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Artificial intelligence in microbial natural product drug discovery: 
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Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug 

discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; 

moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same 

molecules have caused a setback in the past. Artificial intelligence (AI) has had a profound impact on various research fields, 

and its application allows the effective performance of data analyses and predictions. With the advances in omics, it is 

possible to obtain a wealth of information for the identification, isolation, and prediction of the targets of secondary 

metabolites. In this review, we discuss drug discovery based on natural products from microorganisms with the help of AI 

and machine learning.

Introduction 

Microorganisms are well known to produce structurally 

diverse secondary metabolites that are widely used in clinical 

settings for treating various clinical conditions, such as cancer, 

infectious disease, and inflammation.1 Conversely, they are also 

used in various other sectors, such as agriculture (as herbicides 

and insecticides), the food sector (as nutraceuticals), enzyme 

inhibitors, and for bioremediation, which uses natural products 

(NPs) directly or develops molecules derived from their 

scaffolds.2,3 Compared with synthetic molecules, NPs offer 

specific features in terms of structural complexity and scaffold 

diversity.4 The discovery of NPs has also revealed previously 

unknown targets in cells. For instance, rapamycin, which was 

isolated from a strain of Streptomyces hygroscopicus, has 

resulted in the identification of the mechanistic target of the 

rapamycin (mTOR) cell signaling pathway.5 

Artificial intelligence (AI) uses computers to perform 

complex functions, analyse large datasets, and interpret them 

based on algorithms.6 AI has been used widely in various 

research fields and industries for decision-making and 

processing tasks because it provides efficient analysis and faster 

results with reduced human error and at times uncovers data 

 

 

structures difficult to obtain from other sources.7 Recently, AI 

has received increased attention and is being used by chemists 

to perform various tasks in drug  discovery, as well as to identify 

molecular properties, process automation, plan synthetic 

routes, and predict the bioactivity of molecules.8–10 Based on 

the recent prolific growth in machine learning (ML) and the 

wealth of information in cloud computing in the form of 

databases and repositories, researchers can now gain access to 

big data and integrate AI/ML approaches into their tasks. 

Despite the unparalleled role of NPs in drug discovery, this 

approach has various challenges, such as the isolation, 

screening, purification, and structural characterization of the 

NPs derived from microbial sources.11 However, in the past two 

decades, the repetitive identification of existing and already 

known NPs, the demand for resources, and the time-consuming 

nature of the tasks have curbed interest in NPs among 

researchers and industries.12 With the advancement of 

genomics, proteomics, metabolomics, and other omics 

technologies recently, it is now possible to obtain a wealth of 

information to identify the biosynthetic dark matter.13,14 AI/ML 

in the field of NPs has been growing, to analyse the extensive 

amount of data stemming from the omics techniques (Figure 1) 

and open the microbial Pandora's box for the discovery of 

bioactive molecules.  

This review features the existing and emerging AI- and ML-

based tools in various stages of the investigation of NPs from 

microorganisms. (Figure 2) We will highlight the techniques 

available to identify the microbes and prioritize them based on 

their genome and metabolite potentials. Subsequently, we will 

discuss fast dereplication, which is one of the major challenges 

in NP discovery, together with the tools available for this type 
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of analysis. Furthermore, we will address the expedited 

elucidation of the structure of compounds and the 

identification of their targets with the aid of AI/ML. Finally, we 

will discuss the development of new powerful tools and the 

integration of multiple techniques that will speed up NP 

discovery, thus leading to a boom in the identification of potent 

drug candidates in the future.  

2. Application of AI/ML in natural product discovery 

2.1 Selection of organism and Taxonomic Identification. 

The selection of organisms is the preliminary step in NP 

discovery. Certain species, such as actinomycetes, have been 

among the most prolific sources of pharmaceutical candidates 

in the past.12 However, the overmining of this limited resource 

has led to the repeated rediscovery of known compounds and 

has exhausted the identification of novel molecules in this 

setting.15 Although the isolation of NPs is very laborious and 

challenging, careful selection of underexplored 

microorganisms16 from untapped environments, such as marine 

sources17 and symbiotic sponges,18 increases the chance of 

identifying molecules with different scaffolds. In addition to 

cultured microorganisms, nearly 99% of microbial species are 

uncultured in the lab and hold promise in the search for new 

NPs. This has led to the identification of potent antibiotics, such 

as teixobactin19 and lassomycin,20 using specialized culture 

techniques. 

