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Abstract. We consider a reconstruction problem of sparse signals from a
smaller number of measurements than the dimension formulated as a minimiza-
tion problem of nonconvex sparse penalties: smoothly clipped absolute deviations
and minimax concave penalties. The nonconvexity of these penalties is controlled
by nonconvexity parameters, and the �1 penalty is contained as a limit with
respect to these parameters. The analytically-derived reconstruction limit over-
comes that of the �1 limit and is also expected to overcome the algorithmic limit
of the Bayes-optimal setting when the nonconvexity parameters have suitable
values. However, for small nonconvexity parameters, where the reconstruction
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of the relatively dense signals is theoretically expected, the algorithm known as
approximate message passing (AMP), which is closely related to the analysis,
cannot achieve perfect reconstruction leading to a gap from the analysis. Using
the theory of state evolution, it is clarified that this gap can be understood on
the basis of the shrinkage in the basin of attraction to the perfect reconstruction
and also the divergent behavior of AMP in some regions. A part of the gap is
mitigated by controlling the shapes of nonconvex penalties to guide the AMP
trajectory to the basin of the attraction.

Keywords: analysis of algorithms, cavity and replica method, message-passing
algorithms, spin glasses
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1. Introduction

A signal processing scheme for reconstructing signals through linear measurements, when
the number of measurements is less than the dimensionality of the signals, is known as
compressed sensing (or compressive sensing) [1, 2]. Let x0 ∈ R

N and A ∈ R
M×N be the

unknown original signal and measurement matrix, respectively. Compressed sensing is
mathematically formulated as a problem of reconstructing the signal x 0 from its mea-
surement y = Ax 0, where the number of measurements is less than the signal dimension
(M < N). In general, the problem is underdetermined, and the solution is not unique.
However, the signal can be reconstructed utilizing the knowledge that the original signal
is sparse; it contains zero components with a finite probability. The reconstruction of

https://doi.org/10.1088/1742-5468/ac1403 2

https://doi.org/10.1088/1742-5468/ac1403


J.S
tat.

M
ech.

(2021)
093401

Perfect reconstruction of sparse signals with piecewise continuous nonconvex penalties and nonconvexity control

signals from a limited number of measurements is a common challenge in various fields.
In the past decade, theories and techniques of compressed sensing have been enriched by
interdisciplinary work in fields such as signal processing, medical imaging, and statistical
physics.

A natural way to reconstruct a sparse signal is to minimize the �0 norm under a
constraint:

min
x

‖x‖0, subject to y = Ax, (1)

where ‖x‖0 is the number of nonzero components in x . However, a combinatorial search
with respect to the support set is required to exactly solve (1); hence, it is unrealistic
for implementation. The minimization of the �1 norm [1, 3] is a widely used approach:

min
x

‖x‖1, subject to y = Ax, (2)

which is a convex relaxation problem of (1), where ‖x‖1 =
∑N

i=1|xi|. Efficient algorithms
to solve (2) have been developed [4, 5], in addition to the convex optimization techniques
[6]. Further, some conditions about the measurement matrix, such as the null space
property and the restricted isometry property [7, 8], are found and under such conditions
it is shown that solutions (1) and (2) become equivalent.

Despite the mathematical tractability of �1 minimization, its performance is inferior
to �0 minimization for the practical setting of the measurement matrix A. The differ-
ence between �1 and �0 is expected to be reduced by introducing the minimization of
�p(0 < p < 1) norm. In fact, �p(0 < p < 1) minimization achieves the reconstruction of
the original signal from a lower number of measurements than �1 minimization [9, 10].
However, �p(0 < p < 1) minimization leads to a discontinuity of the reconstructed signal
with respect to the input, which induces algorithmic instability. Smoothly clipped abso-
lute deviations (SCADs) [11] and minimax concave penalties (MCPs) [12], which are
piecewise continuous nonconvex penalties, are potential candidates to address this limi-
tation. SCADs and MCPs are designed to provide continuity, unbiasedness, and sparsity
to the estimates, and their nonconvexities are controlled by nonconvexity parameters.
The mathematical treatment of nonconvex penalties is seemingly difficult compared with
�1. However, it is shown that a data compression problem under SCAD and MCP can
be solved without additional computational cost compared with convex optimization
problems in a certain parameter region, and this region is characterized by replica sym-
metry in the context of statistical physics [13]. This investigation implies the prospects
of these penalties for improvement in reconstructing the signals in compressed sensing.

In this study, we theoretically verify the performance of the minimization of SCAD
and MCP for the reconstruction of sparse signals in compressed sensing. The perfect
reconstruction is achieved with a smaller number of measurements compared with the
�1 reconstruction limit [14–16]. Further, SCAD and MCP minimization overcomes the
algorithmic limit of the Bayes-optimal method [17], in the sense that there exists a unique
stable solution corresponding to the perfect reconstruction, even beyond the algorithmic
limit of the Bayes-optimal method, and that there are no phase transitions that can be
algorithmic barriers. Based on this finding, as a reconstruction algorithm, we employ
the approximated message passing (AMP) algorithm to SCAD and MCP minimization.
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Examining its performance, it is found that AMP cannot actually achieve the perfect
reconstruction beyond the Bayes-optimal algorithmic limit, despite the theoretical basis.
To investigate the gap between the AMP’s behavior and the analytical result, we use
the technique of the state evolution (SE), which allows us to track the macroscopic
dynamics of AMP. As a result, it is found that the gap comes from the shrinkage in the
basin of attraction (BOA) to the perfect reconstruction and the divergent behavior of
AMP in some parameter regions. One of the contributions of the paper is the finding of
the scenario of the algorithmic failure different from that in the Bayes-optimal setting,
where the emergence of another local minimum than the success solution, which is the
global minimum, hampers the convergence of AMP to the perfect reconstruction.

We mitigate the abovementioned gap and improve the performance of AMP by
introducing a method controlling nonconvexity parameters, named nonconvexity control,
into AMP, which is our other contribution. The efficiency of the nonconvexity control is
understood from the flow of SE. Further, the property of the fixed point of SE gives a
guide for the protocol of the nonconvexity control. The algorithmic limit of SCAD and
MCP minimization, called the nonconvexity control limit (NCC limit), is determined as
the limit where the proposed nonconvexity control leads to the perfect reconstruction.
The resultant algorithmic limit is very close to but slightly inferior to the Bayes-optimal
algorithmic limit.

