallon, M. (2020). Pronto: A multi-sensor

state estimator for legged robots in real-world scenarios. Frontiers in Robotics
and AI , 7 , 68.

Carius, J., Ranftl, R., Koltun, V., & Hutter, M. (2018). Trajectory optimization
with implicit hard contacts. IEEE Robotics and Automation Letters , 3 (4),
3316–3323.

Carius, J., Ranftl, R., Koltun, V., & Hutter, M. (2019). Trajectory optimization for
legged robots with slipping motions. IEEE Robotics and Automation Letters ,
4 (3), 3013–3020.

Caron, S., & Pham, Q.-C. (2017). When to make a step? Tackling the timing
problem in multi-contact locomotion by TOPP-MPC. In 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids) (pp. 522–528).

Caron, S., Pham, Q.-C., & Nakamura, Y. (2015). Stability of surface contacts for
humanoid robots: Closed-form formulae of the contact wrench cone for rectan-
gular support areas. In 2015 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 5107–5112).

Carpentier, J., & Mansard, N. (2018). Analytical derivatives of rigid body dynamics
algorithms. In Robotics: Science and Systems (RSS 2018) (p. hal-01790971v2f).

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., &
Mansard, N. (2019). The Pinocchio C++ library – A fast and flexible imple-
mentation of rigid body dynamics algorithms and their analytical derivatives.
In International Symposium on System Integration (SII) (pp. 614–619).

Chatzinikolaidis, I., You, Y., & Li, Z. (2020). Contact-implicit trajectory optimization
using an analytically solvable contact model for locomotion on variable ground.
IEEE Robotics and Automation Letters , 5 (4), 6357–6364.

Cheng, X., Huang, E., Hou, Y., & Mason, M. T. (2021). Contact mode guided
sampling-based planning for quasistatic dexterous manipulation in 2D. In 2021
IEEE International Conference on Robotics and Automation (ICRA) (pp. 6520–
6526).

Coumans, E., & Bai, Y. (2016–2022). Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org.

Dagum, L., & Menon, R. (1998). OpenMP: An industry-standard API for shared-
memory programming. IEEE Computational Science & Engineering , 5 (1), 46-
–55.

Dai, H., Valenzuela, A., & Tedrake, R. (2014). Whole-body motion planning with
centroidal dynamics and full kinematics. In 2014 IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids) (pp. 295–302).

Dantec, E., Budhiraja, R., Roig, A., Lembono, T., Saurel, G., Stasse, O., Fernbach,
P., Tonneau, S., Vijayakumar, S., Calinon, S., Taix, M., & Mansard, N. (2021).
Whole body model predictive control with a memory of motion: Experiments on
a torque-controlled talos. In 2021 IEEE International Conference on Robotics
and Automation (ICRA) (pp. 8202–8208).

Dantec, E., Taix, M., & Mansard, N. (2022). First order approximation of model
predictive control solutions for high frequency feedback. IEEE Robotics and

161

http://pybullet.org

References

Automation Letters , 7 (2), 4448–4455.
Deits, R., & Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-

integer convex optimization. In 2014 IEEE-RAS International Conference on
Humanoid Robots (Humanoids) (pp. 279–286).

Deng, H., & Ohtsuka, T. (2019). A parallel Newton-type method for nonlinear model
predictive control. Automatica, 109 , 108560.

Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G., & Kim, S. (2018). Dynamic
locomotion in the MIT cheetah 3 through convex model-predictive control. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 1–9).

Diehl, M., Bock, H. G., & Schlöder, J. P. (2005). A real-time iteration scheme for
nonlinear optimization in optimal feedback control. SIAM Journal on control
and optimization, 43 (5), 1714–1736.

Diehl, M., Bock, H. G., Schlöder, J. P., Findeisen, R., Nagy, Z., & Allgöwer, F.
(2002). Real-time optimization and nonlinear model predictive control of pro-
cesses governed by differential-algebraic equations. Journal of Process Control ,
12 (4), 577–585.

Diehl, M., Ferreau, H. J., & Haverbeke, N. (2009). Efficient numerical methods for
nonlinear MPC and moving horizon estimation. In Nonlinear Model Predictive
Control (pp. 391–417). Springer.

Ding, Y., Pandala, A., & Park, H.-W. (2019). Real-time model predictive control
for versatile dynamic motions in quadrupedal robots. In 2019 International
Conference on Robotics and Automation (ICRA) (pp. 8484–8490).

D. Kouzoupis, A. Z., G. Frison, & Diehl, M. (2018). Recent advances in quadratic pro-
gramming algorithms for nonlinear model predictive control. Vietnam Journal
of Mathematics , 46 (4), 863–882.

Englsberger, J., Ott, C., & Albu-Schäffer, A. (2015). Three-dimensional bipedal
walking control based on divergent component of motion. IEEE Transactions
on Robotics , 31 (2), 355–368.

Erez, T., Tassa, Y., & Todorov, E. (2012). Infinite-horizon model predictive control
for periodic tasks with contacts. Robotics: Science and systems VII , 73.

Erez, T., & Todorov, E. (2012). Trajectory optimization for domains with con-
tacts using inverse dynamics. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (pp. 4914–4919).

Fankhauser, P., Bloesch, M., Gehring, C., Hutter, M., & Siegwart, R. (2014).
Robot-centric elevation mapping with uncertainty estimates. In Mobile Ser-
vice Robotics (pp. 433–440). World Scientific.

Fankhauser, P., Bloesch, M., & Hutter, M. (2018). Probabilistic terrain mapping
for mobile robots with uncertain localization. IEEE Robotics and Automation
Letters (RA-L), 3 (4), 3019–3026.

