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Abstract
We consider an inverse source problem in the stationary radiating transport
through a two dimensional absorbing and scattering medium. Of specific inter-
est, the exiting radiation is measured on an arc. The attenuation and scattering
properties of the medium are assumed known. For scattering kernels of finite
Fourier content in the angular variable, we show how to quantitatively recover
the part of the isotropic sources restricted to the convex hull of the measure-
ment arc. The approach is based on the Cauchy problem with partial data
for a Beltrami-like equation associated with A-analytic maps in the sense of
Bukhgeim, and extends authors’ previous work to this specific partial data case.
The robustness of the method is demonstrated by the results of several numerical
experiments.

Keywords: radiative transport, source reconstruction, scattering, A-analytic
maps, Hilbert transform, optical molecular imaging, bioluminescence
tomography

(Some figures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1361-6420/21/115005+19$33.00 © 2021 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6420/ac2d75
https://orcid.org/0000-0002-2197-2875
https://orcid.org/0000-0001-5456-6630
mailto:fujiwara@acs.i.kyoto-u.ac.jp
mailto:kamran.sadiq@ricam.oeaw.ac.at
mailto:tamasan@math.ucf.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ac2d75&domain=pdf&date_stamp=2021-10-21
https://creativecommons.org/licenses/by/4.0/


Inverse Problems 37 (2021) 115005 H Fujiwara et al

1. Introduction

Let Ω be a strictly convex planar domain. In the steady state case, when generated solely by
a source f inside Ω, the density u(z, θ) of particles at z traveling in the direction θ through an
absorbing and scattering domain Ω solves the stationary transport boundary value problem

θ · ∇u(z, θ) + a(z, θ)u(z, θ) −
∫

S1
k(z, θ, θ′)u(z, θ′)dθ′ = f (z, θ), (z, θ) ∈ Ω× S1,

u|Γ− = 0,

(1)

where Γ− := {(ζ, θ) ∈ ∂Ω× S1 : ν(ζ) · θ < 0} with ν being the outer unit normal field at
the boundary. The boundary condition indicates that no radiation is coming from outside Ω.
Throughout, the measure on the circle is normalized to

∫
S1 dθ = 1.

The boundary value problem (1) is known to have a unique solution under various
‘subcritical’ assumptions, e.g., [1, 5–7, 9, 21], with a general result in [31] showing that,
for an open and dense set of coefficients a ∈ C2(Ω× S1) and k ∈ C2(Ω× S1 × S1), the
problem (1) has a unique solution u ∈ L2(Ω× S1) for any f ∈ L2(Ω× S1). Some of our argu-
ments in the reconstruction method here require solutions u ∈ C1,μ(Ω× S1), 1

2 < μ < 1. We
revisit the arguments in [31] and show that such a regularity can be achieved for sources
f ∈ W2,p(Ω× S1), p > 4; see theorem 2.2 (b) below.

For an arc Λ of the boundary of Ω, we consider the inverse problem of determining f from
measurements of exiting radiation g on Λ:

u|Λ+ = g, (2)

where Λ+ := {(z, θ) ∈ Λ× S1 : ν(z) · θ > 0} with ν being the outer unit normal field at the
boundary.

When full boundary data is available (Λ = ∂Ω) the problem has been well studied, e.g.,
[2, 12, 19, 31] in Euclidean domains, and [22, 29] in refractive media (Riemannian domains).

In the partial data case, there are only two results: the work in [16] formulates a local tomog-
raphy question, and establishes unique determination of the wavefront set of the source in a
specific subdomain (called visible set). Moreover, if the source is a priori known to be sup-
ported in this visible set, and the medium has an analytic attenuation coefficient, then the
source is uniquely determined by the specific partial data. In contrast, we provide a quanti-
tative reconstruction method where the source may also be supported outside this visible set,
and the attenuation is merely twice differentiable. The work in [30] formulates the partial data
problem for a slab domain, and reconstructs a source from known data on each side on suffi-
ciently long intervals. In contrast, our method here assumes only ‘one sided’ boundary data,
and does not require iterative solvability of the forward problem.

The problem formulated here is the two dimensional version of the corresponding three
dimensional problem occurring in imaging techniques such as bioluminescence tomography
and optical molecular imaging, see [15, 17, 35] and references therein.

Except for the results in section 2, which concern the forward problem, in this work the
source and attenuation coefficient are assumed isotropic, f = f (z) and a = a(z), and that
the scattering kernel k(z, θ, θ′) = k(z, θ · θ′) depends polynomially on the angle between the
directions,

k(z, cos θ) = k0(z) + 2
M∑

n=1

k−n(z) cos(nθ), (3)
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for some fixed integer M � 1. Moreover, the functions a, f , k are assumed real valued. These
assumptions occur naturally in radiative transfer models in optics, see, e.g. [4].

Our main result, theorem 4.1, shows that u|Λ+ determines both f and u in the convex hull of
Λ, and provides a method of reconstruction. Specific to two dimensional domains, our approach
is based on the Cauchy problem with partial data for a Beltrami-like equation associated with A-
analytic maps in the sense of Bukhgeim [3], and extends the authors’ previous work [12], which
used measurements on the entire boundary, to this specific partial data case. More precisely,
for scattering kernels of finite Fourier content as in (3), we prove that the trace u|Λ determines
u on the chord joining the endpoints of Λ. The role of the finite Fourier content has been
independently recognized in [22].

