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Abstract
Human immune systems are very complex, and the basis for individual differences in immune phenotypes is largely unclear.
One reason is that the phenotype of the immune system is so complex that it is very difficult to describe its features and
quantify differences between samples. To identify the genetic factors that cause individual differences in whole lymphocyte
profiles and their changes after vaccination without having to rely on biological assumptions, we performed a genome-wide
association study (GWAS), using cytometry data. Here, we applied computational analysis to the cytometry data of 301
people before receiving an influenza vaccine, and 1, 7, and 90 days after the vaccination to extract the feature statistics of the
lymphocyte profiles in a nonparametric and data-driven manner. We analyzed two types of cytometry data: measurements of
six markers for B cell classification and seven markers for T cell classification. The coordinate values calculated by this
method can be treated as feature statistics of the lymphocyte profile. Next, we examined the genetic basis of individual
differences in human immune phenotypes with a GWAS for the feature statistics, and we newly identified seven significant
and 36 suggestive single-nucleotide polymorphisms associated with the individual differences in lymphocyte profiles and
their change after vaccination. This study provides a new workflow for performing combined analyses of cytometry data and
other types of genomics data.

Introduction

The human immune system is highly complex [1]. It is still
unclear what individual differences exist in the phenotype
of a healthy person’s immune system. Also, it is not clear
how the immune system phenotype changes with the
immune response. One reason is that the phenotype of the

immune system is so complex that it is very difficult to
describe its features and quantify differences between
samples.

To investigate complex biological phenomena, such as
the immune response to vaccination, genome-wide asso-
ciation studies (GWASs) are a powerful approach. They can
detect the single-nucleotide polymorphisms (SNPs) that are
associated with complex traits [2]. For the immune response
to vaccination, several GWAS analyses have been con-
ducted, and in these analyses, the blood cytokine mea-
surement or titer [3, 4] has been used to represent the
immune response. These previous studies have successfully
detected genetic variants associated with the immune
response to vaccination. However, the immunophenotype is
very complex and difficult to comprehensively characterize
by using the concentrations of single blood metabolites.

The immunophenotype is not only a complex trait but is
also strongly characterized by the lymphocyte profile, as
measured by cytometry data [5]. Recently, large-scale flow
cytometry data analyses of the immune response to vacci-
nation have revealed differentially expressed genes before
and after vaccination, in addition to crucial subsets of the
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immune response [6–8]. However, these studies have not
focused on individual differences, but rather the general
mechanism of the immune response to vaccination, and then
only on specific lymphocyte subsets based on the previous
biological knowledge.

In the field of computational biology, several methods
have been proposed to examine the differences of cell
population profiles among multiple cytometry samples in a
data-driven and nonparametric manner [9–11]. In these
approaches, cytometry data are considered as a sample from
an unknown multidimensional probability distribution.
These methods quantify dissimilarities between probability
distributions based on information theory, apply a multi-
dimensional scaling (MDS) method to the distance matrix,
and then embed them in a low-dimensional space. The
obtained coordinate values can be treated as feature statis-
tics of the cell population profile, which enables sample
differences to be visualized in low-dimensional space.

In this study, we used a computational method for large-
scale cytometry data and embedded the lymphocyte profiles
into low-dimensional spaces based on the dissimilarities
among samples. The coordinate values calculated by this
method can be treated as feature statistics of the lymphocyte
profile. To conduct the following analyses, the extraction of
some feature statistics from cytometry data is a necessary
step, which enables us to examine the correlation with SNP
genotype without needing biological assumptions. We
identified new SNPs related to the individual differences in
lymphocyte profiles and their changes after vaccination via
a GWAS for these feature statistics. Our results provide
novel insights into the genetics of individual differences of
the immune response.

Materials and methods

Flow cytometry and SNP genotype data

In this study, we used data that we obtained from a related
project with the Nagahama Cohort Study [12]. This project
profiled 301 healthy people (103 men and 198 women) aged
between 32 and 66. The participants had received an injection
of trivalent inactivated influenza vaccine that contained three
types of HA antigens from A/California/7/2009 (H1N1)
pdm09, A/Victoria/210/2009 (H3N2), and B/Brisbane/60/
2008. Peripheral blood was collected at four time points,
before influenza vaccine (Day 0) and 1 day (Day 1), 7 days
(Day 7), and 90 days (Day 90) after vaccination. Although
FACS data were taken at all four time points, a total of
1173 samples were used because of partial loss. Two types of
FACS data (B cell FACS and T cell FACS) were obtained for
each person at each time point. In B cell FACS, a set of six
cell surface markers (CD19, IgM, IgD, CD21, CD27, and

