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Abstract. We consider the following nonlinear Schrödinger equation of deriv-
ative type:

(1) i∂tu+ ∂2
xu+ i|u|2∂xu+ b|u|4u = 0, (t, x) ∈ R× R, b ∈ R.

If b = 0, this equation is a gauge equivalent form of well-known derivative non-
linear Schrödinger (DNLS) equation. The soliton profile of the DNLS equation
satisfies a certain double power elliptic equation with cubic-quintic nonlineari-
ties. The quintic nonlinearity in (1) only affects the coefficient in front of the
quintic term in the elliptic equation, so the additional nonlinearity is natural as
a perturbation preserving soliton profiles of the DNLS equation. If b > − 3

16
,

the equation (1) has algebraically decaying solitons, which we call algebraic soli-
tons, as well as exponentially decaying solitons. In this paper we study stability
properties of solitons for (1) by variational approach, and prove that if b < 0, all
solitons including algebraic solitons are stable in the energy space. The existence
of stable algebraic solitons in (1) shows an interesting mathematical example be-
cause stable algebraic solitons are not known in the context of the corresponding
double power NLS.
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1. Introduction

1.1. Setting of the problem. In this paper we consider the following nonlinear
Schrödinger equation of derivative type:

(1.1) i∂tu+ ∂2
xu+ i|u|2∂xu+ b|u|4u = 0, (t, x) ∈ R× R, b ∈ R.

This equation has the following conserved quantities:

E(u) =
1

2
‖∂xu‖2L2 − 1

4

(
i|u|2∂xu, u

)
− b

6
‖u‖6L6 ,(Energy)

M(u) = ‖u‖2L2 ,(Mass)

P (u) = (i∂xu, u) ,(Momentum)

where (·, ·) is an inner product defined by

(v, w) = Re

∫
R
v(x)w(x)dx for v, w ∈ L2(R).

We note that (1.1) can be rewritten as

i∂tu = E′(u).(1.2)

The equation (1.1) is L2-critical in the sense that the equation and L2-norm are
invariant under the scaling transformation

uλ(t, x) = λ
1
2u(λ2t, λx), λ > 0.(1.3)

It is well known (see [19, 35]) that (1.1) is locally well-posed in the energy space
H1(R) and that the energy, mass and momentum of the H1(R)-solution are con-
served by the flow.

When b = 0, the equation is a gauge equivalent form1 of well-known derivative
nonlinear Schrödinger (DNLS) equation:

(DNLS) i∂tψ + ∂2
xψ + i∂x(|ψ|2ψ) = 0, (t, x) ∈ R× R,

which originally appeared in plasma physics as a model for the propagation of
Alfvén waves in magnetized plasma (see [29, 30]). Kaup and Newell [22] showed
that (DNLS) is completely integrable, or more precisely that (DNLS) arises as
a compatibility condition between two linear equations of a Lax pair. There is
a large literature of the studies on (DNLS), and it is beyond the scope of this
paper to review it here. We just refer to [17, 21] and references therein for further
information.

The soliton profile of (DNLS) satisfies a double power elliptic equation with
cubic-quintic nonlinearities (see (1.7)). The quintic nonlinearity in (1.1) only affects
the coefficient in front of the quintic term in the elliptic equation, so in this sense
the additional nonlinearity is not artificial, or rather natural as a perturbation
preserving soliton profiles of (DNLS). We note that the equation (1.1) for b 6= 0 is
not expected anymore to be completely integrable while the quintic term preserves
the L2-critical structure of (DNLS). Therefore, the equation (1.1) can be seen as

1The equation (1.1) for b = 0 and (DNLS) are equivalent under the following transformation:

ψ(t, x) = u(t, x) exp

(
− i

2

∫ x

−∞
|u(t, y)|2dy

)
.



3

an important model to investigate the speciality of integrable structure of (DNLS)
in the L2-critical framework.

We emphasize that the equation (1.1) itself is an interesting mathematical model
possessing a two-parameter family of solitons. For example, when b > 0, this equa-
tion possesses both stable and unstable solitons in the L2-critical framework (see
[34]), which cannot be seen in other critical equations such as L2-critical NLS and
L2-critical generalized KdV equation. The elliptic equation which soliton profiles
of (1.1) satisfy connects the problem on stability properties of standing waves in
the double power NLS.2 These properties come from the rich structure of a two-
parameter family of solitons.

In this paper we are interested in the equation (1.1) for the case b < 0. The aim of
this work is to study stability properties of solitons of (1.1) by variational approach.
We prove that if b < 0, all solitons including algebraic solitons are stable in H1(R).
The existence of stable algebraic solitons in (1.1) shows an interesting mathematical
example because stable algebraic solitons are not proved in the context of the double
power NLS.

1.2. Solitons. It is known (see [34, 17]) that the equation (1.1) has a two-parameter
family of solitons. Consider solutions of (1.1) of the form

uω,c(t, x) = eiωtφω,c(x− ct),(1.4)

where (ω, c) ∈ R2. It is clear that φω,c must satisfy the following equation:

−φ′′ + ωφ+ icφ′ − i|φ|2φ′ − b|φ|4φ = 0, x ∈ R.(1.5)

Applying the gauge transformation to φω,c

φω,c(x) = Φω,c(x) exp

(
i

2
cx− i

4

∫ x

−∞
|Φω,c(y)|2 dy

)
,(1.6)

then Φω,c satisfies the equation

−Φ′′ +

(
ω − c2

4

)
Φ +

c

2
|Φ|2Φ− 3

16
γ|Φ|4Φ = 0, x ∈ R,(1.7)

where γ := 1+ 16
3 b. The positive radial (even) solution of (1.7) is explicitly obtained

as follows (see also [37, 33]); if γ > 0 or equivalently b > − 3
16 ,

Φ2
ω,c(x) =


2(4ω − c2)√

c2 + γ(4ω − c2) cosh(
√

4ω − c2x)− c
if − 2

√
ω < c < 2

√
ω,

4c

(cx)2 + γ
if c = 2

√
ω,

if γ ≤ 0 or equivalently b ≤ − 3
16 ,

Φ2
ω,c(x) =

2(4ω − c2)√
c2 + γ(4ω − c2) cosh(

√
4ω − c2x)− c

if − 2
√
ω < c < −2s∗

√
ω,

where s∗ is defined by

s∗ = s∗(γ) =

√ −γ
1− γ ∈ (0, 1).

2See (1.17) below for more details.
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Through the formula of Φω,c, the soliton of (1.1) is explicitly represented as

uω,c(t, x) = exp

(
iωt+

i

2
c(x− ct)− i

4

∫ x−ct

−∞
|Φω,c(y)|2dy

)
Φω,c(x− ct).

We note that the condition of two parameters (ω, c):

if γ > 0⇔ b > − 3

16
, −2

√
ω < c ≤ 2

√
ω,

if γ ≤ 0⇔ b ≤ − 3

16
, −2

√
ω < c < −2s∗

√
ω

(1.8)

is a necessary and sufficient condition for the existence of non-trivial solutions of
(1.7) vanishing at infinity (see [2, Theorem 5]). For (ω, c) satisfying (1.8), one can
rewrite (ω, c) = (ω, 2s

√
ω), where the parameter s satisfies

if b > − 3

16
, −1 < s ≤ 1,

if b ≤ − 3

16
, −1 < s < −s∗.

(1.9)

We note that the curve

R+ 3 ω 7→ (ω, 2s
√
ω) ∈ R2(1.10)

for each s gives the scaling of the soliton, i.e.,

φω,2s
√
ω(x) = ω1/4φ1,2s(

√
ωx) for x ∈ R, ω > 0.(1.11)

We note that the value b = − 3
16 gives the turning point where the structure of the

solitons of (1.1) changes. In particular algebraic solitons, which correspond to the
case c = 2

√
ω, exist only for the case b > − 3

16 , which is the main interest in this
paper.

