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Abstract

Genetic epidemiology is a rapidly advancing field due to the recent availability of

large amounts of omics data. In recent years, it has become possible to obtain omics

information at the single-cell level, so genetic epidemiological models need to be

updated to integrate with single-cell expression data. In this perspective paper, we

propose a cell population-based framework for genetic epidemiology in the single-cell

era. In this framework, genetic diversity influences phenotypic diversity through the

diversity of cell population profiles, which are defined as high-dimensional probability

distributions of the state spaces of biomolecules of each omics layer. We discuss how

biomolecular experimental measurement data can capture the different properties of

this distribution. In particular, single-cell data constitute a sample from this population

distribution where only some coordinate values are observable. From a data analysis

standpoint, we introduce methodology for feature extraction from cell population

profiles. Finally, we discuss how this framework can be applied not only to genetic

epidemiology but also to systems biology.
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INTRODUCTION

Understanding the phenotypic diversity among human populations

is important in medicine and other life sciences. Genetic epidemiol-

ogy evaluates phenotypic diversity by statistical models that combine

genetic effects and environmental effects to identify the causal vari-

ants or genes of diseases. This has greatly contributed to the under-

standing of the genetic causes andmechanisms of disease.

In recent years, the field of genetic epidemiology has grown signif-

icantly due to the availability of genomics data. In particular, genome-

wide association studies (GWAS) have identifiedmany genetic variants

that affect complex traits including diseases.[1] In addition to genomic

information, information from other omics such as transcriptomics can

also be used to analyze phenotypic diversity. Furthermore, in the past
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few years, the technology for measuring omics data at the single-cell

level has made dramatic progress. The integration of genetic epidemi-

ologymethodologywith single-cell omics data is becoming increasingly

important. In this paper, we propose cell population-based frameworks

and discuss the future of genetic epidemiology with single-cell omics

data.

MODEL FOR EXPLAINING THE VARIATION OF
PHENOTYPE

Standard model

The model that expresses phenotypic diversity as a combination of

genetic and environmental effects is the most basic model in genetic
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F IGURE 1 Model of genetic epidemiology. G and E represent Genetic and Environmental effects, respectively. (A) StandardModel. G and E
directly generate phenotypic diversity. (B) OmicsModel. G and E generate phenotypic diversity via the diversity of omics information. (C) Cell
PopulationModel. G and E generate phenotypic diversity via the diversity of cell populations where each single cell has omics information. (D)
Multi-TissueModel. G and E generate phenotypic diversity via the diversity of multiple cell populations

epidemiology (StandardModel: Figure 1A).Many genetic epidemiolog-

ical studies, including GWAS, are based on this framework and use sta-

tistical models such as linear regression and contingency table tests to

analyze the association of genetic factors and phenotype. This basic

model expresses only the causal relationship from genetic factors to

phenotypic diversity and does not include insight intomolecularmech-

anisms.

Omics model

Genetic factors influence phenotypic diversity of biomolecules such as

RNA or proteins. Comprehensive biomolecular information is known

as omics information, which is classified into genome, transcriptome,

proteome, epigenome, or metabolome information.[2,3] Genetic epi-

demiologists have actively studied phenotypic diversity through such

omics information, which is not limited to genomic information.

The Omics Model shown in Figure 1B is a framework for combin-

ing genetic epidemiology with omics data. In this model, genetic and

environmental effects contribute to phenotypic diversity via biomolec-

ular information. To identify the genetic effects on pools of biomolec-

ular information such as the transcriptome, proteome, metabolome,

or epigenome (blue arrow in Figure 1B), the identification of single

nucleotide polymorphisms (SNPs) associated with these biomolecules

(expression quantitative trait loci (eQTL), protein QTL, methylation

QTL, metabolite QTL) are being actively investigated.[4,5] For example,

eQTL analysis identifies genetic variants that are associated with gene

expression levels obtained from transcriptome data. The eQTLs identi-

fied in various tissues have been published in databases such as.[6,7] In

addition, studies that examine the relationship between omics diver-

sity and phenotypic diversity (red arrow in Figure 1B) constitute dis-

ease omics analysis. Studies to identify differentially expressed genes

in diseased and healthy individuals are included in this category.

Both types of study designs have been widely implemented in omics

research projects.

Cell population model

A disease or complex phenotype of medical interest is manifest at the

tissue or individual level. It is not caused by just one particular cell but

by abnormalities of an entire cell population in the relevant tissue. In

fact, tissue samples used in omics analyses are composed of a number

of cells, and each cell has different omics information. Breakthroughs

in single-cell omics technology over the last few years have made it

possible to acquire omics information at the single-cell level. Genetic

epidemiological models can then be extended for single-cell omics

studies.