CD138) for B cell classification were measured. These mar-
kers can be used to identify plasma cells, immature B cells,
naive B cells, non-switched memory B cells, class-switched
memory B cells, and double-negative memory B cells with
conventional gating methods [13–15]. For T cell FACS, a set
of seven cell surface markers (CD3, CD4, CD8, CD45RA,
CD45RO, CD25, and CCR7) for T cell classification were
measured. CD4 and CD8 can be used to identify helper
T cells, killer T cells, and double-negative T cells. CD45RA,
CD45RO, and CD25 can be used to identify naive T cells,
memory T cells, and effector T cells [16–23]. CCR7 is a
marker for identifying exhausted T cells (CCR7 negative)
from naive T cells (CCR7 positive), and for classifying
memory T cells into central memory T cells and effector
memory T cells. These markers may not be sufficient to
accurately classify all B cell and T cell subsets. For example,
CD25 is known to be a marker of regulatory T cells, as well
as in the T cell subset described above [24], and plasma cells
that do not express CD138 are also present [25]. We selected
these marker sets to capture the information of as many
lymphocyte subsets as possible with a limited number of
markers, rather than for quantification and classification of
each subset.

All FACS data were preprocessed with compensation,
normalization by inverse hyperbolic function arcsine
transformation for each marker, and lymphocyte gating. In
treating cytometric data as a probability distribution, pre-
treatment can be potentially an artifact. Therefore, we
decided to perform only minimal pretreatment in our study
design. Our lymphocyte gating process selected CD19-
positive or CD138-positive cells in the case of B cell FACS,
and CD3-positive cells in the case of T cell FACS, which
extracted the lymphocytes. An example of this lymphocyte
gating is shown in Supplementary File S1. The pre-
processed data are the same as in the preprint paper of our
previous work [11].

We used the SNP genotype data from our previous paper
[26]. For the SNP genotype data, 1,665,663 SNP genotypes
on the autosomes of 298 people were used, satisfying the
minor allele frequency (MAF) > 0.01 and the
Hardy–Weinberg equilibrium test P value of >1.0 × 10−7.
Although MAF > 0.05 was used in ref. [26], in this study we
used MAF > 0.01 so that we included more SNPs in the
analysis. The annotation of the SNPs was performed by the
web-based tool SNPnexus [27] based on GRCh38 and gene
annotation in the Ensembl database.

Comprehensive quantification of cell subset
fractions

First of all, in order to describe how broad lymphocyte
subset populations differ over the course of vaccination,
we conducted comprehensive quantification of lymphocyte
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subsets, using an automatic approach with a parametric
model (detail method in Supplementary File S2). For each
marker of each FACS data, a cutoff value for determining
positive/negative was calculated. We excluded IgM and
CD138 in the B cell FACS dataset from this analysis, and
all remaining markers showed a bimodal distribution. CD3
in the T cell FACS dataset was also excluded because we
had selected CD3-positive cells in the lymphocyte gating
process. Then, the abundance of 24= 16 subsets in B cell
FACS and 26= 64 subsets in T cell FACS were quantified,
using the positive/negative combination of all cells defined
by the cutoff values. The percentage of the total number of
cells for each subset was calculated to obtain a cell ratio
matrix with the number of samples × the number of subsets.
At each time point, changes before and after vaccination
were tested using a Wilcoxon signed-rank test, and a subset
with FDR Q value <0.01 was searched.

Embedding lymphocyte profiles into Euclidean
space

In order to conduct a GWAS of the individual differences of
human lymphocyte profiles, we obtained the feature statistics
using cytometry data in a data-driven and nonparametric
manner. The procedure for extracting feature statistics from
FACS data and embedding them with multidimensional
markers to Euclidean space was as follows (Fig. 1a). First, an
equally spaced m grid was set for each marker expression
value.m= 10 andm= 8 were used in B cell FACS and T cell
FACS, respectively. First, we decided the range of each
marker. For each sample, we calculated the 5th percentile and
95th percentile of each marker expression, and used the range
of each marker between the minimum 5th percentile value
and maximum 95th percentile value among all samples. By
dividing these ranges into m parts, we decided mn lattice
points where n is the number of markers. Discrete approx-
imation of the probability density function of a multi-
dimensional distribution for these lattice points was calculated
using the k-nearest neighbor method with k= 60. Normal-
ization was performed so that the sum of each grid was 1,
which is the estimated probability mass function of the FACS
data. Next, the square root of the Jensen–Shannon distance
[28] between the population distributions was estimated. The
square root of the Jensen–Shannon distance is a distance
metric between probability distributions. Jensen–Shannon
distance is defined by the KL divergence and can be written
as follows:

JS pjjqð Þ ¼ 1
2

KL pjj pþ q

2

� �
þ KL qj pþ q

2

� �� �
:

As a result, a sample × sample dissimilarity matrix was
constructed. By applying MDS to this dissimilarity matrix,

all cytometry data were embedded into the low-dimensional
Euclidean space that best reflected their dissimilarity. The
number of meaningful MDS coordinates was determined
based on the elbow of the eigenvalue plot. In this research,
the top K MDS coordinates were defined as the meaningful
coordinates:

K ¼arg min
i Eigiþ1 � Eigi

�� ��� Eigi � Eigi�1j j� �� 1;

where i takes integer values from two to the number of
samples −1, and Eigi is the ith largest eigenvalue. The
selected meaningful MDS coordinates were used for
subsequent analysis.

We used these MDS coordinate values as the lymphocyte
profile feature statistics. However, the biological significance
of these feature statistics is still unclear. Using a cell ratio
matrix calculated with the parametric model, we examined
which lymphocyte subsets the MDS coordinates explain. For
all pairs of MDS coordinates and lymphocyte fractions, we
calculated the Kendall’s correlation coefficient and P value.
We then considered MDS coordinates as traits, and analyzed
the association between MDS coordinates and SNP genotype
data (Fig. 1b). These analyses identified genetic variations
with whole lymphocyte profile differences.

GWAS for the MDS coordinates

To examine the genetic effects of the lymphocyte profiles, a
GWAS was performed on the MDS coordinate values, and
SNPs that were significantly related to these feature statis-
tics were examined. Calculations were performed by linear
regression for each SNP using the software PLINK v1.07
[29]. The target traits are the coordinate values of MDS1,
MDS2, MDS3, MDS4, and MDS5 in B cell FACS, and
MDS1 and MDS2 in T cell FACS at each of Days 0, 1, 7,
and 90. In the case of Day 0, the following linear regression
model was used:

MDSi ¼ b0 þ b1 SEXþ b2 AGEþ b3 SNPþ b4 GROUPþ error;

where SNP represents the SNP allele count, SEX and AGE
are the covariates, and the error term is the random error
under a normal distribution. GROUP is also a covariate that
takes one of two groups and represents a batch effect. In the
case of Days 1, 7, and 90, we added the MDS coordinates
value from Day 0 (BASELINE) as a covariate to the model,
and the following linear regression model was used:

MDSi ¼ b0 þ b1 SEXþ b2 AGEþ b3 SNPþ b4 GROUP

þ b5 BASELINEþ error:

In the case of Days 1, 7, and 90, the following model
with the value at Day 0 added as a baseline covariate was
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used. P values were calculated for each SNP. Using
50,000 randomly picked SNPs, we visualized the corre-
lation of the regression coefficients as beta and P values
between MDS coordinates with the python matplotlib
library.

For each day of B cell FACS and T cell FACS, we
integrated the P values of MDS coordinates into one
representative value using the meta-analysis method.
The differences of the lymphocyte profiles were retained
by the Euclidean distance on the MDS coordinate system.
We considered that the effects of the SNPs are represented
as a vector on the MDS coordinate system, which is
unlikely to be orthogonal to a particular MDS coordinate.
Then, we integrated the P values based on the maximum P
values, assuming that the candidate SNPs for differences
in lymphocyte profiles were associated with all MDS
coordinates at 1-day point. We used the maximump
function in the R package “metap” for this procedure [30].
Also, we calculated the genomic inflation factor (λ) based
on median chi-squared values. When λ is almost equal to
1 (for example, λ < 1.1), the population structure is con-
sidered to be subtle [31]. The results of the GWAS were