Farshidian, F. (2017-2022). ocs2. Retrieved from https://github.com/
leggedrobotics/ocs2

Farshidian, F., Jelavic, E., Satapathy, A., Giftthaler, M., & Buchli, J. (2017). Real-
time motion planning of legged robots: A model predictive control approach.
In 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Hu-

162

https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/ocs2

References

manoids) (pp. 577–584).
Farshidian, F., Kamgarpour, M., Pardo, D., & Buchli, J. (2017). Sequential linear

quadratic optimal control for nonlinear switched systems. In the 20th IFAC
World Congress (Vol. 50, pp. 1463–1469).

Farshidian, F., Neunert, M., Winkler, A. W., Rey, G., & Buchli, J. (2017). An
efficient optimal planning and control framework for quadrupedal locomotion.
In 2017 IEEE International Conference on Robotics and Automation (ICRA)
(pp. 93–100).

Featherstone, R. (1983). The calculation of robot dynamics using articulated-body
inertias. The International Journal of Robotics Research, 2 (1), 13–30.

Featherstone, R. (2008). Rigid Body Dynamics Algorithms. Springer.
Felis, M. L. (2017). RBDL: an efficient rigid-body dynamics library using recursive

algorithms. Autonomous Robots , 41 (2), 495–511.
Fernbach, P., Tonneau, S., & Täıx, M. (2018). CROC: Convex resolution of centroidal

dynamics trajectories to provide a feasibility criterion for the multi contact
planning problem. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 1–9).

Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., & Diehl, M. (2014). qpOASES:
A parametric active-set algorithm for quadratic programming. Mathematical
Programming Computation, 6 (4), 327–363.

Ferrolho, H., Ivan, V., Merkt, W., Havoutis, I., & Vijayakumar, S. (2022). RoLoMa:
Robust loco-manipulation for quadruped robots with arms. arXiv preprint
arXiv:2203.01446 .

Florence, P. R., Manuelli, L., & Tedrake, R. (2018). Dense object nets: Learning
dense visual object descriptors by and for robotic manipulation. arXiv preprint
arXiv:1806.08756 .

Flores, P., Machado, M., Seabra, E., & Silva, M. (2011). A parametric study on the
Baumgarte stabilization method for forward dynamics of constrained multibody
systems. Journal of Computational and Nonlinear Dynamics , 6 , 011019.

Frasch, J. V., Sager, S., & Diehl, M. (2015). A parallel quadratic programming
method for dynamic optimization problems. Mathematical Programming Com-
putation, 7 (3), 289–329.

Frigerio, M., Buchli, J., Caldwell, D. G., & Semini, C. (2016). RobCoGen: a code
generator for efficient kinematics and dynamics of articulated robots, based
on Domain Specific Languages. Journal of Software Engineering for Robotics
(JOSER), 7 (1), 36–54.

Frison, G. (2016). Algorithms and methods for high-performance model predictive
control (Unpublished doctoral dissertation). Technical University of Denmark.

Frison, G., & Diehl, M. (2020). HPIPM: A high-performance quadratic programming
framework for model predictive control. IFAC-PapersOnLine, 53 (2), 6563–
6569.

Fu, J., & Zhang, C. (2021). Optimal control of path-constrained switched systems
with guaranteed feasibility. IEEE Transactions on Automatic Control .

Giftthaler, M., & Buchli, J. (2017). A projection approach to equality constrained
iterative linear quadratic optimal control. In 2017 IEEE-RAS 17th International

163

References

Conference on Humanoid Robotics (Humanoids) (pp. 61–66).
Giftthaler, M., Neunert, M., Stäuble, M., Buchli, J., & Diehl, M. (2018). A family

of iterative Gauss-Newton shooting methods for nonlinear optimal control. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 1–9).

Giftthaler, M., Neunert, M., Stäuble, M., Frigerio, M., Semini, C., & Buchli, J.
(2017). Automatic differentiation of rigid body dynamics for optimal control
and estimation. Advanced Robotics , 31 (22), 1225–1237.

Goebel, R., Sanfelice, R. G., & Teel, A. R. (2012). Hybrid Dynamical Systems.
Princeton University Press.

Grandia, R., Farshidian, F., Ranftl, R., & Hutter, M. (2019). Feedback MPC for
torque-controlled legged robots. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (pp. 4730–4737).

Grandia, R., Taylor, A. J., Ames, A. D., & Hutter, M. (2021). Multi-layered safety
for legged robots via control barrier functions and model predictive control. In
2021 IEEE International Conference on Robotics and Automation (ICRA) (pp.
8352–8358).

Grimminger, F., Meduri, A., Khadiv, M., Viereck, J., Wüthrich, M., Naveau, M.,
Berenz, V., Heim, S., Widmaier, F., Flayols, T., Fiene, J., Badri-Spröwitz, A.,
& Righetti, L. (2020). An open torque-controlled modular robot architecture
for legged locomotion research. IEEE Robotics and Automation Letters , 5 (2),
3650–3657.

Gros, S., & Zanon, M. (2019). Data-driven economic NMPC using reinforcement
learning. IEEE Transactions on Automatic Control , 65 (2), 636–648.

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. Retrieved from http://
eigen.tuxfamily.org

Han, X.-F., Laga, H., & Bennamoun, M. (2019). Image-based 3D object reconstruc-
tion: State-of-the-art and trends in the deep learning era. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43 (5), 1578–1604.

Hansen, P., Jaumard, B., & Savard, G. (1992). New branch-and-bound rules for linear
bilevel programming. SIAM Journal on Scientific and Statistical Computing ,
13 (5), 1194-–1217.