As demonstrated by the numerical experiments in section 5, the method is robust with
respect to the modeling error, in the sense that it reconstructs discontinuous sources, even when
embedded in media with a discontinuous absorption property, and with a scattering kernel of
infinite Fourier content in the angular variable. For the particular choice of coefficients, the
method is also robust with respect to an added relative error in the L2 sense of 5.1%.

2. Remarks on the existence and regularity of the forward problem

In the absence of some subcritical assumption, the well posedness in Lp(Ω× S1) of the bound-
ary value problem (1) relies on the following compactness result, proven in [31, lemma 2.4]
for the case p = 2 and a and k twice differentiable. In this section we revisit the arguments in
[31] for any 1 < p < ∞, and show that they hold if the attenuation is merely once differen-
tiable. We work in two dimensions but this is not essential. Adopting the notation in [31], let
us consider the operators

[T−1
1 ψ](x, θ) =

∫ 0

−∞
e−

∫ 0
s a(x+tθ,θ)dtψ(x + sθ, θ)ds, and

[Kψ](x, θ) =
∫

S1
k(x, θ, θ′)ψ(x, θ′)dθ′,

(4)

where the intervening functions are extended by 0 outside Ω.
Using the formal expansion

u = T−1
1 f + T−1

1 KT−1
1 f + T−1

1 (KT−1
1 K)[I − T−1

1 K]−1T−1
1 f , (5)

the well posed-ness in Lp(Ω× S1) of the boundary value problem (1) reduces to the invertibility
of I − T−1

1 K in Lp(Ω× S1).
To further simplify notations, let x̂ = x

|x| , so that for y �= x we have y = x − |x − y|(x̂ − y).

Proposition 2.1. Let a ∈ C1(Ω× S1) and k ∈ C2(Ω× S1 × S1). Then the operator

KT−1
1 K : Lp(Ω× S1) → W1,p(Ω× S1) is bounded, 1 < p < ∞. (6)

Proof. Using the definitions of T−1
1 and K above, and a change to polar coordinates, one can

write

[KT−1
1 Kψ](x, θ) =

∫
S1

∫
Ω

η
(

x, |x − y|, (x̂ − y), θ, θ′
)

|x − y| ψ
(
y, θ′) dy dθ′, (7)

3
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where, for
(
x, r,α, θ, θ′) ∈ Ω× [0,∞) × S1 × S1 × S1,

η
(
x, r,α, θ, θ′) = e−

∫ r
0 a(x−tα,α)dtk (x, θ,α) k

(
x − rα,α, θ′) .

An application of the fundamental theorem of calculus to r 	→ η
(
x, r,α, θ, θ′) yields

η
(
x, r,α, θ, θ′) = η

(
x, 0,α, θ, θ′)− rk(x, θ,α)η1

(
x, r,α, θ′) , (8)

where, for α = (α1,α2), the function η1(x, r,α, θ′) is defined by

∫ 1

0
e−

∫ rρ
0 a(x−tα,α)dt

⎡⎣a(x − rρα,α)k(x − rρα,α, θ′) +
2∑

j=1

α j
∂k
∂x j

(x − rρα,α, θ′)

⎤⎦ dρ.

(9)

Note that in η1 there are no derivatives taken on a, whereas there are first order derivatives on
k.

The split of the kernel in (8) induces the split of the operator KT−1
1 K = A − B with

[Aψ](x, θ) =
∫

S1

∫
Ω

k
(

x, θ, x̂ − y
)

k
(

x, x̂ − y, θ′
)

|x − y| ψ
(
y, θ′) dy dθ′, and

[Bψ](x, θ) =
∫

S1

∫
Ω

k
(

x, θ, x̂ − y
)
η1

(
x, |x − y|, x̂ − y, θ′

)
ψ
(
y, θ′) dy dθ′,

where η1 is defined in (9).
Using

∇ 1
|x − y| =

ŷ − x
|x − y|2 ,

∂

∂x j

(
xl − yl

|x − y|

)
=

1
|x − y|

(
δ jl −

(x j − y j)(xl − yl)
|x − y|2

)
,

and the regularity a ∈ C1(Ω× S1) and k ∈ C2(Ω× S1 × S1), by a straightforward calculation
of the derivatives, one can verify that ∂

∂θ j
B is an operator with bounded kernel, while ∂

∂x j
B

and ∂
∂θ j

A are operators with weakly singular kernel, all of which are bounded on Lp(Ω× S1),
e.g., [20, theorem VIII.3.1]. On the other hand, in addition to the terms with weakly singular
kernels, the derivatives ∂

∂x j
A also yield operators of the Calderón–Zygmund type,

[Cv](x, θ) =
∫

S1

∫
Ω

φ(x, x̂ − y, θ, θ′)
|x − y|2 v(y, θ′)dy dθ′, (10)

where the characteristic φ satisfies

sup
Ω×S1×S1×S1

|φ(x,α, θ, θ′)| < ∞. (11)

The following lemma concludes the proof of the proposition 2.1. �

Lemma 2.1. Let C be the operator in (10) with the characteristic φ satisfying (11). Then C
is bounded in Lp(Ω× S1), p > 1.
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Proof. For brevity let us introduce the following notations

φ∞(x,α) := sup
θ,θ′∈S1

|φ(x,α, θ, θ′)|, ψ(y) :=
∫

S1
|v(y, θ′)|dθ′, (12)

and note that, via the Hölder inequality, ‖ψ‖Lp(Ω) � ‖v‖Lp(Ω×S1). Using the Calderon–
Zygmund boundedness theorem [20, theorem XI.3.1] (the third inequality below), we estimate

‖Cv‖p

Lp(Ω×S1)
�
∫
Ω

sup
θ∈S1

|[Cv](x, θ)|pdx �
∫
Ω

∣∣∣∣∣
∫

S1

∫
Ω

φ∞(x, x̂ − y)
|x − y|2 |v(y, θ′)|dy dθ′

∣∣∣∣∣
p

dx

=

∫
Ω

∣∣∣∣∣
∫
Ω

φ∞(x, x̂ − y)
|x − y|2 ψ(y)dy

∣∣∣∣∣
p

dx � C‖ψ‖p
Lp(Ω)

� C‖v‖p

Lp(Ω×S1)
.