We propose the Cell Population Model as a framework for genetic

epidemiology with single-cell omics data (Figure 1C). This model

expresses phenotypic diversity as cell population profile diversity. Each

cell in the body has a different omics status from the others. In this

model, genetic and environmental effects affect phenotypic diversity

through the diversity of a cell population profile where each cell has

omics information. This model is an extension of the Omics Model and

is considered a natural biological expression of complex phenotypes.
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While association studies between cell population profiles and phe-

notype are often performed to identify a cellular subset related with

disease using cytometry data or single-cell RNA-seq data (red arrow in

Figure 1C),[8–10] genetic epidemiological analyses based on such mod-

els have not been performed to date (blue arrow in Figure 1C). Pre-

viously, we performed the first GWAS study on the diversity of lym-

phocyte populations in peripheral blood using a large-scale cytometry

dataset based on this framework.[11] As a result, although the analy-

sis was performed with a relatively small sample size, the SNPs asso-

ciated with individual differences of the lymphocyte profile were suc-

cessfully identified. In recent years, research to acquire cytometry data

on a large scale has also become common.[12] Genetic epidemiological

research under this model can be expected to bring new findings.

Multi-tissue model

The Cell Population Model can be extended to multiple tissues in

the Multi-Tissue Model (Figure 1D). Under this framework, pheno-

typic diversity is understood as being generated by a combination of

effects from cell population profiles ofmultiple related tissues. For sys-

temic diseases involving multiple tissues, such models are a natural

expression of the mechanism. Although genetic epidemiological stud-

ies using the Multi-Tissue Model have not been conducted, it is con-

sidered meaningful as a future genetic epidemiological model in the

single-cell era.

CELL POPULATION PROFILE AS A DISTRIBUTION
ON OMICS STATE SPACE

Omics state space

Each cell in a cell population has the biomolecular information of five

omics layers: epigenome, transcriptome, proteome, metabolome, and

somatic genome. Biomolecular information in the epigenome layer,

such as DNA methylation, histone acetylation, and chromatin open-

ness, can be quantified as signal values assigned to each position in

the genome. The factors in the transcriptome layer are the expres-

sion level of all genes in the human genome. The factors in the pro-

teome layer are the expression levels of all proteins. More dimen-

sions are required if cellular localizationor chemicalmodifications such

as phosphorylation of proteins are distinguished. The metabolome

layer contains the abundance of all metabolites including lipids and

low-molecular-weight compounds. Factors in the somatic genome

layer are information about mutations or DNA damage that accu-

mulate in the somatic genome and are distinct from the germline

genome information inherited from parents. For example, cancer is

a disease caused by an increase in the number of cells with abnor-

mal somatic genomic information, and cancer genome analysis has

been used to identify genes involved in the pathogenesis of the

disease.[13,14] In addition, considering mitochondria genome is bene-

ficial to understand the differences among cells. For example, recent in

vivo study using mouse observed the mitochondrial transfer between

different types of cells, which is related to biological or pathological

phenomena.[15,16]

Because each cell has individual omics information, one cell can be

represented as a one point in the state space where each biomolecule

measurement value represents a coordinate axis. Here, we call this

state space of the biomolecules of all the omics layers the “Omics State

Space.” The function of the cell population depends on the profile of

cells with different omics statuses.

Therefore, the cell population profile is characterized as a prob-

ability distribution in the Omics State Space. Since this distribution

corresponds to the joint distribution of whole biomolecular measure-

ments, including all gene expressions, protein expressions, mutations

in the somatic genome, and epigenome modifications, it is a very

high-dimensional distribution. Cells are not evenly observed in the

Omics State Space, and most parts are sparse areas where no cells are

observed at all.We define the cell population profile as the distribution

in this Omics State Space.

EXPERIMENTAL DATA MEASURING
BIOMOLECULES TO CAPTURE THE PROPERTIES OF
THE CELL POPULATION PROFILE

Experimental data measuring biomolecules can be interpreted as cap-

turing different parts of the distribution of the cell population profile

in the Omics State Space. Because the distribution of cell population

profiles is very high-dimensional and complex, there is no experiment

technique to get a complete picture. Existing biomolecular experimen-

tal data can be classified according to three perspectives with respect

to the desired information: the target omics layer, bulk/single-cell, and

candidate-based/comprehensive. For example, bulk and candidate-

based approaches in the proteome layer include western blotting or

ELISA. Immunocytochemistry is a single-cell level and candidate-based

method primarily in the proteome layer, where the number of cells that

can be measured is small but protein localization can be distinguished.