The classical approaches in bacterial identification according 

to taxonomy are time-consuming and misleading; however, 

with the advent of the omics and ML techniques, it is possible 

to predict microbes efficiently.21 Although Gram staining is the 

gold-standard technique for the initial classification of bacteria, 

it is a highly time-intensive and manual-dependent activity. In 

contrast, using convolutional neural networks (CNNs), 

researchers were able to classify different shapes of Gram-

positive and Gram-negative bacteria via imaging with high 

confidence.22 This technique can be further extended to various 

microorganisms, for their identification and classification using 

ML tools. DNA-based identification is the most accurate method 

of classification of various microorganisms, as in the 

identification of DNA from bacteria, which can also be 

distinguished based on the specialized metabolites they 

produce. In the past, the ability to correlate microbial identity 

with signature metabolites was limited, even with access to the 

vast amount of data generated by mass spectrometry. However, 

recently, researchers developed a technique termed IDBac with 

the help of ML to classify microbes based on their proteins and 

specialized metabolites using matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS).23 Using this approach, those authors could 

discriminate Bacillus subtilis at the strain level based on its 

ability to produce cyclic peptide antibiotics and a group of 

Micromonospora with 99% sequence similarity with high 

confidence. Another algorithm called SPeDE also facilitates the 

identification of microbes at taxonomic resolution from a mass 

spectral dataset of both culture-dependent and -independent 

samples.24 MALDI-TOF is a powerful tool that is known for its 

versatility and is used in various fields with the advantage of 

being relatively easy to operate, fast, and accurate. The high-

throughput capacity of MALDI-TOF combined with ML tools 

allows the rapid identification of microbial communities 

compared with traditional biochemical or molecular biology 

techniques.25 Hence, in the future, rare and underexplored 

microbes can be identified directly from samples with the help 

of ML-assisted MALDI-TOF, which will accelerate the process of 

candidate selection for NP screening and isolation. Another 

interesting application of MALDI is imaging MS (IMS), which has 

been used to map the spatial distribution of various secondary 

metabolites.26–29  

2.2 Genome mining with the aid of AI/ML 

 The use of genome mining for secondary metabolite 

identification has been rapidly increasing in recent years with 

the advent of next-generation sequencing techniques, followed 

by bioinformatics pipelines.30 Although NPs are highly diverse in 

structure, their biosynthetic machinery, which is known as 

biosynthetic gene clusters (BGCs), is highly conserved in the 

microbes that fall under the class of polyketide synthases 

(PKSs),31 nonribosomally synthesized peptides (NRPs),32 

ribosomally synthesized and post-translationally modified 

peptides, alkaloids,33 and terpenes.34 The technique begins with 

the identification of existing and novel BGCs from the genome 

sequences and further characterization of novel gene clusters, 

to complete the analysis. To perform this type of complex 

analysis using big data, ML algorithms are widely used to predict 

the BGC assembly lines and predict the putative encoded 

structure from the sequence.35 With the help of BGC 

databases36–41 and computational tools,42–49 NPs can be 

predicted based on previously characterized pathways (Table 1). 

Using one such tool, antiSMASH, which employs profile hidden 

Markov models (pHMMs) to identify the BGC, a novel 

polyketide named formicamycin (Figure 3) has been isolated.50 

In another study, a potent antituberculous compound, gladiolin 

(Figure 3), was isolated with the help of genome mining from 

Burkholderia gladioli, which is a previously unknown source of 

NPs, in a patient with cystic fibrosis.52 More recently, a new 

class of previously unknown cryptic BGCs, i.e., lanthipeptides,51 

was identified with the help of ML and deep learning (DL) 

strategies. 

Conventionally, the process of NP isolation uses a “grind and 

find” approach, which involves culturing the microorganism 

followed by purification and structure elucidation; however, 

with the advent of genome mining and ML/DL-based 

approaches, novel metabolites have been isolated from 

uncultured organisms.52 For instance, the combination of the 

two strategies has led to the discovery of the antibiotic 

malacidin from the global microbiome using heterologous 

expression without culturing the organism.53 A computational 

algorithm based on hidden Markov models (HMMs) is available 

for BGC identification from metagenomic samples, which allows 

the identification of interesting molecules from the human 

microbiome.54,55 In many cases, most of the BGCs remain silent, 

without expression, which hinders the production of secondary 

metabolites; nevertheless, using elicitors (e.g., small molecules 

and coculture), it is possible to predict the biosynthetic genes 

and express them with the help of ML tools.56 One of the major 
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obstacles to NP discovery is the identification of secondary 

metabolites from unconventional sources because of the lack of  

 

Figure 1: Application of AI/ML to various areas of microbial 

natural product drug discovery.   