�
The following simple result is useful.

Lemma 2.2. Let X be a Banach space and A : X → X be bounded. Then I ± A have bounded
inverses in X, if and only if I − A2 has a bounded inverse in X.

In particular, for λ ∈ C, the operator I − T−1
1 (λK) is invertible in Lp(Ω× S1) if

I − (T−1
1 (λK))2 is invertible in Lp(Ω× S1). By proposition 2.1, (T−1

1 (λK))2 is compact for any
λ ∈ C. Since I − (T−1

1 (λK))2 is invertible for λ in a neighborhood of 0, an application of the
analytic Fredholm alternative in Banach spaces, e.g., [8, theorem VII.4.5], yields the following
result.

Theorem 2.1. Let p > 1, a ∈ C1(Ω× S1), and k ∈ C2(Ω× S1 × S1). At least one of the
following statements is true.

(a) I − T−1
1 K is invertible in Lp(Ω× S1).

(b) There exists ε > 0 such that I − T−1
1 (λK) is invertible in Lp(Ω× S1), for any

0 < |λ− 1| < ε.

If a ∈ C2(Ω× S1), then the regularity of the solution u of (1) increases with the regularity
of f as follows.

Theorem 2.2. Consider the boundary value problem (1) with a ∈ C2(Ω× S1). For p > 1,
let k ∈ C2(Ω× S1 × S1) be such that I − T−1

1 K is invertible in Lp(Ω× S1), and let u ∈ Lp(Ω×
S1) in (5) be the solution of (1).

(a) If f ∈ W1,p(Ω× S1), then u ∈ W1,p(Ω× S1).
(b) If f ∈ W2,p(Ω× S1), then u ∈ W2,p(Ω× S1).

Proof.

(a) Recall the representation (5) of the solution of (1),

u = T−1
1 f + T−1

1 KT−1
1 f + T−1

1 [KT−1
1 K](I − T−1

1 K)−1T−1
1 f .

5



Inverse Problems 37 (2021) 115005 H Fujiwara et al

It is easy to see that T−1
1 and K preserve the space W1,p(Ω× S1), so that the first two terms

belong to W1,p(Ω× S1). Now, by proposition 2.1, the third term is also in W1,p(Ω× S1). Note
that we only need a ∈ C1(Ω× S1) for part (a).

(b) For brevity we introduce the operators

T−1
0 u(x, θ) =

∫ 0

−∞
u(x + tθ, θ)dt, Kju(x, θ) =

∫
S1

∂k
∂x j

(x, θ, θ′)u(x, θ′)dθ′,

T̃−1
0 u(x, θ) =

∫ 0

−∞
u(x + tθ, θ)t dt, K̂ ju(x, θ) =

∫
S1

∂k
∂θ j

(x, θ, θ′)u(x, θ′)dθ′, j = 1, 2.

(13)

It is easy to see that T−1
0 , T̃−1

0 , Kj and K̂ j preserve W1,p(Ω× S1).

By evaluating (1) at x + tθ and integrating in t from −∞ to 0, the problem (1) with zero
incoming fluxes is equivalent to the integral equation.

u + T−1
0 (au) − T−1

0 Ku = T−1
0 f . (14)

For f ∈ W1,p(Ω× S1), according to part (a), ux j ∈ Lp(Ω× S1). In particular ux j solves the
integral equation

ux j + T−1
0 (aux j) − T−1

0 Kux j = T−1
0 f x j − T−1

0 (ax ju) + T−1
0 Kju. (15)

Moreover, since a ∈ C2(Ω× S1), k ∈ C2(Ω× S1 × S1), and f ∈ W2,p(Ω× S1), the right-hand
side of (15) lies in W1,p(Ω× S1). By applying part (a) above, we get that the unique solution
to (15)

ux j ∈ W1,p(Ω× S1), j = 1, 2. (16)

For f ∈ W1,p(Ω× S1), also according to part (a), uθ j ∈ Lp(Ω× S1). In particular uθ j is the
unique solution of the integral equation

uθ j + T−1
0 (auθ j) = T−1

0 f θ j − T̃−1
0 (aux j) − T̃−1

0 (ax ju) − T−1
0 (aθ ju) + T̃−1

0 Kju + T−1
0 K̂ ju,

(17)

which is of the type (14) with K = 0. Moreover, since f ∈ W2,p(Ω× S1), and, according to
(16), ux j ∈ W1,p(Ω× S1), j = 1, 2, the right-hand side of (17) lies in W1,p(Ω× S1). Again, by
applying part (a), we get

uθ j ∈ W1,p(Ω× S1), j = 1, 2.

