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ABSTRACT The distributed inference (DI) framework has gained traction as a technique for real-time
applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of
things (IoT) devices. In DI, computational tasks are offloaded from the IoT device to the edge server via lossy
IoT networks. However, generally, there is a communication system-level trade-off between communication
latency and reliability; thus, to provide accurate DI results, a reliable and high-latency communication system
is required to be adapted, which results in non-negligible end-to-end latency of the DI. This motivated us
to improve the trade-off between the communication latency and accuracy by efforts on ML techniques.
Specifically, we have proposed a communication-oriented model tuning (COMtune), which aims to achieve
highly accurate DI with low-latency but unreliable communication links. In COMtune, the key idea is to
fine-tune the ML model by emulating the effect of unreliable communication links through the application
of the dropout technique. This enables the DI system to obtain robustness against unreliable communication
links. Our ML experiments revealed that COMtune enables accurate predictions with low latency and under
lossy networks.

INDEX TERMS Distributed inference, communication-efficiency, machine learning, packet loss tolerant,
delay-aware system.

I. INTRODUCTION
The Internet of things (IoT) is employed to enable multiple
novel applications by combining the physical sensing of IoT
devices with deep learning-based data analysis. Although
deep learning technology is developing rapidly, it satisfying
privacy and latency demands of the applications on resource-
constrained IoT systems continue to pose a challenge. For
example, factory automation and smart grids require latency
of less than 10ms and 20ms, respectively [1]. In contrast,
in smart home applications, IoT sensors such as visual and
audio sensors obtain privacy-sensitive data that should not be
exposed [2].
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Distributed inference (DI) frameworks have been
researched to address the privacy and latency challenges
of deep learning deployment on IoT systems. In the DI
framework for deep neural networks (DNNs) [3], [4], compu-
tationally expensive tasks are offloaded from the IoT devices
to the locally located edge servers to reduce computation
latency and the risk of data leakage, as compared with cloud
computing. In the DI framework, the IoT devices and the edge
server collaboratively process the portion of DNN, otherwise
known as sub-DNN, by exchangingmessages (e.g., outputs of
sub-DNN) via IoT networks. Details of the DI are explained
as follows: A well-trained DNN is divided into sub-DNNs
through layers. The IoT device stores the input-side sub-
DNN, while the edge server stores the output-side sub-DNN.
The device obtains the output of the sub-DNN (i.e., the
activations of the original DNN) from the raw input. Next,
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the activation is transmitted to the edge server, and the server
generates an inference result from the activations using its
sub-DNN.

Although the DI reduces the computation latency and pre-
serves the data privacy, the problem of the communication
latency of the DI is posed [5]–[7]. This is because the com-
munication payload size of the DI is typically larger than
that of local computing and cloud computing. Moreover,
the bandwidth of the IoT network is generally narrow; thus
the communication latency is non-negligible in DI on IoT
systems.

To achieve low communication latency, there are two gen-
eral solutions: 1) adapting low-latency, which is a generally
unreliable communication protocol, such as user datagram
protocol (UDP) and higher physical transmission rate, and
2) lossy compression of the transmitted message. To realize
ultra-low-latency DI (e.g., lower than 10ms), it is neces-
sary to simultaneously adopt both solutions. However, there
is a trade-off in the solutions between the communication
latency and prediction accuracy of the DI. The transport layer,
for example, in the narrow-band and lossy IoT networks,
the UDP transmission causes non-negligible packet losses,
which degrades the inference accuracy by causing defects
in the exchange of sub-DNN output between devices and
edge servers. In contrast, reliable communication protocol
(i.e., transport control protocol (TCP) transmission) causes
non-negligible communication latency due to the retransmis-
sions of dropped packets. Moreover, the lossy compression
reduces the redundancy of the message, which increases the
negative effect of packet loss (i.e., degrades the accuracy) on
the DI.

This motivated us to improve the trade-off between com-
munication latency and prediction accuracy by efforts on
ML techniques. This study aims to design a DI method that
achieves high accuracy using unreliable communication pro-
tocol on lossy IoT networks, where a considerable percentage
of the transmitted packet is dropped. To this end, we have
proposed communication-oriented model tuning (COMtune)
to achieve robustness against the packet loss due to the non-
retransmission policy of the unreliable communication pro-
tocol. Using COMtune, even when a part of the message
exchanged between the nodes is dropped by the packet loss,
one can obtain accurate inference results using the success-
fully received message.