 

cultivation of the microbes. However, with the emergence of 

metagenomics and ML, it is now possible to predict NPs in 

environmental or biological niches using specialized ML 

tools.54,57 

 

2.3 AI/ML tools for Metabolite production and expression 

 Many microorganisms, such as those in the genera 

Streptomyces and Myxococcus, have been predicted to have 

large secondary metabolite BGCs with the advent of genome 

sequencing and bioinformatics. However, they usually do not 

code for NPs and remain as silent gene clusters.58 Therefore, 

various genome engineering techniques have been applied to 

activate those silent gene clusters, such as cocultivation,59 one 

strain many compounds,60 elicitors,61 ribosome engineering,62 

chemical epigenetics,63 epigenetic modification,64 

overexpression of transcription factors,65 and heterologous 

expression,66 which have had huge success in identifying new 

compounds. Despite the success in the control of parameters 

such as growth and strain engineering, media optimization 

remains challenging.67 To overcome this hurdle, various AI/ML 

techniques have been developed to control and monitor the 

production of metabolites. A study reported by Neythen et al. 

has used deep reinforcement learning, an approach from AI, for 

the control of cocultures in a continuous bioreactor.68 Using this 

approach, those authors were able to optimize the output of 

the coculture bioprocess by controlling various parameters. This 

type of study can be considered for controlling various factors 

in the production of NPs. Another study reported by Fei et al. 

used a high-throughput method to activate the silent BGCs in 

various organisms.69 The authors screened elicitors to induce 

secondary metabolite production with the help of IMS in nearly 

500 conditions. Using this approach, they identified a new 

glycopeptide from Amycolatopsis keratiniphila, NRRL B24117, 

with the help of laser-ablation-coupled electrospray ionization 

MS. Although this approach can perform HTS to overcome the 

drawback of IMS and to analyze complex datasets, Brett et al. 

have developed a work tool for Metabolomics Explorer 

(MetEx)that enables users quickly and intuitively to analyze 

complex liquid chromatography (LC)-MS and metabolomics 

datasets.70  

2.4 Dereplication of NPs with AI/ML techniques 

During the golden era of NP development, several drug 

candidates were identified, most of which are still widely used 

for treating various diseases and infections.71 However, in the 

late 20th century, NP discovery started slowing down because of 

the repeated isolation of known compounds.72 To overcome 

this issue, fast identification of the known secondary 

metabolites is necessary, to reduce the analytical time and 

resources.73 Dereplication is a key process in the quick 

identification of previously known compounds in microbial 

extracts.74 Microbial extracts contain various compounds; 

therefore, the use of dereplication techniques helps eliminate 

redundancy and provides knowledge regarding novel 

compounds. To perform this highly efficient and robust task, ML 

tools with high accuracy are required. Previously, the 

dereplication techniques were carried out using high-

performance liquid chromatography connected with a UV or 

photodiode array (PDA) detector with an automated bioassay 

and inbuilt library databases.75 However, structural information 

is lacking when using UV/PDA-based detection, and a more 

powerful instrument is required to capture additional spectral 

properties of the compounds. 

2.4.1 Mass spectrometry-based dereplication using AI/ML 

MS is a technique that has been widely used recently for 

dereplication in NPs because of its sensitivity, accuracy, and 

rapidity. Another major advantage of MS is its ability to gain a 

large amount of structural information from a trace amount of 

sample using an untargeted approach.14 The combination of 

mass information with UV/PDA can readily identify compounds 

with the help of databases such as Dictionary of Natural 

Products76 (http://dnp.chemnetbase.com/intro/), MarinLit77 

(https://marinlit.rsc.org/), StreptomeDB78 

(http://www.pharmbioinf.uni-freiburg.de/streptomedb), 

NPEdia79 (http://www.cbrg.riken.jp/npedia/), and The Natural 

Products Atlas80 (https://www.npatlas.org/). Using this 

approach, secondary metabolites from various actinomycetes 

have been dereplicated.81 LC coupled with MS can achieve high-

throughput screening of metabolites; however, the analysis of 

the data in an efficient way remains challenging. Moreover, this 

requires researchers manually to search various datasets, such 

as UV signatures, mass spectra, and microorganisms in different 

databases, which are far from comprehensive.14 ML-based 

approaches could be a good solution for the in-line 

identification of NPs using spectral information without manual 

support against the available databases.  

 Although MS plays an important role in the identification 

and dereplication of NPs, it has several drawbacks and major 

problems arise regarding the overlapping parent molecular 

masses of various metabolites based on MS spectra alone.82,83 

Therefore, a more efficient MS-based dereplication technique, 

such as tandem MS, is required and can increase the sensitivity 

http://dnp.chemnetbase.com/intro/
https://marinlit.rsc.org/
http://www.cbrg.riken.jp/npedia/
https://www.npatlas.org/
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of the detection of compounds based on MS/MS 

fragmentation.84 However, the analysis of MS/MS data is a 

 

Figure 2: Various stages of natural product drug discovery with 

the corresponding available AI/ML tools.  