Thus, u ∈ W2,p(Ω× S1). �

6
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3. Preliminaries

In this section we recall the existing results and concepts used in our reconstruction method.
For 0 < μ < 1, and Γ (some part of) the boundary ∂Ω we consider the Banach spaces:

l1,1
∞ (Γ) :=

⎧⎨⎩v = 〈v0, v−1, v−2, . . .〉 : ‖v‖l1,1
∞ (Γ) := sup

ξ∈Γ

∞∑
j=0

〈 j〉|v− j(ξ)| < ∞

⎫⎬⎭ ,

Cμ(Γ; l1) :=

⎧⎪⎨⎪⎩v = 〈v0, v−1, v−2, . . .〉 : sup
ξ∈Γ

‖v(ξ)‖l1 + sup
ξ,η∈Γ
ξ �=η

‖v(ξ) − v(η)‖l1

|ξ − η|μ < ∞

⎫⎪⎬⎪⎭ ,

where, for brevity, we use the notation 〈 j〉 = (1 + | j|2)1/2. We similarly consider l1,1
∞ (Ω),

Cμ(Ω; l1), and Cμ(Ω; l∞).
A sequence valued mapΩ 
 z 	→ v(z) := 〈v0(z), v−1(z), v−2(z), . . .〉 in C(Ω; l∞) ∩ C1(Ω; l∞)

is called L2-analytic (in the sense of Bukhgeim), if

∂v(z) + L2∂v(z) = 0, z ∈ Ω, (18)

where L is the left shift operator, L〈v0, v−1, v−2, . . .〉 = 〈v−1, v−2, . . .〉, and L2 = L ◦ L. Note
that we use the sequences of non-positive indexes to conform with the original notation in
Bukhgeim’s work [3].

Analogous to the analytic maps, the L2-analytic maps are determined by their boundary
values via a Cauchy-like integral formula [3]. Following [10], the Bukhgeim–Cauchy operator
B acting on v = 〈v0, v−1, v−2, . . .〉 is defined component-wise for n � 0 by

(Bv)n(z) :=
1

2πi

∫
∂Ω

vn(ζ)
ζ − z

dζ +
1

2πi

∫
∂Ω

{
dζ

ζ − z
− dζ

ζ − z

} ∞∑
j=1

vn−2 j(ζ)

(
ζ − z
ζ − z

) j

, z ∈ Ω.

(19)

As shown in [27, theorem 2.2], if v = 〈v0, v−1, v−2, . . .〉 ∈ l1,1
∞ (∂Ω) ∩ Cμ(∂Ω; l1), then Bv ∈

C1,μ(Ω; l∞) ∩ C(Ω; l∞) is L2-analytic in Ω. If v ∈ C1,μ(Ω; l∞) ∩ C(Ω; l∞) is L2-analytic in Ω,
then v(z) = Bv(z), for z ∈ Ω.

Also similar to the analytic maps, the traces on the boundary of L2-analytic maps satisfy
some constraints, which can be expressed in terms of a corresponding Hilbert transform intro-
duced in [26]. More precisely, the Bukhgeim–Hilbert transform H is defined component-wise
for n � 0 by

(Hv)n(ξ) =
1
π

∫
∂Ω

vn(ζ)
ζ − ξ

dζ +
1
π

∫
∂Ω

{
dζ

ζ − ξ
− dζ

ζ − ξ

} ∞∑
j=1

vn−2 j(ζ)

(
ζ − ξ

ζ − ξ

) j

, ξ ∈ Γ,

(20)

and we refer to [26] for its mapping properties. For the proof of the theorem below we refer to
[26, theorem 3.2].

Theorem 3.1. Let v = 〈v0, v−1, v−2, . . .〉 ∈ l1,1
∞ (∂Ω) ∩ Cμ(∂Ω; l1) be defined on the bound-

ary ∂Ω. Then v is the boundary value of an L2-analytic function if and only if

(I + iH)v = 0. (21)

7
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In addition to L2-analytic maps, another ingredient consists in the one-to-one relation
between solutions u := 〈u0, u−1, u−2, . . .〉 to

∂u−n(z) + ∂u−n−2(z) + a(z)u−n−1(z) = 0, z ∈ Ω, n � 0. (22)

and the L2-analytic map v satisfying

∂v−n(z) + ∂v−n−2(z) = 0, z ∈ Ω, n � 0; (23)

see [28, lemma 4.2] for details. The relation can be expressed via the convolutions

v−n(z) =
∞∑
j=0

α j(z)u−n− j(z), z ∈ Ω, n � 0,

u−n(z) =
∞∑
j=0

β j(z)v−n− j(z), z ∈ Ω, n � 0,

(24)

where αj’s and β j’s are the Fourier modes of e∓h,

e−h(z,θ) :=
∞∑

m=0

αm(z)eimθ, eh(z,θ) :=
∞∑

m=0

βm(z)eimθ, (z, θ) ∈ Ω× S1, (25)

with h defined by

h(z, θ) :=Da(z, θ) − 1
2

(I − iH) Ra(z · θ⊥, θ⊥). (26)

In the above formula, θ⊥ is orthogonal to θ, Da(z, θ) =
∫∞

0 a(z + tθ)dt is the divergent beam
transform of the attenuation a, Ra(s, θ⊥) =

∫∞
−∞a

(
sθ⊥ + tθ

)
dt is the Radon transform of the

attenuation a, and H is the (infinite) Hilbert transform

H f (x) =
1
π

∫ ∞

−∞

f (s)
x − s

ds (27)

taken in the first variable and evaluated at s = z· θ⊥. The function h appeared first in [24]
and enjoys the crucial property of having vanishing negative Fourier modes. We refer to
[28, lemma 4.1] for the properties of h used in here.

