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ON OBSTACLE PROBLEM FOR BRAKKE'S MEAN CURVATURE
FLOW\ast 
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Abstract. We consider the obstacle problem of the weak solution to the mean curvature flow,
in the sense of Brakke's mean curvature flow. We prove the global existence of the weak solution
with obstacles which have C1,1 boundaries in two and three space dimensions. To obtain the weak
solution, we use the Allen--Cahn equation with forcing term.
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1. Introduction. Let T > 0, and let d \geq 2 be an integer. Assume that Ut \subset \BbbR d

is a bounded open set and Mt is a smooth boundary of Ut for any t \in [0, T ). We call
the family of the hypersurfaces \{ Mt\} t\in [0,T ) the mean curvature flow if

(1.1) v = h on Mt, t \in (0, T ).

Here, v and h are the normal velocity vector and the mean curvature vector of Mt,
respectively. Brakke [5] proved the global existence of the multiphase weak solution
to (1.1) called Brakke's mean curvature flow. However, since the flow is defined by an
integral inequality, its solution may become an empty set after a certain time. Sub-
sequently, Kim and Tonegawa [21] proved the global existence of nontrivial Brakke's
mean curvature flow, by showing that each volume of the multiphase is continuous
with respect to t. The phase-field method and the elliptic regularization by Ilma-
nen [17, 18] are known as another set of proofs of the global existence of the Brakke's
mean curvature flow. Similar to the Brakke's mean curvature flow, the weak solution
called L2-flow was studied by Mugnai and R\"oger [28, 29]. In addition, the regular-
ity of Brakke's mean curvature flow is studied by Brakke [5], White [44], Kasai and
Tonegawa [20], and Tonegawa [42]. Concerning results for other types of weak solu-
tions, the existence theorem of the viscosity solutions via the level set method was
presented independently by Chen, Giga, and Goto [10] and Evans and Spruck [13]
at the same period, and a weak solution using a variational method was studied by
Almgren, Taylor, and Wang [3] and Luckhaus and Sturzenhecker [24].

Let O+ and O - be open sets with dist (O+, O - ) > 0. In this paper, we consider
the weak solution to (1.1) with the obstacles O+ and O - , namely, a family of open sets
\{ Ut\} t\in [0,T ) satisfies O+ \subset Ut and Ut \cap O - = \emptyset for any t \in [0, T ), and the boundary

Mt = \partial Ut satisfies (1.1) on (O+ \cup O - )
c, in the sense of Brakke's mean curvature

flow. Since the mean curvature flow can be regarded as a simple model of the cell
motility, it is natural to consider its obstacle problem (see [11, 27]). In addition, the
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obstacle problems for elliptic equations including the minimal surface equation have
been studied over a long period of time (see [8, 30, 32, 35] and references therein).

About the obstacle problem for the mean curvature flow, Almeida, Chambolle,
and Novaga [4] showed the global existence of weak solutions for d \geq 2 by a variational
method. Moreover, they proved the short time existence and uniqueness of C1,1

solutions for d = 2, when the obstacle has a compact C1,1 boundary. Mercier and
Novaga [26] extended the short time existence and uniqueness of C1,1 solutions for
d \geq 2, and they also proved the global existence and uniqueness of the graphical
viscosity solutions if the boundaries of obstacles are also graphs. In the case of the
viscosity solution with the level set method, Mercier [25] showed the global existence
and uniqueness of continuous viscosity solutions to

ut + F (\nabla u,\nabla 2u) + k| \nabla u| = 0 on \{ u - \leq u \leq u+\} ,

where u - and u+ are given uniformly continuous functions with u - \leq u+, k is a
given Lipschitz function, and the assumptions of F allow this equation to be the
mean curvature flow with forcing term k, in the sense of the level set method. Ishii,
Kamata, and Koike [19] proved the global existence and uniqueness of Lipschitz vis-
cosity solutions when k \equiv 0 and u\pm , \partial tu

\pm , \partial xk
u\pm , \partial xkxl

u\pm \in L\infty (\BbbT d\times [0,\infty )) for any
1 \leq k, l \leq d, where \BbbT d = (\BbbR /\BbbZ )d. Giga, Tran, and Zhang [15] studied the large time
behavior of viscosity solutions with constant driving force k.

Let d = 2 or 3, \Omega := \BbbT d, and the obstacles O+, O - \subset \Omega have C1,1 boundaries and
satisfy dist (O+, O - ) > 0. In this paper, we prove the global existence of the weak
solution to (1.1) with obstacles in the sense of Brakke (see Theorem 5.1). Note that
the weak solution obtained in this paper has similar properties to the weak solution
by the minimizing movement in [4, Theorem 4.6] (see Remark 5.3). However, since
the uniqueness of the flow we obtain is not known, it is an open question whether
Brakke's mean curvature flow coincides with the weak solution studied in [4].

To obtain the result, we use the phase-field method. Bretin and Perrier [6] studied
the Allen--Cahn equation with a penalized double well potential depending on the
obstacles. In contrast, roughly speaking, the Allen--Cahn equation considered in this
paper (see (3.4)) is formally an approximation to the following:

(1.2) v = h+ gn on Mt, t \in (0,\infty ),

where n is the outward unit normal vector of Mt and g is given by

g(x) =

\left\{     
d
R0

if x \in O+,

 - d
R0

if x \in O - ,

0 otherwise,

where R0 is given in (2.2). If the solution Mt touches the obstacle at x, the absolute
value of its mean curvature | h(x, t)| is less than d

R0
, hence the solution cannot move

into the obstacle. Note that this argument was used in Mercier and Novaga [26].
In order to use this argument in the phase-field method, we give an appropriate
forcing term for the Allen--Cahn equation and show simple sub- and supersolutions
that correspond to obstacles (see Lemma 4.1).

To obtain the convergence of the Allen--Cahn equation to the Brakke flow, we need
to prove that the Radon measure given by the energy of the Allen--Cahn equation has
good properties, such as that it converges to the mass measure of an integral varifold
(see [17]). In the case of d = 2 or 3, R\"oger and Sch\"atzle [33] proved the properties
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under the suitable assumptions for the energies of the Allen--Cahn equation (this
results have been used in [23, 28, 29, 34, 39]). The assumption for d in the main
result of this paper comes from the use of [33, 29] (see Remark 5.4).

The organization of this paper is as follows. In section 2, we set out basic def-
initions and assumptions about the obstacles and the initial data. In section 3 we
introduce the Allen--Cahn equation we deal with in this paper. In addition we also
show the standard estimates for the solution. In section 4 we give supersolutions and
subsolutions to the Allen--Cahn equation that are necessary to show that the solutions
to (1.1) do not intrude upon the obstacles. In section 5 we prove the global existence
of the weak solution to (1.1) with obstacles, in the sense of Brakke.

