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ABSTRACT We present a new adversarial learning method for deep reinforcement learning (DRL). Based
on this method, robust internal representation in a deep Q-network (DQN) was introduced by applying
adversarial noise to disturb the DQN policy; however, it was compensated for by the autoencoder network.
In particular, we proposed the use of a new type of adversarial noise: it encourages the policy to choose
the worst action leading to the worst outcome at each state. When the proposed method, called deep
Q-W-network regularized with an autoencoder (DQWAE), was applied to seven different games in an
Atari 2600, the results were convincing. DQWAEexhibited greater robustness against the random/adversarial
noise added to the input and accelerated the learning process more than the baseline DQN. When applied to
a realistic automatic driving simulation, the proposed DRL method was found to be effective at rendering
the acquired policy robust against random/adversarial noise.

INDEX TERMS Deep reinforcement learning, adversarial learning, robustness, regularization, automatic
vehicle control.

I. INTRODUCTION
A lingering issue in various deep neural network (DNN)-
based machine learning technologies [1]–[5] is to make them
invulnerable to adversarial noise targeted at degrading their
predictive ability [6]–[8]. In an image classification scenario,
even if a miniscule noise, imperceptible to humans, was
added to the input image in the training dataset, the predicted
class could be separated from the target class and misclassifi-
cation could be induced [9]. Such adversarial noise (or attack)
can seriously affect DNN-based reinforcement learning (deep
reinforcement learning (DRL)) that is designed to be applied
to autonomous control problems for real-world machines
such as human-harmonic robots [10] and auto-navigation
vehicles [11]. If a malicious software revises the image input
into an auto-navigation vehicle such that a ‘‘STOP’’ signal
reads ‘‘GO’’, as is typical of an adversarial attack, the vehicle
could become a danger [12].
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Recently, various adversarial attacks and adversarial learn-
ing methods have been reported in the scenario of DRL.
In this study, we focused on adversarial attacks applied
to observations and their compensation methods. In real-
world applications, observation-based perturbations, which
are mostly random, but may be adversarial in some cases,
can be caused by sensor noises and/or unexpected changes
in the environment. Therefore, to determine the sensitivity,
countermeasures and robustness to those perturbations are
very important. As established in the most recent study [13],
existing methods traded off their control performance for
robustness against perturbations because they sought optimal
controllers (policies) for the Markov decision pro-
cesses (MDPs) with noisy inputs. In contrast, we attempted
to make the controllers robust against adversarial noises,
whereas the MDPs to be solved were maintained unchanged;
that is, the adversarial learning attempted to regularize the
deep reinforcement (DR) learner by improving its internal
representation.

A simple idea to make the DRL robust against adversarial
noise is to add a regularization term that represents (non-)
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robustness to such noise to the objective function utilized in
the reinforcement learning (RL). A more advanced idea is
to make the internal representation of the DR learner robust
against such noise. In DRL, there have been a series of
studies to facilitate the acquisition of good internal represen-
tations of DR learners. These are termed self-supervision [14]
and unsupervised auxiliary tasks [15]. Although our study
is conceptually similar to these studies, it differs in two
aspects. First, our learning architecture consists of multiple-
head encoder-decoder networks with a shared encoder so
that the constituent denoising autoencoder (AE) [16] attempts
to remove possible input noises at the level of the shared
internal representation. Second, we applied adversarial noises
for the DRL objective to the DRL process with the expec-
tation that it would be effective for rendering the inter-
nal representation more robust compared to that in other
studies.

According to a naive implementation of our regularization
method, we used the fast gradient sign method (FGSM) [9] to
attack the ε-greedy policy determined by the current action-
value function. One problem of this naive implementation is
that it assumes that the current controller (policy) is optimal.
This is not necessarily the case because the policy is usually
sub-optimal during the RL process. Thus, the naive imple-
mentation is especially vulnerable to adversarial attacks.
Based on this observation, we also present an advanced regu-
larization method for DRL. According to this second method,
a DR learner is trained not to apply the worst-case control in
each state.

To implement these methods, we developed two new
encoder-decoder architectures with one shared encoder and
two or three different decoders, which were respectively
based on the simple idea and the advanced idea above.
Although these regularization methods can be applied to
any type of DRL, we applied them to DQN with a dis-
crete action space in particular [2], [3]. When DQNs with
the advanced regularization method was applied to seven
different games in the Atari 2600 [40], we found that the
regularized DQNwas more robust against random and adver-
sarial noise than the original DQN and our simple version.
Moreover, our regularization method effectively enhanced
noiseless performance after a fixed number of training games;
therefore, the advanced version would have accelerated the
RL processes.

The major contributions of our study are summarized as
follows.
• We presented a novel DRL architecture with adversarial
training, deep Q-W-network regularized with an autoen-
coder (DQWAE), i.e., the advanced version, that was
regularized by noise compensation learning using the
denoising autoencoder.

• When applied to well-established Atari game bench-
marks, the proposed adversarial RL method showed
better noise robustness than the baseline method and our
simple version called deep Q-network regularized with
an autoencoder (DQAE), without significant increase in

computational cost. Moreover, the learning process was
also accelerated.