Single-cell and comprehensive approaches in the transcriptome layer

include RNA-seq or DNA microarray. Methods for comprehensive

measurements at the single-cell level in each layer have made rapid

progress in the past few years.[15–22] Recent genomics assay can

detect evenmtDNAmutations at single cell level.[23]

In particular, single-cell data and bulk data differ in their data struc-

ture. The bulkmeasurement is an estimate of themean value for a par-

ticular axis of the distribution in theOmics State Space. Since themean

value in a probability distribution is a representative and reasonable

feature of the distribution, the bulk measurement value is a reason-

able index for comparison among distributions when the cell popula-

tions are homogeneous. Single-cell data constitute a sample from the

population distribution of the cell population profile where only some

coordinate values are observable (Figure 2). While the shape informa-

tion of the distribution is lost in bulk data, single-cell data can partially

capture it. Then, it can be used to identify and quantify heterogeneity

and cellular subsets in the cell population profile.
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F IGURE 2 Omics State Space and single cell data. The cell
population profile is characterized as a high-dimensional probability
distribution in theOmics State Space where eachmeasurement value
on transcriptome, proteome, metabolome, somatic genome, or
epigenome layer represents a coordinate axis. Single-cell data
constitute a sample from this population distribution of the cell
population profile where only some coordinate values are observable
as marker

The ability to acquiremore biomolecule information simultaneously

at the single-cell level will allow us to understand the shape of the

cell population profile at higher resolution. In recent years, the abil-

ity to measure omics information in multiple layers simultaneously has

been actively researched, and measurement techniques at the single-

cell level have been developed.[24,25]

REQUIREMENT OF A CELL POPULATION

In this section, we will discuss important issues when considering cell

population profiles as distributions, and the requirements thatmust be

met for a cell population.

When the cell population profile is viewed as a probability distri-

bution, each data point is considered independent and the cell loca-

tion information disappears. Then, cells need to be able to come and go

fromeach otherwithin a cell population. This assumption holdswell for

peripheral blood cell populations. When blood cells are sampled from

peripheral blood, each cell can be regarded as independent and ran-

domly collected, and the single-cell data can be regarded as a statistical

sample from the population distribution. However, in many anatomi-

cally defined tissues, it is not only necessary for cells to maintain their

proper biomolecular expression state, but also for each cell to occupy

its proper position in the tissue to maintain the tissue function. For

example, tissue stem cells aremaintained in amicroenvironment called

a niche.[26] Considering such cell populations as distributions would

result in a loss of biological information.

In recent years, spatial omics technologies that simultaneously

acquire positional and omics information have received much atten-

tion. For example, the spatial transcriptome can reveal transcriptome

data while retaining spatial information in the tissue.[27] Such spatial

information may be useful in determining the range of cell populations

that can be treated as distributions and in compensating for the loss of

positional information.

To extend the Cell Population Model to the Multi-Tissue Model, it

is necessary to consider the interactions between the cell populations.

Cell populations exchange information throughphysical interactions or

cellular signaling. In reality, the diversity of some complex phenotypes

is generated by many cell populations that make up an individual and

their interactions.

FEATURE EXTRACTION OF CELL POPULATION
PROFILES

In order to design genetic epidemiology studies based on a cell

population-based framework, such as the Cell Population Model or

Multi-Tissue Model, it is necessary to perform association analysis

between the cell population profile and individual labels such as geno-

type or phenotype. Since the cell population profile is represented as a

probability distribution on the Omics State Space, conventional meth-

ods of genetic epidemiology and omics data analysis cannot be directly

used in this situation. The solution to apply these data analysis meth-

ods and conduct association analysis is to extract feature values from

cell population profiles. In this section, we introduce three conven-

tional ideas on feature extraction of cell population profiles, methods

usingbulk data,methodsbasedon cellular subsets, andnon-parametric

methods.

The mean value of distribution obtained by bulk data is one of the

most commonly used features of cell population profiles. For example,

bulk transcriptome data have contributed greatly to the identification

of tissue-specific genes [28]. The identification of tissue-specific genes

is way to compare cell populations from multiple tissues to find tran-

scriptome axes whose mean values differ significantly among the mul-

tiple tissue cell populations on the Omics State Space. In the medical

science field, many searches for biomolecular markers using bulk data

have been conducted.[29,30]

Feature extraction based on cellular subsets is frequently donewith

single-cell data. Each cell in a cell population is a little different from the

others, so no two cells are exactly the same.However, since cell popula-

tions are formed as cells proliferate and differentiate, there are cellular

subsets with the same properties and functions in the cell population.

Therefore, we can understand cellular function by classifying cells into

subsets and annotating their functions. Since a cell population profile is

a mixed distribution of cellular subsets, a quantitative value of the per-

centage of each subset is also a valid feature of a cell population pro-

file. Computational methods for clustering cells using single-cell data

to identify cellular subsets are actively being studied by computational

biologists.[31,32]

Cellular subset-based feature extraction also loses information.