2. Notation and assumptions. First we recall some notions and definitions
from the geometric measure theory and refer to [2, 5, 14, 36, 43] for more details. Let d
be a positive integer. For y \in \BbbR d and r > 0, we define Br(y) := \{ x \in \BbbR d | | x - y| < r\} .
We denote the space of bounded variation functions on U \subset \BbbR d as BV (U). For
a function \psi \in BV (U), we write the total variation measure of the distributional
derivative \nabla \psi by \| \nabla \psi \| . Let \mu be a Radon measure on \BbbR d. We denote \mu (\phi ) =

\int 
\phi d\mu 

for \phi \in Cc(\BbbR d). We call \mu k-rectifiable (1 \leq k \leq d - 1) if \mu is given by \mu = \theta H k\lfloor M ,
where M \subset \BbbR d is a H k-measurable countably k-rectifiable set and \theta \in L1

loc(H
k\lfloor M )

is a positive function H k-a.e. on M . Especially, if \theta is integer-valued H k-a.e. on
M , then we say \mu is k-integral. Note that if M is a countably k-rectifiable set with
locally finite and H k-measurable, then there exists the approximate tangent space
TxM for H k-a.e. x \in M . For k-dimensional subspace S \subset \BbbR d and g \in C1

c (\BbbR d;\BbbR d),

we denote div S g :=
\sum k

i=1 \nu i \cdot \nabla \nu i
g, where \{ \nu 1, . . . , \nu k\} is an orthonormal basis of S.

For a rectifiable Radon measure \mu = \theta H k\lfloor M , h is called a generalized mean curvature
vector if \int 

div TxM g d\mu =  - 
\int 
h \cdot g d\mu 

for any g \in C1
c (\BbbR d;\BbbR d). The left-hand side is called the first variation of \mu . The weak

solution to the mean curvature flow considered in this paper is as follows.

Definition 2.1. Let U \subset \BbbR d be an open set. A family of Radon measures
\{ \mu t\} t\in [0,T ) on U is called Brakke's mean curvature flow if

(2.1)

\int 
U

\phi d\mu t

\bigm| \bigm| \bigm| t2
t=t1

\leq 
\int t2

t1

\int 
U

\{ (\nabla \phi  - \phi h) \cdot h+ \phi t\} d\mu tdt

for all 0 \leq t1 < t2 < \infty and \phi \in C1
c (U \times [0,\infty ); [0,\infty )). Here h is the generalized

mean curvature vector of \mu t. Note that (2.1) is called Brakke's inequality.

Next, we state assumptions for the initial data and the obstacles. Let \Omega = \BbbT d =
(\BbbR /\BbbZ )d, O+ \subset \Omega , and O - \subset \Omega be bounded open sets. We assume that there exist
R0 > 0 and R1 > 0 such that

(2.2) O\pm =
\bigcup 

BR0
(x)\subset O\pm 

BR0
(x) (the interior ball condition)

and dist (O+, O - ) > R1. Note that if O+ and O - have C1,1 boundaries, then (2.2) is
satisfied for some R0 > 0 (see [1]). Let U0 \subset \Omega be a bounded open set, and we denote
M0 := \partial U0. Throughout this paper, we assume the following:

1. There exists \delta 1 > 0 such that O+ \subset U0 with dist (O+,M0) > \delta 1 and U0 \subset 
(O - )

c with dist (O - ,M0) > \delta 1.
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2. There exist D0 > 0 and R2 \in (0, 1) such that
(2.3)

sup
x\in \Omega , 0<R<R2

H d - 1(M0 \cap BR(x))

\omega d - 1Rd - 1
\leq D0 (the upper bounds of the density).

Here \omega d - 1 is a (d - 1)-dimensional volume of the unit ball in \BbbR d - 1.
3. There exists a family of open sets \{ U i

0\} \infty i=1 such that U i
0 has a C3 boundary

M i
0 such that (U0,M0) be approximated strongly by \{ (U i

0,M
i
0)\} \infty i=1, that is,

(2.4) lim
i\rightarrow \infty 

L d(U0\bigtriangleup U i
0) = 0 and lim

i\rightarrow \infty 
\| \nabla \chi Ui

0
\| = \| \nabla \chi U0\| as measures.

Moreover,

(2.5) dist (O\pm ,M
i
0) > \delta 1/2 for any i \in \BbbN .

Remark 2.2. For example, if U0 is a Caccioppoli set, then (2.4) is satisfied (see
[16, Theorem 1.24]). In addition, if M0 is C1, then (2.3) with D0 = 1 + o(R2) and
(2.4) hold.

3. Allen--Cahn equation with forcing term. In this section, we consider
the Allen--Cahn equation with forcing term and give basic energy estimates for the
solution.

Set W (s) = (1  - s2)2/2 and q\varepsilon (r) := tanh( r\varepsilon ) for r \in \BbbR and \varepsilon > 0. Then q\varepsilon is a
solution to

(3.1)
\varepsilon (q\varepsilon r)

2

2
=
W (q\varepsilon )

\varepsilon 
and q\varepsilon rr =

W \prime (q\varepsilon )

\varepsilon 2

with q\varepsilon (0) = 0, q\varepsilon (\pm \infty ) = \pm 1, and q\varepsilon r(r) > 0 for any r \in \BbbR .
Let d \geq 2, and let \{ \varepsilon i\} \infty i=1 be a positive sequence with \varepsilon i \downarrow 0 as i \rightarrow \infty and

\varepsilon i \in (0, 1) for any i \in \BbbN (we often write \varepsilon i as \varepsilon for simplicity). For U i
0 \subset \Omega we define

a periodic function r\varepsilon i0 by

r\varepsilon i0 (x) =

\Biggl\{ 
dist (x,M i

0) if x \in U i
0,

 - dist (x,M i
0) if x /\in U i

0.

We remark that | \nabla r\varepsilon i0 | \leq 1 a.e. x \in \Omega and r\varepsilon i0 is smooth near M i
0. Let \~r\varepsilon i0 \in C3(\Omega )

be a smoothing of r\varepsilon i0 with | \nabla \~r\varepsilon i0 | \leq 1 and | \nabla 2\~r\varepsilon i0 | \leq \varepsilon  - 1
i in \Omega , and \~r\varepsilon i0 = r\varepsilon i0 near M i

0.
Define

(3.2) \varphi \varepsilon i
0 (x) := q\varepsilon i(\~r\varepsilon i0 (x)), i \geq 1.