Hartley, R., Ghaffari, M., Eustice, R. M., & Grizzle, J. W. (2020). Contact-aided in-
variant extended Kalman filtering for robot state estimation. The International
Journal of Robotics Research, 39 (4), 402–430.

Hauser, J., & Saccon, A. (2006). A barrier function method for the optimization of
trajectory functionals with constraints. In 45th IEEE Conference on Decision
and Control (pp. 864–869).

Hoeller, D., Farshidian, F., & Hutter, M. (2020). Deep value model predictive control.
In Conference on Robot Learning (pp. 990–1004).

Hoheisel, T., Kanzow, C., & Schwartz, A. (2013). Theoretical and numerical compar-
ison of relaxation methods for mathematical programs with complementarity
constraints. Mathematical Programming , 137 (1), 257–288.

Howell, T. A., Jackson, B. E., & Manchester, Z. (2019). ALTRO: A fast solver for con-
strained trajectory optimization. In 2019 IEEE/RSJ International Conference

164

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

References

on Intelligent Robots and Systems (IROS) (pp. 7674–7679).
Hutter, M., Gehring, C., Lauber, A., Gunther, F., Bellicoso, C. D., Tsounis, V.,

Fankhauser, P., Diethelm, R., Bachmann, S., Bloesch, M., Kolvenbach, H.,
Bjelonic, M., Isler, L., & Meyer, K. (2017). ANYmal - toward legged robots for
harsh environments. Advanced Robotics , 31 (17), 918–931.

Hwangbo, J., Lee, J., & Hutter, M. (2018). Per-contact iteration method for solving
contact dynamics. IEEE Robotics and Automation Letters , 3 (2), 895–902.

Ishihara, K., Itoh, T. D., & Morimoto, J. (2019). Full-body optimal control to-
ward versatile and agile behaviors in a humanoid robot. IEEE Robotics and
Automation Letters , 5 (1), 119–126.

Jacobson, D. H., & Mayne, D. Q. (1970). Differential Dynamic Programming. Elsevier
Publishing Company.

Jenelten, F., Miki, T., Vijayan, A. E., Bjelonic, M., & Hutter, M. (2020). Perceptive
locomotion in rough terrain – online foothold optimization. IEEE Robotics and
Automation Letters , 5 , 5370–5376.

Johnson, E. R., & Murphey, T. D. (2011). Second-order switching time optimization
for nonlinear time-varying dynamic systems. IEEE Transactions on Automatic
Control , 56 (8), 1953–1957.

Jung, M. N., Kirches, C., & Sager, S. (2013). On perspective functions and vanishing
constraints in mixed-integer nonlinear optimal control. In G. R. M. Jünger
(Ed.), Facets of Combinatorial Optimization (pp. 387–417). Springer.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., &
Hirukawa, H. (2003). Biped walking pattern generation by using preview con-
trol of zero-moment point. In 2003 IEEE International Conference on Robotics
and Automation (ICRA) (Vol. 2, pp. 1620–1626).

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. (2011).
STOMP: Stochastic trajectory optimization for motion planning. In 2011
IEEE International Conference on Robotics and Automation (ICRA) (pp. 4569–
4574).

Kamikawa, Y., Kinoshita, M., Takasugi, N., Sugimoto, K., Kai, T., Kito, T.,
Sakamoto, A., Nagasaka, K., & Kawanami, Y. (2021). Tachyon: Design and con-
trol of high payload, robust, and dynamic quadruped robot with series-parallel
elastic actuators. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 894–901).

Kaneko, K., Kaminaga, H., Sakaguchi, T., Kajita, S., Morisawa, M., Kumagai, I.,
& Kanehiro, F. (2019). Humanoid robot HRP-5P: An electrically actuated
humanoid robot with high-power and wide-range joints. IEEE Robotics and
Automation Letters , 4 (2), 1431–1438.

Karnchanachari, N., Valls, M. I., Hoeller, D., & Hutter, M. (2020). Practical rein-
forcement learning for MPC: Learning from sparse objectives in under an hour
on a real robot. In Learning for dynamics and control (pp. 211–224).

Katayama, S. (2020-2022). robotoc. Retrieved from https://github.com/
mayataka/robotoc

Katayama, S., Doi, M., & Ohtsuka, T. (2020). A moving switching sequence approach
for nonlinear model predictive control of switched systems with state-dependent

165

https://github.com/mayataka/robotoc
https://github.com/mayataka/robotoc

References

switches and state jumps. International Journal of Robust and Nonlinear Con-
trol , 30 (2), 719–740.

Katayama, S., & Ohtsuka, T. (2020). Efficient solution method based on inverse
dynamics of optimal control problems for fixed-based rigid-body systems. In
the 21st IFAC World Congress (pp. 363–368).

Katayama, S., & Ohtsuka, T. (2021). Efficient solution method based on inverse
dynamics for optimal control problems of rigid body systems. In 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA) (pp. 2070–2076).

Katayama, S., & Ohtsuka, T. (2021a). Lifted contact dynamics for efficient opti-
mal control of rigid body systems with contacts. In 2022 IEEE International
Conference on Robotics and Automation (IROS) (accepted). Retrieved from
arXiv:2108.01781

Katayama, S., & Ohtsuka, T. (2021b). Riccati recursion for optimal control problems
of nonlinear switched systems. In the 7th IFAC Conference on Nonlinear Model
Predictive Control (NMPC 2021) (Vol. 54, p. 172-178).

Katayama, S., & Ohtsuka, T. (2021c). Structure-exploiting Newton-type method for
optimal control of switched systems. Retrieved from arXiv:2112.07232

Katayama, S., & Ohtsuka, T. (2022). Efficient Riccati recursion for optimal con-
trol problems with pure-state equality constraints. In 2022 American Control
Conference (ACC) (pp. 3579–3586).