We now give the precise definition of stability of solitons in the energy space.

Definition. We say that the soliton uω,c of (1.1) is (orbitally) stable in H1(R) if
for any ε > 0 there exists δ > 0 such that if u0 ∈ H1(R) satisfies ‖u0−φω,c‖H1 < δ,
then the maximal solution u(t) of (1.1) with u(0) = u0 exists globally in time and
satisfies

sup
t∈R

inf
(θ,y)∈R2

‖u(t)− eiθφω,c(· − y)‖H1 < ε.(1.12)

Otherwise, we say that the soliton is (orbitally) unstable in H1(R).3

Colin and Ohta [7] proved the stability of exponentially decaying solitons for
(DNLS), which correspond to the solitons uω,c of (1.1) for b = 0 and ω > c2/4. The
proof depends on variational methods related to the argument in [38] (see Section
1.4 for more details). Liu, Simpson and Sulem [28] calculated linearized operators
of a generalized derivative nonlinear Schrödinger (gDNLS) equation:

i∂tu+ ∂2
xu+ i|u|2σ∂xu = 0, (t, x) ∈ R× R, σ > 0,(gDNLS)

and studied stability/instability of exponentially decaying solitons by applying the
abstract theory of Grillakis, Shatah and Strauss [12, 13]. In particular they gave
an alternative proof of the stability result in [7] (see also [14] for partial results
in this direction). We note that the abstract theory [12, 13] is not applicable

3The rotations and space translations appearing in (1.12) come from the invariant of the equa-
tion (1.1).
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O

c = 2
√

ω

c = −2
√

ω

ω

c

c = 2s∗√ω

unstable P (ϕω,c) < 0

stable P (ϕω,c) > 0

Figure 1. The stable/unstable region of solitons in the case b > 0.

for algebraic solitons of either (DNLS), (gDNLS), or (1.1), because of the lack of
coercivity property of the linearized operator. As for algebraic solitons of (DNLS),
some kinds of stability properties were studied in [23, 24] while stability/instability
in the energy space remains an open problem.

The situation in (1.1) for b > 0 becomes different from the case b = 0 due to
the focusing effect from the quintic term. Ohta [34] extended the work of [7] and
proved that for each b > 0 there exists a unique s∗ = s∗(b) ∈ (0, 1) such that the
soliton uω,c is stable if −2

√
ω < c < 2s∗

√
ω, and unstable if 2s∗

√
ω < c < 2

√
ω (see

Figure 1). In [31] it was proved that algebraic soliton uω,2
√
ω is unstable for small

b > 0, where the assumption of smallness is used for construction of the unstable
direction. If we observe momentum of solitons, the momentum is positive in the
stable region, and negative in the unstable region. This implies that momentum
of solitons has an essential effect on stability properties. In the borderline case
c = 2s∗

√
ω, momentum of the soliton is zero, which corresponds to the degenerate

case. Recently, in [32] instability for this case was proved for small b > 0; later in
[10], instability with a large set of unstable directions was proved for all b > 0.

On the other hand, stability properties of solitons for the case b < 0 seem to have
been less studied. In this case momentum of all solitons is positive, which suggests
that they are stable. Indeed, this is true as we show in this paper.

1.3. Statement of the results. Our first theorem gives the connection between
algebraic solitons and exponential decaying solitons, which would be of independent
interest. To state the result, we introduce the set Ω defined by

Ω =
{

(ω, c) ∈ R2 : −2
√
ω < c < 2

√
ω
}
.

Then we have the following result.

Theorem 1.1. Let b > − 3
16 . Suppose that (ω0, c0) satisfies c0 = 2

√
ω0. Then, we

have

lim
(ω,c)→(ω0,c0)

(ω,c)∈Ω

‖φω,c − φω0,c0‖Hm(R) = 0

for any m ∈ Z≥0.
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Remark. By Theorem 1.1 and Sobolev’s embedding theorem, we obtain that

lim
(ω,c)→(ω0,c0)

(ω,c)∈Ω

‖φω,c − φω0,c0‖Wm,∞(R) = 0

for any m ∈ Z≥0.

Theorem 1.1 shows that algebraic solitons can be obtained as strong limits of
exponentially decaying solitons. This relation may be useful for further study on
algebraic solitons. Here we adapt the approach in [16] and give a simple proof by
using explicit formulae of solitons. Recently, in [9] a similar result of Theorem 1.1
was proved in the context of a double power NLS. The argument in [9] depends
on variational characterization of ground states, where explicit formulae of solitons
are not necessary.

Now we state our main result. The main result in this paper is the following
stability result.

Theorem 1.2. Let − 3
16 < b < 0 and let (ω, c) satisfy −2

√
ω < c ≤ 2

√
ω. Then the

soliton uω,c of (1.1) is stable. In particular the algebraic soliton is stable.

1.4. Comments on the main result. The stability result of algebraic solitons
gives the counterpart of the previous instability result for the case b > 0. As pointed
out before, the case c = 2

√
ω (regardless of b ∈ R) cannot be treated by the abstract

theory [12, 13]. It is difficult to study stability properties for this case, based on
the study of the linearized operator S′′ω,c(φω,c) (see below for the definition of Sω,c),

because of the lack of coercivity property of S′′ω,c(φω,c).
4 For the proof of Theorem

1.2 we use variational approach inspired from the works in [38, 7, 34], which enables
us to treat the case c = 2

√
ω.

First we review the stability theory in the papers [7, 34]. We define the action
functional Sω,c by

Sω,c(φ) = E(φ) +
ω

2
M(φ) +

c

2
P (φ),(1.13)

and set d(ω, c) = Sω,c(φω,c). We note that (1.5) can be rewritten as S′ω,c(φ) = 0 and
φω,c is a critical point of Sω,c. When b ≥ 0 the following stability result is known.

Proposition 1.3 ([7, 34]). Let b ≥ 0 and let (ω, c) satisfy ω > c2/4. If there exists
ξ ∈ R2 such that 〈

d′(ω, c), ξ
〉
6= 0,

〈
d′′(ω, c)ξ, ξ

〉
> 0,(1.14)

then the soliton uω,c of (1.1) is stable.

Proposition 1.3 is proved in the following variational argument.5 First we prove
that the soliton profile φω,c is a minimizer on the Nehari manifold{

ϕ ∈ H1(R) \ {0} : Kω,c(ϕ) = 0
}
,

4The essential spectrum of S′′ω,c(φω,c) is given by σess

(
S′′ω,c(φω,c)

)
=
[
ω − c2/4,∞

)
, which gives

the lack of coercivity property for the case c = 2
√
ω (see [10] for more details).

5This can be regarded as a certain extension of the argument in [38] to a two-parameter family
of solitons.
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where Kω,c(ϕ) := d
dλSω,c(λϕ)

∣∣
λ=1

. Next we consider the potential wells

K +
ω,c =

{
u ∈ H1(R) \ {0} : Sω,c(u) < d(ω, c),Kω,c(u) > 0

}
,

K −
ω,c =

{
v ∈ H1(R) \ {0} : Sω,c(u) < d(ω, c),Kω,c(u) < 0

}
.

By using the variational characterization on the Nehari manifold, we see that K +
ω,c

and K −
ω,c are invariant under the flow of (1.1). Then, under the condition (1.14),

one can control the flow around the soliton, based on the calculation of the function
τ 7→ d((ω, c) + τξ) and properties of potential wells.

By computing d′′(ω, c) we have the following identity (see [34, Lemma 1]):

det[d′′(ω, c)] =
−2P (φω,c)√

4ω − c2 {c2 + γ(4ω − c2)}
.(1.15)

Here we note that P (φω,c) is positive if (ω, c) satisfies that

if b > 0, −2
√
ω < c < 2s∗

√
ω,

if b = 0, −2
√
ω < c < 2

√
ω.