Let g\varepsilon i \in C\infty (\Omega ) be a smooth function such that

(3.3) g\varepsilon i(x) =

\left\{     
d
R0

if dist (x,O+) \leq 
\surd 
\varepsilon i,

 - d
R0

if dist (x,O - ) \leq 
\surd 
\varepsilon i,

0 if min\{ dist (x,O+),dist (x,O - )\} \geq 2
\surd 
\varepsilon i,

with maxx\in \Omega | g\varepsilon i(x)| \leq d
R0

, maxx\in \Omega | \nabla g\varepsilon i(x)| \leq M\varepsilon  - 1
i , and maxx\in \Omega | \nabla 2g\varepsilon i(x)| \leq 

M\varepsilon  - 2
i for any i \in \BbbN , where M > 0 is independent of i. To define g\varepsilon i , we may assume

that 2
\surd 
\varepsilon i \leq R1

3 for any i \in \BbbN , if necessary.
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In this paper, we consider the following Allen--Cahn equation:

(3.4)

\left\{   \varepsilon i\varphi 
\varepsilon i
t = \varepsilon i\Delta \varphi 

\varepsilon i  - W \prime (\varphi \varepsilon i)

\varepsilon i
+ g\varepsilon i

\sqrt{} 
2W (\varphi \varepsilon i), (x, t) \in \Omega \times (0,\infty ),

\varphi \varepsilon i(x, 0) = \varphi \varepsilon i
0 (x), x \in \Omega .

Remark 3.1. The definition of the initial data (3.2) implies maxx\in \Omega | \varphi \varepsilon 
0(x)| < 1.

Therefore, we have supx\in \Omega ,t\in [0,T ) | \varphi \varepsilon (x, t)| < 1 for the solution \varphi \varepsilon to (3.4) and T > 0
by the maximum principle (see [31]). We give the proof in Proposition 3.3. Note
that the function

\sqrt{} 
2W (\varphi \varepsilon ) is important in the proof. By | \varphi \varepsilon | < 1, we can define

r\varepsilon = r\varepsilon (x, t) by \varphi \varepsilon (x, t) = q\varepsilon (r\varepsilon (x, t)), that is, r\varepsilon (x, t) = (q\varepsilon ) - 1(\varphi \varepsilon (x, t)).

Remark 3.2. Equation (3.4) corresponds to the mean curvature flow with forcing
term (1.2) (see [29, 37, 39]). Not only for | \varphi \varepsilon | < 1, we also need

\sqrt{} 
2W (\varphi \varepsilon ) to simplify

the forcing term when we rewrite (3.4) as an PDE of r\varepsilon (see (4.1)). Furthermore, if
we adopt g\varepsilon instead of g\varepsilon 

\sqrt{} 
2W (\varphi \varepsilon ) in (3.4), then the calculation of (5.2) below will

fail. In the case of g\varepsilon \equiv 0, the convergence of (3.4) to the mean curvature flow with
no obstacles is well known (see [7, 9, 12, 17]).

Here we give the standard pointwise estimate for the solution to (3.4).

Proposition 3.3. Let \varphi \varepsilon be a solution to (3.4). Then supx\in \Omega ,t\in [0,T ) | \varphi \varepsilon (x, t)| < 1
for any T > 0.

Proof. We only show supx\in \Omega ,t\in [0,T ) \varphi 
\varepsilon (x, t) < 1, because we can obtain \varphi \varepsilon >  - 1

similarly. By (3.2), we have supx\in \Omega | \varphi \varepsilon 
0(x)| < 1. Assume that \{ t \in [0, T ) | \exists x \in 

\Omega s.t. \varphi \varepsilon (x, t) = 1\} \not = \emptyset and set t0 := inf\{ t \in [0, T ) | \exists x \in \Omega s.t. \varphi \varepsilon (x, t) = 1\} . Then
t0 \in (0, T ) by supx\in \Omega | \varphi \varepsilon 

0(x)| < 1 and \varphi \varepsilon satisfies

\varphi \varepsilon \leq \Delta \varphi \varepsilon +

\bigm| \bigm| \bigm| \bigm| 2\varphi \varepsilon 

\varepsilon 2
(1 + \varphi \varepsilon )

\bigm| \bigm| \bigm| \bigm| (1 - \varphi \varepsilon ) +
\bigm| \bigm| \bigm| g
\varepsilon 
(1 + \varphi \varepsilon )

\bigm| \bigm| \bigm| (1 - \varphi \varepsilon )

\leq \Delta \varphi \varepsilon +M(1 - \varphi \varepsilon )

(3.5)

for any (x, t) \in \Omega \times (0, t0), where

M = max
x\in \Omega ,t\in [0,T ]

\biggl\{ \bigm| \bigm| \bigm| \bigm| 2\varphi \varepsilon 

\varepsilon 2
(1 + \varphi \varepsilon )

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| g\varepsilon (1 + \varphi \varepsilon )
\bigm| \bigm| \bigm| \biggr\} 

and we used 1  - \varphi \varepsilon \geq 0 in \Omega \times (0, t0). We denote \alpha := maxx\in \Omega \varphi 
\varepsilon 
0(x). Note that

\alpha < 1. Set \varphi (t) := 1 - (1 - \alpha )e - Mt. Then \varphi is monotone increasing and satisfies

(3.6) \varphi t = \Delta \varphi +M(1 - \varphi )

and \varphi (0) = \alpha \geq \varphi \varepsilon 
0(x) for any x \in \Omega . We remark that \varphi \varepsilon is a subsolution to (3.6)

in \Omega \times (0, t0) by (3.5). Therefore, the comparison principle implies \varphi \varepsilon (x, t) \leq \varphi (t) \leq 
\varphi (T ) < 1 for any (x, t) \in \Omega \times [0, t0). Then we would have a contradiction from
\varphi \varepsilon (x, t0) = 1 for some x \in \Omega . Therefore, \varphi \varepsilon (x, t) < 1 for any (x, t) \in \Omega \times [0, T )
and \varphi \varepsilon satisfies (3.5) in \Omega \times (0, T ). Using the comparison principle again, we obtain
supx\in \Omega ,t\in [0,T ) | \varphi \varepsilon (x, t)| \leq \varphi (T ) < 1.

Next, we define the measures that correspond to the surface Mt in section 1.

Definition 3.4. Set \sigma :=
\int 1

 - 1

\sqrt{} 
2W (s) ds. Assume that \varphi \varepsilon i is a solution to (3.4).

We denote Radon measures \mu \varepsilon i
t , \~\mu \varepsilon i

t , and \^\mu \varepsilon i
t by

(3.7) \mu \varepsilon i
t (\phi ) :=

1

\sigma 

\int 
\Omega 

\phi (x)
\Bigl( \varepsilon i| \nabla \varphi \varepsilon i(x, t)| 2

2
+
W (\varphi \varepsilon i(x, t))

\varepsilon i

\Bigr) 
dx,
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\~\mu \varepsilon i
t (\phi ) :=

1

\sigma 

\int 
\Omega 

\phi (x)\varepsilon i| \nabla \varphi \varepsilon i(x, t)| 2dx and \^\mu \varepsilon i
t (\phi ) :=

1

\sigma 

\int 
\Omega 

\phi (x)
2W (\varphi \varepsilon i(x, t))

\varepsilon i
dx

for any \phi \in Cc(\Omega ).

