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A B S T R A C T

This study investigates the scale-dependent structure of asymmetric volatility effect in six
representative cryptocurrencies: Bitcoin, Ethereum, Ripple, Litecoin, Monero, and Dash. By
developing the dynamical approach of DFA-based fractal regression analysis, we detect whether
the volatility of price changes is positively or negatively related to return shocks at different time
scales. We find that the asymmetric volatility phenomenon varies by scale and cryptocurrency,
and the structure is time-varying. Contrary to what is typically observed in equity markets,
minor currencies show an ‘‘inverse’’ asymmetric volatility effect at relatively large scales, where
positive shocks (good news) have a greater impact on volatility than negative shocks (bad news).
The consequences are discussed in the context of who is trading in the market and heterogeneity
of the investors.

1. Introduction

Since its first interaction in 2009 (Nakamoto, 2008) and undergoing two price bubbles in 2013 and 2017, Bitcoin and other
cryptocurrencies have attracted the attention of a wide community, including online traders, economic actors, and academic
researchers. Unlike other assets, cryptocurrencies are built on block-chain technology that operates without a central bank or single
administrator while ensuring anonymity in transactions, incredible security, and cross-border payments open at all times. With these
benefits, they have become a booming economy with market capitalization on its rising trend reaching more than 1900 billion
US dollars in total by January 2022. Besides their rapid growth, research on cryptocurrency markets has become more active.
Numerous studies reveal that despite the unique system, cryptocurrency price fluctuations also exhibit stylized facts similar to what
is recognized in stock and commodity markets, such as long-range dependence and long memory in volatility (Bariviera et al.,
2017; Bouri et al., 2018; Cheah et al., 2018), fat-tails in price distribution, multifractality, and scaling properties (Jiang et al., 2018;
Takaishi, 2018; Zhang et al., 2019). Nevertheless, cryptocurrencies tend to have more distinctive features, i.e., they tend to be more
volatile (Bariviera et al., 2017; Alvarez-Ramirez et al., 2018), more inefficient, and more complex due to significant long-memory
and stronger multifractality both in price and volatility (Al-Yahyaee et al., 2018; da Silva Filho et al., 2018; Telli and Chen, 2020),
and also exhibit fatter tails (Begušić et al., 2018). Other than these stylized facts, Bitcoin is uncorrelated with traditional assets and
is suggested as a useful hedging tool with similar abilities to gold (Dyhrberg, 2016a,b). A ‘‘hedge’’ is an asset that is uncorrelated or
negatively correlated with another asset or portfolio, whereas a ‘‘diversifier’’ is an asset that is positively but not perfectly correlated
with another asset or portfolio (Diniz-Maganini et al., 2021). Bitcoin shows a property of a solid ‘‘safe-haven’’, defined as an asset
that functions as a hedge not on average but in particular cases only, i.e., during the periods of market stress (Bouri et al., 2017b).
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This property indicates that the combination of financial assets with Bitcoin could help reduce the correlation levels and risks of
a portfolio in times of market turmoil. Moreover, a vast application of fractal and nonlinear theory-based methods to analyzing
cryptocurrency time series has shed light on the underlying physical mechanisms of their market dynamics.

Many of the contributions above arise from the Fractal Market Hypothesis (FMH) proposed by Peters (1994), extending the widely
cknowledged Efficient Market Hypothesis (EMH). According to the FMH, financial time series exhibit properties relevant to fractals
hat appear similar or self-repeating within sets of time series when viewed at different scales. This is due to the different valuations
or information flows among investment horizons, which justifies sudden spikes in market volatility and lack of market liquidity
uring crashes. Therefore, the FMH compensates for scaling factors the EMH fails to capture. The dynamical approach of detrended
luctuation analysis (DFA) of Peng et al. (1994) has become a widely utilized tool in analyzing fractal structures of a financial
ime series and scaling factors of its long-range correlation in a nonlinear manner. Later on, detrended cross-correlation analysis
DCCA) was developed from DFA to reveal cross-correlation features (Podobnik and Stanley, 2008). By putting DFA and DCCA
echniques together, Zebende (2011) introduced the DCCA coefficient to measure the degree of cross-correlation for each specific
cale quantitatively. This work promoted the development of the field into the investigation of multi-time scale dependencies of
ighly complex financial series.1 By translating the standard regression analysis into the DFA and DCCA-based language, Kristoufek
2015) proposed the fractal regression analysis that enables quantifying scale-dependent interactions between time series. The
ethod provides richer information than the standard regression framework in that it deals with complexity and nonlinearity in
ynamical systems, as well as the actual response of the series at multi-time scales. The fractal regression analysis was then extended
o the case of two impulse series, namely the DFA-based bivariate regression analysis (Wang et al., 2018). A further development
as made recently by Tilfani et al. (2022), where multivariate regression model in the fractal framework is illustrated for financial
pplications. In effect, these multi-time scale approaches are practical for modeling heterogeneity in economic and financial systems
nd their underlying scale structure (Kakinaka and Umeno, 2021; Tilfani et al., 2022).

One of the economic behaviors well-established in the finance literature is that volatility of financial series responds asymmet-
ically to return shocks (Black, 1976; Bollerslev et al., 2009; Bentes, 2018). The so-called ‘‘leverage effect’’, also known as the
‘asymmetric volatility effect’’, is described in stock markets that bad news (negative return shocks) increase the volatility by more
han good news (positive return shocks) (Schwert, 1989; Cheung and Ng, 1992). The concept of this asymmetric effect has been
heoretically studied and modeled utilizing various statistical volatility models (e.g., GARCH-type models), and how asymmetric
esponses are produced is generally demonstrated by factors built on the traditional framework of EMH (Black, 1976; Christie, 1982).
owever, the asymmetric volatility effect has not been well-studied in terms of the fractal framework. Financial time series as well
s cryptocurrencies are rather inefficient and are likely to represent remarkable properties of fractality associated with multi-time
cales. Motivated by evidence of significant scale-dependent consequences in cryptocurrencies and limited empirical evidence of
symmetric volatility effect due to the markets’ short history, the objective of this paper is to examine whether and why volatility
esponds asymmetrically in cryptocurrency markets, in a more precise manner accounting for scaling dependence of the market
ehavior given the high complexity. We take advantage of the bivariate fractal regression analysis of Wang et al. (2018) to detect
hether the volatility of price change is positively or negatively related to its return shocks at different time scales. The approach
llows us to consider FMH-based features of asymmetric volatility that cannot be captured by the conventional models.

Following several works that discover a reversed leverage among early emergence periods of cryptocurrency markets (Bouri et al.,
017a; Baur and Dimpfl, 2018; Cheikh et al., 2020; Kakinaka and Umeno, 2021), this paper also finds evidence of the presence of an

‘inverse’’ asymmetric volatility effect in cryptocurrency markets — contrary to conventional markets, the return volatility is higher
hen a positive shock occurs. The consequences are discussed in the context of who is trading in the market and heterogeneity of the

nvestors. According to Glosten and Milgrom (1985) and Easley et al. (1996), the trading of informed and uninformed investors leads
o different traces in the return process due to the inefficiency of market information. In particular, informed traders do not generate
uto-correlation, while uninformed traders drive serial correlation in the return process, thereby increasing the volatility (Avramov
t al., 2006). Utilizing this idea, we will examine under what market conditions uninformed investors dominate the market and
iscuss the asymmetric factors of our empirical findings.

We reconfirm that except for the prominent markets of Bitcoin and Ethereum, the minor markets substantially exhibit a positive
elation between return shocks and volatility. More interestingly, our dynamical fractal approach reveals further the multi-time
cale components of the asymmetric volatility phenomenon under different time scales. Since asymmetric response may be time-
arying (Takaishi, 2021), we also attempt to examine inverse/non-inverse effects under different data periods. Our approach can
e an alternative to existing models, providing a new view based on investors’ speculative trading and how they are the source of
symmetry, which could play a crucial role in investment decisions, pricing, risk management, and monetary policy.