• Through an application to our original Unity-based
autonomous driving simulation, we discussed why the
proposed DQWAE was effective, that is, change in the
internal representationwas suppressed evenwhen adver-
sarial attacks were applied to the input image to the
control policy.

The remainder of this paper is organized as follows.
In Section II, we present related works and describe important
notions, some of which are constituents of our methods.
In Section III, we propose two DRL methods, the simple
version and the advanced version, as well as their archi-
tectures and training schemes. In Section IV, we present a
series of evaluation experiments using seven Atari games
and our original driving simulation. In Section V, we present
discussions, the limitations of the study, and directions of
future work. Our conclusions are presented in Section VI.

II. RELATED WORK
A. DENOISING AUTOENCODER
Autoencoder [17] (AE), a type of encoder-decoder deep neu-
ral network, has been widely used in unsupervised repre-
sentation learning. To obtain robust latent representations,
a denoising AE, which is trained to reconstruct clean images
from noisy ones, has also been examined in several stud-
ies [16], [18]–[20]. In this study, we present a couple of new
deep learning architectures that combine the denoising AE
and DR learners to eliminate adversarial noises that could
have been included in inputs to the reinforcement learners.
Although this combination itself seems rather natural, there
are still many unresolved points; it is important to establish
the effective noise to perform regularization and effective
architecture to combine the denoising AE with DRL.

B. ADVERSARIAL EXAMPLE
In image classification, DNNs are known to output erro-
neous class labels even when a tiny noise is added to
the input examples that were used as training samples.
Such noise is said to be an adversarial attack because it
exploits the vulnerability of DNN-based classifiers. An error-
inducing input disturbed by the adversarial attack is called
an adversarial example. Among the several methods for gen-
erating adversarial examples, box-constrained L-BFGS [7],
least-likely class method [21], Jacobian-based saliency map
approach [22], untarget DeepFool [23], Carlini and Wag-
ner’s [24], and FGSM [9], [25], we focused on the FGSM,
which was originally proposed for regularizing DNN-based
image classifiers. According to [9], [25], an adversarial
example is defined as

xadv =


x + ε · sign(∇xJ (x, y; θ )) (L∞ − norm)

x + ε
√
d ·
∇xJ (x, y; θ)
‖∇xJ (x, y; θ)‖2

(L2 − norm)

x + εd ·
∇xJ (x, y; θ )
‖∇xJ (x, y; θ )‖1

(L1 − norm),

(1)
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where x is a d-dimensional input example (here, an image)
and y is a one-hot vector representing a target class, whose
pair is in the training dataset. The cost function J (x, y; θ ) is
the cross-entropy between the target class y and a predicted
class ŷ, which is an output of the DNN with a parameter
vector θ for input x. A scalar ε(> 0) determines the strength
of the attack. The second term on the right-hand side is the
adversarial attack. Although the average perturbation that can
be applied to each element is set to be equal in equation (1),
the element-wise maximum perturbation depends on the p
value in the Lp-norm constraint. εd maximal perturbation
can be applied to one element under the L1-norm constraint,
whereas under the L∞-norm constraint ε maximal perturba-
tion is allowable for each element.

The idea of adversarial examples can be extended to
RL. Noise is considered adversarial when it disturbs the
action-value function (i.e., Q-function) that determines
the control policy, thereby leading to ineffective controls
(actions). Although several methods to produce adversarial
examples have been proposed [9], [22], we applied an RL ver-
sion of FGSM. Here, we explain this method in relation to the
DQNs. A DQN outputs a vector of Q-values for all possible
actions a, Q(s, a), the dimensionality of which is the number
of possible actions, |A|, given an input image s. According to
the FGSM for RL, the cost function J is the cross-entropy
between π (a|s) that denotes the control policy determined
by Q(s, a) and a binary vector π̂ (a|s). Here, π (a|s) is a
|A|-dimensional probability vector, obtained by applying the
softmax function to the Q-value vector, Q(s, a), and π̂ (a|s)
is a |A|-dimensional one-hot vector whose elements for the
optimal and non-optimal actions with the current policy π
are 1 and 0, respectively.

J (s; θ) = −
∑
a∈A

π̂ (a|s) log
exp(Q(s, a; θ ))∑

a′∈A exp(Q(s, a′; θ))
,

π̂ (a|s) =

{
1 (if a = argmax

a′∈A
Q(s, a′; θ ))

0 (otherwise).
(2)

In equation (2), we show that the Q-function is represented
by a DNN with parameters θ .

It is known that there is a trade-off between the probability
of mistakes induced by adversarial examples and the compu-
tational cost. We used FGSM with the L2-norm constraint in
this study because it produces effective adversarial examples
with a low computational cost; the L2-norm constraint is
expected to make adversarial attacks applied to input images
during training moderate.