(1.16)

Therefore, we deduce that det d′′(ω, c) < 0 under the condition (1.16). This yields
the existence of ξ ∈ R2 satisfying (1.14) because d′′(ω, c) has one positive eigenvalue.
Hence, it follows from Proposition 1.3 that if (1.16) holds, the soliton uω,c is stable.
This is a summary of the stability results in [7, 34].

There are a few difficulties to study stability properties of solitons in the case
b < 0. When b < 0 the defocusing effect from the quintic term b|u|4u gives an
obstacle for the variational characterization. To overcome that, we consider the
following gauge equivalent form of (1.1):6

i∂tv + ∂2
xv +

i

2
|v|2∂xv −

i

2
v2∂xv +

3

16
γ|v|4v = 0, (t, x) ∈ R× R.(1.1′)

Considering this form, one can characterize solitons on the Nehari manifold if b ≥
− 3

16 . However, the equation (1.1′) does not have the “good” Hamiltonian structure
as in (1.2), so it becomes more delicate to control the flow around the soliton.
Another problem arises when we treat algebraic solitons (the case c = 2

√
ω). We

note that d′′(ω, c) does not make sense when c = 2
√
ω (see (1.15)) because this case

corresponds to the boundary of existence region of solitons. Therefore the stability
criteria in Proposition 1.3 does not make sense for the case c = 2

√
ω.

In the present paper, we use the scaling curve (1.10) effectively for the control of
the flow, based on variational characterization of solitons of (1.1′). This approach
enables us to prove stability for algebraic solitons and exponential decaying solitons
in a unified way. Also, our variational argument along the scaling curve offers new
perspectives to stability theory of a two-parameter family of solitons (see the end
of Section 4 for more details).

As a relevant work of this paper, Guo [15] studied stability of algebraic solitons
of (gDNLS) for the case 0 < σ < 1 by variational approach. Compared with
our setting, stability problems become rather easier because the case 0 < σ < 1
corresponds to L2-subcritical problem. We note that the well-posedness of (gDNLS)
in H1(R) is assumed in [15], and the well-posedness remains an open problem in
the case 0 < σ < 1. For related topics on (gDNLS) we refer to [18, 11, 26] and
references therein.

6The equation (1.1′) is also used in previous works [39, 17].
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Algebraic solitons also appear in the following double power NLS:

i∂tu+ ∆u− |u|p−1u+ |u|q−1u = 0, (t, x) ∈ R× Rd,(1.17)

where 1 < p < q < 1 + 4/(d − 2)+. If we consider the standing wave (soliton)
solution eiωtφω(x), then φω satisfies the elliptic equation

−∆φ+ ωφ+ |φ|p−1φ− |φ|q−1φ = 0, x ∈ Rd.(1.18)

We note that the equation (1.7) for 0 < c ≤ 2
√
ω and γ > 0 corresponds to (1.18)

for p = 3, q = 5 and d = 1.7 Due to the defocusing effect from the lower power
order nonlinearity, (1.18) has algebraically decaying standing waves with ω = 0 as
well as usual standing waves decaying exponentially with ω > 0. Instability and
strong instability of these two types of standing waves were studied in [9] (see also
[20, 33] for earlier results), where variational characterization of ground states plays
a key role in the proof. We remark that in the context of (1.17), stable algebraic
solitons are not known for any cases of (p, q).

Stability of solitions are closely related to the mass condition yielding global
solutions of (1.1) in the energy space. We define the mass threshold value as

M∗(b) =

{
M(φ1,2s∗(b)) if b > 0,
4π

γ
3
2

if − 3
16 < b ≤ 0(⇔ 0 < γ ≤ 1).(1.19)

In [17] the author obtained the new mass condition for (1.1) such that if the initial
data u0 ∈ H1(R) of (1.1) satisfies M(u0) < M∗(b), then the corresponding H1(R)-
solution is global and bounded.8 For the case b = 0, this mass condition is nothing
but 4π-mass condition, which was first proved in [39]. We note that when b > 0,
M∗(b) is the mass of the soliton lying in the borderline case in the stable/unstable
region. On the other hand, when − 3

16 < b < 0(⇔ 0 < γ < 1), we have the following
relation:

M(φ1,2) =
4π√
γ
<

4π

γ
3
2

= M(φ1,2) + P (φ1,2),

which indicates that positive momentum of algebraic solitons boosts the threshold
value. This fact and the global result above are compatible with the stability
of algebraic solitons because the stability implies that the flow around algebraic
solitons is global and bounded.

In the recent progress of studies on (DNLS), global well-posedness without the
smallness assumption of the mass was established in weighted Sobolev spaces by
taking advantage of completely integrable structure (see [36, 21]).9 These results
give a remarkable difference with other critical equations such as L2-critical NLS
and L2-critical generalized KdV, while the dynamics of (DNLS) in the energy space
is not yet clear including the fundamental problem of stability/instability of alge-
braic solitons.

7Although there is a link of soliton profiles in between (1.1) and (1.17), stability properties may
change (see [7, Remark 1]).

8If b ≤ − 3
16

, for any initial data u0 ∈ H1(R), the corresponding H1(R)-solution is global and

bounded.
9After this work was completed, it was proved in [1] that (DNLS) is globally well-posed in

Sobolev spaces without the smallness assumption of the mass.
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1.5. Stability results for the case b ≤ − 3
16 . The proof of Theorem 1.2 is not

applicable to the case b < − 3
16 because the argument depends on variational char-

acterization on the Nehari manifold, which does not hold for this case. However,
by using another variational approach inspired from Cazenave and Lions [6], we
obtain the following result.

Theorem 1.4. Let b ≤ − 3
16 and let (ω, c) satisfy −2

√
ω < c < −2s∗

√
ω. Then the

soliton uω,c of (1.1) is stable.

It may be somewhat new to apply the approach of [6] to a two-parameter family
of solitons. The key point in the proof is to solve a certain variational problem with
mass constraint. To this end we consider the gauge equivalent form (1.1′) again.
If velocity of the soliton of (1.1′) is negative, one can prove that the soliton is a
solution of the minimization problem with mass constraint. Since velocity of all
solitons for the case b ≤ − 3

16 is negative, we can apply this variational argument to
prove stability of these solitons. We note that the proof of Theorem 1.4 still works
for the case b > − 3

16 and −2
√
ω < c < 0.

One can also apply the abstract theory of [12, 13] to exponentially decaying
solitons, based on spectral analysis of linearized operators. However, as can be seen
in [28, 10], the calculation of linearized operators for (1.1) is complex because the
nonlinearity contains derivative. We note that our variational proofs of Theorem
1.2 and 1.4 do not need any calculation of linearized operators.

1.6. Organization of the paper. The rest of this paper is organized as follows.
In Section 2, we recall the fundamental properties of a two-parameter family of
solitons of (1.1) which are used throughout the paper. In Section 3, we study
the connection between algebraic solitons and exponentially decaying solitons, and
prove Theorem 1.1. In Section 4, we study stability of two types of solitons for
the case − 3

16 < b < 0, and prove Theorem 1.2. The key claim in the proof is
Proposition 4.4, where we control the flow around the solitons by using the scaling
curve (1.10) effectively. Finally, in Section 5 we study stability of solitons with
negative velocity, and prove Theorem 1.4.

2. Preliminaries

In this section we organize the fundamental properties of solitons of (1.1). We
refer to [17] for the proof of the results in this section.

In next sections, we mainly use the equation (1.1′) which is a gauge equivalent
form of (1.1). Therefore we state the properties of solitons of (1.1′), which also
yield the properties of solitons of (1.1) through the gauge transformation. We first
note that (1.1′) is transformed from (1.1) through the gauge transformation

v(t, x) = G(u)(t, x) := u(t, x) exp

(
i

4

∫ x

−∞
|u(t, y)|2dy

)
.