To achieve such robustness against the packet loss, our
key idea is to train the DNN through emulation of the
effect of drops in the IoT network using the dropout tech-
nique [8], which randomly drops the activation in DNN.
Through the training, theDNNwould be able to provide accu-
rate predictions using the dropped information. Moreover,
the dropout technique [8] is well known as a regularization
method; thus, the DNN receives the benefits of the regular-
ization effect, and simultaneously achieves robustness against
packet loss. Furthermore, to achieve even lower communica-
tion latency, COMtune employs lossy compression methods,
which reduce the payload size of the message. We should

note that the lossy compression reduces the redundancy of
the message, results in the degradation of the robustness
to the packet loss; thus, the COMtune, which improves the
robustness against the packet loss, has further significant role
in achieving high accuracy when the compression is applied.
The performance evaluation using the image classification
task CIFAR-10 demonstrated that the COMtune achieved
higher accuracy than existing methods under lossy com-
munication links, even while employing lossy compression
methods.

The contributions of this study are summarized as follows:

• We have proposed COMtune to improve the trade-off
in the DI framework, on the unreliable communica-
tion link between communication-latency and accuracy,
using strong message compression. The message com-
pression and robustness to the unreliable communication
link are highly dependent on each other; the message
compression can reduce the redundancy of the message,
which further degrades the system robustness to the
unreliable communication link. To the best of our knowl-
edge, existing research has only addressed, either the
message compression, or the robustness to the unreliable
communication link.

• To improve the trade-off, COMtune tunes the DNN
model by emulating the effects of the unreliable com-
munication links using the dropout technique. The per-
formance evaluation using CIFAR-10 demonstrated that
the COMtune achieved higher accuracy than existing
methods, under unreliable communication links even
while employing lossy compression methods.

This study is an expanded version of [9] and evaluates
the performance of COMtune when message compression is
applied, and reveals that the COMtune is more efficient when
the message compression is combined.

Correspondingly, however, independent of this work,
a similar concept to improve the trade-off between unreliable
communication and prediction accuracy through training of
DNN by emulating the effect of unreliable communication
has been presented in [10]. Meanwhile, there are two pri-
mary differences between [10] and our research, that is the
communication link assumption and model training scheme.
This study focuses on the end-to-end communication link and
assumes packet loss, while [10] focuses on one-hop wireless
links and assumes bit-error. Thus, the proposed COMtune can
be applied to any network that experiences packet loss due
to queue or buffer overflow, as well as bit errors. Second,
our model training procedure is comparatively simpler to
implement and more efficient in terms of accuracy. This
is because [10] uses custom non-differentiable functions in
DNN to emulate the effect of the unreliable communica-
tion. This procedure increases the implementation cost and
decreases model training efficiency. In contrast, our training
methods only utilize a dropout layer for the emulation; thus,
the proposed method is easier to implement and can accom-
modate the link emulation layer in the back-propagation
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TABLE 1. Distributed inference frameworks toward low communication latency.

process, which enables the model to benefit from the regular-
ization effect caused by the model training using the dropout.

II. RELATED WORKS
This section summarizes the existing research that addresses
the problems of communication overhead in DI. The sum-
mary of the related works is given in Table 1. First,
without specifying the DI framework, a vast majority of
research [24], [25] has been addressed to improve the trade-
off between the latency and reliability of the communi-
cation systems. The proposed COMtune is orthogonal to
these researches and improves the trade-off beyond the lim-
its of those improved by the efforts on the communication
system [24], [25].

In DI frameworks, the inference task generated in the IoT
device is offloaded to the other nodes by sharing the raw
inputs, or the results of the local computation, which are
referred to as vertical and horizontal DIs, respectively. Unlike
the research on vertical DI [26], [27], we have focused on
the horizontal DI, because the sharing of the raw input in the
vertical DI includes a critical privacy risk. In the horizontal DI
literature, someworks have addressed the achievement of low
communication latency by optimizing the division point [5],
[14], [15], leveraging multiple sink nodes [13], pruning the
DNN model [14], quantizing the message [15]–[17], dimen-
sional reduction of the message [18]–[20], and combining
multiple inference tasks into a single one [16]. However, these
works assumed a reliable communication link and aimed
to reduce the communication payload size. The problem of
the trade-off between reliability and latency has not been
addressed by these works; thus, they are orthogonal to this
research.

Another direction is to adapt an analog communication
system [10]–[12]. [10], [11] used analog communication to
reduce the cost of channel encoding in digital communica-
tion, where multiple nodes transmit signals in the same time
slot by leveraging superimposition [12]. However, this study
focuses on digital communication, which is more widely used
than analog communication.