C. WHITE-BOX AND BLACK-BOX ATTACKS
One of the important features of adversarial attacks is their
transferability [7]. Transferability implies that an adversarial
example created to attack a certain model also works for a
different model. Therefore, an adversarial example can be
created without knowledge of the target model. Therefore,
we distinguished between white-box attacks in which the
architecture and parameters of the target model are accessible

to the attacker (malware) and black-box attacks [12], [26] in
which they are unknown. Specifically, white-box attacks are
based on the assumption that the malware (attacker) knows
the input-output relationship of the DRL to be attacked; in
our case, the attacker can employ the target DRL model on
its side. Conversely, in black-box attacks, the attacker cannot
access the DRL model being attacked. The attacker can only
use another DRL model that is different from the attacked
model to generate adversarial attacks.

D. ADVERSARIAL TRAINING FOR DRL
Recently, training with adversarial examples, adversarial
training, has been attracting significant attention because of
its benefits such as robustness against various types of noise
and improved performance owing to its regularization effects.
Although adversarial training has been successfully applied
to deep learning-based supervised [27] and semi-supervised
learning scenarios [28], [29], applications to DRL scenario
are not fully explored [20], [30].

There have been a series of studies on robust learning in
MDPs [13]. Some prior researchers used adversarial distur-
bances to sample the worst trajectories near optimal ones dur-
ingMDP optimization [31], [32]. Their formulation is similar
to the max-min optimization, in which attaining equilibria
has been known to be difficult. Several researchers [33], [34]
have examined a wide range of adversarial attacks/defenses;
however, they did not consider sufficient defense methods to
cope with perturbations applied to observations, i.e., input
images in our case.

Adversarial learning to defend against perturbations
applied to observations has been developed recently
[35]–[38]. In [35], a certified defense module was introduced
to compute the lower bound of action values under ε-ball
perturbations to encourage the agent to take conservative
actions. Instead of deploying such a defense module, in this
study, we proposed a denoising architecture to be equipped
with both high performance and robustness. Adversarial
learning for robustness against observation perturbations
can be defined in multi-agent settings; observations can be
adversarial owing to the opponent’s actions [36]. Although
we assumed that observation perturbations mainly come from
sensor noise, such as those in camera images and light detec-
tion and ranging (LIDAR) measurements, some evaluation
settings regarding attacks, such as white-box and black-box
attacks, are related to multi-agent settings.

In another study [37], a loss function with an adversarial
regularizer was introduced to enhance the robustness against
perturbations in state observations. The MDP was modified
into a state-adversarial MDP (SA-MDP) such that the pertur-
bations were computed to make the action distribution distant
from the original one. Although the motivation of their study
is similar to ours, they did not aim at making the internal
representation of DR learners robust against input noises.

There is an existing study on deep adversarial reinforce-
ment learning [38], in which adversarial attacks, worst cases
for DQN, were used to explore the state space. Although this
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FIGURE 1. Architecture of proposed models.

idea of using adversarial examples is conceptually similar to
that of this study, there are a number of significant differ-
ences. The existing study used the same network architecture
with the original DQN, whereas we used multiple-head archi-
tectures including the AE. In the existing study, sampling by
the behavioral policy was disturbed by adversarial attacks to
efficiently explore the state space to learn, whereas, in our
case, the internal representation of the control policy was
expected to be robust during training disturbed by adversarial
attacks.

III. DQN WITH AUTOENCODER
Our aim in this study was to develop new adversarial
learning-based regularization methods for DRL algorithms
that make the control policy acquired by DRL robust against
input noise. At first, we explain the simple architecture for
our DRL regularized with an autoencoder, then we introduce
the second, our main proposal method, that utilized more
sophisticated regularization by W-network. We used a DQN
as a typical and commonly used instance of DRL.

A. DQN WITH AUTOENCODER REGULARIZATION
In the first simple method, we employed a twin-head archi-
tecture (Figure 1(a)): one of the components was the AE that
attempted to restore the original input image (assumed to
be clean) from a noisy input image, and the other was the
DQN. They shared the same encoder whose input and output
were the given image and the internal representation held in
the middle layer, respectively. Importantly, the noisy input to
the AE component was an adversarial example for the DQN
control policy. By training the DQN and AE simultaneously,
we expected the internal representation in the shared mid-
dle layer to become suitable for RL, specifically, Q-value
learning, and be simultaneously robust against random and
adversarial perturbations applied to the input image. This
learning method is based on the combination of DQN and

AE; therefore, it is called deep Q-network regularized with
an autoencoder (DQAE).

For an input image s, the internal representation in
the middle layer is encoded as f (s; θe), where f is an
encoder with a parameter set θe. The output of the DQN is
expressed as Q(f (s; θe), a; θq); i.e., the Q-function is trans-
formed from the middle layer representation f (s; θe); the
transformation is represented by a set of DQN parameters,
θq. Similarly, the decoded output of the AE is expressed as
g(f (sadv; θe); θd ), where g is the decoder with a parameter set
θd . Then, the loss function of the DQN, LDQN , and the loss
function of the AE, LAE , are given by

LDQN (s, a, r, s′; θe, θq) = Es,a,r,s′ [(y− Q(f (s; θe), a; θq))
2],

y(r, s′; θ−e , θ
−
q ) = r + γ max

a′∈A
Q(f (s′; θ−e ), a′; θ−q ),

LAE (s; θe, θd ) = Es[‖s− g(f (sadv(s); θe); θd ))‖2].