The equation (1.1′) has the following conserved quantities:

E(v) =
1

2
‖∂xv‖2L2 −

γ

32
‖v‖6L6 ,(Energy)

M(v) = ‖v‖2L2 ,(Mass)

P(v) = (i∂xv, v) +
1

4
‖v‖4L4 .(Momentum)
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We note that the well-posedness in H1(R) for each of (1.1) and (1.1′) is equivalent
because u 7→ G(u) is locally Lipschitz continuous on H1(R).

Let (ω, c) satisfy (1.8). A two-parameter family of solitons of (1.1′) is given by

vω,c(t, x) = G(uω,c)(t, x) = eiωtϕω,c(x− ct),(2.1)

where ϕω,c is represented as

ϕω,c(x) = e
i
2
cxΦω,c(x),(2.2)

where Φω,c(x) is defined by the formulae below (1.7). We note that ϕω,c satisfies
the equation

−ϕ′′ + ωϕ+ icϕ′ +
c

2
|ϕ|2ϕ− 3

16
γ|ϕ|4ϕ = 0, x ∈ R.(2.3)

We define the action functional with respect to (1.1′) by

Sω,c(ϕ) = E(ϕ) +
ω

2
M(ϕ) +

c

2
P(ϕ).

We note that (2.3) can be rewritten as S ′ω,c(ϕ) = 0 and ϕω,c is a critical point of
Sω,c. Concerning the conserved quantities we have the relation

E(G(u)) = E(u), M(G(u)) = M(u), P(G(u)) = P (u),

which yields that

Sω,c(ϕω,c) = Sω,c(G(φω,c)) = Sω,c(φω,c) = d(ω, c).(2.4)

In the same way as (1.11), for the parameter s satisfying (1.9) we have

ϕω,2s
√
ω(x) = ω1/4ϕ1,2s(

√
ωx) for x ∈ R,

which implies that

E(ϕω,2s
√
ω) = ωE(ϕ1,2s), M(ϕω,2s

√
ω) =M(ϕ1,2s), P(ϕω,2s

√
ω) =

√
ωP(ϕ1,2s).

In particular we have

d(ω, 2s
√
ω) = ωd(1, 2s).(2.5)

Concerning mass of the solitons we have the following result.

Lemma 2.1. Let (ω, c) satisfy (1.8). Then we have

M (ϕω,c) =



8√
γ

tan−1

√
1 + α

1− α if γ > 0,

4
√

4ω − c2

−c if γ = 0,

4√−γ log
(
−α+

√
α2 − 1

)
if γ < 0,

where α := c
(
c2 + γ(4ω − c2)

)−1/2
. Furthermore, each of the functions

(−1, 1] 3 s 7→ M (ϕ1,2s) ∈
(

0,
4π√
γ

]
if γ > 0

and

(−1,−s∗) 3 s 7→ M (ϕ1,2s) ∈ (0,∞) if γ ≤ 0

is continuous, strictly increasing and surjective.
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By Lemma 2.1 and elementary calculations we have the following claim which is
useful to study stability of the soliton with c < 0.

Lemma 2.2. Let (ω, c) satisfy (1.8) and ω > c2/4. Then we have

∂ωM(ϕω,c) =
−8c√

4ω − c2 {c2 + γ(4ω − c2)}
.

The momentum of the solitons is represented as follows.

Lemma 2.3. Let (ω, c) satisfy (1.8). Then we have

P(ϕω,c) =


c

2

(
−1 +

1

γ

)
M(ϕω,c) +

2

γ

√
4ω − c2 if γ ≷ 0,

− 2ω + c2

3c
M(ϕω,c) if γ = 0.

(2.6)

Positivity of momentum of the solitons plays an essential role in the stability
theory. Concerning the sign of the momentum we have the following result.

Proposition 2.4. Let s satisfy (1.9). Then the following properties hold:

(i) If b > 0, there exists a unique s∗=s∗(b)∈(0, 1) such that P(ϕ1,2s∗)=0. More-
over, we have P(ϕ1,2s) > 0 for s ∈ (−1, s∗) and P(ϕ1,2s) < 0 for s ∈ (s∗, 1].

(ii) If b = 0, P(ϕ1,2s) > 0 for s ∈ (−1, 1) and P(ϕ1,2) = 0.
(iii) If b < 0, P(ϕ1,2s) > 0 for any s.

Finally we state the energy of the solitons. The following claim is an immediate
consequence of the Pohozaev identity.

Lemma 2.5. Let s satisfy (1.9). Then we have

E(ϕ1,2s) = −s
2
P(ϕ1,2s).

3. Connection between two types of the solitons

In this section we study connection between algebraic solitons and exponential
decaying solitons, and prove Theorem 1.1. From the scaling relation (1.11), it is
enough to discuss the convergence of φ1,2s as s → 1. First we prove the pointwise
convergence.

Proposition 3.1. Let b > − 3
16 . For any x ∈ R we have

lim
s→1−0

φ1,2s(x) = φ1,2(x).

Proof. Fix any x ∈ R. It is enough to prove that

lim
s→1−0

Φ1,2s(x) = Φ1,2(x),(3.1)

because of the relation (1.6) and the dominated convergence theorem. From the
explicit formula of Φω,c, we have

Φ2
1,2s(x) =

4(1− s2)√
s2 + γ(1− s2) cosh

(
2
√

1− s2x
)
− s

(3.2)

for s ∈ (−1, 1). By the Taylor expansion of x 7→ coshx around zero, the denomi-
nator is rewritten as√

s2 + γ(1− s2)
(
1 + 2(1− s2)x2 +O

(
(1− s2)2

))
− s.(3.3)
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By the Taylor expansion of the function h 7→
√
s2 + h around zero, we have√

s2 + γ(1− s2)− s =
γ

2s
(1− s2) +O

(
(1− s2)2

)
,

which is valid for s ∈ (0, 1). Thus we have

(3.3) =
γ

2s
(1− s2) + 2(1− s2)

√
s2 + γ(1− s2)x2 +O

(
(1− s2)2

)
= (1− s2)

( γ
2s

+ 2
√
s2 + γ(1− s2)x2 +O

(
1− s2

))
.

We note that the numerator and denominator share a common factor 1−s2. There-
fore we deduce that

Φ2
1,2s(x) =

4
γ
2s + 2

√
s2 + γ(1− s2)x2 +O (1− s2)

−→
s→1−0

8

γ + 4x2
= Φ2

1,2(x),

which proves (3.1). �

To complete the proof of Theorem 1.1, we effectively use the Brézis–Lieb lemma:

Lemma 3.2 ([3]). Let 1 ≤ p < ∞. Let {fn}n∈N be a bounded sequence in Lp(R)
and fn → f a.e. in R as n→∞. Then we have

‖fn‖pLp − ‖fn − f‖pLp − ‖f‖pLp → 0

as n→∞.

Proof of Theorem 1.1. From Lemma 2.1 and Proposition 3.1, we have

lim
s→1−0

φ1,2s(x) = φ1,2(x) for all x ∈ R,

lim
s→1−0

‖φ1,2s‖2L2 = ‖φ1,2‖2L2 .

Applying Lemma 3.2, we have

lim
s→1−0

‖φ1,2s − φ1,2‖2L2 = 0.

In the same way we also have

lim
s→1−0

‖Φ1,2s − Φ1,2‖2L2 = 0.(3.4)

Here we recall that Φ1,2s is a solution of the equation

−Φ′′ + (1− s2)Φ + s|Φ|2Φ− 3

16
γ|Φ|4Φ = 0, x ∈ R.(3.5)

We note that

‖Φ1,2s‖2L∞ = Φ2
1,2s(0)

=
4(1− s2)√

s2 + γ(1− s2)− s

=
4

γ

(√
s2 + γ(1− s2) + s

)
.
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This formula yields that the function (−1, 1) 3 s 7→ ‖Φ1,2s‖L∞ is strictly increasing
and

lim
s→1−0

‖Φ1,2s‖2L∞ =
8

γ
= ‖Φ1,2‖2L∞ .