 

cumbersome and intensive manual task, and an automated 

untargeted metabolomics pipeline is thus warranted to identify 

the metabolites efficiently. Recently, using various ML tools and 

algorithms, it was possible to interpret high-resolution mass 

spectra with reduced noise.85 Several AI/ML-based tool has 

been developed for mass spectral data processing and analysis 

such as MZmine86, Metaboanlayst87, MS-Dial88, Decon2LS89 , 

XCMS90 ,THRASH91 and some are available as part of commercial 

vendor packages such as XCalibur (Thermo Fisher), MassHunter 

(Agilent), and using those metabolites has been predicted with 

high confidence manually.92 Metabolomics databases that are 

available based on MS/MS patterns are Massbank93, Metlin94, 

LMSD95 , MoNA (https://mona.fiehnlab.ucdavis.edu/), 

Massbank (https://massbank.eu/MassBank/) and GNPS96, But 

in terms of microbial NPs identification, these are not widely 

used due to the scarcity of spectral data of natural products 

with the exception of GNPS96. 

 Recently, molecular networking (MN) has received 

widespread attention in the NP community for the 

dereplication and delineation of novel secondary metabolites 

from various sources with minimal manual interference. This 

approach was first introduced in 2012 for metabolite analysis 

from a set of living microbial colonies,97 yielding results that 

were comparable to the DNA sequencing of environmental 

samples to study microbial communities.98 MN is a 

computational technique that interprets the complex dataset 

that arises from MS analysis and visualizes it in the form of a 

network.99 To enable the analysis of MN, a crowdsourced library 

of reference spectra from a large number of compounds has 

been deposited from various communities and is available for 

analysis in GNPS96 (Global Natural Products Social Molecular 

Networking (http://gnps.ucsd.edu)). MN can identify 

compounds based on MS/MS spectral similarities and can also 

link the unknown molecules with related ones by exploiting 

similar fragmentation patterns. MN has been recognized for its 

high success rate and is becoming a routine tool for 

dereplication. For example, using MN and indexing 260 strains 

with ecologically diverse origins, the Pseudomonas-specialized 

metabolome led to the discovery of poaeamide B and 

bananamides (Figure 3).100 In another study, two novel 

chlorinated metabolites, isoconulothiazole B and 

conulothiazole C, were isolated from cyanobacteria using the 

MN strategy.101  

Moreover, based on MN, further developments have been 

made to render the road toward the identification of NPs more 

straightforward. Using classical MN, various features have been 

incorporated with MS/MS, and feature-based MN (FBMN) has 

been introduced.102 It can efficiently distinguish isomers based 

on chromatography and ion mobility, while also facilitating 

spectral annotations and quantifications, thereby enabling 

robust analyses. Further, during ionization molecules form 

different adduct which limits the library annotation in MN to 

overcome this bottleneck Ion Identity Molecular Networking 

(IIMN) was developed.103 This feature improved the network 

connectivity for structurally related molecule and can  be used 

to reveal unknown ion-ligand complexes. Very recently to 

identify bioactive compounds a scalable native metabolomics 

approach integrating non-targeted liquid chromatography 

tandem mass spectrometry, and simultaneous detection of 

protein binding via native mass spectrometry was developed.104 

Using this integrated technique, rivulariapeptolides a family of 

serine protease inhibitors with nanomolar potency was 

identified and such approach could be central importance for 

drug discovery in future.  

Hosein et al. have developed DEREPLICATOR+, an algorithm 

that can aid in the identification of NP classes such as NRPs, 

polyketides, terpenes, benzenoids, alkaloids, and flavonoids.105 

A common problem in NP identification is the isolation of active 

compounds during bioassay-guided purification from the 

extract. To overcome this hurdle, bioactivity-based MN, which 

integrates bioinformatics workflow to map the bioactive score 

using MN, was developed.106 Using this approach, antiviral 

compounds were isolated from extracts of Euphorbia 

dendroides, for which a classical bioassay-guided fractionation 

procedure had previously failed.106 Further, a versatile, open-

access platform NP Analyst was developed as a user friendly 

web-based infrastructure enabling NP community to analyze 

without the need for intense data processing.107 Although in the 

past MN could only be done via the web with GNPS, now many 

off-line tools such as MZmine3.086, MS-DIAL88, Metaboseek108, 

NetID109 and commercial software like Compound Discoverer 

(Thermo Scientific) have the ability to perform MN without the 

online platform making it easier. 

Although mass spectral analytical tools are available for the 

identification of known compounds from databases, predicting 

the structure of unknown metabolites is a very challenging task. 