(3)

Here, the squared errors are for the vectors, i.e., the squared
Euclidean norms. The second loss in equation (3) is the recon-
struction error of the AE. To stabilize the training, we used
target networks [2]; for instance, θ−e and θ−q in equation (3),
respectively, denote the encoder and decoder parameters of
the target DQN.

After the initial examination, we found that the adversar-
ial examples given by the L2-norm FGSM were the most
effective:

sadv(s; θ−e , θ
−
q ) = s+ ε

√
d ·
∇sJ (s; θ−e , θ

−
q )

‖∇sJ (s; θ
−
e , θ

−
q )‖2

, (4)

where the cost function J is given by equation (2).
The final objective function used for training the entire

DQAE is:

L(s, a, r, s′; θe, θq, θd ) = LDQN (s, a, r, s′; θe, θq)

+λLAE (s; θe, θd ), (5)

where λ > 0 is a hyperparameter that takes the balance
between the DQN and AE losses.
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1) TRAINING ALGORITHM
In training the DQAE, the following procedure is repeated.

1) A one-step back-up (s, a, r, s′) is sampled uniformly
from the empirical memory, to calculate the one-step
objective of the DQN, lDQN ,

y(r, s′; θ−e , θ
−
q ) = r+γ max

a′∈A
Q(s′, a′; θ−e , θ

−
q ),

lDQN (s, a, r, s′; θe, θq) = (y(r, s′)−Q(s, a; θe, θq))2.

(6)

2) The FGSM cost function, J , is calculated based
on the DQN output (Q-value vector), according to
equation (2).

3) Based on the calculated J , an adversarial example, sadv
is obtained, according to equation (4).

4) An output is obtained from the AEwhen the adversarial
example above is input. Then, the one-step objective of
AE, lAE , is calculated as follows:

lAE (s; θe, θd ) = ‖s− g(f (sadv(s); θe); θd )‖2. (7)

After accumulating the one-step objectives as LDQN =∑
lDQN and LAE =

∑
lAE over the mini-batch, the DQAE

parameters are updated to lower the entire objective func-
tion: L = LDQN + λLAE , using the stochastic gradient
descent (SGD) method [39].

B. DEEP Q-W-NETWORK WITH AUTOENCODER
REGULARIZATION
The objective of the DQAE was to make the current control
policy robust against input noise that is adversarial to the
optimality of the current policy. Although this idea would
be reasonable if the control policy approached the optimal
in the course of RL, its efficacy for accelerating the RL
process during training is unknown. We propose another and
more advanced regularization approach to induce the DNN’s
control policy to avoid its worst-case responses that would
be effective in policy exploration during the RL process. For
this purpose, we attached an additional decoder to predict
the worst control at the current state for the DQAE archi-
tecture. This additional network is called a deep W-network
(DWN). The proposed architecture, which is called deep
Q-W-network regularized with an autoencoder (DQWAE),
is a hybrid of DQAE and DWN. The adversarial examples
were produced based on the output of the DWN.

1) ARCHITECTURE
In this second advanced method, we employed a triple-head
architecture (Figure 1(b)). The three encoder-decoder pairs
shared the same encoder. The first, second, and third were
the DQN, AE, and DWN, respectively. The last network
output W-values for all possible actions, each of which rep-
resented the worst-case value caused by the correspond-
ing action. An adversarial example was produced based
on the worst-case values (i.e., W-value vector), and the
AE attempted to restore a noiseless image from such an
adversarial example.

For an input image s, the output of the DWN is given by

W (s, a) = W (f (s; θe), a; θw), (8)

where f and W denote the common encoder and the DWN
decoder, respectively, and θe and θw are their respective
parameters.

2) OBJECTIVE FUNCTION
Based on the FGSM, an adversarial example for the DQWAE
is produced by

sadv(s; θ−e , θ
−
w ) = s+ ε

√
d ·
∇sJ (s; θ−e , θ

−
w )

‖∇sJ (s; θ
−
e , θ

−
w )‖2

, (9)

where the cost function J is given by the cross-entropy
between the worst-case control policy and the one-hot vector
signifying the worst-case action:

J (s; θe, θw) = −
∑
a∈A

ρ̂(a|s) log
exp(W (s, a; θe, θw))∑

a′∈A exp(W (s, a′; θe, θw))
,

ρ̂(a|s) =

{
1 (if a = argmin

a′∈A
W (s, a′; θe, θw))

0 (otherwise),
(10)

where ρ̂(a|s) denotes the worst-case policy to predict
the worst-case action leading to the locally minimum
action-value at state s.