visualized by a Manhattan plot, which was drawn by the R
package “qqman” [32]. We identified the SNPs passing
the global significance line (P < 5.0 × 10−8) and the
stringent significance threshold (P < 6.25 × 10−9), which
is global significance divided by 8 because we used eight
traits (2 dataset × 4 time points) considering multiple
testing burden. We considered the SNPs passing the
stringent significance threshold as the significant SNPs
and the SNPs which wasn’t passing the stringent sig-
nificance threshold, but passing global significance line as
the suggestive SNPs. We downloaded the previously
reported SNPs with “response to vaccine” from the
GWAS catalog database on September 7, 2020 and
compared our results with them. Next, we obtained the
gene annotations of our SNPs with the SNPnexas tool [27]
to examine the function of the annotated genes in the
significant and suggestive SNPs. To select biologically
important genes and their networks from the SNP-
annotated gene set, we used the STRING database ver-
sion 11.0 to depict annotated gene networks [33], and
extracted the genes with at least one link and their
protein–protein interactions.

Fig. 1 Outline of embedding a
FACS dataset into a low-
dimensional space. a The
procedure for extracting feature
statistics from FACS data and
embedding them with
multidimensional markers to
Euclidean space is as follows.
We estimated the probability
distributions of multiple marker
expressions of each FACS
dataset, the square root of the
Jensen–Shannon distance
between these distributions was
estimated, and a sample ×
sample dissimilarity matrix was
constructed. By applying MDS
to this dissimilarity matrix, all
data were embedded in the low-
dimensional Euclidean space
that best reflected the relation
between samples in terms of
their dissimilarity. b We
considered an MDS coordinate
value as trait and analyzed the
association between MDS
coordinates and SNP
genotype data
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Results

Comprehensive quantification of cell subset
fractions

Figure S1 shows the comprehensive change of the B cell
subsets and T cell subsets of Days 1, 7, and 90 from Day
0. The CD19−IgD−CD21−CD27+ subset was relatively
increased after vaccination. That subset is considered to
contain plasma cells. The CD19+IgD+CD21+CD27−
subset was relatively decreased at the Day 7 profile and
recovered at Day 90. That subset can be annotated as the
naive B cell subset. In the case of T cell FACS,
the number of CD45RO-negative cells decreased, and the
number of CD45RO-positive cells increased, which cor-
responds to the fact that the naive population differ-
entiates into an effector/memory population. These results
correspond to immunological knowledge. However, with
this parametric model, it is difficult to comprehensively
describe all the changes occurring after vaccination.
Supplementary Files S3 and S4 show density plots of B
cell FACS data and T cell FACS data for Person ID 1, and
the cutoff value for each marker as an example of repre-
sentative data. Also, the median value of each lymphocyte
subset among 301 individuals at each time point is shown
in Figs. S2 and S3. The box whisker diagram of all B cell
subsets and T cell subsets is shown in Supplementary
Files S5 and S6. Note that the quantification results of rare
subsets are subject to automatic preprocessing, and
quantification artifacts, such as dead cells are not
removed.

Embedding the lymphocyte profiles to a Euclidean
space by MDS

All cytometry data from B cell FACS and T cell FACS were
embedded in a low-dimensional Euclidean space that best
reflected their dissimilarity. We call the MDS coordinates
with the ith largest eigenvalue in B cell FACS dataset and T
cell FACS dataset as B_MDSi and T_MDSi, respectively.
Figure S4 shows a plot of the top eigenvalues in B cell
FACS and T cell FACS. From the eigenvalue plot, up to
MDS5 of B cell FACS and up to MDS2 of T cell FACS
were adopted as significant eigenvalues. They were used for
the subsequent analysis as meaningful coordinates. Figure 2
shows a co-plot of the coordinates of 1173 samples in B cell
FACS and T cell FACS. In the case of both B cell FACS
and T cell FACS, the samples at different time points are
separated on the MDS coordinates. Time-series information
is consistently separated as in past studies [6–8]. It was
confirmed that the MDS coordinate value is appropriate as a
representative variable of the lymphocyte profile.
And because the batch effect of cytometry data (Groups A
and B) affects the MDS coordinate values (Fig. S5), we
decided to consider this batch effect in the following
GWAS analysis. In addition, it was suggested that multiple
MDS coordinates not only explain time-series information,
but also include other genetic or environmental factors that
cause individual differences in the coordinate values.