The impact of the unreliable communication link on DNN
inference was evaluated in [6]. This work demonstrated the
feasibility and effectiveness of employing unreliable but low-
latency communication protocols for AI-empowered time-
critical applications. [6] transmits the raw input from the
device to the server, which includes the critical privacy
risks. In the DI literature, to achieve robustness against the

FIGURE 1. Over view of distributed inference with the proposed
communication-oriented model tuning. The red arrows indicate the
upload of the message from the device to the edge server via the
unreliable communication link, in which the message is corrupted. The
edge server obtains the prediction results using the corrupted message.

unreliable communication link, certain researches addressed
estimation of the clean transmitted message from the received
message, which is corrupted by the unreliable communica-
tion link, by joint source-channel coding [28], linear ten-
sor completion [21], low-rank tensor completion [22], and
image inpainting based completion [23]. Orthogonal to these
works, which estimate the clean message from the corrupted
message, we aimed to achieve a split model that achieves
highly accurate predictions from the corrupted message, and
proposed a joint model training method.

III. PROPOSED METHOD: COMMUNICATION-ORIENTED
MODEL FINE-TUNING
A. SYSTEM MODEL
We assume an application scenario of automated surveillance
in public places, roadsides, or factories, where IoT devices
and edge servers cooperatively predict accidents, such as col-
lisions, to avoid their occurrence. IoT devices equipped with
cameras, monitor the target area and send information to the
edge server. Based on the information, the edge server detects
objects and their movement and further predicts the probabil-
ity of the accident. In the application scenario, latency is a
critical issue because the edge server is required to complete
the prediction before the incident occurs.

Fig. 1 shows the systemmodel consisting of a cloud server,
an edge server, and an IoT device.1 The edge server and

1We assume that it is predetermined which server the IoT device will
communicate with, and a server selection problem is out of scope.
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FIGURE 2. Detailed procedure of the proposed communication-oriented
model tuning. Red arrows indicate the upload of the activation from the
device to the edge server via the unreliable link, which does not
retransmit dropped packets. The edge server obtains prediction results
using only the successfully transmitted activations.

IoT device are connected via unreliable communication links
such as lossy and narrow-band IoT networks. This commu-
nication link is abstracted as an end-to-end communication
link between the server and the device, which is detailed
in the next section. The cloud server obtains a pre-trained
DNN model from public repositories that are suitable for
the inference tasks generated on the IoT device, for exam-
ple, VGG [29] for image recognition tasks, YOLO [30] for
object detection tasks, and BERT [31] for neural language
tasks. As shown in Fig. 2 (a), the pre-trained model is fine-
tuned by the proposed COMtune method to provide accurate
inference while conducting DI via the unreliable proto-
col under lossy and narrow-band networks with ultra-low
latency. The detailed COMtune procedure has been explained
in Section III-C. Following the fine-turning, the DNN is
divided at a division layer into two portions and the portions
(sub-DNNs) are distributed to the IoT device and the edge
server.

As shown in Fig. 2 (b), when an inference task is generated
in the IoT device, the device and the server collaboratively
solve the inference task using the distributed sub-DNNs,
as follows: The IoT device generates activation by feeding
the input sample to the input sub-DNN, compresses the acti-
vation, and sends the compressed activation to the edge server
via the unreliable communication link. Note that computa-
tional delays to process the sub-DNNs are not considered in
this study since we focus on communication latency. In the
unreliable communication link, a non-negligible amount of

packets are dropped; however, the dropped packets are not
retransmitted. The edge server obtains the prediction results
through the output sub-DNN by inputting the successfully
received activation from the IoT device. The detailed DI
procedure has been explained in Section III-D.

B. UNRELIABLE COMMUNICATION LINK ASSUMPTION
We assumed that the transmitted messages are probabilis-
tically dropped owing to the non-retransmission policy of
the unreliable communication protocol, where one does not
retransmit the packets even when the packets are dropped.
More formally, considering that the device sends a vector x
via the communication link with a packet loss rate p, the edge
server successfully receives a vector f c(x | p) denoted as
follows:

f c(x | p) = x�m(p), (1)

where operator � indicates the element-wise product and
m(p) is a binary vector following the Bernoulli distribution
with an expected value of 1− p.
In a real-world communication system, the vector of the

activation x is divided into multiple packets and transmit-
ted. Therefore, when a packet is dropped, the consecutive
elements of x are lost. To avoid the burst loss, the device
shuffles the vector elements and stores them in packets. The
edge server constructs vector x from the successfully received
packets, which results in (1). That is, the device permutes the
elements randomly and stores them in packets. A packet pi is
represented as follows:

pi := {xkj | i ≤ j < i+ s}, (2)

where kj and s are the permuted identification of the element
and the number of elements stored in a packet, respectively.
The edge server reconstructs the vector of activations from a
subset of transmitted packets Pr, where