The remainder of this paper is organized as follows. In section 2, we introduce the
nonconvex sparse penalties, SCAD and MCP, used in this study. The equilibrium prop-
erties of compressed sensing under SCAD and MCP are studied in section 3, based on
the replica method under the replica symmetric (RS) assumption. In section 4, the limit
for the perfect reconstruction is derived for SCAD and MCP, and we show that their
performance is expected to overcome the �1 reconstruction limit and the algorithmic
limit of the Bayes-optimal method by investigating the presence of phase transitions
and the local stability of the solution corresponding to the perfect reconstruction. In
section 5, we demonstrate the actual reconstruction of the signal using AMP, and show
that the reconstructed signal diverges when the nonconvexity parameters are small,
even when the reconstruction is theoretically supported. We show that this divergence
can be suppressed by introducing the nonconvexity control. Section 6 is devoted to the
summary and discussion of this paper.

2. Definition of SCAD and MCP

The problem considered in this study is formulated as

min
x

J(x ;λ, a) subject to y = Ax, (3)

where J(x ;λ, a) =
∑N

i=1J(xi ;λ, a) is a sparsity-inducing penalty and λ, a are regulariza-
tion parameters. We deal with two types of nonconvex penalties, SCAD and MCP. The
shapes of these penalties are controlled by two parameters, λ and a, and �1 penalty is
considered as a limit. We call these regularization parameters nonconvexity parameters.

https://doi.org/10.1088/1742-5468/ac1403 4
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Figure 1. Shapes of (a) SCAD for λ = 1 and a = 3 and (b) MCP for λ = 1 and
a = 3. The dashed lines represent the thresholds where the penalty shape changes.

SCAD is defined by [11]

J(x ;λ, a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ|x| (|x| � λ)

−x2 − 2aλ|x|+ λ2

2(a− 1)
(λ < |x| � aλ)

(a+ 1)λ2

2
(|x| > aλ)

, (4)

where λ ∈ (0,∞) and a ∈ (1,∞). Figure 1(a) represents the SCAD penalty at λ = 1
and a = 3. The dashed vertical lines are the thresholds |x| = λ and |x| = aλ. The SCAD
penalty for |x| � λ is equivalent to the �1 penalty, and that for |x| > aλ is equivalent
to the �0 penalty; i.e. the penalty has a constant value. These �1 and �0 regions are
connected to each other through a quadratic function. At a→∞, SCAD is reduced to
the �1 penalty, J(x ;λ, a→∞) = λ|x|, and the minimization of SCAD at λ→∞ is also
equivalent to the �1 minimization.

MCP is defined by [12]

J(x ;λ, a) =

⎧⎪⎪⎨
⎪⎪⎩
λ|x| − x2

2a
(|x| � aλ)

aλ2

2
(|x| > aλ)

, (5)

where λ ∈ (0,∞) and a ∈ (1,∞). Figure 1(b) represents MCP for λ = 1 and a = 3. The
vertical line represents the threshold |x| = aλ. As with SCAD, MCP is also reduced to
�1 by taking the limit a→∞, and is also equivalent to �1 minimization when the penalty
is minimized at λ→∞.
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2.1. Estimator under SCAD and MCP

For understanding the properties of SCAD and MCP, let us consider the one-dimensional
fitting problem of the input w using a Gaussian model penalized by SCAD or MCP as

x̂(s,w) = argmin
x

{
x2

2s
− wx+ J(x ;λ, a)

}
, (6)

where s > 0. Both SCAD and MCP have upward convex terms, hence to define a solution
of (6) for all w regions, we need to carefully consider the possible regions of s and a,
which give the coefficient of the quadratic term in the rhs of (6). In the case of SCAD,
the relationship a > 1 + s should hold to obtain the solution as

x̂(s,w) = ΣSCAD(s,w)MSCAD(s,w) (7)

where MSCAD and ΣSCAD represent the coefficients of the linear and quadratic terms in
(6) given by

MSCAD(s,w) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w − sgn(w)λ for λ(1 + s−1) � |w| > λ

w − sgn(w)
aλ

a− 1
for aλs−1 � |w| > λ(1 + s−1)

w for |w| > aλs−1

0 otherwise

, (8)

ΣSCAD(s,w) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s for λ(1 + s−1) � |w| > λ(
s−1 − 1

a− 1

)−1

for aλs−1 � |w| > λ(1 + s−1)

s for |w| > aλs−1

0 otherwise

, (9)

and sgn(w) denotes the sign of w. An example of the estimator as a function of the input
w under SCAD is shown in figure 2(b), where s = 1, λ = 1 and a = 3. The SCAD esti-
mator behaves like the �1 estimator, which is shown in figure 2(a), and like the ordinary
least square (OLS) estimator when λ(1 + s−1) � |z| > λ and |w| > aλs−1, respectively.
In the region aλs−1 � |w| > λ(1 + s−1), the estimator linearly transits between �1 and
OLS estimators.

From the same argument as SCAD, a > s should hold to define the solution of (6)
under MCP. Further, the condition a > 1 is imposed in the definition of MCP, hence in
summary the restriction is given as a > min{1, s}. When the condition a > min{1, s}
is satisfied, the solution of the single body problem under MCP is given by [18]

x∗(s,w) = ΣMCP(s,w)MMCP(s,w), (10)

https://doi.org/10.1088/1742-5468/ac1403 6
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Figure 2. Behaviour of the estimator for (a) �1, (b) SCAD, and (c) MCP. The
dashed diagonal lines represent the OLS estimator.

where

MMCP(s,w) =

⎧⎪⎪⎨
⎪⎪⎩
w − sgn(w)λ for aλs−1 � |w| > λ

w for |w| > aλs−1

0 otherwise

, (11)

ΣMCP(s,w) =

⎧⎪⎪⎨
⎪⎪⎩
(s−1 − a−1)−1 for aλs−1 � |w| > λ

s for |w| > aλs−1

0 otherwise

. (12)

Figure 2(c) shows the behaviour of the MCP estimator at s = 1, λ = 1, and a = 3. The
MCP estimator behaves like the OLS estimator at |w| > aλs−1, and is connected from
zero to the OLS estimator in the region aλs−1 � |w| > λ.