Table S1 has the correlation coefficient and P value of all
paired MDS coordinates and lymphocyte subset fractions
quantified with the parametric models, and Table S2 shows
the 28 pairs with |correlation coefficient| > 0.25 and

(a) (b)

MDS1

M
D

S2

Fig. 2 The paired MDS coordinate plots for MDS1, MDS2, MDS3,
MDS4, and MDS5 in the case of the B cell FACS dataset (a), and
MDS1 and MDS2 in the case of the T cell FACS dataset (b). The

points colored red, blue, black, and purple represent Days 0, 1, 7, and
90 samples, respectively
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Bonferroni-corrected P < 0.05 that were extracted. The
explanation of each MDS coordinate is written in Supple-
mentary File S7. This result provides clues associating a
subset of lymphocytes that interpret the meaning of each
MDS coordinate.

GWAS for MDS coordinates

Genetic features of the individual differences in human
lymphocyte profiles

To examine the genetic effects of the lymphocyte profile, a
GWAS was performed on MDS coordinate values, and
SNPs that were significantly related to these feature statis-
tics were examined. The target traits are the coordinate
values of MDS1, MDS2, MDS3, MDS4, and MDS5 in B
cell FACS, and MDS1 and MDS2 in T cell FACS at Days
0, 1, 7, and 90, respectively. While the GWAS for Day 0
identified SNPs associated with steady-state lymphocyte
profiles, the GWASs for Days 1, 7, and 90 identified SNPs
associated with individual differences in immune responses

at each time point after vaccination. We searched the lit-
erature for these SNPs. The QQ plots for Days 0, 1, 7, and
90 on each MDS coordinate are shown in Fig. S6.

Population structuring was considered to have little effect
on GWAS results, because the genomic inflation factors
were almost all 1 in all analyses (ranged from 1 to 1.01426).

Figure 3a shows a density plot of P values for T cell
MDS coordinates at Day 0. SNPs were observed at high
densities in both MDS coordinates and regions with low P
values. In the same plot showing the result of T cell FACS
data at other day points and B cell FACS data, a similar
trend was observed for most MDS coordinate pairs (Fig. 3b
and Figs. S7–S10). Figure S11 also shows a density plot of
the values of the regression coefficients of all the MDS
coordinates (B_MDS1, B_MDS2, B_MDS3, B_MDS4,
B_MDS5, T_MDS1, and T_MDS2) on Day 0. Interest-
ingly, the pair of B_MDS2 and B_MDS3 showed the lar-
gest correlation coefficient of the regression at 0.82, while
the correlation coefficient of these coordinate values was
0.16. In the other day points, the beta values of B_MDS2
and B_MDS3 showed a high correlation (Figs. S12–S14).

(d)

Histogram (T cell, Day0)
(a)

(b)

Density plot of P value (B cell, Day0)
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(c)

MDS2

MDS3

MDS4

MDS5 Day0 : Red
Day1 : Blue
Day7 : Black
Day90: Purple

Fig. 3 Genetic features of T cell and B cell profiles derived from the
GWAS. a Density plot of the P values of T_MDS1 and T_MDS2 2
(Day0). b Density plot of the P values of B_MDS1, B_MDS2,

B_MDS3, B_MDS4, and B_MDS5 2 (Day0). c QQ plot and histogram
of the integrated P values in the T cell FACS. d QQ plot and histogram
of the integrated P values in the B cell FACS
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From these results, we found that the SNPs associated with
lymphocyte profiles were associated with multiple MDS
coordinates. These results are valid because the differences
in lymphocyte profiles were quantified as Euclidean dis-
tances on the MDS coordinate system, and some MDS
coordinate values at the specific day points were correlated.
The beta values of B_MDS2 and B_MDS3 showed a very
high correlation coefficient overall, although there was also
some correlation between those coordinate values. This
suggests that B_MDS2 and B_MDS3 may be affected by
common genetic effects.

After the integration based on the maximum P value,
we generated histograms and QQ plots with integrated
P values of T cell FACS and B cell FACS, as shown in
Fig. 3c, d, respectively. The histograms show that the
distribution of post-integration P values using the max-
imum P value takes the form of a mixture distribution of
the uniform distribution from the SNP sets, which is
irrelevant to the lymphocyte profile and the other dis-
tributions from the SNP sets that are associated with MDS
coordinate space in all cases. The QQ plots show that the
P value after integration deviated from the uniform dis-
tribution in all cases. These deviations suggested that a
large number of SNPs had a small effect on the differ-
ences in the lymphocyte profiles. It is considered that this
is a general feature in the genetics of vaccination
response, since QQ plots with similar characteristics were
obtained in a past GWAS that used cytokine amounts as a
trait [3]. This feature is common to the B cell profile and
the T cell profile. However, the QQ plot on the T cell on
Day 0 was especially deviated from the uniform dis-
tribution, and these weren’t shown in the QQ plot of the B
cell profile. The T cell profile in the steady state is
affected more strongly by the SNPs, but the genetic effect
on the T cell profile after vaccine intervention may be
reduced.