In particular we have

max
s∈(−1,1]

‖Φ1,2s‖L∞ = ‖Φ1,2‖L∞ .(3.6)

By (3.4) and (3.6) we obtain that

‖sΦ3
1,2s − Φ3

1,2‖L2 ≤ (1− s)‖Φ3
1,2s‖L2 + ‖Φ3

1,2s − Φ3
1,2‖L2

≤ (1− s)‖Φ1,2‖2L∞‖Φ1,2‖L2 + 3‖Φ1,2‖2L∞‖Φ1,2s − Φ1,2‖L2

−→
s→1−0

0.

Similarly, we have

‖Φ5
1,2s − Φ5

1,2‖L2 ≤ 4‖Φ1,2‖4L∞‖Φ1,2s − Φ1,2‖L2 −→
s→1−0

0.

Therefore, by using the equation (3.5), we deduce that

‖Φ′′1,2s − Φ′′1,2‖L2 ≤ (1− s2)‖Φ1,2s‖2L2 + ‖sΦ3
1,2s − Φ3

1,2‖L2

+
3

16
γ‖Φ5

1,2s − Φ5
1,2‖L2 −→

s→1−0
0.

Combined with (3.4) we have

lim
s→1−0

‖Φ1,2s − Φ1,2‖H2 = 0.

By using the formula (1.6), we deduce that

lim
s→1−0

‖φ1,2s − φ1,2‖H2 = 0.

The rest of the proof is done by using the equation (1.5) and a standard bootstrap
argument. �

4. Stability of two types of solitons

In this section we study stability of two types of solitons for the case − 3
16 < b < 0,

and prove Theorem 1.2.

4.1. Variational characterization. In this subsection we recall variational prop-
erties of the solitons of (1.1′). Here we assume that b and (ω, c) satisfy

b > − 3

16
(⇔ γ > 0) , −2

√
ω < c ≤ 2

√
ω.(4.1)

First we define the function space by

ϕ ∈ Xω,c ⇐⇒
{
ϕ ∈ H1(R) if ω > c2/4,

e−
i
2
cxϕ ∈ Ḣ1(R) ∩ L4(R) if c = 2

√
ω,

where the norm of Xc2/4,c is defined by

‖ϕ‖Xc2/4,c
= ‖e− i

2
c·ϕ‖Ḣ1∩L4 .
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We note that H1(R) ⊂ Xc2/4,c. We define the functional Kω,c by

Kω,c(ϕ) =
d

dλ
Sω,c(λϕ)

∣∣∣∣
λ=1

= ‖∂xϕ‖2L2 + ω‖ϕ‖2L2 + c (i∂xϕ,ϕ) +
c

2
‖ϕ‖4L4 −

3

16
γ‖ϕ‖6L6 .

We note that the quadratic terms in the functional are rewritten as

‖∂xϕ‖2L2 + ω‖ϕ‖2L2 + c (i∂xϕ,ϕ) =
∥∥∥∂x (e− i

2
c·ϕ
)∥∥∥2

L2
+

(
ω − c2

4

)
‖ϕ‖2L2 .

From this relation, the functionals Sω,c and Kω,c are well-defined in the space Xω,c.
A similar observation is already done in [11, 17].

Now we consider the following minimization problem:

µ(ω, c) = inf {Sω,c(ϕ) : ϕ ∈ Xω,c \ {0},Kω,c(ϕ) = 0} ,
Mω,c = {ϕ ∈ Xω,c \ {0} : Sω,c(ϕ) = µ(ω, c),Kω,c(ϕ) = 0} .

We note that Mω,c is the set of minimizers of Sω,c on the Nehari manifold. The
following result gives a variational characterization of the solitons on the Nehari
manifold.

Proposition 4.1 ([17]). Assume (4.1). Then we have

Mω,c =
{
eiθ0ϕω,c(· − x0) : θ0 ∈ [0, 2π), x0 ∈ R

}
,

and d(ω, c) = µ(ω, c), where d(ω, c) = Sω,c(ϕω,c) (see (2.4)).

Here we introduce the following potential wells in the energy space:

A +
ω,c =

{
v ∈ H1(R) \ {0} : Sω,c(v) < d(ω, c),Kω,c(v) > 0

}
,

B+
ω,c =

{
v ∈ H1(R) \ {0} : Sω,c(v) < d(ω, c),Jc(v) < d(ω, c)

}
,

A −ω,c =
{
v ∈ H1(R) \ {0} : Sω,c(v) < d(ω, c),Kω,c(v) < 0

}
,

B−ω,c =
{
v ∈ H1(R) \ {0} : Sω,c(v) < d(ω, c),Jc(v) > d(ω, c)

}
,

where the functional Jc is defined by

Jc(v) = − c
8
‖v‖4L4 +

γ

16
‖v‖6L6 .

We note that the functional Sω,c is rewritten as

Sω,c(v) =
1

2
Kω,c(v) + Jc(v).(4.2)

From Proposition 4.1 we obtain the following result.

Proposition 4.2. Assume (4.1). Then A +
ω,c and A −ω,c are invariant under the flow

of (1.1′). Moreover, we have A ±ω,c = B±ω,c.

Proof. The proof is done in the similar way as [7, Lemma 11]. �

Remark. One can also prove that if the initial data of (1.1′) belongs to A +
ω,c, then

the corresponding H1(R)-solution is global and bounded.

Finally we prepare the compactness result on minimizers on the Nehari manifold
which is important for the proof of stability.
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Proposition 4.3 ([17]). Assume (4.1). If a sequence {ϕn}⊂Xω,c satisfies

Sω,c(ϕn)→ µ(ω, c) and Kω,c(ϕn)→ 0 as n→∞,
then there exist a sequence {yn} ⊂ R and v ∈ Mω,c such that {ϕn(· − yn)} has a
subsequence that converges to v strongly in Xω,c.

4.2. Stability theory with potential wells. Here we assume that b and (ω, c)
satisfy

− 3

16
< b < 0 (⇔ 0 < γ < 1) , −2

√
ω < c ≤ 2

√
ω.(4.3)

We note that P(ϕω,c) > 0 by Proposition 2.4. To prove stability of the soliton, we
need to control the flow around the soliton. By taking advantage of potential wells,
we obtain the following claim which plays a key role for the proof of stability.

Proposition 4.4. Assume (4.3). Then, there exists ε0 > 0 such that for any
ε ∈ (0, ε0) there exists δ > 010 such that if v0 ∈ H1(R) satisfies ‖v0 − ϕω,c‖H1 < δ,
then the solution v(t) of (1.1′) with v(0) = v0 exists globally in time and satisfies
that

(i) if c = 2sµ for s ∈ (0, 1] (µ =
√
ω),

d
(
(µ− ε)2, 2s(µ− ε)

)
− sε

4
‖v(t)‖4L4

< Jc(v(t)) < d
(
(µ+ ε)2, 2s(µ+ ε)

)
+
sε

4
‖v(t)‖4L4 ,

(4.4)

(ii) if c = 0,

d(ω,−ε)− ε

8
‖v(t)‖4L4 < J0(v(t)) < d(ω, ε) +

ε

8
‖v(t)‖4L4 ,(4.5)

(iii) if c < 0,

d(ω − ε, c) < Jc(v(t)) < d(ω + ε, c),(4.6)

for all t ∈ R in (i)-(iii).

Remark. Compared with the corresponding result [7, Lemma 12], the L4-norm
appears in (4.4) and (4.5), which comes from the lack of the “good” Hamiltonian
structure in (1.1′).

Proof. We mainly prove the most difficult case 0 < c ≤ 2
√
ω.