The rest of this paper is organized as follows. Section 2 provides general information and literature reviews relevant to asymmetric
olatility in cryptocurrency markets. Section 3 introduces the datasets used in this study. Section 4 describes the methodology
ssociated with analyzing asymmetric volatility. Section 5 presents the results and empirical findings we have reached. Finally,
ection 6 draws the main conclusions.

1 See the review literature of Watorek et al. (2021) for more information and about multi-time scale properties in cryptocurrency price fluctuations.
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2. Literature review

The negative response of volatility to return shocks was originally referred to the financial leverage, because the decrease of
tock prices naturally brings in the rise in firm’s leverage, making the stock become riskier and increasing its volatility (Black,
976; Christie, 1982; Schwert, 1989; Cheung and Ng, 1992). However, many papers warn us that such an effect should not be
ssociated with financial leverage. Hens and Steude (2009) explain the effect in an experimental stock market under a controlled
etting where students are given instructions to trade artificial securities with each other using an electronic trading system with no
inancial leverage. They find that the effect can be observed even in the absence of financial leverage. Similar results are presented
y Hasanhodzic and Lo (2019), where they confirm the existence of leverage effect in all-equity-financed firms having no debt.
he volatility feedback is another possible factor that explains the negative correlation between volatility and expected rate of
eturn (Campbell and Hentschel, 1992). In response to favorable information (good news), the increase in return is mitigated by the
ffect of price decline due to increased risk. In response to unfavorable information (bad news), the price decline due to increased
isk is added, magnifying the decrease in the rate of return. Nevertheless, since both factors of financial leverage and volatility
eedback are built on the EMH, they do not fully explain the leverage effect. Namely, the inefficiency of market information can
lso give rise to asymmetric volatility, so it has arisen as an important factor.2 The informational inefficiency imposes different

impacts on the return process, i.e., asymmetric volatility occurs when investors trade based on noise rather than information. Black
(1976) calls them ‘‘noise traders’’ because they overreact to information and trade irrationally. These uninformed investors affect
liquidity to the market (Easley et al., 1996) and generate asymmetric fluctuations in market prices (Avramov et al., 2006; Baur and
Dimpfl, 2018). In this context, noise traders happen to be dominant after negative shocks in many of the conventional markets,
where higher volatility follows.

On the other hand, some markets show an inverse asymmetric volatility phenomenon where higher volatility follows after
positive shocks. Chen and Mu (2021) reveal the presence of an inverse leverage in a wide range of commodity markets, including
agricultural products, energy, industrial metals, and precious metals, except for crude oil. Kliber (2016) finds evidence of inverse
leverage in the sovereign credit default swap spreads (sCDS) for the countries of Portugal, Poland, Greece, and Slovenia. The author
refers it to the Prospect Theory of Tversky and Kahneman (1992), where the decision making of investors is explained under different
risk conditions. Under several assumptions, the author justifies that inverse-leveraged sCDS in the above cases are due to market
participants feeling that the probability of default is higher than the one implied by the spread.

In respect of cryptocurrencies, a number of studies have attempted to model the behavior of volatility. Whether volatility of
price changes is positively or negatively related to return shocks has traditionally been modeled by making explicit the conditional
variance of returns. Katsiampa (2017) compares several competing GARCH-type models and concludes that the Component GARCH
(CGARCH), a model that allows a short-run and a long-run component of conditional variance, provides the optimal fit level of
Bitcoin data for the period between July 2010 and October 2016. It is worth noting that during the period, the log-likelihood value
under the CGARCH model is higher than that of under its asymmetric model, the asymmetric component GARCH (ACGARCH)
model. This result implies that asymmetric models are not always the most appropriate to explain Bitcoin volatility, and thus
symmetric models can sometimes provide a better explanation. The information criteria for diagnosing model selection discussed
in the literature also support the findings that the (symmetric) CGARCH model presents a plausible fit.

However, asymmetric models under other GARCH-type models generally outperform symmetric models in many cases, and they
have the potential to address significant asymmetry in volatility. On implementing the well-known GJR-GARCH model of Glosten
et al. (1993) and the EGARCH model of Nelson (1991), Bouri et al. (2017a) investigate the relation between price returns and
volatility changes in the Bitcoin market against various world currencies and test if there is a difference in the asymmetric structure
before and after the price crash of 2013. They report that before the crash, positive returns helped increase the conditional variance
more than negative returns but not after the crash, suggesting that positive (inverse) asymmetric volatility effect is relevant to a safe-
haven property of Bitcoin rather than the financial leverage or volatility feedback. Cheikh et al. (2020) attempt to capture different
impacts of positive versus negative shocks regarding a flexible intermediate state between variance regimes. They employ the smooth
transition GARCH (ST-GARCH) model and investigate four representative cryptocurrencies of Bitcoin, Ethereum, Ripple, and Litecoin
using data from April 28, 2013, to December 1, 2018. They find a positive relationship between return shocks and volatility for
the majority of currencies except for the case of Ethereum, where no asymmetry can be detected under the ST-GARCH, EGARCH,
threshold GJR-GARCH, and threshold GARCH (ZGARCH) models. Using a wide range of data periods available through August
2018, Baur and Dimpfl (2018) test the existence of an asymmetric volatility effect in as many as 20 major and minor cryptocurrencies
by employing the TGARCH model in addition to the quantile autoregressive model (QAR). They find that positive shocks increase
volatility more than negative shocks for most cases, with the most notable exceptions being the two largest currencies, Bitcoin
and Ethereum. They attempt to explain the phenomenon in terms of informed and uninformed (noise) traders’ trading activities
— asymmetry is due to uninformed traders’ herding and buying activity boosted by the fear of missing out (FOMO) on rising
cryptocurrency prices, as well as the pump-and-dump schemes. In this context, the authors argue that the two largest Bitcoin and
Ethereum play a special and different role because, in the most mature peer-to-peer currencies, the market is dominated by informed
traders who have the ability to reduce some of the prominent asymmetry generated by uninformed traders.

Fakhfekh and Jeribi (2020) refer to the importance of focusing on long-memory properties of time series in finding the most
optimum model or sets for depicting volatility. By introducing fractionally integrated models of FIGARCH and FIEGARCH, they

2 In the study of Antoniou et al. (1998), they reject the traditional leverage effect and conclude that information inefficiency in markets is the cause of
3
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take into account long-memory factors in the conditional heteroskedasticity variance towards modeling sixteen of the most popular
cryptocurrencies’ volatility. Under the period from August 7, 2017, to December 12, 2018, they apply fourteen GARCH specifications,
including typical asymmetric GARCH-type models, with different error distributions. They conclude that, in general, the TGARCH
and EGARCH models provide the best model explanation, although the best model fit varies across cryptocurrencies. They also report
the presence of an inverse asymmetric volatility effect, more or less in line with other relevant studies. Mensi et al. (2019a) examine
structural break impacts on the dual long memory of Bitcoin and Ethereum using four different ARFIMA-GARCH family models,
specifically GARCH, FIGARCH, FIAPARCH, and HYGARCH models. By considering long-memory and structural breaks, they find
that dual long memory exists in Bitcoin and Ethereum returns and volatility. Their results indicate that market returns and volatility
do not follow a random pattern, and thus EMH does not hold for cryptocurrencies. They also point out that FIGARCH with structural
breaks is comparatively superior to other models for volatility forecasting.