However, with the advent of ML, it is improving fast. Bocker et 

al. developed a tool (SIRIUS 4) that can identify the structure 

based on MS/MS datasets using a support vector machine.110 

Further, advancing SIRIUS 4,  ZODIAC, a network-based 

algorithm for the de novo annotation of database-independent 

molecular formulas was developed by the same group.111 

Employing Bayesian statistics and Gibbs sampling it ensures fast 

processing in practice and is found to be better than SIRIUS by 

16.5 fold. Using such ML tools novel molecular formula can be 

annotated. In another study that used a Deep Neural Network 

(DNN), a computational tool (class assignment and ontology 

prediction using MS, CANOPUS) was developed that could 

https://massbank.eu/MassBank/
http://gnps.ucsd.edu/
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predict unknown metabolites for which spectral and structural 

reference data were not available.112 Similar to CANOPUS, a  
Task Tool Features Ref 

Microbial Identification with AI/ML tools 

MALDI-TOF analysis IDBac Bioinformatics pipeline that integrates both intact protein and metabolite for detection 23 

SpeDE Identification based on unique features instead of global similarity  24 

Genome Mining AI/ML tools 

BGC databases antiSMASH 
database 

Popular and comprehensive resource on secondary metabolite BGC 36 

DoBISCUIT Curated and literature-based collection of PKS and NRPS biosynthetic gene clusters 37 

IMG-ABC Largest database of curated BGC from microbial genomes  and metagenomes 38 

MIBiG Collection of large curated BGC 39 

ClusterMine360 Curated database of BGCs including  produced compound(s), taxonomic information 40 

Bactibase Integrated open-access database of bacterial antimicrobial peptides/bacteriocins 41 

BGC Identification 
from Genomes 
BGC databases 

antiSMASH Most widely used tool for BGC detection based on profile Hidden Markov Models (pHMMs) 42 

PRISM BGC identification along with cheminformatic dereplication and biological activity 43 

BAGEL Mining tool for ribosomally synthesized and post-translationally modified peptides (RIPPs) 44 

ARTS Prioritization of the most promising BGCs encoding antibiotics with novel modes of action 45 

EvoMining Identify secondary metabolite biosynthetic gene clusters (BGCs) based on phylogenomics  46 

SMURF HMM-based BGC identification tool from fungi 47 

MIPS-CG Identify completely novel BGCs using genome data in fungus alone 48 

DeepBGC Deep learning genome-mining strategy for BGC cluster prediction 49 

BGC identification 

from Metagenome  

MetaBGC A read-based algorithm for the detection of BGCs directly in metagenomic sequencing data 54 

eSNaPDA Surveying and Mining BGCs from Metagenomes also take into account metadata 57 

Metabolite production and expression 
 

Elicitor screening MetEx UPLC–MS-guided high-throughput elicitor screening 70 

Natural product dereplication and structure elucidation with help of AI/ML 
 

Databases DNP Structure database containing over 226,000 NPs with physical and chemical properties 76 

MarinLit Database of the marine natural products (Not open access) 77 

StreptomeDB Database of NP isolated from streptomyces with chemical and biological information 78 

NPEdia Database for Natural Products 79 

NPAtlas Online database of microbial-derived natural products with structures and features 80 

MS based 
dereplication/Identif

ication 

GNPS Online repository for untargeted MS/MS data with sample information  96 

FBMN Incorporates isotope patterns and retention time along with MN 102 

DEREPLICATOR+ Molecular Network combined with dereplication workflow  105 

Bioactive-MN MN guided bioassay-guided fractionation of bioactive compound(s) 106 

SIRIUS-4  Molecular structure identification from MS/MS 110 

CANOPUS Predict structure exclusively for which neither spectral nor reference data are available 112 

MetGem Molecular Networks Based on the t-SNE Algorithm 113 

MESSAR Automated prediction of metabolite substructures from tandem mass spectra 114 

Moldiscovery Molecule identification by probabilistic model with their mass spectra 115 

FALCON Density-based clustering of MS/MS spectra for unsupervised structure prediction 116 

SIMILE Significant Interrelation of MS/MS Ions via Laplacian Embedding to predict the structural 

relationships of compounds 

117 

MolNetEnhancer Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools 118 

COSMIC High-confidence structural annotation of metabolites absent from spectral libraries 119 
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NMR based structure 
elucidation/dereplic

ation 

NAPROC-13 A database for dereplication of NPs in mixtures based on C13 NMR 120 

NP-MRD A huge structural and NMR  database of nearly 41,000 NP  121 

DP4-AI Automated NMR data analysis for  structure prediction 122 

DEEP picker Deconvolution of complex two-dimensional NMR spectra based on DNN 123 

MixONat Software for the Dereplication of Mixtures Based on 13C NMR Spectroscopy 124 

ELINA 1H NMR based identification of  bioactive compounds in a mixture prior to purification 125 

SMART-Miner A convolutional neural network-based metabolite identification from NMR spectra  126 

SMART 2.0 NMR-based machine learning tool for annotation of molecularly diverse Natural Products 127 

Integrated approach NPClassifier A Deep Neural Network-Based Structural Classification Tool for Natural Products 128 

GNP Identify polyketides and NRP using genome and LC-MS/MS 129 

NRPminer NRP identification by  Integrating genomics and metabolomics dataset 130 

NRPquest Integrates  genomics and metabolomics for NRP discovery 131 

DEREP-NP Database for dereplication from MS and NMR Experiments 132 

ML-based target 
identification 

deepDTnet Target identification by deep learning from heterogeneous networks 133 

BANDIT Bayesian ML approach that integrates multiple data types to predict drug binding targets 134 