(i) Let ε0 > 0 be sufficiently small. For ε ∈ (0, ε0) we define the function g by

g(τ) = d
(
(µ+ τ)2, 2s(µ+ τ)

)
for τ ∈ (−ε, ε).

From the relation (2.5) we have

g(τ) = (µ+ τ)2d(1, 2s) for τ ∈ (−ε, ε),
which yields that

g(0) = µ2d(1, 2s), g′(0) = 2µd(1, 2s), g′′(0) = 2d(1, 2s).(4.7)

From Lemma 2.5 we have

2d(1, 2s) =M(ϕ1,2s) + sP(ϕ1,2s).(4.8)

10As can be seen in the proof, δ depends on ε and (ω, c).
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Assume that v0 ∈ H1(R) satisfies ‖v0 − ϕµ2,2sµ‖H1 < δ, where δ > 0 is determined
later. First we prove that

v0 ∈ B+
(µ+ε)2,2s(µ+ε)

∩B−
(µ−ε)2,2s(µ−ε).(4.9)

From (4.8) and (4.7) we have

S(µ±ε)2,2s(µ±ε)(v0) = S(µ±ε)2,2s(µ±ε)(ϕµ2,2sµ) +O(δ)

= E(ϕµ2,2sµ) +
(µ± ε)2

2
M(ϕµ2,2sµ)

+ s(µ± ε)P(ϕµ2,2sµ) +O(δ)

= µ2d(1, 2s)± εµ (M(ϕ1,2s) + sP(ϕ1,2s))

+
ε2

2
M(ϕ1,2s) +O(δ)

= g(0)± εg′(0) +
ε2

2
M(ϕ1,2s) +O(δ).

By using the Taylor expansion,11 we have

g(±ε) = g(0)± εg′(0) +
ε2

2
g′′(0).

We note that

g′′(0) = 2d(1, 2s) =M(ϕ1,2s) + sP(ϕ1,2s)

and sP(ϕ1,2s) > 0. Therefore, by taking small δ > 0 we obtain that

S(µ±ε)2,2s(µ±ε)(v0) < g(±ε).(4.10)

On the other hand, by (4.2) and Kω,c(ϕω,c) = 0 we have

Jc+2sε(ϕω,c) = −c+ 2sε

8
‖ϕω,c‖4L4 +

γ

16
‖ϕω,c‖6L6

< Jc(ϕω,c) = g(0) < g(ε).

By taking smaller δ > 0 again, we obtain that Jc+2sε(v0) < g(ε). Similarly, we
have g(−ε) < Jc−2sε(v0). Combined with (4.10), we deduce that (4.9) holds.

We now prove (4.4). By Proposition 4.2 we have

v(t) ∈ B+
(µ+ε)2,2s(µ+ε)

∩B−
(µ−ε)2,2s(µ−ε)(4.11)

for all t ∈ R. Therefore, we deduce that

g(ε) > Jc+2sε(v(t)) = −c+ 2sε

8
‖v(t)‖4L4 +

γ

16
‖v(t)‖6L6

= Jc(v(t))− sε

4
‖v(t)‖4L4 .

Similarly, we have

g(−ε) < Jc(v(t)) +
sε

4
‖v(t)‖4L4 .

This completes the proof of (4.4).

11One can also show this formula without using the Taylor expansion since the function g is
the quadratic function.
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(ii) When c = 0, by Lemma 2.3 we have

∂cP(ϕω,c)
∣∣∣
c=0

=
1

2

(
−1 +

1

γ

)
M(ϕω,0) > 0,

which yields that ∂2
cd(ω, c)

∣∣∣
c=0

> 0. From this fact and the calculation based on

the function (−ε, ε) 3 τ 7→ d(ω, τ), one can prove that

v0 ∈ B+
ω,ε ∩B−ω,−ε.(4.12)

In the same way as (i), we see that (4.12) implies (4.5).

(iii) When c < 0, by Lemma 2.2 we have

∂2
ωd(ω, c) =

1

2
∂ωM(ϕω,c) > 0.

From this fact and the calculation based on the function (−ε, ε) 3 τ 7→ d(ω + τ, c),
one can prove that

v0 ∈ B+
ω+ε,c ∩B−ω−ε,c,

which yields (4.6). �

Combined with Proposition 4.3, one can prove the following stability result.

Theorem 4.5. Assume (4.3). Then the soliton vω,c of (1.1′) is stable.

Proof. The claim is proved by contradiction. Assume that there exist ε1 > 0, a
sequence of the maximal solutions {vn} to (1.1′) and a sequence {tn} ⊂ R such
that

‖vn(0)− ϕω,c‖H1 −→
n→∞

0,(4.13)

inf
(θ,y)∈R2

‖vn(tn)− eiθϕω,c(· − y)‖H1 ≥ ε1.(4.14)

Since Sω,c(·) is a conserved quantity, by (4.13) we have

Sω,c(vn(tn)) = Sω,c(vn(0)) −→
n→∞

Sω,c(ϕω,c) = d(ω, c).(4.15)

By (4.13), (4.14) and the continuity t 7→ v(t) ∈ H1(R), one can pick up tn (still
denoted by the same letter) such that

inf
(θ,y)∈R2

‖vn(tn)− eiθϕω,c(· − y)‖H1 = ε1.(4.16)

This equality yields the boundedness of {vn(tn)} in H1(R), i.e.,

sup
n∈N
‖vn(tn)‖H1 ≤ C,(4.17)

where C only depends on ‖ϕω,c‖H1 and ε1. From Proposition 4.4 and (4.17), we
obtain that

Jc(vn(tn)) −→
n→∞

d(ω, c).

Combined with (4.2), we have

Kω,c(vn(tn)) −→
n→∞

0.(4.18)
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Therefore, by (4.15), (4.18) and Proposition 4.3, there exist a sequence {yn} and
θ0, y0 ∈ R such that {vn(tn, · + yn)} has a subsequence (still denoted by the same
letter) that converges to eiθ0ϕω,c(· − y0) in Xω,c. If ω > c2/4, this yields that

‖vn(tn)− eiθ0ϕω,c(· − y0 − yn)‖H1 −→
n→∞

0,(4.19)

which contradicts (4.16).
When c = 2

√
ω, we need to modify the argument slightly. From the definition

of Xc2/4,c, we have

e−
i
2
c·vn(tn, ·+ yn)→ e−

i
2
c·eiθ0ϕω,c(· − y0) in Ḣ1(R).(4.20)

By using this convergence one can easily prove that

e−
i
2
c·vn(tn, ·+ yn) ⇀ e−

i
2
c·eiθ0ϕω,c(· − y0) weakly in L2(R).(4.21)

From (4.13) and mass conservation we obtain that

M(vn(tn)) =M(vn(0))→M(ϕω,c).(4.22)

Therefore, it follows from (4.21) and (4.22) that

e−
i
2
c·vn(tn, ·+ yn)→ e−

i
2
c·eiθ0ϕω,c(· − y0) in L2(R).(4.23)

Hence (4.19) follows from (4.20) and (4.23), which contradicts (4.16). This com-
pletes the proof. �

Proof of Theorem 1.2. We note that vω,c = G(uω,c) and

G(eiθu(· − y))(x) = eiθG(u)(x− y)

for u ∈ H1(R) and x, y, θ ∈ R. We also note that the gauge transformation u 7→
G(u) is Lipschitz continuous on bounded subsets of H1(R). Hence the result follows
from Theorem 4.5 and the properties of the gauge transformation. �

Remark. The stability of the solitons for the case b = − 3
16 is proved in the same

way. Indeed, the results in Section 4.1 still hold in this case, and Proposition 4.4
(iii) holds since velocity of the solitons is negative.