Al-Yahyaee et al. (2018) show evidence of long-memory feature as well as multifractality in the Bitcoin market and compare the
evel of market efficiency to gold, stock, and foreign exchange markets by applying the dynamical approach of multifractal detrended
luctuation analysis (MFDFA) proposed by Kantelhardt et al. (2002), which is a method that generalizes the DFA to multifractality.
hey find evidence of the market being more inefficient with stronger multifractality than other assets. With the use of A-MFDFA,
hich extends the MFDFA to capture asymmetric structures, Liu and Chen (2018) examine the asymmetric volatility of the dry bulk

hipping market brought by the financial crisis. They also demonstrated the fractal method’s usefulness in illustrating asymmetric
haracteristics of long-range correlation, multifractality, and many other data properties in financial time series. In the same
ramework, with high-frequency Bitcoin and Ethereum data, Mensi et al. (2019b) examine long-memory, asymmetric multifractality,
nd time-varying efficiency to reveal different market patterns between downside and upside trends. They clarify that both Bitcoin
nd Ethereum are highly inefficient because different scaling laws and asymmetric fractal patterns exist in the price dynamics,
upporting the FMH. Both markets are more inefficient when moving downwards relative to when they are moving upward. Other
tudies use the MF-ADCCA, an extension of A-MFDFA, in estimating the scaling factor of asymmetric long-range cross-correlations
etween time series. In the literature of Cao and Xie (2021), the authors highlight the long-memory and asymmetric multifractal
haracteristics of cross-correlations between cryptocurrencies and Chinese financial markets. These stylized facts are also evident
etween leading cryptocurrencies, leading conventional currencies (Kristjanpoller and Bouri, 2019), and equity ETFs (Kristjanpoller
t al., 2020). The above studies suggest that cryptocurrency markets represent a complex system that can generate asymmetry in
ts inter-relationship with other financial markets.

Kakinaka and Umeno (2021) utilize the fractal method of MF-ADCCA to investigate asymmetric cross-correlation between price
eturn and return volatility in cryptocurrency markets from June 1, 2016, to December 28, 2020. The literature further quantifies
he multi-time scale strength of asymmetric cross-correlation by employing the asymmetric DCCA coefficient at various scales.
hey report that stronger cross-correlation appears in the downtrend market for the major coins of Bitcoin and Ethereum. In
ontrast, stronger cross-correlation appears in the uptrend market for the more minor coins of Ripple and Litecoin. One of the
ain contributions of the work to the field is that they established an approach to investigate dynamical properties of long-range
ependent processes of return and volatility at a specific scale, which extends the discussion to the economic phenomenon of
symmetric volatility effect on multi-time scales.

Although the idea of using fractal analysis towards detecting the asymmetric volatility effect under different time scales is
emonstrated in Kakinaka and Umeno (2021), its interpretation is limited in terms of correlation coefficients defined between
1 and 1. In our study we will also utilize fractal analysis, but unlike earlier studies, the asymmetric effect is associated with the
ctual effect of an economic variable (return shocks) on another (volatility) rather than simply the strength of correlation between
ariables. Our study is also different from other volatility models, i.e., GARCH models, in that we take into account the multi-time
cale structure between the variables, while the scaling property is ignored in these conventional models. The multi-time scale fractal
egression analysis we implement is complementary to other existing methods built on long-memory, fractality, and scale-dependent
rocesses and works excellent with modeling heterogeneity in economic and financial variables (Tilfani et al., 2022). As the detection
f asymmetric volatility effect is crucial towards deciding portfolio positions, modeling its heterogeneity expectations in terms of
ulti-time scales may provide additional views from past studies. Our study deepens the interdisciplinary understanding of the

onnection between economic behavior and stylized facts that emerged from the field of physics.

. Data

We collect price data from https://poloniex.com/, one of the largest cryptocurrency exchanges with various cryptocurrencies
vailable. By using the public API, we obtain high-frequency 5-minute interval closing price of Bitcoin (BTC), Ethereum (ETH),
ipple (XRP), Litecoin (LTC), Monero (XMR), and Dash (DASH) for the period from 2016/06/02 to 2021/09/25.3 The data include

the period of the boom in 2017 when cryptocurrency prices experienced a substantial increase. The choice of cryptocurrencies is
the large ones with a market capitalization of $50 million or more as of June 2016, when they began to show growth in more active
online trading (except for XMR, which had a market capitalization of only $10 million but has grown rapidly to over $200 million
within a year, so we also select this cryptocurrency). Since cryptocurrencies do not belong to a particular country or an institution,
the closing price data we use is based on the Coordinated Universal Time (UTC). Note that the ‘‘closing’’ price here does not indicate
that the market itself closes (cryptocurrency markets are open 24–7).

3 Due to data availability, all cryptocurrencies in our analyses are against Tether (USDT), a currency designed to maintain the same value as the US dollar.
4
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Table 1
Descriptive statistics and moments of the return series 𝑟𝑡. For the Jarque–Bera test statistic, ∗∗∗ indicates significance at the 1%
level.

BTC ETH XRP LTC XMR DASH

Mean (%) 0.2254 0.2758 0.2624 0.179 0.2854 0.1545
Median (%) 0.236 0.1126 −0.1312 −0.0411 0.2024 0.0356
Std. Dev. (%) 4.2175 5.7697 7.5973 6.0541 6.4134 6.2678
Max. (%) 23.814 25.274 104.61 60.051 59.249 45.668
Min. (%) −50.435 −58.697 −68.039 −47.796 −54.466 −47.595
Skewness −0.9362 −0.6665 1.8394 0.4671 0.2289 0.3336
Kurtosis 13.086 8.756 30.195 12.043 12.126 8.7689
J.B. 14132∗∗∗ 6344.2∗∗∗ 74829∗∗∗ 11800∗∗∗ 11909∗∗∗ 6254.7∗∗∗

Table 2
Descriptive statistics and moments of the realized volatility measure

√

RV𝑡.

BTC ETH XRP LTC XMR DASH

Median 0.0354 0.0496 0.0592 0.0573 0.0621 0.0642
Max. 0.3192 0.4320 1.7104 0.4100 0.4160 0.4183
Min. 0.0070 0.0112 0.0094 0.0131 0.0141 0.0075
Skewness 2.8323 3.1065 8.2063 2.7228 2.5840 2.3125
Kurtosis 13.943 16.779 150.56 12.697 10.354 9.8965

Barndorff-Nielsen and Shephard (2002) propose to use the realized volatility (RV), i.e., intraday square returns, as a proxy of
he daily volatility series:

RV𝑡 =
∑

𝑗
𝑟2𝑡,𝑡𝑗 , (1)

where 𝑟𝑡,𝑡𝑗 denotes intraday returns, i.e., the log-difference of price calculated from high frequent sample intervals, and 𝑡𝑗 denotes
the 𝑗th value on day 𝑡. It is widely known that when sample intervals are set closer to zero and infinite numbers of intraday returns
are summed up, the realized volatility estimator converges to the integrated volatility 𝜎2𝑡 , which is a former standard measure used
in various sets of studies. We use 5-minute intervals since such a sampling base is a reasonable choice for avoiding strong bias
driven by extremely high frequencies and thus maintaining an accurate measure of volatility (Bandi and Russell, 2006; Liu et al.,
2015). The daily return series are calculated as the log difference in prices shown as

𝑟𝑡 = ln 𝑝𝑡 − ln 𝑝𝑡−1, (2)

where 𝑝𝑡 denotes the price at day 𝑡. We equally have 1941 return and volatility observations for each cryptocurrency.
We show in Fig. 1 the return series 𝑟𝑡 and the volatility measure of

√

RV𝑡 for each cryptocurrency, along with their descriptive
statistics (see Tables 1 and 2). Note that for

√

RV𝑡 we do not show the mean, standard deviation, and the Jarque–Bera test since
the data is far from stationary and normality. All cryptocurrency returns present similar positive mean values to some extent;
however, higher moments tend to differ among the major and relatively minor coins. Negative skewness is observed for BTC and
ETH, whereas positive skewness and larger standard deviation are found for the others. This is a consequence of BTC and ETH being
more exposed to negative returns, while other coins are more exposed to volatile positive returns. Kurtosis values of the investigated
cryptocurrencies are all well above 3, suggesting that the distribution of returns is highly leptokurtic, having a broader or flatter
shape with fatter tails. The Jarque–Bera test reconfirms its significant deviation from normality. In Table 2, we see how the extreme
events of XRP led to very high skewness and kurtosis of the volatility indicator.