SPiDER ML tool using  self-organizing maps built from various features for target prediction 135 

DEcRyPT Machine Intelligence workflow-based target prediction 136 

SuperPred Drug classification and target prediction using 2D, Fragment, and 3D similarity 137 

MANTRA2.0 Mechanism of action prediction using transcriptional profiles. 138 

Openchem A Deep Learning Toolkit for Computational Chemistry and Drug Design 139 

DeepTox Toxicity Prediction using Deep Learning 140 

Table 1. List of the AI/ML tools available for various phases of natural product identification and drug leads

high-confidence structural annotation tool COSMIC based on 

SVM was developed.119 MS2DeepScore, which is an ML- 

supported mass spectral similarity-predicting algorithm was 

developed that allowed clustering, to identify metabolites 

similar to GNPS.96,141 Further, FALCON116 a density-based 

clustering of MS/MS spectra116, MS2LDA combined with 

Mass2Motif142  an unsupervised substructure discovery 

platform143 and Significant Interrelation of MS/MS Ions via 

Laplacian Embedding (SIMILE)117 are also available to predict 

the structural relationships of compounds. MN-based 

approaches for dereplication can be carried out with high 

success and can be further employed for the structural 

elucidation of novel compounds in the future with the support 

of the ML approaches developed recently.112–115,119 

2.4.2 AI for the NMR-based structure 

elucidation/dereplication of NPs 

The structural elucidation of molecules is a challenging problem 

in NP research. Although X-ray crystallography provides 

unambiguous structural information, it is often impeded by the 

requirement of a single crystal, and the limited amount of the 

isolated molecule restricts its wide application.144 Nuclear 

magnetic resonance (NMR) is a universally employed 

spectroscopy method that allows NP chemists to deduce 

molecular structures from spectra.145 Computer-aided 

structural elucidation (CASE) still plays a marginal role in this 

setting, although it was one of the earlier applications of AI.146 

Although databases for NMR are available (NAPROC-13,120 CH-

NMR-NP (https://www.j-resonance.com/en/nmrdb/), 

BMRB,147 and Spektraris NMR),148 they have several drawbacks 

and, thus, do not truly satisfy the requirements of NP 

communities.149. To overcome this issue, NP-MRD,121 which is 

an NMR database including over 41,000 NP compounds from 

>7400 different living species with various features, was 

introduced very recently.121 This database is still under 

development; however in the future, it will allow automated 

dereplication and CASE to be performed much more efficiently. 

 To assist the structure elucidation and perform 

dereplication, ML tools and software, such as logic for structure 

elucidation,150 ACD/Structure elucidator,151 Mestrelab 

  

https://www.j-resonance.com/en/nmrdb/


  

 

ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

Figure 3: Novel natural products predicted with the support of AI/ML tools. 

Mnova,152 and Computer-aided Spectral Assignment,153 were 

developed and have aided NP identification.154,155 Recently, a 

robust AI-powered structure-prediction tool (DP4-AI)122 was 

developed and allowed the successful assignment of the 

structure of complex NPs.156–158 Using the CNN-based based 

approach NMR-based machine learning tool “Small Molecule 

Accurate Recognition Technology” (SMART 2.0) for mixture 

analysis and characterization of new natural products were 

developed.127 This led to the identification of a new chimeric 

swinholide-like macrolide, symplocolide A, as well as the 

annotation of swinholide A, samholides A–I, and several new 

derivatives. In another study, SMART-Miner a metabolite 

identification tool from the 1H-13C HSQC NMR spectra with the 

support of CNN was developed. The model was trained on 657 

chemical entities collected from HMDB and BMRB to 

subsequently identify those molecules in complex mixtures with 

an accuracy of 88%.  

To analyze the two-dimensional NMR spectra, a DNN-based 

approach for peak picking and spectral deconvolution (DEEP 

Picker) was developed very recently.123 In another study, 

various classes of NPs were predicted using ML from 13C-NMR 
spectroscopic data.159 NMR  is relatively less explored for 

dereplication compared with HRMS because of its sensitivity; 

nevertheless, it can offer high accuracy in terms of the 

prediction of stereoisomers and the detection of all organic 

compounds in a mixture.160 Recently, using 13C-NMR, a 

dereplication software (MixONat)124 was developed that 

allowed the distinction of structurally close NPs, including 

stereoisomers, and aided the identification of xanthones in 

Calophyllum brasiliense.124,161 In another study that used 1H-
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NMR, Grienke et al. developed a workflow ELINA (Eliciting 