We note that the formula (1.15) still holds including the case b < 0, i.e.,

det[d′′(ω, c)] =
−2P (φω,c)√

4ω − c2 {c2 + γ(4ω − c2)}
for ω > c2/4.(4.24)

By Proposition 2.4, the momentum P (φω,c) is always positive when b < 0, which
yields that d′′(ω, c) has one positive eigenvalue. Therefore there exists ξ ∈ R such
that 〈

d′(ω, c), ξ
〉
6= 0,

〈
d′′(ω, c)ξ, ξ

〉
> 0.

As in the proof of Proposition 4.4, the calculation of the function τ 7→ d((ω, c)+τξ)
and variational characterization yields the control of the flow around the soliton.
This is an adaptation of the argument in [7] to our setting, but one cannot treat
algebraic solitons in this approach.

Our variational approach offers a new perspective to the stability theory of a
two-parameter family of solitons. We note that Proposition 4.4 is obtained without
calculating the Hessian matrix d′′(ω, c). The calculation along the scaling curve
gives a simpler argument on the stability theory, and also enables us to treat alge-
braic solitons and exponentially decaying solitons in a unified way. This indicates
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that the curve (1.10) gives not only the scaling of the soliton but also “good”
measure of the stability.

5. Stability of solitons with negative velocity

In this section we study stability of the solitons for the case b ≤ − 3
16 , and prove

Theorem 1.4. For the proof we apply variational arguments introduced by Cazenave
and Lions [6]. Here we assume that b and (ω, c) satisfy

b ≤ − 3

16
(⇔ γ ≤ 0) , −2

√
ω < c < −2s∗

√
ω.(5.1)

We remark that our proof in this section still works for the case b > − 3
16 and

−2
√
ω < c < 0 (see the end of this section).

First we note that

Sω,c(e
i
2
cxψ) =

1

2
‖∂xψ‖2L2 +

1

2

(
ω − c2

4

)
‖ψ‖2L2 +

c

8
‖ψ‖4L4 −

γ

32
‖ψ‖6L6

=Ec(ψ) +
1

2

(
ω − c2

4

)
‖ψ‖2L2 ,

(5.2)

where Ec is defined by

Ec(ψ) =
1

2
‖∂xψ‖2L2 +

c

8
‖ψ‖4L4 −

γ

32
‖ψ‖6L6 .

We note that S ′ω,c(e
i
2
cxψ) = 0 is equivalent that

−ψ′′ +
(
ω − c2

4

)
ψ +

c

2
|ψ|2ψ − 3

16
γ|ψ|4ψ = 0, x ∈ R,

which is nothing but (1.7).
Now we consider a variational problem with mass constraint:

Am =
{
ψ ∈ H1(R) : ‖ψ‖2L2 = m

}
,

−ν(c,m) = inf {Ec(ψ) : ψ ∈ Am} ,
Mc,m = {ψ ∈ Am : Ec(ψ) = −ν(c,m)}

for m > 0. We begin with the following lemma.

Lemma 5.1. Assume γ ≤ 0, c < 0 and m > 0. Then −∞ < −ν(c,m) < 0.

Proof. From the assumption, Ec is rewritten as

Ec(ψ) =
1

2
‖∂xψ‖2L2 − |c|

8
‖ψ‖4L4 +

|γ|
32
‖ψ‖6L6 .

For ψ ∈ Am we set ψλ = λ1/2ψ(λx). Then, ψλ ∈ Am and

Ec(ψλ) = λ2

(
1

2
‖∂xψ‖2L2 +

|γ|
32
‖ψ‖6L6

)
− |c|

8
λ‖ψ‖4L4

= λ2

(
E(ψ)− λ−1 |c|

8
‖ψ‖4L4

)
.

One can see that Ec(ψλ) < 0 for sufficiently small λ > 0, which yields that
−ν(c,m) < 0.

By using the Gagliardo–Nirenberg’s inequality

‖f‖L4 ≤ C1‖∂xf‖1/4L2 ‖f‖3/4L2 ,
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we obtain that

Ec(ψ) ≥ 1

2
‖∂xψ‖2L2 − C1

|c|
8
‖∂xψ‖L2‖f‖3L2 ≥

1

4
‖∂xψ‖2L2 − C2c

2‖ψ‖6L2(5.3)

for some constant C2 > 0. Therefore we deduce that

−ν(c,m) = inf
ψ∈Am

Ec(ψ) ≥ −C2c
2m3 > −∞.

This completes the proof. �

The following claim on the sequential compactness plays a key role for the proof
of stability in this section.

Proposition 5.2. Assume γ ≤ 0, c < 0 and m > 0. If a sequence {ψn} ⊂ H1(R) \
{0} satisfies ‖ψn‖2L2 → m and Ec(ψn) → −ν(c,m), then there exist ϕ ∈Mc,m and
a sequence {yn} ⊂ R, such that {ψn(· − yn)} has a subsequence that converges to ϕ
strongly in H1(R).

For the proof of Proposition 5.2 we use the following Lieb’s compactness lemma
and Brezis–Lieb’s lemma (Lemma 3.2). We note that the original argument in [6]
(see also [5, Chapter 8]) relies on the concentration compactness method by Lions
[27].

Lemma 5.3 ([25]). Let {fn} be a bounded sequence in H1(R). Assume that there
exists q ∈ (2,∞) such that lim supn→∞ ‖fn‖Lq > 0. Then, there exist {yn} ⊂ R
and f ∈ H1(R) \ {0} such that {fn(· − yn)} has a subsequence that converges to f
weakly in H1(R).

Proof of Proposition 5.2. We proceed in three steps.

Step 1: Boundedness of {ψn}. From the assumption and −ν(c,m) < 0, Ec(ψn) <
−ν(c,m)/2 for large n. Combined with (5.3), we obtain that

−ν(c,m)

2
> Ec(ψn) ≥ 1

4
‖∂xψn‖2L2 − C2c

2m3

for large n. Since ‖ψn‖2L2 → m, this yields that {ψn} is bounded in H1(R). From
the definition of Ec and E ≥ 0, we have

−ν(c,m)

2
> Ec(ψn) = E(ψn)− |c|

8
‖ψn‖4L4 ≥ −

|c|
8
‖ψn‖4L4 ,

which implies that

0 <
4ν(c,m)

|c| < ‖ψn‖4L4 for large n.

Thus we have obtained that

sup
n∈N
‖ψn‖H1 <∞, inf

n∈N
‖ψn‖4L4 > 0.(5.4)

Step 2: Limits. From (5.4) one can apply Lemma 5.3 to the sequence {ψn}.
Then there exist {yn} ⊂ R and ϕ ∈ H1(R) \ {0} such that a subsequence of
{ψn(· − yn)} (we denote it by {ϕn}) converges to ϕ weakly in H1(R). By the weak
lower semicontinuity of the L2 norm we have

‖ϕ‖2L2 ≤ lim inf
n→∞

‖ϕn‖2L2 = lim
n→∞

‖ψn‖2L2 = m.(5.5)



21

We also have, up to a subsequence, ϕn → ϕ a.e. in R. Applying Lemma 3.2 we
obtain that

Ec(ϕn)− Ec(ϕn − ϕ)− Ec(ϕ)→ 0,(5.6)

‖ϕn‖2L2 − ‖ϕn − ϕ‖2L2 − ‖ϕ‖2L2 → 0.(5.7)

Step 3: Strong convergence. Assume that ‖ϕ‖2L2 < m. Then, combined with (5.7)
and ϕ 6= 0, we have

0 < lim
n→∞

‖ϕn − ϕ‖2L2 < m.

We set ξn = ϕn − ϕ. Following an idea from [8, 4], we modify {ξn} and ϕ by using
the scaling transformation

ξ̃n(x) = ξn(λ−1
n x), ϕ̃(x) = ϕ(λ−1x),

where

λn =
m

‖ξn‖2L2

, λ =
m

‖ϕ‖2
L2

.