One reason is that the results of featureextractionareaffectedbyprior

biological knowledge and assumptions about the pre-identified cellular

subsets. However, it is not known exactly how many cellular subsets

there are in our body or how we should classify them. Novel subsets

are being newly identified. Even data-driven classification using

information science methods cannot eliminate such biases due to the

assumptionsmade in the algorithms and statistical models. In addition,
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F IGURE 3 Graphical abstract of cell population-based framework integrating genetic epidemiology and systems biology. In the context of
genetic epidemiology, genetic effects influence phenotypic diversity through their impact on the probability distributions of various cell population
profiles that make up an individual. In the context of systems biology, within an individual, responses to stimuli drive biological pathways and cause
biological phenomena by altering their distribution. In both cases, extracting feature values from the distributionmakes it possible to represent
them in a statistical model

information about variability and diversity within cellular subsets is

also lost.

Nonparametric feature extraction is another means to obtain

feature values without assumptions about cellular subsets. A nonpara-

metric statistical method models the probability distribution of the

cell population profile without caring about the number of parameters.

In cytometry data analysis, a method using information theory-based

dissimilarity quantification and multi-dimensional scaling (MDS) has

been proposed.[33,34] Here, the dissimilarity matrix among probability

distributions is calculated by nonparametric density estimation, and

MDS is applied to this dissimilarity matrix to obtain coordinates that

reflect the dissimilarity relationship. Decomposition into Extended

Exponential Family expresses the cell population profile distribution

as an exponential family-like formula in a nonparametric manner,

giving coordinates based on the inner-product matrix among the

distributions.[35] The coordinates obtained by these procedures can

be treated as data-driven feature values of the cell population profiles.

The development of feature extraction methods that satisfy these

requirements is a future challenge in data analysis for implementing

genetic epidemiology models in the single-cell era. The advantage of

cellular subset-based feature extraction is that the biological meaning

of theobtained features is clear andeasy to interpret. The advantageof

nonparametric methods is that they can model cell population profiles

without using prior assumptions about cellular subsets. However, non-

parametric methods generally require larger sample sizes to perform

robust analysis. Due to cost issues, it is often difficult to acquire single-

cell data with very large sample sizes. While there are many methods

to comparemultiple samples in cytometry data, suchmethods are lack-

ing in single-cell RNA-seq data in particular.[36] That is a future task in

single cell data analysis.

DYNAMICS OF CELL POPULATION PROFILES

Research designs that combine genetic epidemiology and systems

biology are useful in medical research.[37,38] In genetic epidemiology,

genetic factors are identified by analyzing thediversity of complex phe-

notypes such as diseases among individuals. However, understanding

the dynamics of complex phenotypes within the same individual is also

important for the control of diseases with a systems biology approach.

For example, how the body responds to drug stimuli and their molecu-

larmechanisms is a fundamental research topic in themedical sciences.

The dynamics of biological phenomena can also be explained by a cell

population-based framework.

The cell population profile changes over time in response to exter-

nal stimuli to affect biological phenomena. For example, lympho-

cyte populations in the peripheral blood change after vaccination to

cause an immune response. In addition, external signals trigger cellu-

lar responses such as proliferation and differentiation. Therefore, the

state of a cell at a future time point depends on the currentOmics state

and the external environment of the cell. This transition rule is defined

by the biological pathway.

Because of each cell’s dynamics, the overall distribution changes

when a cell at a certain coordinate moves to another point depending

on the type of stimulus. Cell death, division, or proliferation can also

cause the change in distribution. This change is triggered by a change
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in the proteome layer, in which receptor proteins on the cell surface

respond to an external substance and change their activity. The regula-

tory relationships between biomolecules determine where cells move

from one point to another in the Omics State Space depending on the

presence and type of stimulation.

The dynamics of such cell population profiles can also be analyzed

by applying ordinary data analysis methods through feature extrac-

tion. The changes in the cell population profiles for each sample can be

visualized and analyzed as the time series data of its features. Various

data analysis methods are available to analyze time series data.[39] A

cell population-based framework such as the Cell PopulationModel or

Multi-Tissue Model provides an integrated approach to both genetic

epidemiology and systems biology (Figure 3). This framework will

be useful to investigate the genetic effect that is condition-specific

or related with dynamics. For example, the recent research sug-

gested that the RNASEH2B variant has relation to hemophago-

cytic lymphohistiocytosis (HLH) depending on the biological

condition.[40]

CONCLUSION

In this perspective paper, we proposed a cell population-based frame-

work for genetic epidemiology. In this framework, genetic diversity

influences phenotypic diversity through the diversity of cell population

profiles. Cell population profiles are high-dimensional distributions on

the Omics State Space, and all biomolecular measurement data are

used to obtain the properties of this distribution. To conduct genetic

epidemiology in a cell population-based framework, feature extraction

from cell population profiles is important from a data analysis stand-

point. In addition, this framework can also be applied to represent the

dynamics of cell population profiles, providing an integrated approach

to genetic epidemiology and systems biology.
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