4. Methodology

4.1. DFA-based bivariate regression estimator

By combining DFA with the standard bivariate linear regression method, we estimate the scale-dependent regression coefficients
between return and volatility series in cryptocurrency markets, which are considered to exhibit non-stationary and complex
behaviors (Telli and Chen, 2020; Watorek et al., 2021). The idea of this method is based initially on the work of Kristoufek (2015),
where they propose to replace part of the standard least squares regression procedure with a multi-time scale procedure to analyze
nonlinear dependence between a response series and an impulse series at different levels of scales. In the same vein, Wang et al.
(2018) developed the method designed for the case of two impulse series against the response series and proposed the DFA-based
bivariate regression analysis.

We slightly modify the DFA process of the above DFA-based bivariate regression analysis of Wang et al. (2018). We follow the
initial approach of Podobnik and Stanley (2008), where they derive the fluctuation functions relying on overlapping segments of
the dataset instead of non-overlapping segments. Although the process requires more segments to be averaged over the fluctuation
5

functions, it avoids the significant variance of the estimates due to the small number of sample segments to be averaged.
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Fig. 1. Daily return and volatility series of (a) Bitcoin, (b) Ethereum, (c) Ripple, (d) Litecoin, (e) Monero, and (f) Dash, for the investigated period (2016/06/02
o 2021/09/25).

The critical point of these fractal regression methods is to use the scale-dependent variance and covariance derived from the
‘detrended function’’, instead of the standard variance form. For a given time series {𝑥𝑡} with length 𝑁 , we split its cumulative
sum, or in other words the profile series, 𝑋(𝑡) =

∑𝑡
𝑖=1 𝑥𝑖, for 𝑡 = 1, 2,… , 𝑁 , into 𝑁 − 𝑠 overlapping segments of length 𝑠 + 1. The

degree-2 polynomial fits 𝑋̃(𝑡) are used to detrend 𝑋(𝑡) for each segment, and then calculate the detrended variance function for
each segment defined as

𝑓 2
𝑋𝑋 (𝑠, 𝑣) =

1
𝑣+𝑠
∑

[

𝑋(𝑡) − 𝑋̃(𝑡)
]2 . (3)
6

𝑠 + 1 𝑡=𝑣
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By averaging 𝑓 2
𝑋𝑋 (𝑠, 𝑣) over all the segments, we get the fluctuation function, or the scale-dependent variance

𝐹 2
𝑋𝑋 (𝑠) =

1
𝑁 − 𝑠

𝑁−𝑠
∑

𝑣=1
𝑓 2
𝑋𝑋 (𝑠, 𝑣). (4)

The scale-dependent covariance can be derived in a similar way by the detrended covariance function of bivariate series {𝑥𝑡} and
𝑦𝑡} with the same length determined as

𝐹 2
𝑋𝑌 (𝑠) =

1
𝑁 − 𝑠

𝑁−𝑠
∑

𝑣=1
𝑓 2
𝑋𝑌 (𝑠, 𝑣), (5)

where

𝑓 2
𝑋𝑌 (𝑠, 𝑣) =

1
𝑠 + 1

𝑣+𝑠
∑

𝑡=𝑣

[

𝑋(𝑡) − 𝑋̃(𝑡)
] [

𝑌 (𝑡) − 𝑌 (𝑡)
]

. (6)

Note that Eqs. (5) and (6) can take positive as well as negative values.
To illustrate the dependences of bivariate series, we consider a bivariate linear regression model

𝑍𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝛽2𝑌𝑡 + 𝜀𝑡 (𝑡 = 1,… , 𝑁), (7)

where 𝑍𝑡 is a response variable, 𝑋𝑡 and 𝑌𝑡 are impulse variables, and 𝜀𝑡 is a Gaussian error term with zero mean. Partial regression
coefficients 𝛽1 and 𝛽2 characterize the dependence of response variables on impulse variables. In accordance with the standard OLS
method and replacing variance (covariance) with scale-dependent variance (covariance), we get the scale-dependent coefficient
estimators as follows:

𝛽DFA1 (𝑠) =
𝐹 2
𝑋𝑍 (𝑠)𝐹

2
𝑌 𝑌 (𝑠) − 𝐹 2

𝑌 𝑍 (𝑠)𝐹
2
𝑋𝑌 (𝑠)

𝐹 2
𝑋𝑋 (𝑠)𝐹

2
𝑌 𝑌 (𝑠) −

[

𝐹 2
𝑋𝑌 (𝑠)

]2
, (8)

𝛽DFA2 (𝑠) =
𝐹 2
𝑌 𝑍 (𝑠)𝐹

2
𝑋𝑋 (𝑠) − 𝐹 2

𝑋𝑍 (𝑠)𝐹
2
𝑋𝑌 (𝑠)

𝐹 2
𝑋𝑋 (𝑠)𝐹

2
𝑌 𝑌 (𝑠) −

[

𝐹 2
𝑋𝑌 (𝑠)

]2
. (9)

y using the scale-dependent residual 𝑒𝑡(𝑠) = 𝑍𝑡−𝛽DFA1 (𝑠)𝑋𝑡−𝛽DFA2 (𝑠)𝑌𝑡−
⟨

𝑍𝑡 − 𝛽DFA1 (𝑠)𝑋𝑡 − 𝛽DFA2 (𝑠)𝑌𝑡
⟩

, we can calculate the fluctuation
unction 𝐹 2

𝜀𝜀(𝑠) in the same manner as Eq. (4), and the variance of the above coefficients can be estimated as below:

var
[

𝛽DFA1 (𝑠)
]

= 1
𝑁 − 3

𝐹 2
𝑌 𝑌 (𝑠)𝐹

2
𝜀𝜀(𝑠)

𝐹 2
𝑋𝑋 (𝑠)𝐹

2
𝑌 𝑌 (𝑠) −

[

𝐹 2
𝑋𝑌 (𝑠)

]2
, (10)

var
[

𝛽DFA2 (𝑠)
]

= 1
𝑁 − 3

𝐹 2
𝑋𝑋 (𝑠)𝐹

2
𝜀𝜀(𝑠)

𝐹 2
𝑋𝑋 (𝑠)𝐹

2
𝑌 𝑌 (𝑠) −

[

𝐹 2
𝑋𝑌 (𝑠)

]2
. (11)

Now that the coefficients are estimated for some specific scale 𝑠, we can do the same procedure under other scales by changing 𝑠. It
is worth noting that Fan and Wang (2020) introduces a similar approach of DMA-based bivariate regression estimator, which uses
the centered moving average technique when detrending the profile series, i.e., 𝑋(𝑡) in Eq. (3). Since the centered DMA analysis
requires some reference to future data, we focus on the DFA that can be carried on with the data at hand.4

In this study, we use the DFA and DCCA fluctuation functions to implement the fractal regression analysis. Discussions based
on the fractal regression analysis provide a more transparent view of multi-time scale connections between the variables because
the regression model intends to design the actual dependence rather than just looking at the strength of its correlation.5 Moreover,
it plays a role in meeting the need to regard asymmetric effects of asymmetric volatility by devising the fractal regression model
presented in the following subsection.

4.2. Modeling asymmetric volatility behavior with fractal regression analysis

We provide an alternative approach to model asymmetric effects of return shocks on volatility. To clarify the dependence at
different time scales, we develop the DFA-based bivariate fractal regression and construct the following regression model:

𝑍𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝛽2𝑌𝑡 + 𝜀𝑡 (𝑡 = 2,… , 𝑁), (12)
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝑡 =
|𝑟𝑡−1|

√

RV𝑡−1

𝑌𝑡 =
𝑟𝑡−1

√

RV𝑡−1

𝑍𝑡 = lnRV𝑡

4 In general, the DFA-based methods are powerful and robust tools for determining remarkable stylized facts of long-range correlations and scale dependencies
n one’s series and across other series.