The method of reconstruction below considers the operator [I − iHt], where Ht is the finite
Hilbert transform

Ht f (x) =
1
π

∫ l

−l

f (s)
x − s

ds, x ∈ (−l, l), (28)

with the integral understood in the sense of principal value. It is well-known ([32]) that iHt is
a bounded operator on L2(−l, l) with spectrum [−1, 1], see [18, 25]. However, 1 is not in the
point spectrum. More precisely,

Proposition 3.1. On L2(−l, l), Ker[I − iHt] = {0}.

For a proof based on a Riemann–Hilbert problem see [34], or, for an elementary argument
see [14].

8
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4. Reconstruction in Ω+ of a sufficiently smooth isotropic source f

Recall the boundary value problem (1):

θ · ∇u(z, θ) + a(z)u(z, θ) −
∫

S1
k(z, θ · θ′)u(z, θ′)dθ′ = f (z), (z, θ) ∈ Ω× S1,

u|Γ− = 0,

(29)

for an isotropic source f and attenuation coefficient a, and with a scattering kernel k of the type
(3),

k(z, cos θ) = k0(z) + 2
M∑

n=1

k−n(z) cos(nθ), (30)

for some fixed integer M � 1.
We assume that a, k0, k−1, . . . , k−M ∈ C2(Ω) are such that the forward problem (29) has

a unique solution u ∈ Lp(Ω× S1) for any f ∈ Lp(Ω), see theorem 2.1. We also assume an
unknown source of a priori regularity f ∈ W2,p(Ω), p > 4. According to theorem 2.2 part
(b), u ∈ C1,μ(Ω× S1) with μ > 1/2. In agreement with the physics model, the functions
a, f, k are further assumed real valued, so that the solution u is also real valued. Note that,
since k(z, cos θ) in (30) is both real valued and even in θ, the coefficient k−n in (30) is the
(−n)th Fourier coefficient of k(z, cos(·)). Moreover k−n is real valued, and kn(z) = k−n(z) =
1

2π

∫ π

−π
k(z, cos θ)einθ dθ.

Let u(z, θ) =
∑∞

−∞un(z)einθ be the formal Fourier series representation of the solution of
(29) in the angular variable θ = (cos θ, sin θ). Since u is real valued, u−n = un and the angular
dependence is completely determined by the sequence of its nonpositive Fourier modes

Ω 
 z 	→ u(z) := 〈u0(z), u−1(z), u−2(z), . . .〉. (31)

Consider the decomposition of the advection operator θ · ∇ = e−iθ∂ + eiθ∂, where
∂ = (∂x + i∂y)/2 and ∂ = (∂x − i∂y)/2 are derivatives in the spatial domain. By identifying
the Fourier coefficients of the same order, the equation (29) reduces to the system:

∂u1(z) + ∂u−1(z) + a(z)u0(z) = k0(z)u0(z) + f (z), (32)

∂u−n(z) + ∂u−n−2(z) + a(z)u−n−1(z) = k−n−1(z)u−n−1(z), 0 � n � M − 1, (33)

∂u−n(z) + ∂u−n−2(z) + a(z)u−n−1(z) = 0, n � M. (34)

Without loss of generality we consider Cartesian coordinates such that Λ lies in the upper
half plane with endpoints on the real axis, and let L = (−l, l) be the segment joining the end-
points of the arc. Let Ω+ = {z ∈ Ω : Imz > 0} denote the convex hull of Λ, and note that
∂Ω+ = Λ ∪ L.

To simplify the statement of the next result, for each n � 0, let us introduce the functions
F−n(z) defined for z �= ±l in Λ ∪ L by

F−n(z) :=
1
iπ

∫
Λ

u−n(ζ)
ζ − z

dζ +
1
iπ

∫
Λ

{
dζ

ζ − z
− dζ

ζ − z

} ∞∑
j=1

u−n−2 j(ζ)

(
ζ − z
ζ − z

) j

. (35)

For z ∈ Λ, the first integral is in the sense of principal value. Note that F−n is directly
determined by the data u−n|Λ, n � 0.

9
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The proof of the following result is constructive and provides the basis of the reconstruction
method implemented in section 5.

Theorem 4.1. Let Ω ⊂ R2 be a strictly convex bounded domain, Λ be an arc of its bound-
ary, and Ω+ be the convex hull of Λ. Consider the boundary value problem (29) for some
known real valued a, k0, k−1, . . . , k−M ∈ C2(Ω) such that (29) is well-posed. If the unknown
source f is real valued and W2,p(Ω)-regular, with p > 4, then u|Λ+ uniquely determines
f in Ω+.

Proof. Let u be the solution of the boundary value problem (29) and u = 〈u0, u−1, u−2, . . .〉
be the sequence valued map of its non-positive Fourier modes. Since f ∈ W2,p(Ω), p > 4,
then by theorem 2.2 (b), u ∈ W2,p(Ω× S1). By the Sobolev embedding, u ∈ C1,μ(Ω× S1) with
μ = 1 − 2

p > 1
2 , and thus, by [26, proposition 4.1 (i)], u ∈ l1,1

∞ (∂Ω+) ∩ Cμ(∂Ω+; l1).