Pr
= {pi | pi is received successfully}. (3)

Thus, the reconstructed vector is expressed as x�m(p).
Assuming the aforementioned communications model, the

number of the received packets and the latency are denoted as
follows. In the unreliable communication link, if nt packets
are transmitted using the communication link with a packet
loss rate of p, the probability mass function (PMF) of the
number of received packets nr is expressed as follows:

PMF(nr) =

{(nt
nr
)
pn

t
−nr (1− p)n

r
, if 0 ≤ nr ≤ nt;

0, otherwise.
(4)

The expected number of received packets is denoted by
(1−p)nt. Assuming throughput b and packet size l, the latency
is calculated as ntl/b. In contrast, all the transmitted packets
are received when using a reliable communication link; thus,
nr = nt. The PMF of latency is

PMF(τ ) =

{(
dτ/T e−1
nt−1

)
pdτ/T e−n

t
(1− p)n

t
, if dτ/T e ≥ nt;

0, otherwise.

(5)
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C. DETAILS OF COMMUNICATION-ORIENTED MODEL
TUNING
To achieve high accuracy DI prediction under an unreliable
communication link in highly lossy networks with activa-
tion compression, the pre-trained DNN is trained through
emulation of the effect of packet loss and lossy activation
compression. The overview of the COMtune is depicted in
Fig. 2 (a). To emulate the effect of packet loss, we deter-
mined that the behavior of the dropout layer is similar to the
effect of the packet loss in the unreliable communication link,
as defined in (1), and used the dropout layer to emulate the
effect of the packet loss. Further, the dropout layer and the
activation compression function are inserted into the division
layer of the pre-trained model. Subsequently, the model with
the dropout layer and the activation compression is trained.

First, the cloud server obtains a pre-trained DNN model
from the public repository, which is denoted by f pre(· |
wpre), where wpre are the parameters. The pre-trained DNN is
divided into input-sub DNN f in(· | win) and output-sub DNN
f out(· | wout) as

f pre(· | wpre) = f out(· | wout) ◦ f in(· | win), (6)

where f (·) ◦ g(·) denotes the composite function of f (·) and
g(·). We tuned the DNN f trn(· | wtrn), which consists of
two sub-DNNs, the dropout layer, and compression functions.
The following section details the DNN f trn(· | wtrn). Follow-
ing the training, the input sub-DNN f in(· | win) is sent to the
IoT device, and an output sub-DNN f out(· | wout) is sent to
the edge server, respectively.

The dropout was originally proposed as a regularization
method in DNN literature, which enables training of the DNN
for longer periods without overfitting and improves the test
accuracy [8]. Thus, the dropout technique has been used
in various DNN architectures and is available in multiple
deep learning frameworks. In each training iteration using the
dropout technique, the outputs of the hidden units are set to
zero using a dropout layer with a dropout rate r . In addition to
omitting the hidden unit outputs, the surviving (non omitted)
hidden units are multiplied by 1/(1− r). Hence, the dropout
behavior f d(· | r) is represented as follows:

xi+1 = f d(yi | r) =
1

1− r
yi �m(r), (7)

where yi is the hidden unit of the ith layer, and xi+1 is the
input of the i+1th layer. Comparing equations (1) and (7), we
determine that the dropout technique can emulate the drops of
activation due to packet loss, in the model training. Therefore,
the model trained using the dropout technique can provide
accurate inferences even when the activations are dropped.

In addition to the unreliable communication link, the
lossy compression reduces communication latency; however,
it may degrade inference accuracy. To adapt the DNN model
to the activation compression, COMtune fine-tunes the DNN
model by inserting the compression function and dropout
layer to the division layer. In this study, we used either of
the two general lossy compression methods, quantization and

dimensional reduction, which are detailed in Appendix A.
Here, we have described COMtune with the general compres-
sion method. The compression and decompression function
are denoted by f cmp(·) and f dec(·), respectively. Given the raw
activation as araw, the compressed activation acmp is denoted
as acmp

:= f cmp(araw | M ), where, M is the data size of the
compressed activation. From the compressed activation, the
uncompressed activation is estimated by adec = f dec(acmp′ ).
Therefore, using the above defined functions, theDNN f trn(· |
wtrn) that fine-tuned in the COMtune is denoted as follows:

f trn(· | wtrn) = f out(· | wout) ◦ f dec(·)

◦f d(· | r) ◦ f cmp(· | M ) ◦ f in(x | win), (8)

where r is a dropout rate.
We should further note that the dropout rate and message

size used in the model training corresponds to the packet
loss rate and the message size in the DI procedure. Thus,
training using a larger dropout rate implies that the DNN is
trained to adapt to a more lossy communication link, thus
improving packet loss tolerance. Training with a smaller
message size in the fine-tuning implies adapting to use a
smaller message size in the DI, thus reducing communication
latency. In contrast, as mentioned in [8], a larger training
dropout rate degrades the achievable model performance
(i.e., performance without any packet loss); similarly,
a smaller message size degrades the achievable model per-
formance, as well [32]. Therefore, the dropout rate and the
message size are selected based on the packet loss rate of
the communication link, desired communication latency, and
model performance requirements.