3. Replica analysis for SCAD and MCP

We assume that the signal to be reconstructed is generated according to the
Bernoulli–Gaussian distribution,

P0(x
0) =

∏
i

{
(1− ρ)δ(x0

i ) +
ρ√
2πσ2

x

exp

(
−(x0

i )
2

2σ2
x

)}
, (13)

where δ(x) is the Dirac delta function. Further, we consider the measurement matrix
A to be a random Gaussian, where each component is independently and identically
distributed according to the Gaussian distribution with mean 0 and variance N−1. The
measurement is expressed as y = Ax 0, and the minimization of J(x ;λ, a) is imple-
mented under the constraint y = Ax . For mathematical tractability, we express the

https://doi.org/10.1088/1742-5468/ac1403 7
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constraint y = Ax by introducing a parameter τ as

Pτ (y|x) =
1

(
√
2πτ)M

exp

{
− 1

2τ
‖y−Ax‖22

}
, (14)

where the probability is concentrated at y = Ax taking the limit τ → 0. The posterior
distribution corresponding to the problem (3) is given by

P (x|y) = lim
β→∞

lim
τ→0

1

Zβ,τ(y)
exp(−βJ(x ;λ, a))Pτ(y|x), (15)

where β is a parameter to attain the uniform distribution over the minimizer of (3) at
β →∞, and

Zβ,τ(y) =

∫
dx exp(−βJ(x ;λ, a))Pτ(y|x) (16)

is the normalization constant. The minimizer of (3) is given by x̂ = 〈x〉, where 〈·〉 denotes
the expectation with respect to x according to the posterior distribution (15).

The performance of the reconstruction (3) depends on the randomness A and x 0.
Here, we examine the typical performance of the SCAD and MCP minimization at
N →∞ and M →∞ keeping M/N = α ∼ O(1), where α is the compression ratio. Free
energy density defined by

f = − lim
β→∞

lim
N→∞

lim
τ→0

1

Nβ
Ex0,A[ln Zβ,τ(y)] (17)

is the key in this discussion, where Ex0,A[. . .] denotes the expectation with respect to A
and x 0 introduced for the discussion of the typical property. Here, we proceed with the
calculation for general τ and β, and take the limit after the derivation of the general
form. It is calculated using the following identity

Ex0,A[ln Zβ,τ (y)] = lim
n→0

Ex0,A[Z
n
β,τ(y)]− 1

n
. (18)

Assuming that n is a positive integer, we can express the expectation of Zn
β in (18) using

n-replicated systems

Ex0,A[Z
n
β,τ(y)] =

∫
dAdydx0 P0(x

0)PA(A)δ(y− Ax0)

×
∫

dx(1) . . .dx(n) lim
τ→0

1

(
√
2πτ)nM

× exp

[
n∑

a=1

{
− 1

2τ
‖y− Ax(a)‖22 − βJ(x(a) ;λ, a)

}]
. (19)

The detail of the calculation is shown in [13, 16, 19], and here we briefly summarize the
calculation. The free energy density under the RS assumption is given by

https://doi.org/10.1088/1742-5468/ac1403 8
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f = extrΩ,Ω̃

[
α(Q− 2m+ ρσ2

x)

2χ
+mm̃− Q̃Q− χ̃χ

2
+

ξ(Q̃, σ)

2

]
, (20)

where extrΩ,Ω̃ represents the extremization with respect to the quantities Ω = {Q,χ,m}
and Ω̃ = {Q̃, χ̃, m̃}. The function ξ(Q̃, σ) depends on the regularization as

ξ(Q̃, σ) = 2

∫
DzL(Q̃, σz), (21)

L(Q̃, σz) = min
x

(
Q̃

2
x2 − σzx+ J(x ;λ, a)

)
, (22)

where
∫
Dz =

∫ ∞
−∞dz exp(−z2/2)/

√
2π. Equation (22) is equivalent to the one-

dimensional problem (6). Here, . . . denotes the average over σ according to the
distribution

Pσ(σ) = (1− ρ)δ(σ − σ−) + ρδ(σ − σ+), (23)

with σ− =
√
χ̃ and σ+ =

√
χ̃+ m̃2σ2

x. The random fields σ−z and σ+z effectively rep-
resent the randomness induced by A and x 0, in particular zero-signals and non-zero-
signals, respectively. We denote the solution of x in the effective single-body problem
(22) as x∗(Q̃−1, σz), which depends on the regularization, and we consider the specific

form of x∗(Q̃−1, σz) and L(Q̃, σz) later. The saddle point equations are given by

χ = −∂ξ(Q̃, σ)

∂χ̃
=

∫
Dz

∂x∗(Q̃−1, σz)

∂(σz)
, (24)

Q =
∂ξ(Q̃, σ)

∂Q̃
=

∫
Dz(x∗(Q̃−1, σz))2, (25)

m = −1

2

∂ξ(Q̃, σ)

∂m̃
= ρm̃σ2

x

∫
Dz

∂x∗(Q̃−1, σ+z)

∂(σ+z)
, (26)

χ̃ =
α(Q− 2m+ ρσ2

x)

χ2
, (27)

Q̃ =
α

χ
, (28)

m̃ =
α

χ
. (29)

At the saddle point, x∗(Q̃−1, σz) is statistically equivalent to the point estimate x̂, and
χ,Q and m are related to the physical quantities as

https://doi.org/10.1088/1742-5468/ac1403 9
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Q = lim
N→∞

1

N

N∑
i=1

Ex0,A[x̂
2
i ], (30)

m = lim
N→∞

1

N

N∑
i=1

Ex0,A[x
0
i x̂i], (31)

χ = lim
β→∞

lim
N→∞

β

N

N∑
i=1

Ex0,A

[
〈x2

i 〉 − 〈xi〉2
]
. (32)

Hence, the expectation value of the mean squared error (MSE) between the recon-
structed signal and the original signal is represented as

ε ≡ 1

N
Ex0,A

[
‖x̂− x0‖22

]
= Q− 2m+ ρσ2

x. (33)

The saddle point equations for variables Ω = {Q,χ,m} directly depend on the functional

form of the regularization, but the equations for Ω̃ do not depend on it. In the following
subsections, we show the form of saddle point equations of Ω for SCAD and MCP.

The RS solution is stable against the symmetry breaking perturbation when [13, 16]

α

χ2

∫
Dz

(
∂x∗(Q̃−1, σz)

∂(σz)

)2

< 1, (34)

which is known as de Almeida–Thouless (AT) condition [20]. The form of this condition
also depends on the functional form of the regularization.