Katz, B., Di Carlo, J., & Kim, S. (2019). Mini cheetah: A platform for pushing
the limits of dynamic quadruped control. In 2019 International Conference on
Robotics and Automation (ICRA) (pp. 6295–6301).

Kau, N., Schultz, A., Ferrante, N., & Slade, P. (2019). Stanford doggo: An open-
source, quasi-direct-drive quadruped. In 2019 International Conference on
Robotics and Automation (ICRA) (pp. 6309–6315).

Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12 (4), 566–580.

Koenemann, J., Del Prete, A., Tassa, Y., Todorov, E., Stasse, O., Bennewitz, M.,
& Mansard, N. (2015). Whole-body model-predictive control applied to the
HRP-2 humanoid. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 3346–3351).

Köhler, J., Soloperto, R., Müller, M. A., & Allgöwer, F. (2020). A computation-
ally efficient robust model predictive control framework for uncertain nonlinear
systems. IEEE Transactions on Automatic Control , 66 (2), 794–801.

Kouzoupis, D., Frison, G., Zanelli, A., & Diehl, M. (2018). Recent advances in
quadratic programming algorithms for nonlinear model predictive control. Viet-
nam Journal of Mathematics , 46 (4), 863–882.

Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., & Inoue, H. (2002). Dynamically-
stable motion planning for humanoid robots. Autonomous Robots , 12 (1), 105–
118.

Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: An efficient approach to single-
query path planning. In 2000 IEEE International Conference on Robotics and
Automation (ICRA) (Vol. 2, pp. 995–1001).

166

arXiv:2108.01781
arXiv:2112.07232

References

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen,
T., Marion, P., & Tedrake, R. (2016). Optimization-based locomotion planning,
estimation, and control design for the Atlas humanoid robot. Autonomous
Robots , 40 , 429–455.

LaValle, S. M., & Kuffner Jr, J. J. (2001). Randomized kinodynamic planning. The
International Journal of Robotics Research, 20 (5), 378–400.

LaValle, S. M., et al. (1998). Rapidly-exploring random trees: A new tool for path
planning. The annual research report .

Lengagne, S., Vaillant, J., Yoshida, E., & Kheddar, A. (2013). Generation of whole-
body optimal dynamic multi-contact motions. The International Journal of
Robotics Research, 32 (9-10), 1104–1119.

Li, H., Frei, R. J., & Wensing, P. M. (2021). Model hierarchy predictive control of
robotic systems. IEEE Robotics and Automation Letters , 6 (2), 3373–3380.

Li, H., & Wensing, P. M. (2020). Hybrid systems differential dynamic program-
ming for whole-body motion planning of legged robots. IEEE Robotics and
Automation Letters , 5 (4), 5448–5455.

Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., & Mordatch, I. (2019). Plan
online, learn offline: Efficient learning and exploration via model-based control.
In International Conference on Learning Representations (ICLR).

Lynch, K. M., & Park, F. C. (2017). Modern Robotics. Cambridge University Press.
Mastalli, C., Budhiraja, R., Merkt, W., Saurel, G., Hammoud, B., Naveau, M.,

Carpentier, J., Righetti, L., Vijayakumar, S., & Mansard, N. (2020). Crocoddyl:
An efficient and versatile framework for multi-contact optimal control. In 2020
IEEE International Conference on Robotics and Automation (ICRA) (pp. 2536–
2542).

Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D. G., & Semini, C. (2020). Motion
planning for quadrupedal locomotion: Coupled planning, terrain mapping, and
whole-body control. IEEE Transactions on Robotics , 36 (6), 1635–1648.

Mastalli, C., Merkt, W., Xin, G., Shim, J., Mistry, M., Havoutis, I., & Vijayakumar,
S. (2022). Agile maneuvers in legged robots: A predictive control approach.
arXiv preprint arXiv:2203.07554 .

Mesbah, A., Streif, S., Findeisen, R., & Braatz, R. D. (2014). Stochastic nonlin-
ear model predictive control with probabilistic constraints. In 2014 American
Control Conference (ACC) (pp. 2413–2419).

Messerer, F., Baumgärtner, K., & Diehl, M. (2021). Survey of sequential convex
programming and generalized Gauss-Newton methods. Citation: ESAIM: Pro-
ceedings and Surveys , 71 (1), 64–88.

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., & Hutter, M. (2022).
Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci-
ence Robotics , 7 (62), eabk2822.

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: a versatile
and accurate monocular SLAM system. IEEE Transactions on Robotics , 31 (5),
1147–1163.

Muratore, F., Eilers, C., Gienger, M., & Peters, J. (2021). Data-efficient domain
randomization with bayesian optimization. IEEE Robotics and Automation

167

References

Letters , 6 (2), 911–918.
Murray, R. M., Li, Z., & Sastry, S. S. (2017). A Mathematical Introduction to Robotic

Manipulation. CRC press.
Nakanishi, J., Mistry, M., & Schaal, S. (2007). Inverse dynamics control with floating

base and constraints. In 2007 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 1942–1947).

Natale, L., Bartolozzi, C., Pucci, D., Wykowska, A., & Metta, G. (2017). iCub:
The not-yet-finished story of building a robot child. Science Robotics , 2 (13),
eaaq1026.

Neunert, M., Giftthaler, M., Frigerio, M., Semini, C., & Buchli, J. (2016). Fast deriva-
tives of rigid body dynamics for control, optimization and estimation. In 2016
IEEE International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR) (pp. 91–97).