Remark 3.5. If there exist t \geq 0 and a Radon measure \mu t on \Omega such that

(3.8)

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \varepsilon | \nabla \varphi \varepsilon (x, t)| 2

2
 - W (\varphi \varepsilon (x, t))

\varepsilon 

\bigm| \bigm| \bigm| \bigm| dx\rightarrow 0

and \mu \varepsilon 
t \rightarrow \mu t as Radon measures, namely,\int 

\Omega 

\phi d\mu \varepsilon 
t \rightarrow 

\int 
\Omega 

\phi d\mu t for any \phi \in Cc(\Omega ),

then \~\mu \varepsilon 
t and \^\mu \varepsilon 

t also converge to \mu t as Radon measures.

By the definition of the initial data \varphi \varepsilon 
0, we obtain the following proposition.

Proposition 3.6 (see Proposition 1.4 of [17]). We see that supi\in \BbbN \mu 
\varepsilon i
0 (\Omega ) <\infty .

Moreover, \mu \varepsilon i
0 \rightarrow H d - 1\lfloor M0

as Radon measures.

Set D1 = supi\in \BbbN \mu 
\varepsilon i
0 (\Omega ). Proposition 3.6 implies D1 < \infty . The integration by

parts implies the following standard estimates.

Proposition 3.7. Let \varphi \varepsilon be a solution to (3.4). Then we have
(3.9)

d

dt

\int 
\Omega 

\varepsilon | \nabla \varphi \varepsilon | 2

2
+
W (\varphi \varepsilon )

\varepsilon 
dx+

1

2

\int 
\Omega 

\varepsilon 

\biggl( 
 - \Delta \varphi \varepsilon +

W \prime (\varphi \varepsilon )

\varepsilon 2

\biggr) 2

dx \leq d2

R2
0

\int 
\Omega 

W (\varphi \varepsilon )

\varepsilon 
dx,

(3.10)
d

dt

\int 
\Omega 

\varepsilon | \nabla \varphi \varepsilon | 2

2
+
W (\varphi \varepsilon )

\varepsilon 
dx+

1

2

\int 
\Omega 

\varepsilon (\varphi \varepsilon 
t )

2 dx \leq d2

R2
0

\int 
\Omega 

W (\varphi \varepsilon )

\varepsilon 
dx,

and

(3.11)

\int 
\Omega 

\varepsilon | \nabla \varphi \varepsilon (x, t)| 2

2
+
W (\varphi \varepsilon (x, t))

\varepsilon 
dx \leq D1e

d2

R2
0
t
.

Proof. By the integration by parts and Young's inequality, we have

d

dt

\int 
\Omega 

\varepsilon | \nabla \varphi \varepsilon | 2

2
+
W (\varphi \varepsilon )

\varepsilon 
dx =

\int 
\Omega 

\varepsilon 

\biggl( 
 - \Delta \varphi \varepsilon +

W \prime (\varphi \varepsilon )

\varepsilon 2

\biggr) 
\varphi \varepsilon 
t dx

=

\int 
\Omega 

\varepsilon 

\biggl( 
 - \Delta \varphi \varepsilon +

W \prime (\varphi \varepsilon )

\varepsilon 2

\biggr) \Biggl( 
\Delta \varphi \varepsilon  - W \prime (\varphi \varepsilon )

\varepsilon 2
+ g\varepsilon 

\sqrt{} 
2W (\varphi \varepsilon )

\varepsilon 

\Biggr) 
dx

= - 
\int 
\Omega 

\varepsilon 

\biggl( 
 - \Delta \varphi \varepsilon +

W \prime (\varphi \varepsilon )

\varepsilon 2

\biggr) 2

dx+

\int 
\Omega 

\varepsilon 

\biggl( 
 - \Delta \varphi \varepsilon +

W \prime (\varphi \varepsilon )

\varepsilon 2

\biggr) 
g\varepsilon 
\sqrt{} 
2W (\varphi \varepsilon )

\varepsilon 
dx

\leq  - 1

2

\int 
\Omega 

\varepsilon 

\biggl( 
 - \Delta \varphi \varepsilon +

W \prime (\varphi \varepsilon )

\varepsilon 2

\biggr) 2

dx+

\int 
\Omega 

(g\varepsilon )2
W (\varphi \varepsilon )

\varepsilon 
dx.

By this and supx\in \Omega | g| \leq d
R0

we obtain (3.9) and (3.11). Similarly, we can obtain
(3.10).

Next, we show the monotonicity formula. Set

\rho y,s(x, t) =
1

(4\pi (s - t))
d - 1
2

e - 
| x - y| 2
4(s - t) , x, y \in \BbbR d, 0 \leq t < s <\infty .

Similar to the proof in [38, p. 2028], we obtain the following monotonicity formula.
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Proposition 3.8. Let \varphi \varepsilon i be a solution to (3.4) with initial data \varphi \varepsilon i which sat-
isfies (3.2), and let \mu \varepsilon i

t be a Radon measure defined in (3.7). Then, we have

d

dt

\int 
\BbbR d

\rho y,s(x, t) d\mu 
\varepsilon 
t (x) \leq 

1

2(s - t)

\int 
\BbbR d

\rho y,s(x, t)

\biggl( 
\varepsilon | \nabla \varphi \varepsilon (x, t)| 2

2
 - W (\varphi \varepsilon (x, t))

\varepsilon 

\biggr) 
dx

+
d2

2R2
0

\int 
\BbbR d

\rho y,s(x, t) d\mu 
\varepsilon 
t (x).

(3.12)

Here, \mu \varepsilon 
t is extended periodically to \BbbR d.

For the solution \varphi \varepsilon to (3.4), under the parabolic change of variables \~x = x
\varepsilon and

\~t = t
\varepsilon 2 , we have

(3.13) \~\varphi \varepsilon 
\~t = \Delta \~x \~\varphi 

\varepsilon  - W \prime ( \~\varphi \varepsilon ) + \varepsilon \~g\varepsilon 
\sqrt{} 

2W ( \~\varphi \varepsilon ), \~x \in \Omega \varepsilon , \~t > 0,

where \Omega \varepsilon = (\BbbR /\varepsilon  - 1\BbbZ )d, \~\varphi \varepsilon (\~x, \~t) = \varphi \varepsilon (x, t), \~g\varepsilon (\~x, \~t) = g\varepsilon (x, t), and

(3.14) \| \~g\varepsilon \| L\infty \leq d

R0
, \| \nabla \~x\~g

\varepsilon \| L\infty \leq M, \| \nabla 2
\~x\~g

\varepsilon \| L\infty \leq M.