Moreover, the dimensional reductionmay strongly degrade
the accuracy than quantization in highly unreliable commu-
nication link. This is because, in the dimensional reduction,
this paper adopts principal component analysis (PCA) to
compress the message; the message is represented by a linear
combination of the small number of basis vectors, and the
coefficients of basis vectors are transmitted as the compressed
message, leading to a significant difference in the contri-
bution of each element of the compressed message, which
is detailed in Appendix. Thus, when the elements of the
compressed message that correspond to important principal
components (e.g., first principal components) are dropped,
the accuracy is significantly degraded. On the other hand,
in the quantization, an element of the compressed message
corresponds to an element of an uncompressed message.
Thus, the difference in the contribution between elements in
the quantization is smaller than that in the dimensional reduc-
tion; this is a reason for the robustness of the quantization
against packet loss, which will be validated in Section IV-D2.

D. DETAILS OF DISTRIBUTED INFERENCE
The DI is conducted when an inference task with input x is
generated in the IoT device, which is depicted in Fig. 2 (b).
First, the device generates and compresses the activation as
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follows:

a = f cmp(· | M ) ◦ f in(x | win). (9)

Subsequently, the activation is transmitted by the communi-
cation link denoted in (1). Thus, the reconstructed vector is
calculated as

a′ = f c(a | p) = a�m(p). (10)

To compensate the drops of the activation, the activation is
multiplied by 1/1− p. From the compensated activation, the
uncompressed activation is estimated as

ar = f dec
(

1
1− p

a′
)
. (11)

Subsequently, ar is fed to the output-sub DNN, and we obtain
the prediction result. The prediction result y can be written as

y = f trn(· | wtrn) = f out(· | wout) ◦ f dec(·)

◦f c(· | p) ◦ f cmp(· | M ) ◦ f in(x | win).

(12)

If f d(· | r) in the model training is close to f c(· | p)
in the DI, the model is expected to accurately predict from
the corrupted activation. Comparing (7) and (1), when the
parameter r is similar to the parameter p, f d(· | r) is similar
to f c(· | p). Thus, when r is similar to p, the COMtune
is expected to improve the prediction accuracy from the
corrupted activation. Moreover, our evaluation revealed
that even when the difference between r and p is large
(e.g., (r, p) = (0.5, 0.0)), the COMtune achieved higher
accuracy than the previous DI.

IV. EVALUATION
A. SETUP
We conducted a simulation evaluation in which an IoT device
and edge server are connected by an abstracted communi-
cation link, and packets transmitted between them are ran-
domly discarded with a certain probability. Since this study
focuses on the trade-off between communication latency and
accuracy, the simulation omitted the computation latency for
processing the DNN model and the activation compression.
The details of the simulation are as follows.

1) COMMUNICATION SETUP
An IoT device and an edge server were assumed to be
connected via a lossy IoT network, which was abstracted
as a communication link, in which packets were randomly
dropped with the probability p. Hence, the elements of the
activation vector transmitted by the IoT device were ran-
domly dropped. To calculate the communication latency,
the packet size and throughput of the communication link
(including MAC and network layer overheads) were set to
100 bytes and 9.0Mbit/s .2 We considered two communica-
tion protocols; unreliable protocol (i.e., without retransmis-
sions) and reliable protocol (i.e., with retransmissions).

2Note that this parameter is an example of the parameters defined in IEEE
802.11ah.

FIGURE 3. Architecture of DNN. Each convolutional neural network (CNN)
block consists of two or three convolutional, batch normalization, and
max-pooling layers. The number of convolutional layers a in each CNN
block and the output channel b are denoted as (a, b) in each CNN block.
The fully connected (FC) block consists of three FC layers.

2) DATASET AND MACHINE LEARNING MODELS
We used an image recognition dataset, CIFAR-10,3 with
50,000 training and 10,000 testing images that represented
10 image classes, such as ‘‘dog’’ and ‘‘ship.’’ The training
dataset was used to fine-tune the pre-trained model in the
COMtune. The test dataset was used to evaluate the inference
performance of the DI phase.