Candidate SNPs or genes explaining the individual
differences in human lymphocyte profiles

SNP level functional annotation in our GWAS identified
seven significant SNPs (P < 6.25 × 10−9) and the 36 sug-
gestive SNPs (6.25 × 10−9 < P < 5.0 × 10−8) associated with
either trait. The Manhattan plots are shown in Figs. S15 and
S16. Table 1 shows the total 43 significant and suggestive
SNPs, which we focused on for further analysis. We also
searched for the SNPs that have been reported with the trait
“response to vaccine” in the GWAS catalog database [34].
A total of 190 SNPs identified in 24 previous studies are
registered (the output of the GWAS catalog is shown in
Table S3). Although none of the SNPs identified in this
research were included in these 190 SNPs, one annotated
gene is common (LPP). This gene has been reported to be a

candidate gene in a GWAS study of cytokine responses to a
smallpox vaccine [3].

In addition, rs6568431 has been reported to be associated
with systemic lupus erythematosus (SLE) in multiple stu-
dies [35–37], and it has an A > C allele and is situated in the
intronic region of ATG5. ATG5 is a gene that plays a major
role in autophagy and is also strongly associated with SLE
[38, 39]. The GWAS beta values of the A allele of
rs6568431 for GWAS T_MDS1_day0 and T_MDS2_day0
of (ATG5) are 0.02 and −0.02, respectively. This suggests
that this SNP causes T_MDS1 drifts in the positive direc-
tion and T_MDS2 drifts in the negative direction on the T
cell MDS space. Table S2 shows that T_MDS1 has a
positive correlation with the fraction of CD4+CD8
−CD45RA+CD45RO−CD25-CCR7+ (annotated to CD4
+ naive T cells), and T_MDS2 has a negative correlation
with this subset fraction. In fact, the genotype of this SNP
(AA, AC, or CC) is related to the abundance of this subset
where the Jonckheere–Terpstra test P= 0.0024 using the R
package’s clinfun’s jonckheere.test function with the num-
ber of permutations set to 10,000 [40]. A box whisker
diagram of each genotype is shown in Fig. S17. This SNP
may be associated with SLE through individual differences
in T lymphocyte profiles, in particular the CD4+ naive T
cell subset.

In addition, we searched for our SNPs in our previous
eQTL study using the same genotype data [26], the blood
eQTL browser [41], and the eQTL database of the GTEx
Consortium [42]. While none of the SNPs were common
between our previous eQTL study and this study, a total of
14 out of 43 SNPs were found in the other two previous
studies (Table S4). Given that many organs are involved in
the immune response, the SNPs identified in this study may
influence individual differences in lymphocyte profiles
through the expression of these genes.

Next, we obtained the gene annotations of our SNPs with
the SNPnexas tool to examine the function of the annotated
genes in the GWAS. Table S5 shows the gene annotations
of all 43 SNPs as the output of SNPnexas. To select bio-
logically important genes and their biological links, we used
the STRING database to depict annotated gene networks.
Figure 4 shows the network of 12 genes with at least one
link (ITPR1, OPN3, DNER, CYCS, ATG5, OSBPL3, MBP,
PRKCB, CHML, ARHGAP26, KCNMA1, and EVA1A). The
gene that is connected to the largest number of genes in the
network is ITPR1. rs4685806 is situated in the intronic
region of this gene. The CYCS gene is annotated to rs39426
with the second lowest GWAS P value, which is situated
53 kbp downstream of the end of this gene. This gene has
been reported to be associated with SLE in a previous
GWAS [37]. The PRKCB gene has a role in both oxidative
stress induced autophagy and B cell activation [43, 44].
rs169140 is situated 13 kbp upstream of the end of this
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Table 1 SNPs that passed the global significance line in B or T cell FACS