Neunert, M., Stäuble, M., Giftthaler, M., Bellicoso, C. D., Carius, J., Gehring, C.,
Hutter, M., & Buchli, J. (2018). Whole-body nonlinear model predictive control
through contacts for quadrupeds. IEEE Robotics and Automation Letters , 3 (3),
1458–1465.

Nguyen, Q., Hereid, A., Grizzle, J. W., Ames, A. D., & Sreenath, K. (2016). 3D
dynamic walking on stepping stones with control barrier functions. In 2016
IEEE 55th Conference on Decision and Control (CDC) (pp. 827–834).

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization (second ed.). Springer.
Nurkanović, A., Albrecht, S., & Diehl, M. (2020). Limits of MPCC formulations in

direct optimal control with nonsmooth differential equations. In 2020 European
Control Conference (ECC) (pp. 2015–2020).

Ohtsuka, T. (2004). A continuation/GMRES method for fast computation of non-
linear receding horizon control. Automatica, 40 (4), 563–574.

Ohtsuka, T., & Fujii, H. A. (1997). Real-time optimization algorithm for nonlinear
receding-horizon control. Automatica, 33 (6), 1147–1154.

Orin, D. E., Goswami, A., & Lee, S.-H. (2013). Centroidal dynamics of a humanoid
robot. Autonomous robots , 35 (2), 161–176.

Ott, C., Roa, M. A., & Hirzinger, G. (2011). Posture and balance control for biped
robots based on contact force optimization. In 2011 11th IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids) (pp. 26–33).

Pandala, A. G., Ding, Y., & Park, H.-W. (2019). qpSWIFT: A real-time sparse
quadratic program solver for robotic applications. IEEE Robotics and Automa-
tion Letters , 4 (4), 3355–3362.

Patterson, M. A., & Rao, A. V. (2014). GPOPS-II: A MATLAB software for solving
multiple-phase optimal control problems using hp-adaptive Gaussian quadra-
ture collocation methods and sparse nonlinear programming. ACM Transac-
tions on Mathematical Software, 41 (1).

Posa, M., Cantu, C., & Tedrake, R. (2014). A direct method for trajectory opti-
mization of rigid bodies through contact. The International Journal of Robotics
Research, 33 (1), 69–81.

Posa, M., Kuindersma, S., & Tedrake, R. (2016). Optimization and stabilization
of trajectories for constrained dynamical systems. In 2016 IEEE International

168

References

Conference on Robotics and Automation (ICRA) (pp. 1366–1373).
Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture point: A step to-

ward humanoid push recovery. In 2006 6th IEEE-RAS International Conference
on Humanoid Robots (Humanoids) (pp. 200–207).

Quirynen, R., Houska, B., Vallerio, M., Telen, D., Logist, F., Van Impe, J., & Diehl,
M. (2014). Symmetric algorithmic differentiation based exact Hessian SQP
method and software for Economic MPC. In 53rd IEEE Conference on Decision
and Control (pp. 2752–2757).

Raimondo, D. M., Limon, D., Lazar, M., Magni, L., & ndez Camacho, E. F. (2009).
Min-max model predictive control of nonlinear systems: A unifying overview
on stability. European Journal of Control , 15 (1), 5–21.

Ramuzat, N., Boria, S., & Stasse, O. (2022). Passive inverse dynamics control using
a global energy tank for torque-controlled humanoid robots in multi-contact.
IEEE Robotics and Automation Letters , 7 (2), 2787-2794.

Rao, C., Wright, S. J., & Rawlings, J. B. (1998). Application of interior-point methods
to model predictive control. Journal of Optimization Theory and Applications ,
99 (3), 723–757.

Rathod, N., Bratta, A., Focchi, M., Zanon, M., Villarreal, O., Semini, C., & Bem-
porad, A. (2021). Model predictive control with environment adaptation for
legged locomotion. IEEE Access , 9 , 145710–145727.

Rawlings, K., Mayne, D. Q., & Diehl, M. (2017). Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, LCC.

Reher, J., & Ames, A. D. (2021). Inverse dynamics control of compliant hybrid
zero dynamic walking. In 2021 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 2040–2047).

Robuschi, N., Zeile, C., Sager, S., & Braghin, F. (2021). Multiphase mixed-integer
nonlinear optimal control of hybrid electric vehicles. Automatica, 123 , 109325.

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Soueres, P., & Fourquet, J.-Y.
(2013). Dynamic whole-body motion generation under rigid contacts and other
unilateral constraints. IEEE Transactions on Robotics , 29 (2), 346–362.

Sager, S., Jung, M. N., & Kirches, C. (2011, 06). Combinatorial integral approxima-
tion. Mathematical Methods of Operations Research, 73 , 363–380.

Saputra, M. R. U., Markham, A., & Trigoni, N. (2018). Visual SLAM and structure
from motion in dynamic environments: A survey. ACM Computing Surveys
(CSUR), 51 (2), 1–36.

Saut, J.-P., Sahbani, A., El-Khoury, S., & Perdereau, V. (2007). Dexterous manip-
ulation planning using probabilistic roadmaps in continuous grasp subspaces.
In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 2907–2912).

Scheel, H., & Scholtes, S. (2000). Mathematical programs with complementarity
constraints: Stationarity, optimality, and sensitivity. Mathematics of Operations
Research, 25 (1), 1–22.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S.,
Goldberg, K., & Abbeel, P. (2014). Motion planning with sequential convex op-
timization and convex collision checking. The International Journal of Robotics

169

References

Research, 33 (9), 1251–1270.
Schultz, G., & Mombaur, K. (2010). Modeling and optimal control of human-like

running. IEEE/ASME Transactions on Mechatronics , 15 (5), 783–792.
Schwarz, M., Milan, A., Periyasamy, A. S., & Behnke, S. (2018). RGB-D object

detection and semantic segmentation for autonomous manipulation in clutter.
The International Journal of Robotics Research, 37 (4-5), 437–451.