Therefore, the external force term \varepsilon \~g\varepsilon 
\sqrt{} 

2W ( \~\varphi \varepsilon ) can be regarded as a small pertur-
bation, and we can obtain the following lemma.

Lemma 3.9. For the solution \varphi \varepsilon to (3.4), there exists a constant c > 0 depending
only on d, M, D1, and T such that

(3.15) sup
\Omega \times [\varepsilon 2,T )

\varepsilon | \nabla \varphi \varepsilon | \leq c and sup
\Omega \times [\varepsilon 2,T )

\varepsilon 2| \nabla 2\varphi \varepsilon | \leq c

for any \varepsilon > 0.

Proof. For the rescaled solution to (3.13) with (3.14), the standard parabolic
argument implies the interior estimates of | \nabla \~x \~\varphi 

\varepsilon | and | \nabla 2
\~x \~\varphi 

\varepsilon | (see [22] and [40, Lemma
4.1]). Hence we obtain (3.15).

4. Subsolution and supersolution. We construct simple subsolutions and su-
persolutions to (3.4) that represent obstacles. In this section, we extend \Omega , O\pm , and
the solution \varphi \varepsilon periodically to \BbbR d. Set ry(x) =

1
2R0

(R2
0  - | x - y| 2), \varphi \varepsilon 

y(x) = q\varepsilon (ry(x))

and \varphi \varepsilon 
y(x) =  - q\varepsilon (ry(x)) = q\varepsilon ( - ry(x)) on \BbbR d.

Lemma 4.1. Assume that BR0
(y) \subset O+. Then there exists \epsilon 1 = \epsilon 1(d,R0) > 0

such that \varphi \varepsilon 
y is a subsolution to (3.4) with \BbbR d instead of \Omega for any \varepsilon \in (0, \epsilon 1).

Proof. Without loss of generality we assume y = 0. Let \varphi \varepsilon be a solution to (3.4)
with \BbbR d instead of \Omega . By Remark 3.1 and (3.1), we have\sqrt{} 

2W (q\varepsilon )r\varepsilon t = \varepsilon q\varepsilon rr
\varepsilon 
t = \varepsilon q\varepsilon r\Delta r

\varepsilon + \varepsilon q\varepsilon rr| \nabla r\varepsilon | 2  - 
W \prime (q\varepsilon )

\varepsilon 
+ g\varepsilon 

\sqrt{} 
2W (q\varepsilon )

=
\sqrt{} 
2W (q\varepsilon )\Delta r\varepsilon +

W \prime (q\varepsilon )

\varepsilon 
(| \nabla r\varepsilon | 2  - 1) + g\varepsilon 

\sqrt{} 
2W (q\varepsilon ).

Thus the first equation (3.4) with \BbbR d instead of \Omega is equivalent to

(4.1) r\varepsilon t  - \Delta r\varepsilon +
2q\varepsilon (r\varepsilon )

\varepsilon 
(| \nabla r\varepsilon | 2  - 1) - g\varepsilon = 0, (x, t) \in \BbbR d \times (0,\infty ),
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where we used W \prime (q\varepsilon )/
\sqrt{} 

2W (q\varepsilon ) =  - 2q\varepsilon . Therefore, we need only prove

(4.2)  - \Delta r0 +
2q\varepsilon (r0)

\varepsilon 
(| \nabla r0| 2  - 1) - g\varepsilon \leq 0, (x, t) \in \BbbR d \times (0,\infty )

for sufficiently small \varepsilon > 0. We compute that

(4.3)  - \Delta r0 +
2q\varepsilon (r0)

\varepsilon 
(| \nabla r0| 2  - 1) - g\varepsilon =

d

R0
+

2q\varepsilon (r0)

\varepsilon 

\biggl( 
| x| 2

R2
0

 - 1

\biggr) 
 - g\varepsilon .

First, we consider the case of | x| \leq R0. We compute that

(4.4)
d

R0
+

2q\varepsilon (r0)

\varepsilon 

\biggl( 
| x| 2

R2
0

 - 1

\biggr) 
 - g\varepsilon \leq d

R0
 - d

R0
= 0,

where we used
2q\varepsilon (r0)

\varepsilon 

\bigl( | x| 2
R2

0
 - 1
\bigr) 
\leq 0 and g\varepsilon (x) = d

R0
. Therefore, (4.3) and (4.4) imply

(4.2) if | x| \leq R0.

Next, we consider the case of R0 \leq | x| \leq R0+
\surd 
\varepsilon . Note that

2q\varepsilon (r0)

\varepsilon 

\bigl( | x| 2
R2

0
 - 1
\bigr) 
\leq 0

and g\varepsilon (x) = d
R0

also hold in this case. Hence we obtain (4.2) if R0 \leq | x| \leq R0 +
\surd 
\varepsilon .

Finally, we consider the case of R0 +
\surd 
\varepsilon \leq | x| . We compute

2q\varepsilon (r0)

\varepsilon 

\biggl( 
| x| 2

R2
0

 - 1

\biggr) 
\leq 2

\varepsilon 
tanh

\biggl( 
 - 2R0

\surd 
\varepsilon + \varepsilon 

2R0\varepsilon 

\biggr) 
2R0

\surd 
\varepsilon + \varepsilon 

R2
0

\leq  - 4\surd 
\varepsilon R0

tanh
\Bigl( 1\surd 

\varepsilon 

\Bigr) 
.

Therefore, we have

d

R0
+

2q\varepsilon (r0)

\varepsilon 

\biggl( 
| x| 2

R2
0

 - 1

\biggr) 
 - g\varepsilon \leq 2

d

R0
 - 4\surd 

\varepsilon R0
tanh

\Bigl( 1\surd 
\varepsilon 

\Bigr) 
,

where we used maxx\in \BbbR d | g\varepsilon (x)| \leq d
R0

. Thus there exists \epsilon 1 = \epsilon 1(d,R0) > 0 such that
(4.2) holds for any \varepsilon \in (0, \epsilon 1).

Similarly, we obtain the following lemma.

Lemma 4.2. Assume that BR0(y) \subset O - . Then \varphi \varepsilon 
y is a supersolution to (3.4) with

\BbbR d instead of \Omega for any \varepsilon \in (0, \epsilon 1), where \epsilon 1 is as in Lemma 4.1.

In order to use the comparison principle, we need the following estimates for the
initial data.

Lemma 4.3. Assume that BR0
(y) \subset O+ and BR0

(z) \subset O - . Then

(4.5) \varphi \varepsilon i
y (x) \leq \varphi \varepsilon i

0 (x) and \varphi \varepsilon i
z (x) \geq \varphi \varepsilon i

0 (x), x \in \BbbR d,

for sufficiently large i \geq 1.