5 Zebende (2011) uses the DFA and DCCA fluctuation functions to calculate the cross-correlation coefficient at multi-time scales defined as 𝜌 (𝑠) = 𝐹 2
𝑋𝑌 (𝑠) .
7

DCCA 𝐹𝑋𝑋 (𝑠)𝐹𝑌 𝑌 (𝑠)
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where RV𝑡 is the realized volatility series in Eq. (1), 𝑟𝑡 is the return series in Eq. (2), and |𝑟𝑡| is the absolute value of return series. The
ndependent variable 𝑟𝑡−1

√

RV𝑡−1
represents the positive and negative return shocks relative to volatility, in the previous time step. The

ndependent variable |𝑟𝑡−1|
√

RV𝑡−1
represents its magnitude—the larger the value, the greater the impact, i.e., impact of shocks relative

to volatility. In other words, these variables are filtered by volatility. This filtering procedure removes short range dependencies
and reduces possible volatility bias among different time windows (Tilfani et al., 2019). The information on market sign enables
to model potential asymmetry of the impact on volatility. Asymmetric response of positive and negative shocks can be quantified
through the regression coefficients 𝛽1 and 𝛽2; a positive shock in the market is responsible for the increase in volatility as much
as (𝛽1 + 𝛽2)

|𝑟𝑡−1|
√

RV𝑡−1
, whereas a negative shock in the market is responsible for the increase in volatility as much as (𝛽1 − 𝛽2)

|𝑟𝑡−1|
√

RV𝑡−1
.

Therefore, among the coefficients, 𝛽2 determines the asymmetric volatility behavior. Significantly positive (negative) values of 𝛽2
n the model imply that positive (negative) shocks increase volatility by more than shocks whose sign is opposite.

Rewriting Eq. (12) as

ln RV𝑡 = 𝛽0 + 𝛽1
|𝑟𝑡−1| + 𝛾𝑟𝑡−1

√

RV𝑡−1
+ 𝜀𝑡, (13)

where 𝛾 = 𝛽2
𝛽1

, appears to resemble the structure of the conventional EGARCH model, which is one of the most common GARCH
model capable of investigating asymmetric effects. The EGARCH model and our fractal regression model are similar to some extent.
For both the impulse variable of our regression model and the process of return innovations in the EGARCH model, the sign of past
return shocks yields separate effects on volatility, and for the response variable, the logarithm of the volatility relaxes the positiveness
constraint of model coefficients and allows values to be negative. While the EGARCH model describes the volatility and variance
of the current error term or innovation conditioned to previous error terms and innovations, the DFA-based regression model
aims to demonstrate the nonlinear dependence of volatility with lagged return series across different time scales. The conditional
volatility term is not included in our model because the DFA-based method accounts for the nonlinear elements of volatility, such as
long-range dependence. Since the whole history of returns are already incorporated into the fractal regression model in terms of long-
range correlations, taking additional lagged return innovations may be inappropriate in fractal regressions. The fractal regression
framework addresses the dynamic behavior, even in simple regression models. Under a specific time scale of 𝑠, the model of Eq. (12)
can be expressed as

ln RV𝑡 = 𝛽0(𝑠) + 𝛽1(𝑠)
|𝑟𝑡−1|

√

RV𝑡−1
+ 𝛽2(𝑠)

𝑟𝑡−1
√

RV𝑡−1
+ 𝜀𝑡(𝑠) (𝑡 = 2,… , 𝑁), (14)

where the scales can be interpreted as investment horizons. For each specific scale, we can estimate the model coefficients separately.
Our model provides a new view of how good and bad news affect the volatility on multi-time scales and how they differ across
investment horizons when detecting asymmetric volatility.

5. Results and discussions

5.1. Scaling dependencies of asymmetric volatility effect in cryptocurrency markets

After we calculate return and realized volatility series from 5-minute interval cryptocurrency data as presented in Section 3,
we analyze the multi-time scale property of the return-volatility structure regarding its asymmetry following the procedures in
Section 4. We show in Fig. 2 the estimated values of the scale-dependent coefficients 𝛽DFA1 (𝑠) and 𝛽DFA2 (𝑠) of model Eq. (12) for each
ryptocurrency. We also depict together with colored ranges the 95% confidence intervals of the estimates. Clearly, the coefficients
re not monotonous — the dependence of the series oscillates at different time scales. The coefficients 𝛽DFA1 (𝑠) are always significantly
bove zero in all cases, as expected, since the standardized absolute return (corresponding impulse variable) and the volatility index
response variable) are both a representation of volatility. The coefficient value increases as scales become larger. We find that the
mpact of good and bad news to volatility, 𝛽DFA1 (𝑠)+𝛽DFA2 (𝑠) and 𝛽DFA1 (𝑠)−𝛽DFA2 (𝑠), always stay positive (Fig. 3). In our model, as long
s 𝛽DFA1 (𝑠) + 𝛽DFA2 (𝑠) > 0 and 𝛽DFA1 (𝑠) − 𝛽DFA2 (𝑠) > 0 satisfy, only the sign of coefficient 𝛽DFA2 (𝑠) sufficiently determines the asymmetric
eaction. Therefore, we focus on 𝛽DFA2 (𝑠) to discuss whether negative or positive price movements have more impact on volatility.
e find different asymmetric features among the investigated cryptocurrencies and that they can be broadly classified into three

ategories; positive, negative, and both positive and negative effects.6
First of all, we find that 𝛽DFA2 (𝑠) are always negative for the two major currencies of BTC and ETH, indicating the presence of an

symmetric volatility effect regardless of time scale — negative news has a greater impact on volatility increment than positive news
t all scales. This leverage effect is consistent with what is commonly observed in stock markets (Jeribi et al., 2015; Fakhfekh et al.,
016; Bentes, 2018), however, its origin should not be associated with financial leverage (Hens and Steude, 2009; Hasanhodzic and
o, 2019). More generally, such an asymmetric phenomenon has its explanation on the background of who trades and how they
ransact in practice (Black, 1976; Antoniou et al., 1998). This is especially true in cryptocurrency markets (Baur and Dimpfl, 2018),

6 To check the stability of the results we have also performed an analysis using volume-weighted averaged daily prices (VWAP) in case the asymmetric
olatility effect is a consequence of market illiquidity. By taking the ratio of the value of cryptocurrency traded to the total volume of daily transactions, the
rading prices are averaged out, thus reducing market illiquidity. We report no notable changes compared to the results for the closing price case, indicating
8

hat illiquidity does not greatly contribute to asymmetric volatility effect (see Figs. B.6 and B.7 in Appendix B).
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Fig. 2. DFA-based bivariate regression estimates of cryptocurrency series. The coefficients 𝛽DFA1 (𝑠) and 𝛽DFA2 (𝑠) are shown for each cryptocurrency; BTC, ETH,

XRP, LTC, XMR, and DASH. The colored ranges denote 95% confidence intervals calculated as 𝛽DFA𝑖 (𝑠) ± 2
√

var(𝛽DFA𝑖 (𝑠)), for 𝑖 = 1, 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

since a ‘‘financial’’ explanation of the effect may be challenging. Traces of market price fluctuations are a consequence of informed
traders correcting market asymmetries caused by irrational transactions and herding behavior of uninformed traders. In this regard,
uninformed traders are responsible for the striking rises in volatility, so speculative investments of uninformed traders’ in BTC and
ETH are more active when the markets experience negative return shocks. We find that the effect is remarkable, especially in BTC.

However, a completely opposite effect can be observed for the relatively minor cryptocurrencies of XRP and DASH. As shown in
the figure, the coefficients 𝛽DFA2 (𝑠) turn out positive. This outcome indicates the presence of an ‘‘inversed’’ asymmetric volatility effect
in these markets, meaning that positive returns affect volatility more than negative returns. The rise in volatility can be interpreted
as being due to uninformed traders, this time reacting to positive news. We can confirm this effect across scales. According to Baur
and Dimpfl (2018), the pump-and-dump scheme, telling people to buy a particular currency, and the fear of missing out, not feeling
that they are taking full advantage of information towards future prices, are in the background of this reaction. These attributes can
remarkably drive to raise cryptocurrency prices, and as a result, volatility will increase more than in rising markets compared to
falling markets. In addition, the relatively small market size of XRP and DASH may attribute to increasing volatility especially when
the market is in its rising trend with soaring prices. Such markets tend to be susceptible to attracting more uninformed traders to
speculative investment where informed traders become less capable of exerting pressure on reducing market volatility.