The architecture of theDNNmodel used in the experiments
is shown in Fig. 3. The model was designed with reference to
VGG16 [29], which consists of five convolutional blocks and
a FC block. Each convolutional block included two or three
3 × 3 convolutional layers activated by the rectified linear
unit (ReLU), and the block was followed by a 2 × 2 max-
pooling layer. The convolutional layers have the same number
of output channels in each convolutional block. Additionally,
one of the two convolutional layers is followed by the batch
normalization layer. The FC block consists of three FC layers
(256 and 128 units with ReLU activation and 10 other units
activated by softmax).

3) MACHINE LEARNING TRAINING
The detailed ML training procedure is as follows: The train-
ing dataset is divided into updating and validation datasets
in a ratio of 9:1. The DNN model is updated using only
the updating dataset for multiple epochs. In each epoch, the
model is evaluated using the validation dataset. The training
is completed if 150 epochs are performed, or if the validation
loss increased after 20 epochs consecutively, which indicates
that the model is starting to overfit. The Adam optimizer,
a training rate of 0.001, and a mini-batch size of 128 were
selected as hyperparameters. Notably, this paper generates a
pre-trained model by training a randomly initialed MLmodel
using the aforementioned training procedure.

3https://www.cs.toronto.edu/ kriz/cifar.html
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FIGURE 4. Cumulative distribution function of the accuracy and
communication latency for the previous DI and proposed DI with
COMtune on the reliable and unreliable communication links,
respectively.

4) DISTRIBUTED INFERENCE
In this evaluation, major parts of the inference task were
offloaded to the edge server because the computational capac-
ity of the IoT device is generally much worse than the edge
server. Specifically, the CNN was divided into CNN block 1,
resulting in the inference tasks of CNN block 1 being con-
ducted at the IoT device and that of the CNN blocks 2, 3,
4, and 5, and the FC block being conducted in the edge
server. The dimensions of the activation of the CNN block 1 is
16,384, which is 65.5 kB in 32bit float point representation
(e.g., the communication delay is 58.2ms when no packet
loss occurs). The packet loss in the communication link is
emulated by the dropout, where the dropout rate is set to the
packet loss rate, which ranges from 0 to 0.9. Additionally,
we ran each method ten times from different random seeds
and computed the average and standard deviation of the
performance in ten trials.

B. CUMULATIVE DISTRIBUTION FUNCTION OF THE
ACCURACY AND LATENCY
Fig. 4 (a) illustrates the cumulative distribution func-
tion (CDF) of the communication latency of the DI using
reliable and unreliable protocols, respectively, where the acti-
vation compression is not applied. The CDF is obtained

following the aforementioned discussion, with the parameters
described in Section IV-A and the packet loss rate of 0.5.
While using the unreliable protocol, 50% of a message is
dropped. However, in case that a reliable protocol is used, the
entire message is successfully received by retransmissions.
As shown in Fig. 4 (a), due to the no-retransmission policy,
the latency of the unreliable protocol is stable and lower than
that of the reliable protocol. Moreover, the latency of the
reliable protocol transmission is not stable.

Fig. 4 (b) shows the CDF of the accuracy of the pro-
posed DI with COMtune, and previous DI using unreli-
able and reliable protocols, respectively. Regardless of the
underlying communication system, the proposed DI with
COMtune achieved higher accuracy than the previous DI.
This is because of two reasons: regularization and robust-
ness to the packet loss. In the case of the reliable proto-
col, the accuracy of the DI with COMtune and previous
DI is stable because all the transmitted packets are success-
fully received because of the retransmissions. The DI with
COMtune achieved 1% higher accuracy than the previous DI
because of the regularization effect of the dropout technique
used in the COMtune. In contrast, for the unreliable protocol,
the accuracy of the DI with COMtune and previous DI is not
stable due to the transmitted packets being dropped because
of the non-retransmission policy of the unreliable protocol.
In the unreliable protocol transmission, the DI with COMtune
achieved 4% higher accuracy than the previous DI.Moreover,
comparing the accuracy degradation from that on the reliable
protocol to that of the unreliable protocol, the degradation of
the DI with COMtune is smaller than that of the previous DI.
Thus, we can conclude that the COMtune improved the trade-
off between the prediction accuracy and the communication
latency, due to the training involving emulation of corruptions
of the message in the unreliable and low-latency communica-
tion system.