3.1. SCAD

As mentioned in section 2.1, Q̃ > (a− 1)−1 should hold to define the minimizer of (22).
In the following, the subspace of the macroscopic parameters where the minimizer of
(22) can be defined is denoted by Ω†(a) ≡ {Q,χ,m|Q̃ > (a− 1)−1} for each a, and we
restrict our discussion to Ω†(a). When we are in Ω†(a), the minimizer of (22) under
SCAD is given by [18]

x∗(Q̃−1, σz) = ΣSCAD(Q̃
−1, σz)MSCAD(Q̃

−1, σz), (35)

and substituting solution (35) into (22), we obtain

−2L(Q̃, σz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σz − λ sgn(z))2

Q̃
(
√
2θ1(σ) < |z| �

√
2θ2(σ))(

σz − aλ
a−1

)2
Q̃− 1

a−1

+
λ2

a− 1
(
√
2θ2(σ) < |z| �

√
2θ3(σ))

(σz)2

Q̃
− (a+ 1)λ2 (|z| >

√
2θ3(σ))

0 (otherwise)

, (36)
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where θ1(σ) = λ/(
√
2σ), θ2(σ) = λ(1 + Q̃)/(

√
2σ), and θ3(σ) = aλQ̃/(

√
2σ). Equation

(21) for SCAD regularization is derived as

−ξ(σ) = ξ1(σ) + ξ2(σ) + ξ3(σ) +
λ2ξ4(σ)

a− 1
− (a+ 1)λ2 erfc(θ3(σ)), (37)

where

ξ1(σ) =
σ2

Q̃

[
−2θ1(σ)√

π

(
e−θ21(σ) + (Q̃− 1)e−θ22(σ)

)

+ (1 + 2θ21(σ)){erfc(θ1(σ))− erfc(θ2(σ))}
]
, (38)

ξ2(σ) =
σ2

Q̃− 1
a−1

[
2√
π

{
θ2(σ)e

−θ22(σ)

− θ3(σ)e
−θ23(σ) − 2θ3(σ)

Q̃(a− 1)

(
e−θ22(σ) − e−θ23(σ)

)}

+

{
1 + 2

(
θ3(σ)

Q̃(a− 1)

)2
}
ξ4(σ)

]
, (39)

ξ3(σ) =
σ2

Q̃

[
2θ3(σ)√

π
e−θ23(σ) + erfc(θ3(σ))

]
, (40)

ξ4(σ) = erfc(θ2(σ))− erfc(θ3(σ)). (41)

The regularization-dependent saddle point equations are given by

Q =
ξ 1(σ)

Q̃
+

ξ2(σ)

Q̃− 1
a−1

+
ξ3(σ)

Q̃
, (42)

χ =
1

Q̃

[
ρ̂+

1
a−1

Q̃− 1
a−1

ξ4(σ)

]
, (43)

m = ρσ2
x

[
erfc(θ1(σ+)) +

1
a−1

ξ4(σ+)

Q̃− 1
a−1

]
, (44)

where ρ̂ is the density of the nonzero component in the estimate given by

ρ̂ = erfc(θ1(σ)). (45)

From (34), the AT condition is derived as

1

α

⎡
⎣ρ̂+

⎧⎨
⎩
(

Q̃

Q̃− 1
a−1

)2

− 1

⎫⎬
⎭ ξ4(σ)

⎤
⎦ < 1. (46)
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3.2. MCP

As with SCAD, we concentrate our discussion on the subspace of the macroscopic param-
eters Ω†(a) = {Q,χ,m|Q̃ > a−1}, where the solution of (22) can be defined. The solution

of the single body problem under MCP in Ω†(a) = {Q,χ,m|Q̃ > a−1} is given by [18]

x∗(Q̃−1, σz) = ΣMCP(Q̃
−1, σz)MMCP(Q̃

−1, σz), (47)

and we obtain

−2L(Q̃, σ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(σz − λ sgn(z))2

Q̃− a−1
(
√
2θ1(σ) < |z| �

√
2θ2(σ))

(σz)2

Q̃
− λa2 (|z| >

√
2θ2(σ))

0 (otherwise)

, (48)

where θ1(σ) = λ/(
√
2σ) and θ2(σ) = aλQ̃/(

√
2σ), and (21) for MCP is derived as

−ξ(σ) = ξ1(σ) + ξ2(σ), (49)

where

ξ1(σ) = − 2σ2

√
π(Q̃− a−1)

{
θ1(σ)(e

−θ21(σ) − e−θ22(σ))− e−θ22(σ)(θ1(σ)− θ2(σ))
}

+
(σ2 + λ2)ξ3(σ)

Q̃− a−1
, (50)

ξ2(σ) =
σ2

Q̃

(
2θ2(σ)√

π
e−θ22(σ) + erfc(θ2(σ))

)
− λa2erfc(θ2(σ)), (51)

ξ3(σ) = erfc(θ1(σ))− erfc(θ2(σ)). (52)

The saddle point equations for Ω are given by

Q =
ξ1(σ)

Q̃− 1
a

+
σ2

Q̃2

{
2θ2(σ)√

π
e−θ22(σ) + erfc(θ2(σ))

}
, (53)

χ =
1

Q̃

[
ρ̂+

a−1ξ3(σ)

Q̃− a−1

]
, (54)

m = ρσ2
x

[
erfc(θ1(σ+)) +

a−1ξ3(σ+)

Q̃− a−1

]
, (55)

where ρ̂ is the density of the nonzero component in the estimate given by

ρ̂ = erfc(θ1(σ)). (56)

The AT condition for MCP is derived as
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1

α

⎡
⎣ρ̂+

⎧⎨
⎩
(

Q̃

Q̃− a−1

)2

− 1

⎫⎬
⎭ ξ3(σ)

⎤
⎦ < 1. (57)

4. Stability of success solution

One of the solutions of the saddle point equations in Ω†(a) is characterized by Q = m =
ρσ2

x. Following the correspondence between the order parameters and the MSE (33),
this solution indicates the perfect reconstruction of the original signal x 0. Hence, we
call the solution with Q = m = ρσ2

x the success solution. The saddle point equation can
have solutions other than the success solution; however, these solutions do not satisfy
the AT condition as far as we observed. Substituting the relationship Q = m = ρσ2

x, we
immediately obtain χ = 0 and Q̃ = m̃ = ∞, and the only variable to be solved is χ̃. The
expansion of Q and m up to the order O(Q̃−2) gives the expression of χ̃ for the success
solution under SCAD

χ̃ =
1− ρ

α

[
− 2χ̃√

π
θ−e

−θ2− + (χ̃+ λ2)erfc(θ−)

]

+
ρ

α

[
χ̃+ λ2 {1− erfc(θ+)}+

{(
aλ

a− 1

)2

+
σ2
x

(a− 1)2

}
{erfc(θ+)− erfc(aθ+)}

+
2σ2

xθ+√
π(a− 1)

{
a

a− 1
(e−a2θ2+ − e−θ2+)− e−θ2+

}]
, (58)

and under MCP

χ̃ =
1− ρ

α

{
− 2χ̃√

π
θ−e

−θ2− + (χ̃+ λ2)erfc(θ−)

}

+
ρ

α

[
χ̃+

(
λ2 +

σ2
x

a2

)
(1− erfc(aθ+)) +

2σ2
xθ+

a
√
π
e−a2θ2+ − 4σ2

xθ+
a
√
π

]
, (59)

where θ− = λ/
√
2χ̃ and θ+ = λ/

√
2σ2

x. Equations (58) and (59) are reduced to the saddle
point equation of χ̃ corresponding to the success solution for �1 regularization by setting
λ = 1 and when a→∞ [16].