Nature’s Activities) based on a heterocovariance analysis, which 

can detect chemical features that correlate with bioactivity 

before isolation; using this approach, the authors discovered 

lanostane triterpenes from the extract of the fungus Fomitopsis 

pinicola.125 

2.5 Integrated approach for NP discovery using AI/ML 

Multiple strategies have been developed over the years for NP 

prioritization, and a combination of various approaches (e.g., 

genomic, metabolomic, taxonomic, spectral information, and 

bioactivity) can be used as a factor for ranking before the 

downstream process of purification and structure elucidation of 

NPs.162 More recently, Kim et al. developed NPClassifier,128 

which is a tool that can classify NPs using a DL approach. They 

have been categorized into three hierarchical levels based on 

 the pathway and chemical properties; moreover, structural 

details can be classified using this NP, which indicates its 

applicability for drug discovery and the elucidation of biological 

interactions. In another study, an automated genome-guided 

NP discovery tool, with the support of an LC-MS/MS dataset, 

was developed that could automatically predict, 

combinatorialize, and identify polyketides and NRPs from crude 

extracts.129 Hosein et al. developed NRPquest, which is an ML 

tool that integrates MS and Genome Mining for Nonribosomal 

Peptide (NRP) discovery.130 Similarly, another tool (NRPminer) 

was developed very recently that combined both genomics and 

metabolomics to identify novel NRPs; using this approach, four 

unknown NRP families were identified from microbes and 

human microbiota and shown to exhibit antiparasitic activity.131 

By integrating genomics and metabolomics focusing on NRPs, 

several novel protegomycin derivatives from a previously 

unknown NP source (X. doucetiae and X. poinarii) were 

identified (Figure 3).131 A study reported by Kleigrewe et al. 

integrated metabolomics and genome analysis to discover NPs 

from cyanobacteria; using this innovative approach, the authors 

discovered a new class of di- and trichlorinated acyl amide 

columbamides with cannabinomimetic activity.163 Previously, 

we combined genome mining with MN and identified 

urdamycin E and a novel derivative, urdamycin V (Figure 3), 

from Streptomyces spp., which induce cell death by inhibiting 

mTOR in cancerous cells.164,165 Carlos et al. developed a 

database (DEREP-NP) to dereplicate metabolites efficiently by 

integrating MS and NMR spectra.132 Another study that 

combined NMR-based profiling with genome mining led to the 

discovery of the allenic macrolide Archangiumide (Figure 3) 

from Myxobacterium.166 Using MS-guided genome mining, 

which connects the chemotypes of peptide NPs with their BGCs 

by iteratively matching de novo tandem MS, a new NP 

peptidogenomics approach was developed.167 Using this 

combined approach, five new stendomycin analogues were 

identified that differed in the acyl chain and in valine or 

isoleucine substitutions at positions 5 and 13 from S. 

hygroscopicus ATCC 53653 (Figure 3). 
 

 

3.Bioactivity and Target Identification of NPs with AI/ML 

techniques 

One of the challenges in the development of NP-based drug 

candidates is the identification of their mechanism of action and 

side effects, which is a costly and lengthy process.168,169 Because 

of the enormous structural diversity and broad chemical spaces, 

the bioactivity of NPs is discovered based on phenotypic effects 

or via high-throughput phenotypic screening.170,171 To identify 

the targets experimentally, chemical genomics172,173 and 

chemical proteomics174 approaches are generally used; 

however, although they can validate the targets they are often 

laborious and time-consuming processes.133 To overcome this, 

computational approaches can narrow down the large search 

space of the targets.175 There are three computational 

approaches and, in addition to the traditional structure-

based176 and ligand-based target identification methods,177 ML-

based approaches have numerous advantages and can be 

promising strategies for NP target identification.178 To identify 

drug targets, Madhukar et al. developed BANDIT,134 a Bayesian 

machine-learning approach that integrates multiple data types 

to predict drug binding targets.134 Using this approach, the 

authors predicted the targets of nearly 4,000 compounds with 

90% accuracy and further validated 14 novel microtubule 

inhibitors. In another study aimed at identifying drug–target 

interactions (DTIs), a CNN-based tool, NeoDTI, was 

developed.179 NeoDTI mines large-scale graph data and 

automatically learns the topology-preserving representations 

of drugs and targets, to facilitate DTI prediction with 

compound–protein binding affinity. Using such approaches, the 

drug targets of NPs can be identified, which can accelerate the 

drug-discovery platform. In another study, a DL toolkit, 

“Openchem,” which is based on the PyTorch framework, was 

developed for drug design and computational chemistry.139 It 

can enable drug discovery and molecular modeling applications 

using DL algorithms. This DL-based approach can help in various 

tasks in NP discovery, such as their physical properties and 

structure–activity relation. A recent study reported by Walker 

and Clardy described an ML-based approach to predict the 

biological activity of NPs using genome mining without 

isolation.180 The authors used ML classifiers to predict 

antibacterial or antifungal activity based on known NP BGCs 

with an accuracy of 80%. 