C. IMPACT OF DROPOUT RATE ON ROBUSTNESS AGAINST
PACKET LOSS
Fig. 5 shows the test accuracy of the DI with COMtune,
and previous DI as a function of the packet loss rate while
using the unreliable communication link. In the case of DI
with COMtune, Fig. 5 shows the result for each dropout
rate (i.e., 0.2 and 0.5) used in the COMtune prior to the
DI. For both of the dropout rates, the DI with COMtune
achieved higher accuracy than the previous DI even when the
packet loss rate was low because of the regularization effect
of the dropout technique. Moreover, COMtune mitigates the
accuracy degradation caused by the packet loss, especially
when the packet loss rate is high. In particular, the accuracy
of the previous DI was degraded by more than 10%, when
more than 70% of the packets were dropped,4 while that of
DI with COMtune with the dropout rate of 0.5 exhibited only
a 3.8% degradation in accuracy. Thus, we can conclude that

4In this evaluation, a packet loss rate of 70% corresponds to the successful
reception of about 190 packets out of 640 transmitted packets.
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FIGURE 5. Test accuracy as a function of packet loss rate for each
dropout rate r . The shaded regions denote the standard deviation of the
performance among ten trials.

FIGURE 6. Effect of message compression on achievable accuracy. The
message size without any compression is 64 kB.

COMtune improves the packet loss robustness, even when the
dropout rate in COMtune differs from the packet loss rate.

Moreover, as the dropout rate increases, the accuracy
degradation is better mitigated. Particularly, when the packet
loss rate is 0.7, the model trained with a dropout rate of
0.5 and 0.2 demonstrated a 3.8% and 5.7% degradation in
accuracy, respectively. This is because a larger dropout rate
indicates emulation of the more lossy network in model train-
ing, which encourages the model to achieve high accuracy in
the highly lossy network.

D. PERFORMANCE EVALUATION WITH COMtune USING
ACTIVATION COMPRESSION
1) EFFECT OF ACTIVATION COMPRESSION ON ACHIEVABLE
ACCURACY
Fig. 6 shows the test accuracy as a function of the message
size without any packet loss, that is, that all transmitted pack-
ets were successfully received. The message is compressed
by either quantization or dimensional reduction, which are
both detailed in Appendix A. Even when the message is
compressed, the accuracy is comparable to that when the
message is not compressed (i.e., the 65.5 kB message), which
is consistent with the existing works that have addressed
DNN compression [32]. However, the following evaluation,
as shown in Fig. 8, reveals that there is a trade-off between the

FIGURE 7. Test accuracy as a function of packet loss rate with or without
message compression (message size is 4 kB and 64 kB, respectively). The
black and red lines indicate the results obtained using the DNN tuned
without any dropout layer and the COMtune with dropout rates of 0.5,
respectively. The solid lines and shaded regions denote the average and
standard deviation of the accuracy among ten trials with the message
compression, respectively. The dots lines indicate the average accuracy
without message compression.

message size and robustness to the unreliable communication
link; when the message is highly compressed, the robustness
is degraded.

2) EFFECT OF COMMUNICATION-ORIENTED MODEL
TUNING ON ACCURACY WITH ACTIVATION COMPRESSION
Fig. 7 shows the test accuracy as a function of packet loss
rate, with or without message compression (message size is
4 kB and 64 kB, respectively), using the unreliable protocol.
Fig. 7 (a) and (b) show the results when the quantization and
dimensional reduction are applied to compress the message,
respectively. In Fig. 7 (a), when the compression is applied,
the accuracy of DI with COMtune is higher than that of
the previous DI regardless of the packet loss rate, which
is consistent with Fig. 5. This demonstrated that COMtune
improved the packet loss tolerance of the split model in case
that the message is highly compressed, as well as the message
is not compressed. In Fig. 7 (b), the DI with COMtune
achieved higher accuracy than precious DI when the dropout
rate and the packet loss rates are similar. In particular, DI with
COMtune with the dropout rate of 0.5 does when the packet
loss rate is larger than 0.1.

Comparing the accuracy with and without compression,
when the dimensional reduction is applied, the accuracy with
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FIGURE 8. Effect of message size of DI with COMtune on robustness to
the unreliable communication link. Quantization is applied as the
message compression method, and DNNs are turned with dropout rates
of 0.2.

compression is more degraded than without compression. For
example, the accuracy degradation when the packet loss rate
of 0.5 is 7.0% for DI with COMtune, and that is 34.6% for
previous DI. On the other hand, when the quantization is
applied, the accuracy with compression is comparable to that
with compression. As discussed in Section III-C, this gap
between the two message compression methods is explained
in terms of the difference in the contribution of each ele-
ment of the compressed message; the difference in dimen-
sional reduction is significantly larger than the quantization.
Thus, in the dimensional reduction, the accuracy is signifi-
cantly degradedwhen the element of the compressedmessage
has a high contribution. Therefore, we can conclude that
quantization is a message compression method that achieves
more robustness against the packet loss than the dimensional
reduction.