Sideris, A., & Rodriguez, L. A. (2011). A Riccati approach for constrained linear
quadratic optimal control. International Journal of Control , 84 (2), 370–380.

Sleiman, J.-P., Carius, J., Grandia, R., Wermelinger, M., & Hutter, M. (2019).
Contact-implicit trajectory optimization for dynamic object manipulation. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 6814–6821).

Sleiman, J.-P., Farshidian, F., Minniti, M. V., & Hutter, M. (2021). A unified
MPC framework for whole-body dynamic locomotion and manipulation. IEEE
Robotics and Automation Letters , 6 (3), 4688–4695.

Smaldone, F. M., Scianca, N., Lanari, L., & Oriolo, G. (2021). Feasibility-driven step
timing adaptation for robust MPC-based gait generation in humanoids. IEEE
Robotics and Automation Letters , 6 (2), 1582–1589.

Solà, J., Deray, J., & Atchuthan, D. (2020). A micro Lie theory for state estimation
in robotics. arXiv:1812.01537.

Stasse, O., Flayols, T., Budhiraja, R., Giraud-Esclasse, K., Carpentier, J., Mirabel,
J., Del Prete, A., Souères, P., Mansard, N., Lamiraux, F., et al. (2017). TALOS:
A new humanoid research platform targeted for industrial applications. In 2017
IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
(pp. 689–695).

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: an
operator splitting solver for quadratic programs. Mathematical Programming
Computation, 12 (4), 637–672.

Stellato, B., Ober-Blöbaum, S., & Goulart, P. J. (2017). Second-order switching time
optimization for switched dynamical systems. IEEE Transactions on Automatic
Control , 62 (10), 5407–5414.

Stewart, D. E., & Trinkle, J. C. (1996). An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and coulomb friction. International
Journal for Numerical Methods in Engineering , 39 (15), 2673–2691.

Sugihara, T., Nakamura, Y., & Inoue, H. (2002). Real-time humanoid motion gener-
ation through ZMP manipulation based on inverted pendulum control. In 2002
IEEE International Conference on Robotics and Automation (ICRA) (Vol. 2,
pp. 1404–1409).

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Takenaka, T., Matsumoto, T., & Yoshiike, T. (2009). Real time motion generation
and control for biped robot -1st report: Walking gait pattern generation-. In
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 1084–1091).

Tassa, Y., Erez, T., & Todorov, E. (2012). Synthesis and stabilization of complex

170

References

behaviors through online trajectory optimization. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (pp. 4906–4913).

Thrun, S. (2002). Probabilistic robotics. Communications of the ACM , 45 (3), 52–57.
Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017).

Domain randomization for transferring deep neural networks from simulation
to the real world. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 23–30).

Todorov, E. (2014). Convex and analytically-invertible dynamics with contacts and
constraints: Theory and implementation in mujoco. In 2014 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 6054–6061).

Todorov, E., & Li, W. (2005). A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In 2005 American
Control Conference (ACC) (pp. 300–306).

Tonneau, S., Del Prete, A., Pettré, J., Park, C., Manocha, D., & Mansard, N. (2018).
An efficient acyclic contact planner for multiped robots. IEEE Transactions on
Robotics , 34 (3), 586–601.

Unitree Robotics. (n.d.). A1 website. https://www.unitree.com/products/
a1/.

Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., Duijkeren, N. v., Zanelli, A.,
Novoselnik, B., Albin, T., Quirynen, R., & Diehl, M. (2021). acados—a mod-
ular open-source framework for fast embedded optimal control. Mathematical
Programming Computation, 1–37.

Vukobratović, M., & Stepanenko, J. (1972). On the stability of anthropomorphic
systems. Mathematical Biosciences , 15 (1-2), 1–37.

Wang, Y., & Boyd, S. (2010). Fast model predictive control using online optimization.
IEEE Transactions on Control Systems Technology , 18 (2), 267–278.

Westervelt, E., Grizzle, J., & Koditschek, D. (2003). Hybrid zero dynamics of planar
biped walkers. IEEE Transactions on Automatic Control , 48 (1), 42–56.

Wolfslag, W. J., McGreavy, C., Xin, G., Tiseo, C., Vijayakumar, S., & Li, Z.
(2020). Optimisation of body-ground contact for augmenting the whole-body
loco-manipulation of quadruped robots. In 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) (pp. 3694–3701).

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., & Burgard, W. (2010).
Octomap: A probabilistic, flexible, and compact 3D map representation for
robotic systems. In 2010 IEEE International Conference on Robotics and Au-
tomation (ICRA) Workshop on Best Practice in 3D Perception and Modeling
for Mobile Manipulation (Vol. 2).

Wächter, A., & Biegler, L. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming , 106 , 25–57.

Xu, X., & Antsaklis, P. J. (2002). Optimal control of switched systems via non-linear
optimization based on direct differentiations of value functions. International
Journal of Control , 75 (16-17), 1406–1426.

Xu, X., & Antsaklis, P. J. (2004). Optimal control of switched systems based on
parameterization of the switching instants. IEEE Transactions on Automatic

171

https://www.unitree.com/products/a1/
https://www.unitree.com/products/a1/

References

Control , 49 (1), 2–16.
Yunt, K. (2011). An augmented Lagrangian based shooting method for the optimal

trajectory generation of switching Lagrangian systems. Dynamics of Contin-
uous, Discrete and Impulsive Systems Series B: Applications and Algorithms ,
18 (5), 615–645.