The SPiDER ML tool merges the concept of self-organizing 

maps, consensus scoring, and statistical analysis to successfully 

identify targets for both known drugs and computer-generated 

molecular scaffolds; moreover, using this method, off-target 

fenofibrate-related compounds were identified.135 

Furthermore, to increase the confidence, the Drug–Target 

Relationship Predictor (DEcRyPT) machine intelligence 

workflow, which uses regression random forest technology as 

an orthogonal learning approach to self-organizing maps, was 

developed.136 Using this ML tool, the targets of β-lapachone 

were identified and validated as potent modulators of 5-

lipoxygenase.136 SuperPred137 provides drug classification and  

target prediction considering features such as 2-D, Fragment, 

and 3-D similarity and adapting concepts of the basic local 
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alignment search tool (BLAST) algorithm.137,181 These ML 

approaches can innovate the drug target identification process 

and serve as an alternative powerful strategy to 

chemoproteomics. Another study reported by Carrella et al. 

developed MANTRA 2.0, which is a transcriptional profile-based 

drug target identification that uses a microarray dataset.138 By 

uploading the gene expression profile of the compound in cell 

lines, an ML-based automated pipeline revealed its mechanism 

of action based on the transcriptional signature of existing 

drugs.138 Despite the advantages of the ML tools, they can 

sometimes be inaccurate and only the previously studied 

targets can be predicted with further target validation.182,183 In 

the drug-discovery process, one of the key criteria for candidate 

molecules is that they have fewer adverse effects; however, 

numerous time- and cost-intensive in vitro and in vivo studies 

are required to assess toxicity.184 Computational toxicology can 

be effectively used to screen a large number of compounds 

without the use of time-consuming animal studies; nevertheless, 

this approach has severe drawbacks in terms of accuracy.185 To 

overcome this issue, a recent study reported a DL pipeline, 

“DeepTox,” which exhibited a high accuracy of toxicity 

prediction.140 Such a DL-based approach can be utilized in the 

future effectively to predict the toxicity of NPs and to tweak 

molecules with less adverse effects.  

4. Conclusions and future perspectives 

NPs from microorganisms and their molecular frameworks 

have a long tradition for many drug leads and are still widely 

used for treating various diseases and infections.182,186,187 The 

bioprospecting of the NP leads is challenging because of the 

amount of data generated and technical barriers, such as 

screening, isolation, characterization, and target identification. 

AI approaches can be used to address these problems and 

uncover hidden patterns by employing algorithms and 

decreasing the analytical time, resources, and costs required to 

identify NPs.188 As proof of concept, recently, a highly effective 

antibiotic (halicin) with an entirely new mechanism of action 

was identified from the ZINC15 database using a DL approach.10 

AI can help prioritize the microbes for screening based on their 

taxonomic novelty and genomes regarding the ability to 

produce novel NPs. Furthermore, it can help rapid dereplication 

and assist in the identification of active compounds using LC-

HRMS and NMR. 

Several NPs were isolated during the golden age of NPs, but 

most of them have been neglected or are limited by specific 

bioactivity with the discovery of various lead compounds at 

similar times.1,189 However, the surge of antimicrobial 

resistance and technological advancements have rekindled the 

interest in NPs as drug leads and repurposing is being 

assessed.190 The cyclic peptide griselimycin was identified in 

1960 from Streptomyces191 and exhibited potent 

antituberculous activity, but was neglected; however, very 

recently, it was modified and introduced into the drug-

development pipeline.192 Similarly, another NP, chrysomycin A, 

which is a rare C-aryl glycoside, was first discovered over 60 

years ago and has anticancer activity193,194 with no further 

studies; however, recently, it was reported as inhibiting 

multidrug-resistant tuberculosis effectively (MDR-TB).195,196 

Drug repurposing and alternate bioactivity prediction are cost-

effective processes compared with drug discovery; nevertheless, 

they are quite challenging. To overcome this drawback, AI/ML 

can be used for candidate selection.197 Furthermore, AI can also 

assist in macromolecular target identification in a fast and 

effective manner. 

A big obstacle in the full-fledged implementation of AI in NP 

research is the lack of integrated and curated databases.198 

Most of the data, such as taxonomic, structural, genomic, and 

metabolomic data, for the specific compounds are not available 

compiled in the form of databases and presented in the form of 

scientific literature, which is very difficult to access and analyze 

manually.198,199 Hence, an integrated approach is required for 

the effective analysis of NPs, as is a single algorithm for the 

management of the entire process of NP discovery alone. By 

addressing these issues, the common problems associated with 

AI, such as errors and repeatability, can be controlled in the 

learning process from reliable datasets.200–202 With the 

worsening drug-resistance scenario and the increase in the 

number of new infections, the search for novel NPs is essential. 

Nature is extremely generous to mankind by providing diverse 

compounds over the centuries to cure diseases. With the 

advent of technological advancements and AI, can we expect a 

new golden era of NP drug discovery? 
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