For both penalties, the success solution is a locally stable solution as a saddle point of
the RS free energy when

1

α
{(1− ρ)erfc (θ−) + ρ} < 1. (60)

This condition is derived by the linear stability analysis of χ around 0. Further, we can
show that the AT condition for the success solution is equivalent to (60). This means that
when the success solution is locally stable as an RS saddle point, it is also stable with
respect to the replica symmetry breaking perturbation. Therefore, the reconstruction
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Figure 3. Reconstruction limit of SCAD at (a) a = 3 for λ = 0.01 and λ = 0.1
and (b) λ = 0.01, a = 3 and a = 50. The lines with ‘L1’, ‘BO(S)’ and ‘BO(P)’
are the reconstruction limit under �1 minimization, the algorithmic limit by the
Bayes-optimal method given by spinodal transition, and the phase transition
point of the Bayes-optimal method, respectively. The shaded regions are α < ρ.

limit αc(ρ) is defined as the minimum value of α that satisfies (60) for each ρ. We also
define ρc(α) as the maximum value of ρ to satisfy (60) at α, and we use both αc(ρ) and
ρc(α) for convenience.

Figures 3 and 4 show the ρ-dependence of αc(ρ) for SCAD minimization and MCP
minimization, respectively, where (a) represents a = 3 and (b) represents λ = 0.01. The
typical reconstruction is possible in the parameter region α � αc(ρ), and that for �1 min-
imization (L1) and the algorithmic limit of the Bayes-optimal method given by spinodal
transition (BO(S)), and the phase transition boundary of the Bayes-optimal method
(BO(P)) over which the success solution is locally stable, are shown for comparison. As
λ and a decrease, αc(ρ) of SCAD and MCP become less than that of the algorithmic
limit of the Bayes-optimal reconstruction method [17]. Further, the reconstruction limit
αc(ρ) approaches ρ as λ→ 0. Mathematically, αc(ρ)→ ρ is provided by scaling θ− →∞
and χ̃→ 0 at λ→ 0, which reduces (60) to ρ < α. This inequality, ρ < α, is considered to
be the fundamental limit, because, in general sparse estimation methods, the estimation
of the support increases the effective degrees of the estimated variables. Hence, we need
more measurements than the number of the variables to be estimated. It is indicated
that SCAD and MCP with λ→ 0 achieve the typical reconstruction when the number
of the measurements and that of nonzero variables are balanced.

We denote as ac(λ) the value of a under which the signals can be reconstructed for
each λ. The reconstruction limit ac(λ) on the λ− a plane is shown in figure 5 for (a)
SCAD and (b) MCP, respectively, at α = 0.5 for ρ = 0.3 and ρ = 0.4. The horizontal
dashed lines represent amin, which is equal to 1 when the success solution is stable, and
the signals can be reconstructed in the parameter region amin < a � ac(λ). The dashed
vertical lines represent λc, defined as the maximum value of λ that gives ac(λ) > amin.
Hence, the signal cannot be reconstructed at λ � λc. For the reconstruction of dense
signals, small nonconvexity parameters λ and a are required, and ac(λ) and λc for MCP
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Figure 4. Reconstruction limit of MCP at (a) a = 3 for λ = 0.01 and λ = 0.1 and
(b) λ = 0.01 for a = 3 and a = 50. The lines with ‘L1’, ‘BO(S)’ and ‘BO(P)’ are
the same as figure 3. The shaded regions are α < ρ.

Figure 5. Reconstruction limit ac(λ) at α = 0.5 for (a) SCAD and (b) MCP,
respectively. The vertical dashed lines represent the maximum value of λ, where
the reconstruction is possible with amin < a � ac(λ). The horizontal dashed lines
represent a = 1, which is the minimum value of a for the success solution.

are always greater than those for SCAD. The dependences of λc on ρ/α for SCAD
and MCP are compared in figure 6 for (a) α = 0.3 and (b) α = 0.5. The vertical lines
represent the reconstruction limit of �1 minimization, and the values of λc diverge as
ρ/α approaches the �1 reconstruction limit. This divergence of λc means that one can
reconstruct the signals using any λ ∈ (0,∞) and a ∈ (amin,∞) when the signals are
sufficiently sparse to be reconstructed by �1 minimization. For any system parameters,
the divergence of λc in MCP is faster than that in SCAD, which indicates that the range
of possible values of nonconvexity parameters for reconstruction in MCP is wider than
that in SCAD. In this sense, MCP is superior to SCAD.
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Figure 6. ρ/α-dependence of λc for (a) α = 0.3 and (b) α = 0.5. In the parameter
region on the left side to the vertical lines, �1 minimization reconstructs the original
signals.

4.1. Comment on the RS-failure solution

We mention the existence of the solution of RS saddle point equation at α < αc for
subsequent discussions. One can find a solution with ε > 0 (Q < ρσ2

x and m < ρσ2
x) and

χ > 0 within Ω†(a) at α < αc, which violates the AT condition. We term this solution
as an RS-unstable failure solution. Figures 7 and 8 show the α-dependence of ε and χ
for SCAD and MCP, respectively, where the vertical dashed lines represent αc. The RS-
unstable failure solution is smoothly connected to the success solution that appears at
α � αc, and does not coexist with the success solution. The RS-unstable failure solution
does not contribute to the equilibrium property of the system, but this solution is still
useful to consider the behavior of the algorithm as shown in the following sections.

4.2. Comment on the diverging ‘solution’

As shown in figures 7(b) and 8(b), when λ is sufficiently small, the values of ε and χ
tend to diverge at sufficiently small α, and the solution with finite ε and χ disappears.
In fact, (43) indicates that the solution χ→∞ is stable for both SCAD and MCP when

α < (1− ρ)erfc(θ−∞) + ρ erfc(θ+∞) (61)

holds, where θ+∞ = aλ
√
α/{2(α+ ε)} and θ−∞ = aλ

√
α/(2ε), although the solution is

out of the physical region Ω†(a). Considering the limit χ→∞, the set of the saddle
point equations for SCAD and MCP is reduced to the same one equation for the MSE ε
as

ε =
ε(1− ρ)

α

{
2θ−∞√
π
e−(θ−∞)2 + erfc(θ−∞)

}
+

ρ(ε+ α)

α

{
2θ+∞√
π
e−(θ+∞)2 + erfc(θ+∞)

}

− 2ρσ2
x erfc(θ

+
∞) + ρσ2

x. (62)

The solutions of (62) can be finite or infinite depending on α, λ, ρ and a, and the infinite
ε is always stable if it exists when α < 1. The diverging solutions do not contribute to
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Figure 7. α-dependence of ε and χ in RS solution of SCAD at ρ = 0.35 for
(a) λ = 1, a = 10 and (b) λ = 0.3, a = 5. The vertical dotted lines indicate αc, and
the vertical dashed lines in (b) indicate the disappearance of the finite ε and χ.