We note next that the shifted sequence valued map LMu solves

∂LMu(z) + L2∂LMu(z) + a(z)LM+1u(z) = 0, z ∈ Ω, (36)

and then the associated sequence valued map LMv = (v−M , v−M−1, v−M−2 . . .) defined by the
convolutions (24) solves

∂v−n(z) + ∂v−n−2(z) = 0, z ∈ Ω, n � M. (37)

In particular, LMv is L2-analytic.
By (2), the data u|Λ+

= g on Λ+ determines LMu on Λ. By the convolution formula (24)
for n � M, LMu|Λ determines the traces LMv ∈ l1,1

∞ (Λ) ∩ Cμ(Λ; l1) on Λ.
Since LMv ∈ l1,1

∞ (∂Ω+) ∩ Cμ(∂Ω+; l1) is the boundary value of an L2-analytic function in
Ω+, then the necessity part of theorem 3.1 yields

[I + iH]LMv = 0, (38)

where H is the Bukhgeim–Hilbert transform in (20).
We consider (38) on L = (−l, l), where for each x ∈ (−l, l) and n � M, the nth component

yields

v−n(x) − i
π

∫ l

−l

v−n(s)
x − s

ds

= − i
π

∫
Λ

v−n(ζ)
ζ − x

dζ − i
π

∫
Λ

{
dζ

ζ − x
− dζ

ζ − x

} ∞∑
j=1

v−n−2 j(ζ)

(
ζ − x
ζ − x

) j

− i
π

∫ l

−l

{
dζ

ζ − x
− dζ

ζ − x

} ∞∑
j=1

v−n−2 j(ζ)

(
ζ − x
ζ − x

) j

. (39)

Since the last integral in (39) ranges over the reals, it vanishes. The remaining two integrals
in the right-hand side give F−n(x) in (35), and (39) becomes

[I − iHt](v−n)(x) = F−n(x), x ∈ L, n � M, (40)

where Ht is the finite Hilbert transform in (28). For each n � M, by proposition 3.1, v−n|L is
determined as the unique solution in L2(−l, l) of (40).

Note that the equation (40) may not have any solution for an arbitrary right-hand side in
L2(−l, l). However, in our inverse problem, the function F−n already belongs to the range of

10
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I − iHt, so that the solution exists. Moreover, since the range is open, (40) is uniquely solvable
in a sufficiently small L2-neighborhood of F−n.

With v−n now known onΛ ∪ L for n � M, we apply the Bukhgeim–Cauchy integral formula
(19) to find v−n for n � M in Ω+.

Using again the convolution formula (24), now in Ω+, we determine u−n for n � M inside
Ω+. In particular we recovered u−M−1, u−M .

Recall that u0, u−1, u−2, . . . , u−M , u−M−1 satisfy

∂u−M+ j = −∂u−M+ j−2 −
[
(a − k−M+ j−1)u−M+ j−1

]
, 1 � j � M, (41a)

u−M+ j|Λ = g−M+ j. (41b)

We solve (41) iteratively for j = 1, 2, . . . , M, as a Cauchy problem for the ∂-equation with
partial boundary data on Λ,

∂w = Ψ, in Ω+, (42a)

w = ψ on Λ, (42b)

via the Cauchy–Pompeiu formula [33]:

w(z) =
1

2πi

∫
∂Ω+

w(ζ)
ζ − z

dζ − 1
π

∫∫
Ω+

Ψ(ζ)
ζ − z

dξ dη, ζ = ξ + iη, z ∈ Ω+. (43)

For Ψ ∈ Lp(Ω), p > 2, and ψ ∈ Lp(Λ), any w defined by (43) solves (42a). However, for the
boundary condition (42b) to be satisfied the following compatibility condition needs to hold:
by taking the limit Ω+ 
 z → z0 ∈ ∂Ω+ in (43) and using the Sokhotski–Plemelj formula [23]
in the first integral, and the continuous dependence on z of the area integral [33, theorem 1.19],
the trace w|∂Ω+ and Ψ must satisfy

w(z0) =
1

2πi

∫
∂Ω+

w(ζ)
ζ − z0

dζ +
1
2
w(z0) − 1

π

∫∫
Ω+

Ψ(ξ, η)
(ξ − z0) + iη

dξ dη, z0 ∈ ∂Ω+.

In our inverse problem this compatibility condition is already satisfied for z0 ∈ Λ. We
use this compatibility condition for z0 ∈ L, to recover the missing boundary data w|L. More
precisely, by proposition 3.1, w|L is the unique solution of

[I − iHt]w(z0) =
1
πi

∫
Λ

ψ(ζ)
ζ − z0

dζ − 2
π

∫∫
Ω+

Ψ(ξ, η)
(ξ − z0) + iη

dξ dη, z0 ∈ L. (44)

If ψ ∈ Lp(Λ), p � 2, then (44) provides a unique solution w|L ∈ Lp(−l, l). Moreover, for
Ψ ∈ Lp(Ω), p > 2, the solution w of (42a) is provided by (43) and lies in W1,p(Ω). In the
iteration, the right-hand side of (41a) is again in Lp(Ω), and the iteration can proceed.

We solve repeatedly (41) for j = 1, . . . , M to recover u−1 and u0 in Ω+. A priori, from the
regularity of the solution of the forward problem, we known that u−1, u0 ∈ C1,μ(Ω) so that the
source f is recovered pointwise by

f |Ω+ (z) = 2 Re (∂u−1(z)) + (a(z) − k0(z)) u0(z), z ∈ Ω+ (45)

11
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as a Cμ(Ω+)-map. �
We summarize below in a stepwise fashion the reconstruction of f in the convex hull Ω+

of the boundary arc Λ. Recall that L is the segment joining the endpoints of Λ.
Reconstruction procedure: consider the data u|Λ.