The entire DQWAE network is trained by minimizing the
following objective function:

L(s, a, r, s′; θe, θq, θd , θw) = LDQN (s, a, r, s′; θe, θq)

+λ1LAE (s; θe, θd )

+λ2LDWN (s, a, r, s′; θe, θw),

(11)

where θq and θd are the parameters of the DQN and AE
decoders, respectively, and λ1 and λ2 are the hyperparameters
that determine the regularization strength.
LDQN and LAE are the same as those in equation (3).

In addition,

LDWN (s, a, r, s′; θe, θw)=Es,a,r,s′ [(y−W (f (s; θe), a; θw))2],

y(r, s′; θ−e , θ
−
q )= r + γ min

a′∈A
Q(f (s′; θ−e ), a′; θ−q ),

(12)

where y is a one-step predicted value associated with the
worst action at the current state, s, and the subsequent best
actions according to the current policy.

3) TRAINING ALGORITHM
The DQWAE training proceeds by repeating the following
procedure.

1) A one-step back-up (s, a, r, s′) is sampled uniformly
from the empirical memory; the one-step objective of
the DQN, lDQN , is calculated using equation (6).

2) Another one-step back-up is sampled uniformly from
the empirical memory, independently from the one

VOLUME 9, 2021 143905



K. Ohashi et al.: Deep Adversarial Reinforcement Learning With Noise Compensation by Autoencoder

sampled in Step 1; then, the one-step objective of
DWN, lDWN , is calculated.

y(r, s′; θ−e , θ
−
q )= r + γ min

a′∈A
Q(s′, a′; θ−e , θ

−
q ),

lDWN (s, a, r, s′; θe, θw)= (y(r, s′)−W (s, a; θe, θw))2.

(13)

3) The FGSM cost function, J , is calculated based on the
DWN output (W-value vector) using equation (10).

4) Based on the calculated J , an adversarial example, sadv,
is obtained using equation (9).

5) An output is obtained from the AEwhen the adversarial
example above is input. Then, the one-step objective of
the AE, lAE , is calculated using equation (7).

After accumulating the one-step objectives as LDQN =∑
lDQN , LAE =

∑
lAE , and LDWN =

∑
lDWN over the

empirical memory (mini-batch), the DQWAE parameters are
updated to lower the entire objective function, equation (11),
using the SGD method.

IV. EXPERIMENT AND RESULTS
A. EVALUATION ON ATARI 2600 GAMES
Our simple DRL method (DQAE) can be seen as an ablated
version of the advanced method (DQWAE). Then, the couple
of the regularized DRL methods, DQAE and DQWAE, were
evaluated in terms of robustness against noise applied to
the input images using seven Atari 2600 games: Breakout,
Pong, Boxing, Chopper Command, Star Gunner, Qbert, and
Robotank. As in the original DQN setting, each RGB game
image frame was downscaled to a 84× 84 (pixels) grayscale
image, and four consecutive image frames were concatenated
to the 84 × 84 × 4 input image. An action was produced
stochastically by the DRL policy and fed back to the game
during four consecutive game steps. In other words, the sam-
pling rate of the input and output was one per four game image
frames.

We prepared three baseline methods for comparison with
the DQAE and DQWAE. The first was the original DQN and
the second was a DQAE regularized by adding random noise
to the input images during training. When adding random
noise to the DQAE, the second term of equation (4) was
from a multi-variate (but element-wise independent) nor-
mal distribution for its L2-norm to become ε

√
d . The third

was a double DQN regularized by gradient-based adversarial
attacks (DDQN-R) [38]. To compare the noise robustness
achieved by the comparable adversarial learning, we set the
same number of total training steps and a consistent noise
strength of ε

√
d when producing adversarial attacks, for

every method. It should be noted that although the multi-step
beta distribution sampling technique for adversarial attacks
was used in [38], it was not used here because of its high com-
putational cost when the input comprises high-dimensional
images, as in this study.

The DQN encoder consisted of three convolution layers;
the first, second, and third layers were composed of 32 8× 8
convolutional filters with a stride of 4, 64 4× 4 filters with a

stride of 2, and 64 3×3 filters with a stride of 1, respectively.
We used the rectified linear unit for the activation function
across all the convolutional units. The DQN decoder con-
sisted of two fully connected layers. There were 512 units in
the first decoder layer, and the second layer took the number
of possible actions in each game. The network architecture of
the regularized DDQN (DDQN-R) [38] was exactly the same
as that of the DQN; the difference between the two was in
their learning scheme.

In the DQAE, the encoder architecture was the same as that
of the DQN encoder. The decoder of the AE network in the
DQAE had an upset architecture of the encoder network.

In the DQWAE, the encoder architecture replicated those
of the DQN and DQAE. The decoder of the DQN part was
the same as that of the DQN, and the AE decoder was the
same as that of the DQAE. We also employed a common
decoder architecture for the DQN and DWN components in
the proposed DQWAE.

We optimized the DQAE, DQWAE, and the three base-
line methods using SGD methods with mini-batch and the
RMSProp optimizer. In the DQAE and DQWAE, we used the
common strength of adversarial attacks, ε

√
d = 0.05. When

we used random noises to regularize the DQAE, we observed
that the noise strength was too small after the initial exami-
nation and set it as a larger value, ε

√
d = 0.5. In the DQAE,

we set the regularization coefficients as λ = 10. In the
DQWAE, we set the regularization coefficients as λ1 = 10
and λ2 = 1. These hyperparameter settings were the same
for the seven Atari 2600 games. The implementations were
performed on the ChainerRL environment [41].