Interestingly, the remaining LTC and XMR currencies exhibit a composite structure with different signs of asymmetric volatility.
As shown in Fig. 2, the coefficients 𝛽DFA2 (𝑠) oscillate around zero and do not constantly take the same sign — they can be either
positive or negative depending on which time scale we focus. LTC and XMR have in common that 𝛽DFA2 (𝑠) take negative values for
𝑠 < 80 and positive values for 𝑠 > 100. Although the values are close to zero and the volatility effect seems to be almost absent,
either positive or negative return news can lead to larger volatility increments. Asymmetric volatility effect may be present on scales
smaller than approximately three months, but on larger scales, the effect is slightly reversed or, in the worst case, disappear. The
9
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Fig. 3. The impact of good and bad news to volatility, 𝛽DFA1 (𝑠) + 𝛽DFA2 (𝑠) and 𝛽DFA1 (𝑠) − 𝛽DFA2 (𝑠), respectively. We show the results for each cryptocurrency; BTC,
TH, XRP, LTC, XMR, and DASH.

indings imply that uninformed investors who seek short-term horizons play a prominent role in downside markets to amplify the
symmetry of volatility effect.

Although the scale-dependent regression coefficients seem to be mostly well above or below zero value, including their confidence
ntervals (orange ranges in Fig. 2), they may be an outcome where asymmetric behavior is absent. The theoretical value of 𝛽DFA2 (𝑠) = 0
an be calculated only for an infinitely long time series. As long as datasets are finite, empirical estimations can vary due to sample
ize effects, and even if there is no dependence between the variables, the coefficient estimates can be far from zero to some extent.
o assure whether the regression relationship under different scales is genuine or not, we employ the statistical test of Wang et al.
2018) that tests the absence of dependencies between 𝑍 and 𝑋 or 𝑌 of the regression model 𝑍𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝛽2𝑌𝑡 + 𝜀𝑡, i.e., the
ull hypothesis of 𝛽𝑖(𝑠) = 0 for 𝑖 = 1, 2. They introduce the scale-dependent t-statistics defined as 𝑡𝑖(𝑠) =

𝛽DFA𝑖 (𝑠)−𝛽𝑖
√

var(𝛽DFA𝑖 (𝑠))
, similar to the

-statistics used in the standard regression analysis. The subject series are firstly shuffled in practice, and then the scale-dependent
-statistics of the regression coefficients are calculated. This procedure is repeated many times to carry out the computation of
cale-dependent critical values 𝑡c(𝑠) based on Podobnik et al. (2011), defined such that the integral of the probability distribution
unction of 𝑡𝑖(𝑠), [−𝑡c(𝑠), 𝑡c(𝑠)], is equal to 1 − 𝛼, where 𝛼 denotes confidence level. Thereby, we can determine the range of 𝑡𝑖(𝑠)
hat can be considered statistically significant under some specific time scale. We shuffle 𝑍𝑡 = lnRV𝑡 (the volatility series) and
𝑡 = 𝑟𝑡−1∕

√

RV𝑡−1 (return shocks series) while setting 𝑋𝑡 = |𝑌𝑡| in order to correspond to our model in Eq. (12). In this way, positive
and negative return shocks are always associated with their magnitude (impulse variables) while their correlation with volatility
(response variable) is destroyed, thus 𝛽2 = 0. We calculate the empirical values of 𝑡2(𝑠) and perform the hypothesis test of 𝛽2(𝑠) = 0
y repeating 1000 times the procedure of calculating the scale-dependent t-statistics from the shuffled series. For robustness check,
e also use the bootstrap method to test whether the 𝛽 (𝑠) coefficients are significantly different from 0. For each scale we compute
10
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Table 3
Estimation results of the EGARCH model; ln 𝜎2

𝑡 = 𝜔 + 𝛾1
|𝑟𝑡−1 |
𝜎𝑡−1

+ 𝛾2
𝑟𝑡−1
𝜎𝑡−1

+ 𝛼 ln 𝜎2
𝑡−1 and 𝑟𝑡 = 𝜀𝑡𝜎𝑡, where 𝜎2

𝑡 is the
conditional variance at time 𝑡, and 𝜀𝑡 denotes an error term with i.i.d. standard Gaussian noise. Standard errors
of estimates are reported in parentheses. The asymmetric parameter 𝛾2 is shown in bold. Note that ***, **, and
* denote 1%, 5%, and 10% significance levels, respectively.

BTC ETH XRP LTC XMR DASH

𝜔 −0.5935∗∗∗ −0.6653∗∗∗ −1.1289∗∗∗ −0.3691∗∗∗ −0.4701∗∗∗ −0.6078∗∗∗

(0.0582) (0.0646) (0.0410) (0.0276) (0.0419) (0.0500)

𝛾1 0.2256∗∗∗ 0.2724∗∗∗ 0.4895∗∗∗ 0.1772∗∗∗ 0.2574∗∗∗ 0.3224∗∗∗

(0.0184) (0.0170) (0.0179) (0.0123) (0.0146) (0.0184)

𝛾2 −𝟎.𝟎𝟓𝟏𝟒∗∗∗ −𝟎.𝟎𝟎𝟔𝟖 𝟎.𝟎𝟗𝟐𝟒∗∗∗ 𝟎.𝟎𝟏𝟗𝟔∗∗∗ 𝟎.𝟎𝟐𝟗𝟐∗∗∗ 0.0333∗∗∗

(0.0066) (0.0087) (0.0103) (0.0060) (0.0054) (0.0075)

𝛼 0.9317∗∗∗ 0.9187∗∗∗ 0.8554∗∗∗ 0.9562∗∗∗ 0.9487∗∗∗ 0.9330∗∗∗

(0.0074) (0.0097) (0.0060) (0.0036) (0.0063) (0.0073)

the quantile of the coefficient and its confidence interval is obtained. Details of the procedure and the estimation results can be
found in Appendix A.

We depict in Fig. 4 the values of 𝑡2(𝑠) with the scale-dependent critical values at the 5% and 10% levels of significance
(𝛼 = 0.1, 0.05). If the value is not within the critical band, the hypothesis can be rejected. We find that in BTC, the values of 𝑡2(𝑠)
re always lower than the critical band, so the absence of an asymmetric response is rejected and hence asymmetric volatility effect
xists for all scales. However, in other cryptocurrencies, it is not always assured whether asymmetric reaction exists across scales.
or instance, we find in ETH that 𝑡2(𝑠) stay way below the band only for 𝑠 < 90 (three months). In other words, asymmetric volatility
ffect is significant on scales shorter than three months but not for scales larger than that. In XRP and DASH, which appeared to show
n inverse asymmetric volatility effect, we find that 𝑡2(𝑠) stay mainly within the critical band for small scales. An inverse effect can
e confirmed on mid-scales around 𝑠 = 120 (four months) or more, where the scale-dependent t-statistics go over the upper critical
ound of 95% confidence level. For other scales (small and large scales) the corresponding t-statistics are not rigorously statistically
ignificant, however, they are rather close to the upper critical values suggesting that good news in XRP and DASH tends to help
ncrease volatility slightly more than bad news on average. The results tell us the possibility of an interesting story in which the
ninformed traders’ herding is dominant in rising markets but not in falling markets, and that its effect is strongest at mid-term
orizons. Investors seem to have speculative expectations of mid- to long-term growth in these markets. In LTC and XMR, which
ay present both signs of asymmetric volatility, 𝑡2(𝑠) fall out of the lower 95% critical band for scales smaller than approximately
= 30 (one month). Therefore, the null hypothesis is rejected and assures the presence of an asymmetric volatility effect only at

mall scales. The result implies that herding of uninformed traders on shorter time horizons has significantly increased the volatility
n falling markets. On the other hand, for large scales of 𝑠 > 30 (one month), we find no statistical evidence of asymmetric volatility,
either positive nor negative. This indicates that the inverse asymmetric volatility phenomenon (positive effect) at large scales is
ikely to be simply within the statistical accident of size effects.