rs ID Chromosome Position REF allele ALT allele P values Trait

rs10460510 2 75,697,424 G A 2.10E−10* T_day0

rs39426 7 25,106,296 G A 7.97E−10* T_day90

rs75504175 3 118,997,705 G A 2.18E−09* B_day7

rs3794852 18 74,709,289 C T 2.68E−09* T_day0

rs59422776 17 766,399 C T 4.42E−09* T_day0

rs118160548 17 771,456 A G 4.42E−09* T_day0

rs9919764 12 13,492,704 C A 4.47E−09* T_day7

rs12611599 2 208,961,028 C T 7.73E−09 B_day7

rs12614989 2 208,961,158 T C 7.73E−09 B_day7

rs60057223 10 8,536,674 A C 1.05E−08 T_day0

rs11592991 10 8,539,331 G A 1.05E−08 T_day0

rs10905390 10 8,537,695 A G 1.20E−08 T_day0

rs10905391 10 8,540,328 G A 1.20E−08 T_day0

rs2696860 16 86,327,721 A G 1.41E−08 B_day0

rs6568431 6 106,588,806 A C 1.45E−08 T_day0

rs6797423 3 126,215,130 G A 1.55E−08 T_day0

rs9381968 6 13,353,734 T C 1.64E−08 T_day0

rs9530814 13 79,285,728 T C 1.82E−08 B_day0

rs169140 16 24,245,090 A G 2.00E−08 T_day0

rs6736713 2 230,366,542 C T 2.22E−08 T_day0

rs138332350 1 241,794,224 T C 2.39E−08 T_day0

rs78509568 2 197,398,200 T G 2.43E−08 B_day90

rs4587178 6 98,421,991 T C 2.47E−08 T_day0

rs78760834 17 740,734 G C 2.50E−08 T_day0

rs58014646 20 41,344,189 A C 2.61E−08 B_day0

rs4668882 2 15,334,251 G A 2.83E−08 B_day7

rs55914228 10 126,896,675 A G 2.87E−08 T_day90

rs7069729 10 126,896,989 A G 2.87E−08 T_day90

rs6801602 3 188,519,594 A G 3.00E−08 T_day0

rs8073989 17 15,194,724 T C 3.08E−08 T_day1

rs2051344 18 74,715,653 G T 3.13E−08 T_day0

rs4685806 3 4,772,692 T C 3.47E−08 T_day0

rs35806 10 79,165,830 G A 3.48E−08 B_day7

rs10436922 1 91,317,700 G A 3.65E−08 T_day0

rs1040893 6 106,596,087 T C 4.07E−08 T_day0

rs76280036 5 142,276,784 G A 4.10E−08 B_day7

rs13344319 19 54,921,227 G A 4.17E−08 T_day0

rs76425237 12 130,844,567 T C 4.35E−08 B_day1

rs11920819 3 80,269,036 G A 4.61E−08 T_day90

rs7427090 3 80,274,761 C T 4.61E−08 T_day90

rs4932564 15 92,176,277 A G 4.81E−08 T_day0

rs7639948 3 188,546,497 T C 4.95E−08 T_day0

rs9851822 3 150,364,364 G A 4.98E−08 B_day90

These were SNPs associated with individual differences of lymphocyte profiles (Day 0) and their change after vaccination (other than Day 0). Each
column represents the following; rs ID of SNP, chromosome, position, reference allele, alternative allele, P value of GWAS, B cell FACS/T cell
FACS, and Day. P values with asterisk (*) indicates it passed the stringent significance threshold (<6.25 × 10−9)
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gene. The EVA1A gene, annotated to rs10460510 with the
lowest GWAS P value, is situated in the intronic region of
this gene. This gene is reported to mediate both autophagy
and apoptosis [45, 46]. A series of results suggests that
mechanisms related to autophagy and SLE are associated
with individual differences in lymphocyte profiles and their
change after vaccination.

Discussion

When the phenotype takes the form of a point cloud from a
distribution, such as a FACS result, it is difficult to analyze
it with other variables. To analyze these distributions with
regular variables with conventional statistical methods, the
distribution should be expressed as a vector. In this study,
using inter-distribution divergence and MDS, we extracted
the independent feature statistics that best explained the
differences in the overall lymphocyte profile. Lymphocyte
profiles change dynamically with vaccination, and are dif-
ficult to describe completely. In addition, a small subset of
lymphocytes has been suggested to play an important role in
the immune system. It is also difficult to fit a parametric
model, such as a bimodal mixture normal distribution
model, with some markers. The MDS coordinate values are
however effective data-driven and non-parametric feature
statistics of the whole lymphocyte profiles.