We performed five training runs, each starting with random
initialization of the DRL parameters for each of the seven
games and each of the five DRL methods and ended after
10 million training steps. Here, a single training episode
corresponds to a series of steps (plays) in a single game.
When evaluating the noise robustness of each DRL method,
we measured the game scores averaged over 10 test (rollout)
games during which we applied noise of a specific strength
to game image frames.

We specifically examined robustness against three types of
noise, random noise with a systematically changed L2-norm
and white-box and black-box attacks, in which the noise was
adversarial to the acquired policy and another policy. In the
latter two cases, we systematically changed the adversarial
attack strength in terms of its L2-norm, following which we
examined the average test-game scores. For the white-box
attack, we assumed that the adversarial attacker knew the
learner policy when generating noise to be adversarial to
the learner policy. Conversely, in the black-box attack, there
were two cases, the inter- and intra-method cases. For the
former, the attacker trained using a different DRL method
from that of the learner policy. In this case, we consistently
used the original DQN as the attacker DRL method. In the
intra-method case, the attacker used the same trainingmethod
as that of the learner policy; however, the learner policy was
based on a different training run.
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FIGURE 2. Atari average scores (solid line) and standard deviations (shaded area).

TABLE 1. Atari summary scores against random noise.

TABLE 2. Atari summary scores against FGSM white-box attack.

Figure 2 presents the robustness against noise applied to
the input images for our DQAE and DQWAE, all of which
were trained in 10 million training steps. The horizontal
and vertical axes denote the noise strength applied to the
test images and the score of the test games, respectively.
The top, middle, and bottom panels in Figure 2 show the
robustness against random noise and white-box and black-
box attacks. The red, green, purple, blue, and black lines
represent the DQWAE, DQAE, DQAE regularized by ran-
dom noise, the original DQN, and the regularized DDQN
(DDQN-R) [38], respectively. We summarized the noiseless/

attacked scores for each attack method during evaluation; that
is, for random (Table 1), FGSM white-box (Table 2), and
FGSM black-box attacks (Table 3).

For the seven Atari 2600 games, we did not observe signif-
icant differences between DQAE and the two baseline meth-
ods, DQAE regularized with random noise and the original
DQN, in terms of robustness against the three types of noise.
Conversely, the proposed DQWAE consistently improved
the noise robustness beyond that of the baseline methods,
for these seven games. The superiority of the DQWAE was
prominent for rather complicated games such as Chopper
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Command and Star Gunner. In these games, the robust-
ness against the three types of noise, random, white-box,
and black-box, was significantly enhanced by the DQWAE,
beyond those of the DQAE and the three baseline methods.

Interestingly, when the noise level was zero, the DQWAE
outperformed the baselines in six games, except Pong, sug-
gesting that the DQWAE could have realized better learning.
In particular, for Star Gunner, the DQWAE score was almost
twice that of the other methods. In other words, the new regu-
larization method implemented in the DQWAE was effective
in making the DRL robust against random/adversarial attacks
and making the learning itself efficient through the data aug-
mentation effect around an experienced sample (s, a). TheAE
regularization artificially generated (sadv, ·) and updated the
shared encoder to enhance representation learning. This data
augmentation effect was not realized by the DQWAE when
the noise was random (data are not shown). It should be noted
that the maximum score for Pongwas 21, and all the methods,
excluding the regularized DDQN (DDQN-R), attained this
score in the noiseless case. The degree of the performance
improvement was dependent on the game environment. The
improvement in the score was very significant in the Star
Gunner, Chopper Command, and Robotank, whereas it was
moderate in Breakout, Pong, Boxing, and Qbert. It was sug-
gested in a previous study (Fig. 5 in [44]) that Star Gunner,
Chopper Command, and Robotank are relatively difficult
tasks; therefore, their scores can be said to reflect the effec-
tiveness of the employed RL algorithm. On the other hand,
Breakout, Pong, and Boxing are relatively easy tasks whose
scores were almost saturated even by the original DQN.
Thus, we conjectured that the DQWAE would be effective
in improving the performance in many applications that have
room for performance elevation.

The noiseless scores of the DDQN-R were somewhat infe-
rior to those of the original DQN, especially for the relatively
difficult games, Breakout, Chopper Command, and Star Gun-
ner. Because in [38] the behavior policy of the DDQN-R was
disturbed by adversarial attacks during training, there would
have been a trade-off between the noiseless performance and
acquired robustness. Note here that our adversarial attack
strength (0.05) was similar to that in [38] (0.03 ∼ 0.05).
We would like to argue that the DQWAE exhibited the

desired robustness against random/adversarial noise, even
when it was not used for the training process. Indeed,
the black-box attacks launched against the DQWAE were
produced as adversarial to the DQN policy. This evaluation
scheme seemed meaningful because the adversarial attack
used here targeted the optimality of the control policy, which
would have been achieved (realizing the Bellman optimality)
after 10 million training steps. However, the DQWAE exhib-
ited excellent robustness against the adversarial attack. This
suggested that by enabling the DRL to avoid the worst-case
actions, our new regularization was efficacious at retaining
the best actions, evenwhen the input images weremaliciously
disturbed to reduce the probability of taking the best actions.
Accordingly, this result indicates the efficacy of our new

regularization method for improving the general robustness
of the DRL even against unknown/unexpected adversarial
attacks.