(a) Using formula (24), and data LMu on Λ, determine the traces LMv|Λ on Λ.
(b) Recover the traces LMv|L pointwise on L as follows:

(1) Using LMv|Λ, compute by formula (35), the function F−n, for each n � M.
(2) Recover for each n � M, the trace v−n|L by solving (40).

(c) By Bukhgeim–Cauchy formula (19), extend v−n for n � M from the boundary Λ ∪ L to
Ω+.

(d) Using again formula (24), now in Ω+, recover u−n for n � M inside Ω+.
(e) Using u−M−1, u−M , recover the modes u−M+1, u−M+2, . . . , u−1, u0 recursively as follows:

(3) Using data u−M+1|Λ, recover the trace u−M+1|L by solving (44).
(4) Using u−M+1|Λ∪L, recover u−M+1 inside Ω+ by the Cauchy–Pompeiu formula (43).
(5) Now iterate the steps (e(3)) and (e(4)) to find the modes u−M+2, . . . , u−2, u−1, u0 in

Ω+.

(f ) Recover f |Ω+ by formula (45).

5. Numerical results

To illustrate the numerical feasibility of the proposed method and its extensibility to general
settings, in this section we present the results of three numerical experiments: the first one
considers the noiseless data case, the second one considers a noise due to the modeling, and
the third one consider a 5% random noise added to the data of the second experiment. The
rigorous analysis on the numerical methods employed below requires further study and is left
for a separate discussion.

The domain Ω is the unit disk, the measurement boundary Λ is the upper semicircle, and
Ω+ is the upper semidisk. The numerical experiments consider the boundary value problem
(29) with the attenuation

a(z) = μs(z) + μa(z),

where μs, and μa are the scattering and absorption coefficients, respectively.
In the first numerical experiment a ∈ C2(Ω) and the scattering kernel is homogeneous with

k(θ · θ′) =
μs

2π

[
1 + 2t(θ · θ′) + 2t2 cos(2 arccos(θ · θ′))

]
, (46)

where t is an anisotropy parameter.
In contrast, the second numerical experiment uses a discontinuous absorption coefficient

μa,

μa(z) =

⎧⎪⎪⎨⎪⎪⎩
2, in B1;

1, in B2;

0.1, otherwise,

(47)

12
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Figure 1. Domain Ω and inclusions; the dotted circles (B1 and B2) indicates highly
absorbing regions, while gray regions (B2, R and B3) are support of internal sources.

and a homogeneous scattering kernel k of infinite Fourier content. More precisely, we work
with the two dimensional Henyey–Greenstein (Poisson) kernel

k(θ · θ′) = μs
1

2π
1 − t2

1 − 2tθ · θ′ + t2
, (48)

where t is an anisotropy parameter. Note that (46) comes from the quadratic truncation of (48).
Throughout this section,μs ≡ 3 and t = 1/2 are used, and computations are processed in the

standard double precision arithmetic. The parameter t = 1/2 yields an anisotropic scattering
half way between the ballistic (t = 0) regime and an isotropic scattering regime (t = 1). The
value of the parameter μs yields that, on average, a particle scatters after running straight every
1/3 of the unit path length. These parameter choices are meaningful in certain optical regimes,
where the diffusion approximation would not hold.

Let R = (−0.25, 0.5)× (−0.15, 0.15) be a rectangular, and

B1 = {(x, y) : (x − 0.5)2 + y2 < 0.32},

B2 =

{
(x, y) : (x + 0.25)2 +

(
y −

√
3

4

)
< 0.22

}
, and

B3 = {(x, y) : x2 + (y + 0.6)2 < 0.32}

be circular regions inside Ω as illustrated in figure 1. The source term

f (z) =

⎧⎪⎪⎨⎪⎪⎩
2, in R;

1, in B2 ∪ B3;

0, otherwise,

used to generate the boundary data on Λ+ is to be reconstructed in the upper semidisk Ω+.
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Figure 2. Boundary data u|Λ+
: (left) the measurement arc Λ lies in the upper half plane.

Each red closed curve stands for ζ + 2u(ζ,θ) for θ ∈ S1 at ζ ∈ Λ indicated by the cross
symbol (×); (right) magnification of u(ζ,θ) at ζ = (0, 1).

In the first example the absorption coefficient is a C2-smoothen version of the discontinuous
case in (47). Namely, for ε = 0.05,

μa(z) =

⎧⎪⎪⎨⎪⎪⎩
2, in {z : dist(z, ∂B1) � ε} ∩ B1;

1, in {z : dist(z, ∂B2) � ε} ∩ B2;

0.1, in {z : dist(z B1) � ε} ∩ {z : dist(z B2) � ε},

while in the ε-neighborhoods of ∂B1 and ∂B2 we use some translations and scalings of the
quintic polynomial −(|z| − 1)3(6|z|2 + 3|z|+ 1), |z| � 1, to define μa ∈ C2(Ω).

For our inverse problem, the ‘measured’ data (2) is generated by the numerical computation
of the corresponding forward problem (1) in Ω× S1, where we retain the trace of the solution
u|Λ+ and disregard the rest.

Note the contribution to the data of radiation coming from the source supported in the lower
half of the rectangle R and from the ball B3.

The numerical solution of the forward problem is obtained by the piecewise constant
approximation method in [11], where the spatial domain Ω is divided into 4, 823, 822 trian-
gles (the maximum diameter is approximately 0.0025), and 360 equi-directions are considered
on S1. The boundary∂Ω is approximated by 5, 234 equi-length segments, to yield 2, 617 spatial
measurement nodes assigned on Λ.