Proof. To show the first inequality of (4.5), we need only prove that

(4.6) ry(x) \leq \~r\varepsilon i0 (x), x \in \BbbR d,

for sufficiently large i \geq 1.
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We assume that for any N \geq 1 there exist i \geq N and x\prime \in \Omega such that ry(x
\prime ) >

\~r\varepsilon i0 (x\prime ) with ry(x
\prime ) \geq 0. In addition, we may assume that supx | r

\varepsilon i
0 (x) - \~r\varepsilon i0 (x)| < \delta 1

4 .

Then x\prime \in BR0
(y) and

(4.7) 0 \leq ry(x
\prime ) \leq dist (x\prime , \partial BR0

(y))

by max
x\in BR0

(y)
| \nabla ry(x)| \leq 1 and ry = 0 on \partial BR0

(y). The assumptions BR0
(y) \subset 

O+ \subset U i
0 and (2.5) imply

(4.8) dist (x\prime , \partial BR0
(y)) +

\delta 1
2

\leq dist (x\prime ,M i
0).

Then (4.7) and (4.8) imply

ry(x
\prime ) \leq dist (x\prime , \partial BR0(y)) \leq dist (x\prime ,M i

0) - 
\delta 1
2

= r\varepsilon i0 (x\prime ) - \delta 1
2
< \~r\varepsilon i0 (x\prime ).

This is a contradiction to ry(x
\prime ) > \~r\varepsilon i0 (x\prime ). In the case of ry(x

\prime ) < 0, we may obtain

a contradiction similarly by using minx\in (BR0
(y))c | \nabla ry(x)| = 1. Therefore, we obtain

(4.6). We can show the second inequality of (4.5) by the similar argument.

By Lemmas 4.1, 4.2, and 4.3, we have the following proposition.

Proposition 4.4. Assume that \varphi \varepsilon is a solution to (3.4), BR0(y) \subset O+ and
BR0

(z) \subset O - . Then

(4.9) \varphi \varepsilon 
y(x) \leq \varphi \varepsilon (x, t) \leq \varphi \varepsilon 

z(x) for any (x, t) \in \BbbR d \times [0,\infty )

for sufficiently small \varepsilon > 0.

For the proof, we need only use the standard comparison principle. Therefore,
we omit it.

5. Existence of weak solution to mean curvature flow with obstacles. In
this section, we prove the global existence of the weak solution to the mean curvature
flow with obstacles in the sense of Brakke's mean curvature flow.

Theorem 5.1. Let d = 2 or 3, and let \{ \varepsilon i\} \infty i=1 be a positive sequence that con-
verges to 0. Assume that M0 and O\pm satisfy all the assumptions in section 2. Let
\varphi \varepsilon i be a solution to (3.4) with initial data \varphi \varepsilon i

0 which satisfies (3.2), and let \mu \varepsilon i
t be a

Radon measure defined in (3.7). Then there exist a subsequence \{ \varepsilon ij\} \infty j=1, a family

of Radon measures \{ \mu t\} t\in [0,\infty ), and \psi \in BVloc(\Omega \times [0,\infty ) \cap C
1
2

loc([0,\infty );L1(\Omega )) such
that the following hold:

(1) \mu 0 = H d - 1\lfloor M0
.

(2) For any t \in [0,\infty ), \mu 
\varepsilon ij
t converges to \mu t as Radon measures.

(3) For a.e. t \geq 0, \mu t is (d - 1)-integral.
(4) \psi = 0 or 1 a.e. on \Omega \times [0,\infty ), and \varphi \varepsilon ij \rightarrow 2\psi  - 1 in L1

loc(\Omega \times (0,\infty )), and a.e.
pointwise. In addition, \psi (\cdot , 0) = \chi U0 a.e. on \Omega and \| \nabla \psi (\cdot , t)\| (\phi ) \leq \mu t(\phi )
for all t \in [0,\infty ) and \phi \in Cc(\Omega ; [0,\infty )).

(5) spt \mu t \cap O\pm = \emptyset for any t \geq 0, and \psi = 1 a.e. on O+ \times [0,\infty ), and \psi = 0
a.e. on O - \times [0,\infty ).

D
ow

nl
oa

de
d 

12
/1

4/
22

 to
 1

33
.3

.2
01

.3
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

6364 KEISUKE TAKASAO

(6) \{ \mu t\} t\in [0,\infty ) is a Brakke's mean curvature flow on \Omega \setminus O+ \cup O - , that is,

(5.1)

\int 
\Omega 

\phi d\mu t

\bigm| \bigm| \bigm| t2
t=t1

\leq 
\int t2

t1

\int 
\Omega 

\{ (\nabla \phi  - \phi h) \cdot h+ \phi t\} d\mu tdt

for all 0 \leq t1 < t2 <\infty and \phi \in C1
c (\Omega \setminus O+ \cup O - \times [0,\infty ); [0,\infty )).

(7) As an additional assumption, suppose that D0 used in (2.3) satisfies D0 < 2.
Then there exists T1 > 0 such that \| \nabla \psi (\cdot , t)\| = \mu t for a.e. t \in [0, T1).

Remark 5.2. IfM0 is C
1, then the additional assumption of (7) holds (see Remark

2.2).

Remark 5.3. In a weak sense, \~U(t) := \{ x \in \Omega | \psi (x, t) = 1\} corresponds to Ut in
section 1 when \| \nabla \psi (\cdot , t)\| = \mu t. This \~U(t) has similar properties to the weak solution
treated in [4, Theorem 4.6]. More precisely, \~U(t) is a Caccioppoli set for any t \geq 0 by
\| \nabla \psi (\cdot , t)\| (\Omega ) \leq \mu t(\Omega ) <\infty and for any T > 0 there exists C2 > 0 defined below such

that | \~U(t2)\bigtriangleup \~U(t1)| \leq C2

\surd 
t2  - t1 for any 0 \leq t1 < t2 < T by \psi \in C

1
2

loc([0,\infty );L1(\Omega ))
and \psi = 0 or 1 a.e. on \Omega \times [0,\infty ).

Remark 5.4. In the case of d = 2 or 3, thanks to [33, 29], we can prove the
integrality of \mu t and the Brakke's inequality by the standard energy estimates (see

[34]). In contrast, considering [40, 41], the pointwise estimate of
\bigl( \varepsilon | \nabla \varphi \varepsilon | 2

2  - W (\varphi \varepsilon )
\varepsilon 

\bigr) 
+

and the parabolic monotonicity formula seem to be important when d \geq 4.