B. AUTONOMOUS DRIVING SIMULATION
Next, we evaluated our regularization methods, DQAE and
DQWAE, by applying them to the DRL for our automatic
driving simulation. The driving simulation environment was
constructed by combining Unity, Unity ML-Agents [42],
[43], OpenAI Gym, and Chainer.

The Unity-based driving environment comprised a car
operated by the DRL agent, bright pedestrians, and dark
moving distractors. The pedestrians randomly walked across
the street. The objective of the DRL agent was to steer the
car without hitting the bright pedestrians. The dark distractors
were not related to the navigation objective. The single input
to the DRL was a concatenated image of four consecutive
image frames sized 84× 84 captured with a camera mounted
on the top rear of the car. A single output of the DRL was
one of three control actions: steering to the left (9◦), going
straight, and steering to the right (9◦). The reward was one
per step from the start to the end. The car continued to run for
up to 500 steps (i.e., goal arrival). However, if the car hit any
bright pedestrian or drove off the street, the episode ended.

Here, we compared three types of DRL methods: origi-
nal DQN, DQAE, and DQWAE. The network structure and
hyperparameters of the DQAE, DQWAE, and DQN were set
to be similar to those in the Atari 2600 experiment.

Five runs of 520 thousand training steps (≈ 7000 training
episodes) were performed for each method. To evaluate the
noise robustness of each DRLmethod, wemeasured the score
that was averaged over 20 test episodes (rollouts) during
which noise of a specific strength was applied to each input
image frame. We examined the robustness against two types
of noise. The first was random noise with a systematically
changed L2-norm. The second type was white-box attack; we
measured the score (i.e., the number of steps before an acci-
dent or goal attainment) when an adversarial noise generated
by the acquired policy was added to each image frame.

Figure 3 presents the robustness of the baseline DQN,
DQAE, and DQWAE against noises applied to the input
images. The red, green, and blue lines represent DQWAE,

FIGURE 3. Average scores obtained in autonomous driving task (solid
line) and standard deviations (shaded area).
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TABLE 3. Atari summary scores against FGSM black-box attack.

FIGURE 4. Comparison between our DQWAE and original DQN, in terms of internal representation (middle panels) and Q-values (lower panels) in
our driving simulation.

DQAE, and original DQN, respectively. The horizontal and
vertical axes denote the noise strength applied to the test
images and the score of the test navigation, respectively.
We found that the DQAE and DQWAE were more robust
to the two types of noise, random and adversarial noise
(white-box attacks), compared to the baseline DQN. Similar
to the Atari 2600 results, the performance with zero noise
was also improved by our DQAE and DQWAE, indicating
that learning was accelerated by our regularization methods.
The DQAE and DQWAE had comparable robustness against
randomnoises. TheDQWAEexhibited slightly higher robust-
ness against white-box attacks than the DQAE. We thus con-
cluded that, in general, the DQWAE was more noise-robust
than the DQAE.

Figure 4 depicts how our DQWAE worked to compensate
for adversarial attacks in the input images of two typical
situations: dangerous (Fig. 4(a)) and safe (Fig. 4(b)), in com-
parison with the original DQN’s behaviors. The changes in

the internal representation (an output of the shared encoder;
middle panels), i.e., |f (s) − f (sadv)| and changes in action
values (an output of the DQN part; bottom panels) when
adversarial attacks with ε

√
d = 0.09 were applied to the

camera image are displayed. The top panels display the input
images captured by the car camera. The car was required to
take a careful action to avoid hitting the bright pedestrians
crossing the street (Fig. 4(a)); and because almost all the
bright pedestrians had crossed the street, the driving situa-
tion was significantly easier (Fig. 4(b)). When an adversarial
attack was launched on the input camera image, our DQWAE
compensated for such noise at the level of internal representa-
tion (themiddle left panel in Fig. 4(a)), leading to consistently
good controls in terms of DQN outputs (the bottom left
panel in Fig. 4(a)), regardless of the situation. Note that in
situation (a), steering right/left is the optimal action to avoid
collisions with pedestrians. Conversely, the adversarial attack
on the DQNwas effective, especially in a dangerous situation.
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FIGURE 5. Two different input images in breakout and the corresponding action
values output by DQWAE.

Due to the adversarial attack, the internal representation was
disturbed (the middle right panel in Fig. 4(a)), causing an
ineffective control action mediated by substantially lowered
action values by theDQN (the bottom right panel in Fig. 4(a)).
Although the output of the noiseless DQN was optimal (blue
bars in the bottom right panel in Fig. 4(a)), it was significantly
disturbed by the adversarial attack (orange bars in the bottom
right panel in Fig. 4(a)).