In addition, we present in Table 3 the asymmetry results estimated by the EGARCH(1,1) model to check the differences and
imilarities with the results estimated by our model. Since the scaling properties are not considered in the EGARCH model, the
ign of 𝛾2 alone represents the overall asymmetric response of volatility to good and bad news. As expected, a significant negative
ffect (𝛾2 < 0) is found for BTC. We also find negative in ETH, but the effect is insignificant. All the other cryptocurrencies show
n inverse asymmetric volatility effect (𝛾2 > 0), and their coefficients are found to be statistically significant. These results tell us
hat the traditional model provides us a plausible overall picture of asymmetry, but fails to address the heterogeneous effect among
cales — for example, the negative effect we have confirmed in LTC for small scales cannot be detected by the EGARCH model. Our
odel thus helps us find some interesting results throughout the various investment horizons.

.2. Time-varying properties of scale-dependent asymmetric volatility

As the cryptocurrency market heads to maturity with more active online trades, the asymmetric volatility response to return
hocks may vary due to the change in informed and uninformed traders’ behavior. In effect, using the asymmetric GARCH
odels, Takaishi (2021) reports that Bitcoin exhibits different signs of asymmetric volatility for other historical periods and infers

hat such an underlying time-varying property may be one of the reasons why a constant picture is not observed in the Bitcoin
arket. Therefore, we examine how the asymmetry and scaling factors changed through the evolution of cryptocurrency history,

ncluding other representative cryptocurrencies.
We focus on analyzing two periods, from 2016/6/2 to 2019/4/30 and 2018/11/1 to 2021/9/25, with data long enough to run our

ractal regression analysis.7 They include typical cryptocurrency bubbles and crashes, the first occurring in late 2017 to early 2018

7 The first sub-period corresponds to one year before and after the bubble and crash periods of 2017 to 2018, in order to also consider the periods when
rices are in a stable state. Remarkable rises and falls in prices in 2021 are ongoing, and the second sub-period is set to have roughly the same data length as
11

he first sub-period.
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Fig. 4. Statistic significance tests of the DFA-based bivariate regression estimates. Among the synthetic distribution of the scale-dependent t-statistics of the
coefficient 𝛽DFA2 (𝑠), the black dashed line indicates the critical values of the 95% band, and the red dash-dotted line indicates the critical values of the 90%
band.

and the second in 2021. Cryptocurrencies during these periods have experienced remarkable rises and intense falls in prices. In such
situations, the existence of noise traders cannot be ignored, and it is clear that they, in part, play an essential role in influencing the
asymmetric behavior of market volatility in the short- and long-term. In Tables 4 and 5, we show the DFA-based bivariate regression
coefficient estimates associated with the t-statistics for each period. We consider the following investment horizon settings; short-
term (𝑠 = 30), mid-term (𝑠 = 60), and long-term scales (𝑠 = 120). During the first period (Table 4), the scale-dependent coefficients
𝛽DFA2 (𝑠) of BTC stay negative for all investment horizons, indicating that BTC volatility is higher following negative return shocks
on whatever scale. A similar outcome is found in ETH, although the coefficient is insignificant for long-term scales. For the minor
coins of XRP and DASH, the coefficients turn out to be slightly positive for all scales. This indicates that volatility may rather be
higher following positive return shocks, however, the coefficients are generally not statistically significant. The remaining minor
coins of LTC and XMR show no remarkable evidence of asymmetry; on the one hand, we find negative coefficients for short- and
mid-term scales but a positive coefficient for long-term scales. This trend is in line with the findings mentioned earlier in Figs. 2–4.

The results so far provide not so much a different picture from that of using the entire period. However, we find different
asymmetric effects and scaling dependencies in the second period (Table 5). All scale-dependent coefficients 𝛽DFA2 (𝑠) and their
cale-dependent t-statistics 𝑡2(𝑠) of BTC are closer to zero, meaning that compared to the first period, the degree of asymmetry
ecame weaker.8 Noteworthy, the BTC market still holds a significant asymmetric volatility effect, and also, the ETH does. More
mportantly, in the relatively minor cryptocurrencies, traces of the inverse asymmetric volatility effect is no longer present on most
cales because these markets are prone to show negative coefficients more often than in the first period. The shift from positive

8 Urquhart (2016) provides empirical evidence that Bitcoin is an inefficient market but may be in the process of moving towards an efficient market.
12
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Table 4
DFA-based bivariate regression estimates of cryptocurrency series for the period of 2016/6/2 to 2019/4/30, corresponding to the first
cryptocurrency boom and crash. The scale-dependent coefficients 𝛽DFA1 (𝑠) and 𝛽DFA2 (𝑠) associated with their variance (×10−3; shown in parenthesis)
are shown with the scale-dependent 𝑡-statistics 𝑡2(𝑠). We show the results for the cases of short-term scales (𝑠 = 30 days), mid-term scales (𝑠 = 60
days), and long-term scales (𝑠 = 120 days). Note that ∗ ,∗∗, and ∗∗∗ denotes 90%, 95%, and 99% confidence level, respectively.

BTC ETH XRP

𝑠 = 30 𝑠 = 60 𝑠 = 120 𝑠 = 30 𝑠 = 60 𝑠 = 120 𝑠 = 30 𝑠 = 60 𝑠 = 120

𝛽DFA1 (𝑠) 0.517 1.061 2.313 0.920 1.462 2.428 1.055 1.519 1.051
(5.542) (11.50) (22.05) (5.296) (9.439) (18.59) (7.113) (12.60) (25.33)

𝛽DFA2 (𝑠) −0.391 −0.792 −0.884 −0.300 −0.501 −0.174 0.048 0.024 0.595
(1.829) (3.226) (6.126) (1.954) (3.096) (4.783) (3.082) (4.712) (9.316)

𝑡2(𝑠) −9.148∗∗∗ −13.94∗∗∗ −11.30∗∗∗ −6.776∗∗∗ −9.001∗∗∗ −2.521 0.865 0.344 6.163∗

LTC XMR DASH

𝑠 = 30 𝑠 = 60 𝑠 = 120 𝑠 = 30 𝑠 = 60 𝑠 = 120 𝑠 = 30 𝑠 = 60 𝑠 = 120

𝛽DFA1 (𝑠) 0.677 0.970 1.655 0.804 1.101 1.795 0.636 1.101 1.869
(6.315) (11.97) (18.54) (4.386) (9.503) (22.31) (5.082) (9.105) (19.35)

𝛽DFA2 (𝑠) −0.089 −0.289 0.241 −0.041 −0.045 0.558 0.013 0.038 0.456
(2.420) (4.296) (7.311) (1.771) (4.160) (8.627) (1.916) (3.202) (7.451)

𝑡2(𝑠) −1.803 −4.408∗ 2.816 −0.963 −0.699 6.011∗ 0.302 0.671 5.277∗

Table 5
DFA-based bivariate regression estimates of cryptocurrency series for the period of 2018/11/01 to 2021/9/25, corresponding to the second
cryptocurrency boom and crash.