The candidate genes we report in this study include those
that have been reported in the literature to be related to
immune phenotypes. We thus considered that we can
identify novel candidate genes for individual lymphocyte
profile differences and their changes after vaccination that
previous GWASs, using conventional immune response
biomarkers, such as titers and cytokines could not detect.
Recently, personalized medicine, which takes into account
such individual differences, has attracted increasing atten-
tion in regard to viral immune response or vaccine safety
[47]. Unfortunately, the results of this study do not directly
predict vaccination response or effectiveness, and are not
sufficient to apply to personalized medicine. A detailed
future study of the SNPs or annotated genes identified in
this study may help to elucidate the molecular basis of
individual differences in the immune response, as well as
help to develop genomic markers to predict vaccination
responses in individuals. In addition, interest in individual
differences in response to viral infection has increased due
to the COVID19 pandemic. The genetics of individual
differences in response to vaccination as identified here
could be a meaningful basis for further study.

In this study, using data-driven extraction of lymphocyte
profile feature statistics, we combined cytometry data with
SNP genotype data by positioning the cytometry data as one
layer of a multi-omics approach. Multi-omics analysis com-
bining multiple omics resources has become a highly useful
approach and has successfully revealed various biological
phenomena [48]. Our approach has enabled us to integrate
cytometry data into a multi-omics analysis, which can con-
tribute to the understanding of a complex biological system.

This study has some limitations when interpreting the
results biologically. First, this study used relatively few
samples. While this study and past GWAS QQ plots suggest
the small involvement of many genes in the vaccine
response, only 43 SNPs could be detected in our GWAS.
We consider that the small sample size caused relatively
large P values considering the load of multiple testing due
to conducting GWAS for eight traits (B/T cell profiles by
four time points). This is likely the reason why only one
gene (LPP) was common between our GWAS and the
previously reported genes in the GWAS catalog. Our
GWAS probably missed many other candidate SNPs and
genes reported in past GWAS. Second, it is unclear what
kinds of functional SNPs the workflow used in this study
captured. A relatively small number of SNPs were common
between those identified in this study and those in pre-
viously reported eQTL studies. The method of this study
may tend to detect SNPs associated with differences in the
overall distribution of protein expression levels that are the
combinatorial phenomenon of multiple proteins in path-
ways. This means that the eQTL analysis did not seem to be
able to capture the heterogeneity, because eQTL is a

Fig. 4 Protein–protein networks of GWAS genes with at least one
interaction in the STRING database. The color of the edge represents
the type of interaction as defined in the STRING database. (Black:
coexpression; purple: experimentally determined interaction; light
blue: database annotated; and yellow: automated text mining).
Genome-wide association study of individual differences of human
lymphocyte profiles using large-scale cytometry data
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transcriptome analysis of individual genes using bulk cells
as samples, so heterogeneity cannot be captured by eQTL
analysis using bulk transcriptome data.

The following four points can be listed as improvements
in the workflow used in this study. In this study, the MDS
coordinate with the smallest eigenvalue was excluded from
the analysis. Although this does not explain much of the
difference in cell population profiles, such a coordinate is
not necessarily immunologically meaningless. Second, it is
difficult to consider the batch effect of cytometry data
because those data are a point cloud distribution. In this
regard, the workflow used in this study can be improved.
Third, when the number of samples of cytometric data is
limited, the detection power of GWAS becomes small. The
development of methods to improve statistical power will
be a major improvement. Finally, the workflow used in this
study can be applied not only to cytometry data, but also to
single-cell RNA-seq (scRNA-seq) data. In recent years,
scRNA-seq has been used not only for immunology, but
also in various other biological fields [49]. Since scRNA-
seq data have higher dimensions than cytometry data, it will
be necessary to develop steps for selecting markers for
application. Modifying this workflow for scRNA-seq is an
issue we will address in the future.

In this study, we estimated the distribution of lympho-
cyte profiles in peripheral blood from FACS data and
extracted feature statistics. With the GWAS, we were able
to identify SNPs related to differences in lymphocyte pro-
files. The workflow of this study is considered to be a
powerful approach to data-driven identification of biologi-
cal factors involved in the complex biological phenomena
and diseases based on cell population profiles.

Data availability

FACS data and SNP genotype data are available under the
condition of collaboration, because they are the resources of
on-going studies. Please contact us for details on their
availability.
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