V. DISCUSSION AND FUTURE WORK
On the Atari benchmarks and in the automatic driving simu-
lation, the proposed deep adversarial reinforcement learning
proved to be effective. The couple of decoders of AE and
DWN in the DQWAE (Fig. 1(b)) require additional computa-
tional costs during the training phase, but not in the testing
phase. In the application phase, the computational cost of
our methods were exactly the same as that of the DQN,
whereas they were significantly superior in terms of noise
robustness and noiselessness. The increased computation in
the training phase is for forward-propagation through the
decoders of the AE and W-networks and back-propagation
through the AE learning and adversarial example generation
by the W-network. They can be implemented efficiently in
the usual GPU-based deep learning environments. We thus
concluded that our methods can be practical considering their
high performance/robustness at the expense of additional, but
not considerable, computation for training.

It is a point of contemplation whether the strong denois-
ing function of the AE network [16], [18] can suppress the
transfer of useful information in the input images to the
DQN decoder, thus degrading the performance of the DQAE
and DQWAE. This is not the case, however, because the
back-propagation optimization based on the DQN objective

function worked against such unfavorable representation
learning by the shared encoder. Figure 5 shows the Q-values
when our DQWAE was trained for Breakout; the left and
right figures show when the original game image (upper
left panel) was input to the trained DQWAE and when the
ball pixels were erased from the image (upper right panel)
input to the DQWAE, respectively; thus, the useful infor-
mation in the input was artificially erased from the right
figure. As expected, when the ball disappeared, the action
was disturbed and the Q-values worsened significantly (right
figures). On the other hand, the action was good with reason-
ably high Q-values when the original image was input (left
figures); note here that that ‘‘Noop,’’ ‘‘Fire,’’ and ‘‘Left’’ were
all good but ‘‘Right’’ was not good in this situation, because
the last action could cause the approaching ball to be missed.
This difference in the Q-values suggested that the small but
important information in the input image space was main-
tained by the shared encoder of the DQWAE, although its rep-
resentation learning had been affected by the AE denoising
learning. Based on this observation, we deduced that the AE
network was effective at removing noise from the input space,
while retaining useful information, for the DQN decoder.

However, this study has some significant limitations that
should be addressed in the near future. The proposed deep
adversarial RL methods were applied to problems with dis-
crete action spaces in this study. It will be necessary tomodify
the definitions of the adversarial examples to some extent for
the continuous action problems, for various reasons including
incorporating the action continuity around the best or even
worst actions; such extensions are now under development as
policy gradient-type and actor-critic-type methods.

Another important direction would be to explore possi-
ble real-world applications. Although we implemented our
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methods in the simulation environment, their applicability in
realistic/real environments should be examined. Our meth-
ods based on off-policy RL and image-based input setting
would be suitable for application to real-world problems,
such as what registered in the Waymo open dataset [45].
If we restrict the situations to the real world, such as the case
of pedestrians crossing the street in this study, we will be
able to obtain reasonably good controllers by our methods.
However, the fully automatic driving scenario in the real
environment should include a significantly wider variety of
situations, some of which may not have occurred frequently
in the training dataset. Moreover, in the actual automatic
driving settings, the dimensionalities of input and control
are significantly larger than those in our simulation setting.
To resolve these difficulties and cope with noise robustness in
other realistic scenarios, it is essential to make our methods
expandable to real-world problems.

Our adversarial RL method has achieved reasonably good
robustness against observation-based random/adversarial
perturbations, possibly owing to sensor noises and/or unex-
pected and abrupt changes in the environment. Drastic and
rather long-term changes to the environment, such as in the
case of heavy rain or snow in the automatic navigation sce-
nario, can be modeled as a domain change; therefore, real-
izing controller robustness against domain changes remains
an important and attractive research topic. Compensation for
domain changes, termed domain adaptation, is one of the
important topics in the field of image processing. Extension
of our current methods to those with adversarial learning in
the feature space, instead of the input space, may lead to such
adversarial domain-adaptive RL.

VI. CONCLUSION
In this study, we presented a couple of regularization methods
for the DRL agent to acquire robust internal representation
by compensating for input noise in the encoder component
in a fully data-driven manner. Specifically, we presented two
architectures, a simple one (DQAE) and an advanced one
(DQWAE), based on the modification of the well-known
DQN architecture. When applied to seven Atari 2600 games,
we observed that our advanced DQWAE demonstrated excel-
lent robustness against random noise and white-box and
black-box attacks. The improvement over the three base-
line methods and our simple DQAE was significant. When
applied to our original driving simulation, the robustness
of the DQAE and DQWAE was superior to that of the
baseline DQN. Interestingly, in most of the examined Atari
2600 games and the driving simulation task, the DQWAE out-
performed the baselines, even without the addition of noise to
the input images. This suggests that the policy learning itself
was accelerated by our advanced regularization method.
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