Figure 8. α-dependence of ε and χ in RS solution of MCP at ρ = 0.4 for
(a) λ = 1, a = 10 and (b) λ = 0.5, a = 5. The vertical dotted lines indicate αc, and
the vertical dashed lines in (b) indicate the disappearance of the finite ε and χ.

the thermodynamic behavior, because they are not in the region Ω†(a), but they affect
the algorithmic behavior of SCAD or MCP minimization.
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5. Approximate message passing with nonconvexity control

For numerical computation of the estimate under a given measurement matrix, AMP
is a feasible algorithm with low computational cost. As discussed below, the typical
trajectory and fixed point of AMP can be connected to the analysis based on replica
method, hence we can understand algorithmic behavior by comparing with the analysis.
The detailed derivation has been given by the previous studies [13, 17, 21], and here we
briefly introduce the algorithm. In AMP, the estimates under a general separable sparse
penalty is recursively updated as

x̂
(t+1)
i = argmin

x

{
Q̃

(t)
i

2
x2 − h

(t)
i x+ J(xi ;λ, a)

}
, (63)

where x̂
(t)
i denotes the estimate at time step t, and

Q̃
(t)
i =

1

V̂ (t)
, (64)

h
(t)
i = x̂

(t−1)
i Q̃

(t)
i +

M∑
μ=1

AμiR
(t)
μ , (65)

V̂ (t) =
1

M

N∑
i=1

v̂
(t−1)
i , (66)

v̂
(t)
i =

∂x̂
(t)
i

∂h
(t)
i

, (67)

R(t)
μ =

yμ −
∑

iAμix̂
(t−1)
i

V̂ (t)
. (68)

The solution of (63) corresponds to the minimizer of (22), with the replacement of Q̃

and σz with Q̃
(t)
i and h

(t)
i , respectively.

The local stability of AMP corresponds to the AT instability condition [13]. Hence,
it is expected that AMP reconstructs the original signal in the theoretically derived
parameter region α > αc(ρ) at sufficiently large N , because the current problem does
not exhibit any first order transitions or spinodal transitions under fixed nonconvexity
parameters, in contrast to the Bayes-optimal setting [17] or the Monte Carlo sampling
case [22]. Figure 9 shows examples of reconstructed signals of N = 400 and α = 0.5
after 1000 steps update of AMP under SCAD (a) at λ = 1 and a = 3 for ρ = 0.25 and
(b) at λ = 0.1 and a = 3 for ρ = 0.3, where the original and reconstructed signals are
represented by solid lines and circles, respectively. In these parameter regions, perfect
reconstruction is theoretically supported, but as shown in figure 9(b), the naive update
of AMP does not achieve the perfect reconstruction for small values of nonconvexity
parameters. The discrepancy between the replica analysis and AMP appears, in partic-
ular, when the signal is dense. The tendency is common in both SCAD and AMP, hence
we explain their characteristic behavior using SCAD as a representative.
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Figure 9. True signal x0
i (solid line) and reconstructed signal x̂i (circles) atN = 100

and M = 50 for (a) ρ = 0.25 with SCAD at λ = 1 and a = 3, and (b) ρ = 0.28 with
SCAD at λ = 0.1 and a = 3.

As mentioned above, any other stable solutions do not exist when the success solu-
tion is locally stable, hence the discrepancy between the replica analysis and AMP
cannot be understood by the spinodal transition as with the Bayes-optimal method.
For understanding the difficulty in achieving the perfect reconstruction of the signal by
AMP at a small nonconvexity parameter region, we use SE [23]. The typical trajectory

of AMP is characterized by two parameters V (t) ≡ Ex0,A[V̂
(t)] and ε(t) ≡ Ex0,A[ε̂

(t)], where

ε̂(t) ≡
∑N

i=1(x̂
(t)
i − x0

i )
2/N is the MSE at tth iteration step. In particular, when the com-

ponents of A are independently and identically distributed with mean 0 and variance
1/N , as for the Gaussian measurement matrix, the time evolution of V (t) and ε(t) is
described by SE equations [13, 17]

V (t+1) =

∫
dx0 P0(x

0)

∫
DzΣ(α−1V (t), x0 + z

√
α−1ε(t)), (69)

ε(t+1) =

∫
dx0 P0(x

0)

∫
Dz
[
x̂(α−1V (t), x0 + z

√
α−1ε(t))− x0

]2
, (70)

where x̂(s,w) = Σp(s,w)Mp(s,w) for p ∈ {SCAD,MCP}. SE is equivalent to the RS
saddle point equation, and the fixed point denoted by V ∗ and ε∗ corresponds to the RS
saddle point as V ∗ = χ and ε∗ = Q− 2m+ ρσ2

x, respectively. Hence, the success solution
is described as V ∗ = ε∗ = 0 in the SE. As mentioned in section 4.1, the failure solution
appears in some parameter regions, but it always involves the RS instability and never
coexists with the success solution. Note that the flow of the SE describes the typical
trajectory of the AMP with respect to A and x 0. Hence, it does not necessarily describe
a trajectory under a fixed realization of A and x 0. However, it is expected that the
trajectories converge to the flow of SE for a sufficiently large system size. Hence, SE flow
supports an understanding of a trajectory of AMP under a fixed set of A and x 0 [24].

Figure 10 shows the flow of SE at α = 0.5 and ρ = 0.28 for SCAD at (a) λ = 1

and a = 3 and (b) λ = 0.1 and a = 3. The arrows assigned to the coordinate (V̂ , ε̂) are
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Figure 10. Flow of SE at α = 0.5 and ρ = 0.28 for SCAD (a) λ = 1 and a = 3 and
(b) λ = 0.1 and a = 3. The fixed points are depicted by stars.

the normalized vector of (V (t+1) − V (t), ε(t+1) − ε(t)) with V (t) = V̂ and ε(t) = ε̂, which
indicate the direction of SE’s flow, and the stars depict the fixed points of SE. As shown
in figure 10(a), SE has a fixed point with finite ε and V for large λ, which corresponds
to the RS-unstable failure solution, but as λ decreases, most of the SE flow leads to
a divergence of V and ε as shown in figure 10(b); however, there is still a region close
to the V -axis where the flows are directed to V = ε = 0. This region shrinks to V -axis
as the nonconvexity parameter decreases. Flows of SE in MCP are almost the same as
SCAD, as shown in figure 10. In case of �1 minimization, one can check that SE reaches
to the success solution from any initial condition of (V , ε), namely the volume of the
BOA diverges to infinity at α > αc(ρ) or ρ < ρc(α). Therefore, this shrinking basin and
the diverging flow are significant properties of the minimization problems of SCAD and
MCP.