Proof. The first statement (1) holds by Proposition 3.6. In the case of d = 2 or
3, Propositions 4.3 and 4.4 in [29] imply that if

(5.2) sup
i\in \BbbN 

\int T

0

\int 
\Omega 

1

\varepsilon i

\Bigl( 
g\varepsilon i
\sqrt{} 
2W (\varphi \varepsilon i)

\Bigr) 2
dxdt <\infty ,

then there exist a subsequence \varepsilon i \rightarrow 0 (denoted by the same index) and a family of
Radon measures \{ \mu t\} t\in [0,\infty ) such that (2) and (3) hold. From (3.11) we have

\int T

0

\int 
\Omega 

1

\varepsilon i

\Bigl( 
g\varepsilon i
\sqrt{} 
2W (\varphi \varepsilon i)

\Bigr) 2
dxdt \leq 2D1e

d2

R2
0
T
d2T

R2
0

, i \geq 1.

Therefore, (5.2) holds and we obtain (2) and (3).
Next we prove (4). Note that the proof is almost the same as that in [40, Propo-

sition 8.3]. Set

\Phi (s) = \sigma  - 1

\int s

 - 1

\sqrt{} 
2W (a) da and w\varepsilon i = \Phi \circ \varphi \varepsilon i .

We remark that \Phi (1) = 1 and \Phi ( - 1) = 0. We compute

(5.3) | \nabla w\varepsilon i | = \sigma  - 1| \nabla \varphi \varepsilon i | 
\sqrt{} 
2W (\varphi \varepsilon i) \leq \sigma  - 1

\biggl( 
\varepsilon i| \nabla \varphi \varepsilon i | 2

2
+
W (\varphi \varepsilon i)

\varepsilon i

\biggr) 
and

| w\varepsilon i
t | \leq \sigma  - 1

\biggl( 
\varepsilon i| \varphi \varepsilon i

t | 2

2
+
W (\varphi \varepsilon i)

\varepsilon i

\biggr) 
.

Thus, by (3.10) and (3.11), there exists C1 = C1(d,R0, D1,W, T ) > 0 such that

max
0\leq t\leq T

\int 
\Omega 

| \nabla w\varepsilon i(x, t)| dx+

\int T

0

\int 
\Omega 

| w\varepsilon i
t | dxdt \leq C1
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for any i \geq 1. Therefore, \{ w\varepsilon i\} \infty i=1 is bounded in BVloc(\Omega \times [0, T ]). The compactness
theorem and a diagonal argument imply that there exist a subsequence (denoted by
the same index) and w \in BVloc(\Omega \times [0,\infty )) such that

w\varepsilon i \rightarrow w strongly in L1
loc(\Omega \times [0,\infty ))

and a.e. pointwise. We define \psi = (1 + \Phi  - 1 \circ w)/2. Then

\varphi \varepsilon i \rightarrow 2\psi  - 1 strongly in L1
loc(\Omega \times [0,\infty ))

and a.e. pointwise. Note that by supi
\int 
\Omega 

W (\varphi \varepsilon i )
\varepsilon i

< \infty for any t \geq 0, \varphi \varepsilon i \rightarrow \pm 1 for
a.e. (x, t), and hence \psi = 1 or 0 for a.e. (x, t). Note that we can easily check that
\psi = w on \Omega \times [0,\infty ) and \psi \in BVloc(\Omega \times [0,\infty )). For 0 \leq t1 < t2 < T , there exists
C2 = C2(d,R0, D1,W, T ) > 0 such that

\int 
\Omega 

| w\varepsilon i(x, t2) - w\varepsilon i(x, t1)| dx \leq 
\int 
\Omega 

\int t2

t1

| w\varepsilon i
t | dtdx

\leq \sigma  - 1

\int 
\Omega 

\int t2

t1

\biggl( 
\varepsilon i| \varphi \varepsilon i

t | 2

2

\surd 
t2  - t+

W (\varphi \varepsilon i)

\varepsilon i
\surd 
t2  - t

\biggr) 
dtdx

\leq C2

\surd 
t2  - t1.

(5.4)

By (5.4) and

lim
i\rightarrow \infty 

\int 
\Omega 

| w\varepsilon i(x, t2) - w\varepsilon i(x, t1)| dx =

\int 
\Omega 

| \psi (x, t2) - \psi (x, t1)| dx,

we obtain \psi \in C
1
2

loc([0,\infty );L1(\Omega )). In addition, [17, Proposition 1.4] yields \psi (\cdot , 0) =
\chi U0 a.e. on \Omega , and (5.3) and \| \nabla \psi (\cdot , t)\| = \| \nabla w(\cdot , t)\| imply \| \nabla \psi (\cdot , t)\| (\phi ) \leq \mu t(\phi ) for
all t \in [0,\infty ) and \phi \in Cc(\Omega ; [0,\infty )). Therefore, we obtain (4).

Now we show (5). In order to obtain spt\mu t \cap O+ = \emptyset , we need only prove that

(5.5) \mu \varepsilon i
t (Br(y)) =

1

2
\~\mu \varepsilon i
t (Br(y)) +

1

2
\^\mu \varepsilon i
t (Br(y)) \rightarrow 0 as i\rightarrow \infty 

for any Br(y) \subset O+ with 0 < r < R0. Assume that Br(y) \subset O+. First, we show
\^\mu \varepsilon i
t (Br(y)) \rightarrow 0. Let z \in \BbbR d satisfy Br(y) \subset BR0

(z). Then \varphi \varepsilon i
z \rightarrow 1 uniformly

on Br(y), since min
x\in Br(y)

rz(x) > 0. In addition, Proposition 3.3 and (4.9) imply

\varphi \varepsilon i
z \leq \varphi \varepsilon i \leq 1. Therefore, \^\mu \varepsilon i

t (Br(y)) \rightarrow 0.

To prove \~\mu \varepsilon i
t (Br(y)) \rightarrow 0, we suppose that t > 0 (in the case of t = 0, the claim

is obvious). Let \phi \in C\infty 
c (O+) be a nonnegative test function. It is enough to show

\~\mu \varepsilon i
t (\phi ) \rightarrow 0. We may assume that spt\phi \subset BR0

(z) for some z \in O+. By the integration
by parts, we have

\~\mu \varepsilon i
t (\phi ) =

\varepsilon i
\sigma 

\int 
spt\phi 

\phi \nabla (\varphi \varepsilon i  - 1) \cdot \nabla \varphi \varepsilon i dx

= - \varepsilon i
\sigma 

\int 
spt\phi 

(\phi (\varphi \varepsilon i  - 1)\Delta \varphi \varepsilon i + (\varphi \varepsilon i  - 1)\nabla \phi \cdot \nabla \varphi \varepsilon i) dx.

(5.6)

By (4.9), Proposition 3.3, and minx\in spt\phi rz(x) > 0, there exists C3 > 0 such that

tanh(C3/\varepsilon i) \leq \varphi \varepsilon i(x, t) < 1, x \in spt\phi .