Yunt, K., & Glocker, C. (2006). Trajectory optimization of mechanical hybrid systems
using SUMT. In 9th IEEE International Workshop on Advanced Motion Control
(pp. 665–671).

Zanelli, A., Domahidi, A., Jerez, J., & Morari, M. (2020). FORCES NLP: An efficient
implementation of interior-point methods for multistage nonlinear nonconvex
programs. International Journal of Control , 93 (1), 13–29.

Zanelli, A., Frey, J., Messerer, F., & Diehl, M. (2021). Zero-order robust nonlinear
model predictive control with ellipsoidal uncertainty sets. In 7th IFAC Confer-
ence on Nonlinear Model Predictive Control (NMPC 2021) (Vol. 54, pp. 50–57).
Elsevier.

Zanelli, A., Quirynen, R., Jerez, J., & Diehl, M. (2017). A homotopy-based nonlinear
interior-point method for NMPC. IFAC-PapersOnLine, 50 (1), 13188–13193.

Zavala, V. M., & Biegler, L. T. (2009). The advanced-step NMPC controller: Opti-
mality, stability and robustness. Automatica, 45 (1), 86–93.

Zhang, J., & Singh, S. (2014). LOAM: Lidar odometry and mapping in real-time. In
Robotics: Science and Systems (RSS) (Vol. 2, pp. 1–9).

Zhao, W., Queralta, J. P., & Westerlund, T. (2020). Sim-to-real transfer in deep
reinforcement learning for robotics: a survey. In 2020 IEEE Symposium Series
on Computational Intelligence (SSCI) (pp. 737–744).

Zhao, Z.-Q., Zheng, P., Xu, S.-t., & Wu, X. (2019). Object detection with deep learn-
ing: A review. IEEE Transactions on Neural Networks and Learning Systems ,
30 (11), 3212–3232.

Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin,
C. M., Bagnell, J. A., & Srinivasa, S. S. (2013). Chomp: Covariant hamilto-
nian optimization for motion planning. The International Journal of Robotics
Research, 32 (9-10), 1164–1193.

172

List of Publications

Peer Reviewed Journal Articles

1. S. Katayama and T. Ohtsuka, “Inverse dynamics-based formulation of finite

horizon optimal control problems for rigid-body system,” Optimal Control Ap-

plications and Methods, Vol. 42, No. 6, pp. 1–19, 2021. Chapter 3

2. S. Katayama, M. Doi, and T. Ohtsuka, “A moving switching sequence approach

for nonlinear model predictive control of switched systems with state-dependent

switches and state jumps,” International Journal of Robust and Nonlinear Con-

trol, Vol. 30, No.2, pp. 719–740, 2020. Chapter 7

Peer Reviewed International Conference Proceed-

ings

1. S. Katayama and T. Ohtsuka, “Whole-body model predictive control with rigid

contacts via online switching time optimization,” 2022 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2022) Chapter 7

2. S. Katayama and T. Ohtsuka, “Lifted contact dynamics for efficient optimal

control of rigid body systems with contacts,” 2022 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2022) Chapter 4

3. S. Katayama and T. Ohtsuka, “Efficient Riccati recursion for optimal control

problems with pure-state equality constraints,” 2022 American Control Confer-

ence (ACC 2022), pp. 3579–3586, 2022. Chapter 5

4. S. Katayama and T. Ohtsuka, “Riccati recursion for optimal control problems

of nonlinear switched systems,” The 7th IFAC Conference on Nonlinear Model

Predictive Control (NMPC 2021), Vol. 54, No. 6, pp. 172–178, 2021. Chapter

6

173

References

5. S. Katayama and T. Ohtsuka, “Efficient solution method based on inverse dy-

namics for optimal control problems of rigid body systems,” 2021 IEEE Inter-

national Conference on Robotics and Automation (ICRA 2021), pp. 2070–2076,

2021. Chapter 3

6. S. Katayama and T. Ohtsuka, “Efficient solution method based on inverse dy-

namics of optimal control problems for fixed-based rigid-body systems,” The

21st IFAC World Congress 2020, Vol. 53, No. 2, pp. 6483–6489, 2020. Chap-

ter 3

7. S. Katayama and T. Ohtsuka, “Automatic code generation tool for nonlinear

model predictive control with Jupyter,” The 21st IFAC World Congress 2020,

Vol. 53, No. 2, pp. 7033–7040, 2020.

8. S. Katayama and T. Ohtsuka, “Scenario-based nonlinear model predictive con-

trol for switched systems with externally forced switchings,” The 57th Annual

Conference of the Society of Instrument and Control Engineers of Japan (SICE),

pp. 1098–1103, 2018.

9. S. Katayama, Y. Satoh, M. Doi and T. Ohtsuka, “Nonlinear model predic-

tive control for systems with state-dependent switches and state jumps using a

penalty function method,” 2018 IEEE Conference on Control Technology and

Applications (CCTA), pp. 312–317, 2018.

10. S. Katayama, Y. Satoh, M. Doi and T. Ohtsuka, “Nonlinear model predic-

tive control for systems with autonomous state jumps using a penalty function

method,” The 11th Asian Control Conference (ASCC), pp. 2125–2130, 2017.