We quantify the volume of the BOA under SCAD minimization and show its depen-
dency on ρ for α = 0.5 as figure 11(a). The BOA to V = ε = 0 is zero at ρ = ρc, and
gradually increases from zero as ρ decreases from ρc. When the nonconvexity parameter
λ is small, the basin volume tends to be small for any ρ region. Figure 11(b) shows the
possible maximum value of ε, denoted by εmax, as an initial condition to converge to
V = ε = 0. Namely, εmax is the maximum value of ε on the boundary of the BOA. It
means that to achieve perfect reconstruction at sufficiently large ρ with a small noncon-
vexity parameter, we need to set the initial condition as ε ∼ O(10−2) for λ = 0.1 and
a = 3, and as ε ∼ O(10−5) for λ = 0.01 and a = 3. Such initial conditions with small ε
are not realistic, and the possibility that AMP attains the success solution V = ε = 0
from randomly chosen initial conditions is exceedingly small.

The shrinking BOA is the origin of the difficulty of AMP for small nonconvexity
parameters. To resolve this problem, we recall that the RS-unstable failure solution
appears for α < αc for large nonconvexity parameters, as discussed in figures 7 and 8.
The emergence of the RS-unstable failure solution implies that the SE has a locally sta-
ble fixed point from the correspondence between the saddle point of RS free energy and
the SE, as shown in figure 10(a). Therefore, AMP for the large nonconvexity parameter
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Figure 11. (a) Volume of the BOA to V = ε = 0 at α = 0.5. (b) Maximum value
of ε, denoted by εmax, on the boundary of the BOA.

does not converge to a fixed point, but its trajectory is confined into a subshell char-
acterized by finite ε and V . We utilize this nondivergence property of AMP in α < αc

at sufficiently large nonconvexity parameters for the perfect reconstruction of dense sig-
nals at small nonconvexity parameters. The procedure introduced here, based on the
above consideration, is termed nonconvexity control , where we decrease the value of
nonconvexity parameters in updating AMP.

Here, we consider the control of the parameter λ under a fixed value of a. Figure 12
shows λ-dependence of ε and V at α = 0.5 and a = 3 for ρ = 0.28 and ρ = 0.32, and
explains how the nonconvexity control proposed here works or fails for the perfect recon-
struction. We treat the set of macroscopic fixed points as a sequence generated by shifting
the value of λ. Note that the sequence mainly consists of RS-unstable failure solutions.
At ρ = 0.28, the sequences of ε and V are connected to zero by decreasing λ, hence one
can potentially attain perfect reconstruction by starting from large λ and decreasing λ.
However, at ρ = 0.32, ε and V tend to diverge when λ ∈ (0.2117, 0.5530) as shown in
figure 12. In this region, the finite RS-unstable fixed points disappear, and the SE flow
goes to the diverging state, although the state is not allowed as a solution. Figure 13
is an example of SE flow going towards the diverging state in the absence of the solu-
tion with finite ε and V , which is observed at α = 0.5, ρ = 0.32,λ = 0.4 and a = 3. The
discontinuity in the sequence of the macroscopic parameters and the SE flow to the
diverging state obstruct the nonconvexity control.

In figure 14, we compare the sequence of the macroscopic fixed point with the BOA
to the origin at α = 0.5 and a = 3 for (a) ρ = 0.28 and (b) ρ = 0.32. The solid lines of
figure 14 are drawn by continuously shifting λ, and are equivalent to figure 12. Dots on
the lines represent examples of the fixed points at each λ. In figure 14(a), the shaded
region denotes the BOA to V = ε = 0 at λ = 0.3 and a = 3, where the perfect recon-
struction is theoretically supported. To attain perfect reconstruction at this parameter
region, we need to prepare the initial condition with ε ∼ O(10−2), which is not realistic.
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Figure 12. λ-dependence of (a) ε and (b) V at α = 0.5 and a = 3 for ρ = 0.28 and
ρ = 0.32.

Figure 13. SE flow at α = 0.5, ρ = 0.32, λ = 0.4 and a = 3. There is no fixed
point and the flow diverges.

However, by decreasing the nonconvexity parameter λ from larger values, such as λ = 1,
the fixed point, which corresponds to the RS-unstable failure solution, comes into the
BOA to the perfect reconstruction at λ = 0.3 as shown in figure 14(a). In figure 14(b),
BOA to the perfect reconstruction at λ = 0.1 and a = 3 is depicted as the shaded region
at α = 0.5 and ρ = 0.32. For larger ρ, the sequence of the fixed point shows discontinuity
as shown in figure 14(b), which is caused by the diverging property of the macroscopic
quantities as shown in figures 12 and 13. It is expected that the sequence of the fixed
point below λ = 0.2117 can provide a clue to attaining the perfect reconstruction, but
the corresponding BOA is already shrunk.
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Figure 14. Sequence of macroscopic fixed points of SCAD corresponding to the
continuous decrease in λ at a = 3 (solid line) and the BOA (shaded region) for a
sufficiently small λ at α = 0.5. The dots denote representative fixed points at the λ
assigned next to the dots. (a) Macroscopic fixed points and the BOA at λ = 0.3 is
shown for ρ = 0.28. (b) Macroscopic fixed points and the BOA at λ = 0.1 is shown
for ρ = 0.32.

Based on the abovementioned observations, we define NCC limit ρNCC(α) as the
largest value of ρ under given α at which the sequence of the fixed points reach V =
ε = 0 as λ decreases without facing to the discontinuity due to the divergence of the
macroscopic parameters; αNCC(ρ) is defined as well. Figures 15(a) and (b) show the
phase diagram on ρ–λ plane at α = 0.5 and a = 3, and that on α–λ plane at ρ = 0.32
and a = 3. The NCC limit is denoted by the horizontal dashed lines, and the stability of
the diverging state (61) is satisfied on the left side of dotted–dashed lines. At ρ < ρNCC

or α > αNCC(ρ), the sequence of the fixed point is connected to V = ε = 0 by decreasing
λ as shown in figure 14(a). Examples of the SE’s flow below the NCC limit in the RS-
unstable failure and the success region are shown in figures 10(a) and (b), respectively.
At ρ > ρNCC or α < αNCC, a ‘no solution’ region, in which SE does not have any fixed
points in Ω†(a) and diverges, appears between the ‘success’ region and ‘RS-unstable
failure’ region, and the nonconvexity control fails due to the ‘no solution’ region. An
example of the SE flow in the ‘no solution’ region is figure 13. As λ increases, the RS-
unstable failure phase and the success phase are connected to each other for any ρ. This
property is the same as the �1 minimization.