D
ow

nl
oa

de
d 

12
/1

4/
22

 to
 1

33
.3

.2
01

.3
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

6366 KEISUKE TAKASAO

Therefore,

(5.7) | \varphi \varepsilon i(x, t) - 1| \leq 1 - tanh(C3/\varepsilon i) \leq \varepsilon 2i , x \in spt\phi 

for sufficiently large i \geq 1. By (3.15), (5.6), and (5.7), we obtain \~\mu \varepsilon i
t (\phi ) \rightarrow 0. Hence

we obtain (5.5), and consequently, spt\mu t \cap O+ = \emptyset . The other case (spt\mu t \cap O - = \emptyset )
and the remained claims may be proved similarly.

Next, we show (6). Given arbitrary open set U \subset \Omega \setminus O+ \cup O - , \varphi 
\varepsilon i is a solution

to

\varepsilon i\varphi 
\varepsilon i
t = \varepsilon i\Delta \varphi 

\varepsilon i  - W \prime (\varphi \varepsilon i)

\varepsilon i

on U . Then [23, Proposition 4.5] (with transport term u \equiv 0) tells us that \mu t sat-
isfies Brakke's inequality (5.1) on U (see also [17, 28, 29, 34]). Nevertheless, for the
convenience of the reader, we prove (6) here. By the integration by parts, we have

\mu \varepsilon i
t2(\phi ) - \mu \varepsilon i

t1(\phi )

=

\int t2

t1

\biggl( 
1

\sigma 

\int 
U

( - \phi \varepsilon  - 1
i (w\varepsilon i)2 +\nabla \phi \cdot \nabla \varphi \varepsilon iw\varepsilon i) dx+ \mu \varepsilon i

t (\phi t)

\biggr) 
dt

for \phi \in C1
c (U \times [0,\infty ); [0,\infty )), where w\varepsilon i =  - \varepsilon i\Delta \varphi \varepsilon i +

W \prime (\varphi \varepsilon i)

\varepsilon i
. By [28, Theorem

4.3], \int s2

s1

\int 
V

| h| 2 d\mu tdt \leq lim inf
i\rightarrow \infty 

\int s2

s1

\int 
V

\varepsilon  - 1
i (w\varepsilon i)2 dxdt

holds for any open set V \times (s1, s2) \subset U \times [t1, t2]. Therefore, we have

(5.8)

\int t2

t1

\int 
U

\phi | h| 2 d\mu tdt \leq lim inf
i\rightarrow \infty 

\int t2

t2

\int 
U

\phi \varepsilon  - 1
i (w\varepsilon i)2 dxdt.

In addition, [28, Lemma 7.1] implies

(5.9)

\int t2

t1

\int 
U

\nabla \phi \cdot h d\mu tdt = lim
i\rightarrow \infty 

\int t2

t1

\int 
U

\nabla \phi \cdot \nabla \varphi \varepsilon iw\varepsilon i dxdt.

By (5.8), (5.9), and (2), (5.1) holds on U . Therefore, \{ \mu t\} t\in [0,\infty ) is a Brakke's mean

curvature flow on \Omega \setminus O+ \cup O - .
Finally, we prove (7). From (3), for a.e. t \geq 0, there exists a (d - 1)-rectifiable set

Mt and \theta t : Mt \rightarrow \BbbN such that \mu t = \theta tH d - 1\lfloor Mt
. We need only prove that \{ \theta t \geq 2\} 

has measure zero for a.e. t \in [0, T1) for a suitable T1 > 0 (see [23, p. 275] and [40, p.
926]). We will determine T1 in the following. By Proposition 3.7, we have

sup
i\in \BbbN 

\mu \varepsilon i
t (\Omega ) <\infty and sup

i\in \BbbN 

\int T

0

\int 
\Omega 

\varepsilon i

\biggl( 
 - \Delta \varphi \varepsilon i +

W \prime (\varphi \varepsilon i)

\varepsilon 2i

\biggr) 2

dxdt <\infty 

for any t \geq 0 and T > 0. Hence Proposition 6.1 in [28] implies that there exists a
subsequence \varepsilon i \rightarrow 0 (denoted by the same index) such that

(5.10) lim
i\rightarrow \infty 

\int T

0

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \varepsilon i| \nabla \varphi \varepsilon i | 2

2
 - W (\varphi \varepsilon i)

\varepsilon i

\bigm| \bigm| \bigm| \bigm| dxdt = 0

D
ow

nl
oa

de
d 

12
/1

4/
22

 to
 1

33
.3

.2
01

.3
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

ON OBSTACLE PROBLEM FOR BRAKKE'S MCF 6367

for 2 \leq d \leq 3. By (3.12) and (5.10), we have

(5.11)

\int 
\BbbR d

\rho y,s(x, t) d\mu t(x) \leq e
d2

2R2
0
t
\int 
\BbbR d

\rho y,s(x, 0) d\mu 0(x)

for any 0 \leq t < s and y \in \BbbR d. Assume that there exists x0, t0, and N \geq 2 such that

\theta t0(x0) = N and limr\rightarrow 0
\mu t0(Br(x0))

\omega d - 1rd - 1
= N . For r > 0 and a > 0, we compute

\int 
Bar(x0)

\rho x0,t0+r2(x, t0) d\mu t0(x)

=
1

(4\pi r2)
d - 1
2

\int 
Bar(x0)

e - 
| x - x0| 2

4r2 d\mu t0(x)

=
1

(4\pi r2)
d - 1
2

\int 1

0

\mu t0

\Bigl( \Bigl\{ 
x \in Bar(x0) | e - 

| x - x0| 2

4r2 > k
\Bigr\} \Bigr) 

dk

=
1

(4\pi r2)
d - 1
2

\int 1

e - 
a2
4

\mu t0

\Bigl( 
B\surd 

4r2 log 1
k

(x0)
\Bigr) 
dk

\rightarrow N\omega d - 1

\pi 
d - 1
2

\int 1

e - 
a2
4

\biggl( 
log

1

k

\biggr) d - 1
2

dk as r \rightarrow \infty .

Note that
\int 1

0

\bigl( 
log 1

k

\bigr) d - 1
2 dk = \Gamma (d - 1

2 + 1) = \pi 
d - 1
2 /\omega d - 1. Therefore,

(5.12) lim
r\rightarrow 0

\int 
\BbbR d

\rho x0,t0+r2(x, t0) d\mu t0(x) \geq N.

By (2.3) with D0 < 2, there exists T1 \in (0, 1) depending only on M0 such that

(5.13)

\int 
\BbbR d

\rho y,s(x, 0) d\mu 0(x) < 2

for any (y, s) \in \BbbR d \times (0, T1]. Then we would have a contradiction from (5.11), (5.12),
and (5.13). Therefore, we obtain (7).
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