BTC ETH XRP

𝑠 = 30 𝑠 = 60 𝑠 = 120 𝑠 = 30 𝑠 = 60 𝑠 = 120 𝑠 = 30 𝑠 = 60 𝑠 = 120

𝛽DFA1 (𝑠) 0.584 0.876 0.876 0.603 0.791 0.836 0.539 0.624 0.775
(1.057) (1.515) (1.956) (1.191) (1.486) (2.028) (0.598) (0.727) (1.051)

𝛽DFA2 (𝑠) −0.122 −0.123 −0.405 −0.214 −0.193 −0.324 −0.008 0.059 0.005
(0.588) (1.151) (2.707) (0.760) (1.372) (2.310) (0.595) (1.086) (1.376)

𝑡2(𝑠) −5.016∗∗∗ −3.632 −7.787∗∗ −7.775∗∗∗ −5.208∗∗ −6.741∗ −0.317 1.784 −0.138

LTC XMR DASH

𝑠 = 30 𝑠 = 60 𝑠 = 120 𝑠 = 30 𝑠 = 60 𝑠 = 120 𝑠 = 30 𝑠 = 60 𝑠 = 120

𝛽DFA1 (𝑠) 0.701 0.889 1.046 0.686 1.138 1.187 0.764 1.127 1.164
(1.224) (1.384) (1.792) (1.758) (2.051) (2.278) (1.240) (1.339) (1.812)

𝛽DFA2 (𝑠) −0.093 −0.150 −0.158 −0.078 −0.042 −0.262 −0.004 −0.015 0.051
(0.708) (1.157) (2.272) (1.013) (1.906) (2.919) (0.761) (1.177) (1.889)

𝑡2(𝑠) −3.498∗∗ −4.421∗ −3.318 −2.459 −0.953 −4.842 −0.163 −0.430 1.165

to negative asymmetric effect, in addition to the reduction of asymmetry in major cryptocurrencies, is in good agreement with the
argument that cryptocurrency markets are steadily heading towards maturity (Drozdz et al., 2018). As the market matures, informed
investors will be more dominant, helping to reduce market asymmetry.

The asymmetric results among different time periods may be attributed to the safe-haven property of cryptocurrencies and their
hange in recent times. Bouri et al. (2017a) demonstrate that any evidence of an inverse asymmetric volatility in cryptocurrency
arkets may point towards a safe-haven property. When cryptocurrency prices rise in periods of financial turmoil in which

raditional market prices (e.g., stock prices) fall, investors interpret this as an increase in macroeconomic environment and
ncertainty. In this situation, investors (in particular the uninformed) buy cryptocurrencies and transmit the increased volatility
f the stock market to cryptocurrency markets. On the contrary, when cryptocurrency prices fall in periods of rising stock prices,
ninformed investors consider that the uncertainty of macroeconomic environment is low. They thereby transmit the decreased
olatility of stock markets to cryptocurrency markets, which operates to mitigate downside market risks in cryptocurrencies and
revents volatility from rising. Accordingly, the existence of an inverse leverage during the first sub-period justifies the possibility
hat they are a consequence of cryptocurrencies acting as a safe-haven against leveraged traditional assets.9 However, the potential

is lost in the second period, and thereby the market can no longer be associated with the safe-haven property. The market has
grown to show asymmetric outcomes similar to those generally seen in mature markets. In this context, the results warn financial
risk managers that using cryptocurrencies on the route to maturity for hedging requires careful investigation of their dynamic
interdependence between return and volatility. It is expected that the discussion will be further developed by investigating the
connection of cryptocurrencies to global traditional markets.

9 In fact, the cryptocurrency crash of 2017 and 2018 is said to be detached from the global financial system and thus the market is uncorrelated with
13

raditional markets.
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Fig. A.5. Bootstrapped 95% confidence interval of DFA-based bivariate regression.

Moreover, one can extend the DFA-based fractal regression model to address another critical component of financial time series
– multifractal characteristics – by extending the DFA to the MFDFA. A deeper investigation of multifractal dynamics in the return-
volatility nexus may further develop the understanding of complex behaviors of volatility in cryptocurrency markets and how return
shocks play an essential role in producing asymmetric responses in the market. These are left for future work.

6. Conclusion

This paper develops a fractal regression framework to evaluate how return volatility responds asymmetrically to return shocks
in six representative cryptocurrency markets of Bitcoin, Ethereum, Ripple, Litecoin, Monero, and Dash. We make two major
contributions in this paper. First, we reveal the presence of a scaling-dependent structure in the asymmetric relationship between
return shocks and return volatility — volatility of cryptocurrencies can negatively or positively be influenced by return shocks
dependent on time scales, i.e., investment horizons. We focus on discussing the asymmetric volatility effect and its inverse effect
using the fractal regression analysis, which allows us to quantify the scaling factors of dependencies between the series. The proposed
fractal regression model has its advantage in modeling heterogeneity between asymmetric shocks and between large and small scales.
In this sense, our approach is more general than the traditional models that do not account for multi-time scales. The findings
illustrate that the asymmetry of volatility effect is determined not only by proximate return shocks but also by shocks across scales.
The empirical results present a more precise insight that regardless of scales, the major BTC and ETH show a strong asymmetric
volatility effect (negative effect), where negative shocks tend to have a greater impact on volatility. On the contrary, for some specific
ranges of mid-term scales, minor cryptocurrencies (especially XRP and DASH) show an inverse asymmetric volatility effect (positive
effect), where positive shocks tend to have a greater impact on volatility. The reason is discussed in the context of uninformed
traders dominating the market in different situations. The impact of informed short sellers trading during the downside market is
14

worth future discussion, since it is another possibility that could affect volatility.
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Fig. B.6. DFA-based bivariate regression estimates of cryptocurrency series based on VWAP. The coefficients 𝛽DFA1 (𝑠) and 𝛽DFA2 (𝑠) are shown for each

cryptocurrency; BTC, ETH, XRP, LTC, XMR, and DASH. The colored ranges denote 95% confidence intervals calculated as 𝛽DFA𝑖 (𝑠) ± 2
√

var(𝛽DFA𝑖 (𝑠)), for 𝑖 = 1, 2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Second, we study how the scale-dependent asymmetric volatility effect in cryptocurrencies changed by experiencing two
prominent bubbles and crashes. Under the proposed fractal regression model, we highlight the asymmetric outcomes for the two
periods. Volatility in major cryptocurrencies is higher following a negative return shock for both periods. In minor cryptocurrencies,
the features tend to be time-varying, where the effect shifted from positive to negative for a wide range of scales. This negative
effect is consistent with that reported in recent major cryptocurrencies and other traditional financial assets. The reduction of such
an asymmetric effect reveals traces of the markets’ increasing maturity with a larger predominance of informed traders mitigating
the effect of uninformed traders’ herding.

To sum up, our approach has the ability to explain the asymmetric return-volatility relationship in addition to their scaling-
dependencies. Since understanding the features of volatility plays a crucial role in various determinants in real-world finance, our
findings should be of interest to academic researchers, market investors, and policymakers.

CRediT authorship contribution statement

Shinji Kakinaka: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing
– original draft, Writing – review & editing, Visualization. Ken Umeno: Validation, Supervision.
15



Research in International Business and Finance 62 (2022) 101754S. Kakinaka and K. Umeno

t

D

A

A

n
a
a
f

c

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This research was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP21J15805.

ppendix A. Bootstrap confidence interval of scale-dependent regression

After obtaining 𝛽DFA𝑖 (𝑠) and the error 𝜀𝑡(𝑠) from the model of Eq. (12) (Eq. (14)), we resample the error 𝜀∗𝑡 (𝑠) and construct a
ew data 𝑍∗

𝑡 using 𝛽DFA𝑖 (𝑠) and 𝜀∗𝑡 (𝑠). We apply once again the fractal regression and run the procedure 1000 times. Then we obtain
collection of estimated coefficients, so the quantile of 𝛽DFA2 (𝑠) can be calculated. Below in Fig. A.5, the 95% confidence intervals

cross scales for each cryptocurrency are depicted. If 𝛽DFA2 (𝑠) = 0 is out of the range in orange, the coefficient is significantly different
rom 0. We confirm that the results are very similar to those obtained using the scale-dependent t-statistics presented in Fig. 4.

Fig. B.7. The impact of good and bad news to volatility, 𝛽DFA1 (𝑠) + 𝛽DFA2 (𝑠) and 𝛽DFA1 (𝑠) − 𝛽DFA2 (𝑠), respectively. We show the results based on VWAP for each
ryptocurrency; BTC, ETH, XRP, LTC, XMR, and DASH.
16
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Appendix B. Estimation results using volume-weighted average daily prices

See Figs. B.6 and B.7.
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