The computed data in the first example is depicted in figure 2. In there, for ζ ∈ Λ (indicated
by ×), the red closed curves represent ζ + 2u(ζ, θ), with computed u(ζ, θ). The zero incoming
flux boundary condition can be observed on the computed radiation, where the curves do not
enter Ω.

In our numerical reconstruction, the domain of interest Ω+ is partitioned into a triangular
mesh without any prior information on R and Bi, i = 1, 2, 3. The number (8, 631) of triangles in
this mesh is much less than that the number (4, 823, 822) of triangles used in the computation in
the forward problem, thus avoiding an inverse crime. The attenuation coefficient a is assumed
known in Ω. The triangular mesh induces 157 nodes on Λ and 100 nodes on L. Series (19),
(24), and (35) are truncated with Fourier modes greater than or equal to −128.

The Hilbert transform in (27) is computed by a method proposed by the authors in [13]. All
the integrations are approximated by the composite mid-point rule with equi-spaced intervals.
The integrating factors in (25) are computed with 100 subintervals and 360 velocities, and the
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Figure 3. Numerically reconstructed f (z) for polynomial type scattering kernel (46) and
μa ∈ C2(Ω). (left) The profile of reconstructed f in the domain of interest Ω+; (right)
the section on the dotted line.

Figure 4. L2 norm of the imaginary part of the reconstructed f for varying cutoff param-
eter M in the range 0 � M � 30. The minimum is attained at M = 10. The values for
M = 0, 1, 2 are greater than 0.024, and are not shown in the graph.

integral equations (40) and (44) are computed with 1, 666 subintervals (so thatΔx = 2/1666 ≈
0.0012 on L is about the same with the lengthπ/2617 of the partition on the arcΛ). Of particular
interest, and key to our procedure, is the numerical computation of the integral equations (40)
and (44), which is done via the collocation method with the numerical integration rule

[I − iHt]u(xi) ≈ u(xi) −
i
π

∑
j�=i

u(x j)
xi − x j

Δx.

Except for the implicit regularization due to the discretization, no other regularization
method is explicitly employed in numerical implementation. The numerical reconstruction
takes approximately 115 s by OpenMP parallel computation on two Xeon E5-2650 v4
(2.20 GHz, 12 cores) processors.
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Figure 5. Numerically reconstructed f (z) for the case with discontinuous μa (47) and
Poisson kernel (48).

Figure 6. Boundary data u|Λ+
with relative 5.1% errors in L2 sense; (left) the mea-

surement arc Λ lies in the upper half plane; (right) comparison of u(ζ,θ) at ζ = (0, 1)
between 5.1% noisy data (red) and the original data (gray) in figure 2.

Figure 3 depicts numerical reconstruction results: on the left is the profile of reconstructed
f (z), and on the right is its section on the dotted line (y = −

√
3x). In the figure the support

of f (z) is successfully reproduced. The reconstructed source f away from the segment L is
quantitatively in fine agreement with the exact one. However the accuracy of the reconstruction
decreases at points on the support of f which are close to the line segment L. One of the reasons
is the ill-posedness in equation (40), which we currently mitigate solely via the discretization.
For a more accurate numerical reconstruction at such points, the choice of a better regularizer
is needed.

While the reconstruction method assumes a scattering kernel of polynomial type (finite
Fourier sum), in the second example the data is computed using the forward model with
the Poisson scattering kernel in (48), which has infinite Fourier content. For an estimate
on the noise introduced via the truncation parameter of the scattering kernel, we refer to
[13, proposition 3.2].

The degree M of the polynomial scattering kernel should be chosen in advance. In here we
use a criterion in [13], where the cut-off parameter M is chosen so that ‖Im f ‖2 is minimized.
Figure 4 shows computed ‖Im f ‖2 obtained from the same measurement data, while varying
M. For 0 � M � 30, the minimum is achieved at M = 10. Figure 5 shows reconstructed results,
where, according to our cutoff criterion, (41) is solved iteratively ten times.
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Figure 7. L2 norm of the imaginary part of the reconstructed f from measurement data
with added 5.1% relative error, and a varying cutoff parameter 0 � M � 30. At M = 14
the minimum is achieved.

Figure 8. Numerically reconstructed f (z) for measurement data 5.1% errors in figure 6
with discontinuous μa (47) and Poisson kernel (48).

Even though the smoothness and finiteness hypotheses in theorem 4.1 are violated, the
numerical results are in agreement with the results in the first example (where all the hypotheses
in theorem 4.1 were satisfied). This illustrates the robustness of the proposed reconstruction
method with respect to the regularity of the coefficients, and indicates that the reconstruction
result in theorem 4.1 may hold under more relaxed hypotheses.

To illustrate the robustness with respect to the noisy data, we exhibit the numerical recon-
struction from data with added relative error in the L2 sense of 5.1%. As in the second example,
the forward model has the discontinuousμa in (47), and the scattering kernel in (48) of infinite
Fourier content.

Figure 6 depicts noisy data generated with the built-in pseudo random routines in the pro-
gramming language C++. The same a posteriori criterion, which minimizes ‖Im f ‖2 for
0 � M � 30, yields the cutoff parameter M = 14; see figure 7. In particular, in the noisy case,
we solve 14-many boundary value problems (41). Note that the cutoff parameter M is dif-
ferent in the noiseless case than in the noisy case. The numerically reconstructed source in
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figure 8, which uses measurements with 5.1% noise, still shows a reasonably good agreement
with the exact source. A better understanding of the influence of the scattering and absorption
coefficients to the instability, and an appropriate regularization method is subject to further
work.
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