Domestic Conference Proceedings

1. S. Katayama and T. Ohtsuka, “Efficient numerical optimal control of switched

systems and its application to whole-body optimal control of walking robots,”

The 64th Japan Joint Automatic Control Conference, 2021 (Outstanding Pre-

sentation Award)

2. S. Katayama and T. Ohtsuka, “Fast and robust numerical optimal control solver

for multi-body robotic systems,” The 39th annual conference of the Robotics

Society of Japan (RSJ), 2021

174

References

Poster Presentation

1. S. Katayama and T. Ohtsuka, “Whole-body model predictive control (MPC)

solver for robotics systems,” The 16th ICT Innovation, Kyoto University, 2022

(Outstanding Research Award)

175

	Notation
	Introduction
	Background
	Overview of Planning and Control of Robotic Systems with Contacts
	Contact and motion planning
	Sampling-based motion planning
	Optimization-based motion planning
	Hierarchical contact and motion planning
	Simultaneous contact and motion planning

	Control
	Reduced-order models for legged robot control
	Whole-body control
	State estimation for legged robots

	Online motion planning as control: Model predictive control (MPC)

	Challenges in Real-Time MPC of Robotic Systems
	Overview of MPC algorithms
	MPC algorithms for fast and large-scale robotic systems
	MPC algorithms for switched systems

	Outline and Contributions

	Preliminaries
	Rigid Body Systems
	Kinematics
	Forward and differential kinematics
	Contact kinematics

	Dynamics
	Inverse dynamics
	Forward dynamics
	Contact-consistent forward dynamics
	Impulse dynamics
	State space representation

	Software

	Model Predictive Control
	Overview
	Numerical optimal control techniques for fast MPC of large-scale systems
	Direct multiple shooting method
	Primal-dual interior point method
	Gauss-Newton Hessian approximation
	Riccati recursion
	Summary of Newton-type method for MPC

	Inverse Dynamics-Based Solution Method of Optimal Control of Rigid Body Systems
	Introduction
	Optimal Control Problem Based on Inverse Dynamics
	Rigid-body systems
	Optimal control problem
	KKT conditions

	Solution Method of Optimal Control Problem
	Linearization for Newton's method
	Condensing inverse dynamics
	Algorithm

	Numerical Experiments
	Experimental settings
	Computational time
	Numerical robustness
	MPC for floating base systems

	Summary

	Lifted Contact Dynamics for Efficient Optimal Control of Rigid Body Systems with Contacts
	Introduction
	Overview of Optimal Control Problems of Rigid-Body Systems with Contacts
	Contact dynamics
	Impulse dynamics
	Conventional formulation of optimal control

	Lifted Contact Dynamics in Optimal Control
	Lifted contact dynamics
	Lifted impulse dynamics
	Riccati recursion for LQR subproblem
	Primal-dual interior-point method for inequality constraints
	Algorithm
	Comparison with existing methods
	Comparison with non-lifted formulations
	Comparison with inverse dynamics-based algorithm

	Numerical Experiments: Whole-Body Optimal Control of Quadrupedal Gaits
	Experimental settings
	Results and discussion

	Summary

	Efficient Riccati Recursion for Optimal Control Problems with Pure-State Equality Constraints
	Introduction
	Transformation of Optimal Control Problem with Pure-State Equality Constraints
	Original optimal control problem
	Transformation of optimal control problem
	Optimality conditions

	Riccati Recursion
	Linearization for Newton's method
	Terminal stage
	Intermediate stages without equality constraint
	Intermediate stage with an equality constraint
	Initial stage

	Derivation of Riccati recursion
	Terminal stage
	Intermediate stages without an equality constraint
	Intermediate stage with an equality constraint

	Algorithm, convergence, and computational analysis

	Theoretical Properties of Optimal Control Problem Transformation
	Numerical Experiments on Whole-Body Quadrupedal Gaits Optimization
	Experimental settings
	Trotting gait for different numbers of steps
	Trotting, jumping, and running gait problems

	Summary

	Structure-Exploiting Newton-Type Method for Optimal Control of Switched Systems
	Introduction
	Problem Formulation
	KKT System for Newton-Type Method
	Riccati Recursion to Solve KKT Systems
	Backward recursion
	Terminal stage
	Intermediate stages
	Phase transition stages

	Forward recursion
	Properties of proposed Riccati recursion
	Reduced Hessian modification via Riccati recursion
	Algorithm

	State Jumps and Switching Conditions
	Switching conditions

	Numerical Experiments
	Comparison with off-the-shelf solvers
	Problem settings
	Results

	Whole-body optimal control of quadrupedal gaits
	Problem settings
	Results

	Summary

	Whole-Body Model Predictive Control with Rigid Contacts via Online Switching Time Optimization
	Introduction
	Optimal Control Problem Formulation
	Rigid body systems with rigid contacts
	Inequality constraints
	Optimal control problem of switched systems

	Model Predictive Control with Online Switching Time Optimization
	Direct multiple shooting method with mesh-refinement
	Riccati recursion to compute Newton step
	Heuristic regularization to improve convergence property
	Minimum dwell-time constraints
	Software implementation

	Simulation Study: Comparison to Conventional MPC with Fixed Contact Timings
	Experimental settings
	Results

	Hardware Experiments on Quadrupedal Robot Unitree A1
	Experimental settings
	Results

	Summary

	Conclusions
	Summary of Contributions
	Discussion and Future Work
	Application to a wider variety of robotic problems
	Improving robustness

	robotoc: Open-Source Software for Whole-Body Model Predictive Control
	Introduction
	Interface Overview
	robotoc::Robot
	robotoc::CostFunction
	robotoc::Constraints
	robotoc::ContactSequence
	robotoc::STOCostFunction and robotoc::STOConstraints
	robotoc::OCP and robotoc::OCPSolver

	Implementation Details
	Application Examples
	Whole-body MPC of a humanoid robot walking
	Problem settings and MPC design
	Results

	Whole-body MPC of quadruped robot gaits
	Problem settings and MPC design
	Results

	Summary

	Bibliography
	List of Publications