Figure 16 shows the α-dependence of the NCC limit ρNCC(α) for (a) SCAD and (b)
MCP. The dependency of ρNCC on a is weak; the changes in a induce the changes in the
ρ value smaller than O(10−3), and here the value is maximized with respect to a. For
comparison, the phase transition boundary αc(ρ) for λ = 0.1 and a = 3 is shown as prin-
ciple limit in the sense that the stability of the success solution is guaranteed. According
to the principle limit, it is expected that MCP can achieve perfect reconstruction under
denser signals than SCAD, but its NCC limit is inferior to SCAD in the order O(10−2) in
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Figure 15. Phase diagram of SCAD on (a) ρ–λ plane at α = 0.5 and a = 3 and (b)
α–λ plane at ρ = 0.32 and a = 3. The horizontal dashed lines denote the NCC limit:
(a) ρNCC(α = 0.5) and (b) αNCC(ρ = 0.32). On the left of the dotted–dashed line,
the diverging state is stable and the SE flow tends to diverge.

Figure 16. Reconstruction limit by the NCC limit and the phase transition bound-
ary (principle limit) at λ = 0.1 and a = 3 for (a) SCAD and (b) MCP. For com-
parison, the algorithmic limit of the Bayes optimal method (BO, spinodal) and the
principle limit of the Bayes optimal method (BO, principle) are shown.

terms of ρ. This observation implies that there remains room for improvement in design-
ing nonconvex penalties to overcome the basin shrinkage sustaining global stability of
V = ε = 0 in the dense region.

The problem in practice is the protocol of the nonconvexity control. We consider
here an ‘equilibrium’ approach; we spend sufficient time steps at each λ for the con-
vergence to the macroscopic fixed point, which corresponds to the RS-unstable failure
solution, and after that we decrease λ by dλ. Hence, we need to set the sufficient time for
‘equilibration’ and dλ appropriately. However, we cannot assess ε̂(t) in AMP’s trajectory
since its calculation requires the unknown true signal x 0. Instead, we observe V̂ (t) and

D̂(t) ≡ 1
N

∑N
i=1(x̂

(t+1)
i − x̂

(t)
i )2 as criteria of the convergence, and we decrease λ by dλ after
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Figure 17. (a) The value of dλmax below which the nonconvexity control is effec-
tive at α = 0.5, ρ = 0.28 and a = 3 for SCAD. (b) Trajectory on V –ε plane with
convexity control of SCAD. The trajectories of AMP for one realization of X 0 and
A at N = 105 (solid line) and SE (circles) are shown. The initial condition is set to
be V = E = ρ, and λ = 1, a = 3. The value of λ is decreased by dλ = 0.1 after the
convergence of V̂ (t) and D(t) at each λ.

the saturation of the V̂ (t) and D̂(t) around certain values. Next, in determining dλ, the
macroscopic fixed point at λ is required to be in the BOA of the macroscopic fixed
point at λ− dλ for the effective nonconvexity control. We denote the maximum value
of dλ as dλmax over which the abovementioned condition is violated, and choose a value
dλ smaller than dλmax for nonconvexity control. The value of dλmax assessed by SE at
α = 0.5 and ρ = 0.28 is shown as the solid line in figure 17(a), where dλmax is obtained
by observing the SE flow at λ− dλ starting from the fixed point at λ for various dλ.
Here, we note that at this parameter region, the perfect reconstruction is possible at
λ < 0.3, hence dλ for λ < 0.3 is trivially dλ ∼ λ.

The value of dλ shown in figure 17(a) is for the typical realization of A and x 0, and
the possible value of dλ might fluctuate depending on A and x 0. To be on the safe side,
we set dλ = 0.1 for any λ in applying the nonconvexity control to AMP under a given A
and x 0. Figure 17(b) shows the actual trajectory of AMP (solid line) for one realization
of A and x 0 at N = 105, and corresponding SE (circles) at α = 0.5, ρ = 0.28 under
nonconvexity control. The initial condition of AMP is set to be x = 0 and v = ρ1N ,
where 1N is the N -dimensional vector whose all components are 1, and hence that
of SE is V = ε = ρ. We start with λ = 1 at a = 3, and decrease λ by dλ = 0.1 after the
convergence of V̂ (t) and D̂(t) at each λ, until λ becomes to be 0.3. The behavior of AMP
is well described by SE. Comparing to the flow of SE (figure 10(b)), the trajectory of
AMP with nonconvexity control approaches the BOA connected to the success solution
at λ = 0.1, which is almost on the V axis.
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6. Summary and discussion

We have analytically derived the perfect reconstruction limit of the sparse signal in com-
pressed sensing by the minimization of nonconvex sparse penalties, SCAD and MCP. In
particular, when the nonconvexity parameters are small, SCAD and MCP minimization
reconstruct dense signals that are beyond the �1 reconstruction limit. This analytical
result also appears to imply that SCAD and MCP minimization overcomes the algorith-
mic limit of the Bayes optimal method, but the numerical experiments using AMP have
shown that this is actually not the case. The gap between the analytical and numerical
results has been understood by observing the flow of SE, revealing the failure of AMP
comes from the shrinking BOA and the divergent behavior of AMP in some parameter
regions. We have found that SCAD and MCP minimization show a novel failure scenario
of the algorithm different from the Bayes-optimal setting where the algorithmic limit
is characterized by the emergence of local minima. To mitigate the abovementioned
gap and determine the algorithmic limit of AMP, we have proposed the protocol of the
nonconvexity control, leading to largely improved performance.

Originally, SCAD and MCP were designed to satisfy the continuity and the oracle
property, which is the simultaneous appearance of the asymptotic normality and consis-
tency, at a certain limit with respect to the nonconvexity parameters [11, 12]. However,
such a property is not sufficient for practical usage. The design of the nonconvex penal-
ties that do not lead to a shrinkage of the basin is another possibility for nonconvex
compressed sensing. From the relationship between the sparse prior in the Bayesian
approach and the sparse penalty in the frequentist approach, it is implied that SCAD
and MCP can be related to the Bernoulli–Gaussian prior in Bayesian terminology with
large variance [25]. A unified understanding of the sparsity over the Bayesian and fre-
quentist approach will be helpful for designing such desirable sparse penalties. Further,
the application of the nonconvexity control to the general matrix beyond that consists
of i.i.d. entries should be discussed for practical usage. The rotationally invariant matrix
is one of the candidates to examine the effectiveness of the nonconvexity control for the
general matrix [26–28].
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