We note that λ, λn > 1 and ξ̃n, ϕ̃ ∈ Am. By a direct calculation we have

Ec(ϕ) =
1− λ−2

2
‖∂xϕ‖2L2 + λ−1Ec(ϕ̃),

Ec(ξn) =
1− λ−2

n

2
‖∂xξn‖2L2 + λ−1

n Ec(ξ̃n).

(5.8)

Then it follows from (5.6), (5.8) and (5.7) that

−ν(c,m) = lim
n→∞

Ec(ϕn) = lim
n→∞

Ec(ξn) + Ec(ϕ)

= lim
n→∞

[1− λ−2
n

2
‖∂xξn‖2L2 +

1− λ−2

2
‖∂xϕ‖2L2

+ λ−1
n Ec(ξ̃n) + λ−1Ec(ϕ̃)

]
≥ 1− λ−2

2
‖∂xϕ‖2L2 − ν(c,m) lim

n→∞

(
λ−1
n + λ−1

)
=

1− λ−2

2
‖∂xϕ‖2L2 − ν(c,m) > −ν(c,m),

which gives a contradiction. Therefore we deduce that m = ‖ϕ‖2L2 .
Since we have the relation

lim
n→∞

‖ϕn‖2L2 = m = ‖ϕ‖2L2 ,

we deduce that ϕn → ϕ in L2(R). From boundedness of {ϕn} in H1(R) and
elementary interpolation estimates, we have

ϕn → ϕ in Lr(R) for all r ∈ [2,∞].(5.9)

Combined with the lower semicontinuity of the H1-norm, we deduce that

Ec(ϕ) ≤ lim inf
n→∞

Ec(ϕn) = −ν(c,m).
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On the other hand, it follows from ϕ ∈ Am that −ν(c,m) ≤ Ec(ϕ), which yields
that −ν(c,m) = Ec(ϕ). Hence ϕ ∈ Mc,m. By (5.6) we have E(ϕn − ϕ) → 0.
Combined with (5.9) we obtain that

1

2
‖∂xϕn − ∂xϕ‖2L2 = Ec(ϕn − ϕ)− c

8
‖ϕn − ϕ‖4L4 +

γ

32
‖ϕn − ϕ‖6L6 → 0,

which yields that

ϕn → ϕ strongly in H1(R).

This completes the proof. �

The set Mc,m is characterized as follows.

Lemma 5.4. Assume (5.1). Suppose further that

m = ‖ϕω,c‖2L2 = ‖Φω,c‖2L2 .(5.10)

Then we have

Mc,m =
{
eiθΦω,c(· − y) : θ, y ∈ R

}
and − ν(c,m) = Ec(Φω,c).(5.11)

Proof. By Proposition 5.2 we note that Mc,m 6= ∅. Let ψ ∈ Mc,m. Then there
exists a Lagrange multiplier λ ∈ R such that

E ′c(ψ) + λM′(ψ) = 0 ⇐⇒ −ψ′′ + λψ +
c

2
|ψ|2ψ − 3

16
γ|ψ|4ψ = 0.

Since ψ 6= 0, one can easily prove that λ > 0. If we set ω̃ = λ + c2

4 > 0, then ψ
satisfies the equation

−ψ′′ +
(
ω̃ − c2

4

)
ψ +

c

2
|ψ|2ψ − 3

16
γ|ψ|4ψ = 0, x ∈ R.(5.12)

By uniqueness of the solution of (5.12), there exist θ, y ∈ R such that

ψ = eiθΦω̃,c(· − y).

From the assumption we have

‖Φω̃,c‖2L2 = ‖ψ‖2L2 = m = ‖Φω,c‖2L2 .

Since c < 0, it follows from Lemma 2.2 that the function(
c2

4
,∞
)
3 µ 7→ ‖Φµ,c‖2L2 ∈ (0,∞)

is strictly increasing, in particular which implies that ω̃ = ω. Hence we have
ψ = eiθΦω,c(· − y). We also obtain that

−ν(c,m) = Ec(ψ) = Ec(Φω,c).(5.13)

Conversely, if ψ = eiθΦω,c(· − y) for some θ, y ∈ R, then it follows from (5.10)
and (5.13) that ψ ∈Mc,m. This completes the proof. �

Next we prove the following claim on sequential compactness.
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Proposition 5.5. Assume (5.1). Suppose further that m is defined by (5.10). If a
sequence {ϕn} ⊂ H1(R) satisfies

E(ϕn)→ E(ϕω,c), P(ϕn)→ P(ϕω,c), M(ϕn)→M(ϕω,c),

then there exist a subsequence of {ϕn} (still denoted by the same letter) and {θn}, {yn} ⊂
R such that

eiθnϕn(· − yn)→ ϕω,c strongly in H1(R).

Proof. We first note that

Ec(e−
i
2
cxψ) = Sω,c(ψ)− 1

2

(
ω − c2

4

)
‖ψ‖2L2 for ψ ∈ H1(R),(5.14)

which follows from (5.2). If we set ϕ = ϕω,c, we have

Ec(e−
i
2
cxϕω,c) = d(ω, c)− 1

2

(
ω − c2

4

)
‖ϕω,c‖2L2 .(5.15)

From the assumption we have

Sω,c(ϕn)→ Sω,c(ϕω,c) = d(ω, c).

Combined with (5.14) and (5.15), we have

Ec(e−
i
2
cxϕn)→ Ec(e−

i
2
cxϕω,c) = Ec(Φω,c) = −ν(c,m),

where we used (2.2) and (5.11). Therefore, by Proposition 5.2 and Lemma 5.4,
there exist {zn} ⊂ R and θ, y ∈ R such that up to a subsequence,

e−
i
2
c(·−zn)ϕn(· − zn)→ eiθΦω,c(· − y) strongly in H1(R).

This yields that

e−
i
2
c(y−zn)−iθϕn(·+ y − zn)→ e

i
2
c·Φω,c = ϕω,c strongly in H1(R),

which completes the proof. �

We are now in a position to prove the following stability result.

Theorem 5.6. Assume (5.1). Then the soliton vω,c of (1.1′) is stable.

Proof. For completeness we give a proof. Assume by contradiction that there exist
ε > 0, a sequence of the maximal solutions {vn} to (1.1′) and a sequence {tn} ⊂ R
such that

‖vn(0)− ϕω,c‖H1 −→
n→∞

0,(5.16)

inf
(θ,y)∈R2

‖vn(tn)− eiθϕω,c(· − y)‖H1 ≥ ε.(5.17)

From conservation laws and (5.16), we have

E(vn(tn)) = E(vn(0))→ E(ϕω,c),

M(vn(tn)) =M(vn(0))→M(ϕω,c),

P(vn(tn)) = P(vn(0))→ P(ϕω,c).

Therefore, by Proposition 5.5, there exist a subsequence of {vn(tn)} (still denoted
by the same letter) and {θn}, {yn} ⊂ R such that

vn(tn)− eiθnϕω,c(· − yn)→ 0 strongly in H1(R),

which contradicts (5.17). �
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Proof of Theorem 1.4. Similarly as in the proof of Theorem 1.2, the result follows
from Theorem 5.6 and the properties of the gauge transformation u 7→ G(u). �

Our proof in this section still works for the case b > − 3
16 and −2

√
ω < c < 0.

For this case we note that

0 < ‖ϕω,c‖2L2 < ‖ϕω,0‖2L2 =
2π√
γ
,

which follows from Lemma 2.1. By the sharp Gagliardo–Nirenberg inequality

γ

32
‖f‖6L6 ≤

1

2
‖∂xf‖2L2 ·

(√
γ

2π
‖f‖2L2

)2

,

one can prove that −∞ < −ν(c,m) < 0 for m ∈ (0, 2π√
γ ). Other parts in the proof

work without any changes. We note that the condition m ∈ (0, 2π√
γ ) is essential

to prove −∞ < −ν(c,m), so that we need to restrict our approach to the case of
negative velocity.
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