Fig. 8 shows the test accuracy of DI using COMtune as
a function of the message size for the packet loss rate of
0.2 and 0.5, respectively. In this evaluation, the quantization
is applied as the message compression method. Regardless of
the packet loss rate, the accuracy is degraded as the message
size is reduced. Thus, we conclude that message compression
degrades the robustness of the DI system to the unreliable
communication link. This is because message compression
reduces the redundancy of the message.

V. CONCLUSION
We have presented COMtune that aims to improve the pre-
diction accuracy and communication latency by efforts on the
application layer. Specifically, we aimed to achieve accuracy
prediction under low-latency and unreliable communication
link, such as UDP transmission. In COMtune, the key idea is
to train theMLmodel by emulating the effect of the unreliable
communication link, such that the model gains robustness to
the unreliable communication system. Our experimental ML
evaluation revealed that DI with COMtune obtains a more
accurate prediction than previous DI on the highly unreli-
able communication link. Moreover, we revealed that the
proposed COMtune is compatible with the general message
compression methods. An interesting area for future work is

an optimization framework that determines the parameters of
the emulated communication systems to maximize the model
accuracy in lossy wireless networks under the constraints of
the total latency of communication and computation.

APPENDIX A
COMPRESSION METHODS
To reduce communication payload size of the message
(i.e., activation of the input-sub DNN), we adapted general
lossy compression methods that are quantization and dimen-
sional reduction. Generally, the lossy compression method
in DNN literature implies the compression of both, the acti-
vation and model parameters aiming to reduce the data size
of the parameters and the computation cost of the inference.
However, this study aims to reduce the data size of the acti-
vation, thus only the activation is compressed.

A. ACTIVATION QUANTIZATION
In the quantization, the elements of the activation are com-
pressed from full-perception values (i.e., 32 bit float represen-
tation) to quantized values (i.e., n bit integer representation).
The quantized activation is transmitted to the edge server as a
message and dequantized to full-perception activation in the
edge server, which is fed to output-sub network, in which
the communication payload is reduced by n/32. Given the
desired message size M and uncompressed message size
Mfloat, which is the message size with 32bit float point, n is
determined as n = b32M/Mfloat

c.
For more details of quantization, the elements are clipped

into predefined ranges, and further represented by n bit inte-
gers. First, the full-perception activation elements are clipped
into range from smin to smax, where smin and smax are scale
factors that indicate smallest and largest value represented
by quantized value, respectively. The scale factors are deter-
mined for each activation element based on the range of
the distribution of the element using the pre-trained dataset.
Finally, the clipped value is quantized to n bit integer.

Hence, given ith element of full-perception activation as
afloati , the corresponding clipped value aclipi is denoted as

aclipi = max
(
min

(
afloati , smin

i

)
, smax
i

)
. (13)

Note that the scale factors are determined in the cloud server
prior to the DI. The quantized activation ainti is represented as

ainti = round

(
2n − 1

smax
i − smin

i

afloati

)
. (14)

For shorthand notation, we denote a quantization function of a
single element of the activation by f qut(a, smin, smax), where
f qut(afloati , smin

i , smax
i ) = ainti . From the quantized activation

ainti , the unquantized activation is estimated as follows:

adeqi =
smax
i − smin

i

2n − 1
ainti . (15)

For shorthand notation, we denote a dequantization function
of a single element of the activation by f deq(a, smin, smax),
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where f deq(ainti , s
min
i , smax

i ) = adeqi . Thus, given D dimen-
sional vectors smin, smax, and a as the scale factors and
uncompressed activation, the compression and decompres-
sion functions are denoted as

f cmp(a | M ) =
{
f qut(ai, smin

i , smax
i ) | 0 < i ≤ D

}
, (16)

f dec(a) =
{
f deq(ai, smin

i , smax
i ) | 0 < i ≤ D

}
. (17)

B. DIMENSIONAL REDUCTION
In dimensional reduction, the activation is converted to a
linear combination of basis vectors, where the number of the
basis vectors is smaller than the dimensions of the activation.
In the DI, the coefficients of basis vectors are transmitted
rather than the elements of the activation, which reduces the
communication payload size by D′/D, where the number
of the basis vectors is D′ and the dimensions of the activa-
tion is D. Thus, given the compressed message size M and
uncompressed message size M ′, D′ is determined as D′ =
bMD/M ′c. The server estimates the uncompressed activation
using the basis vector and the received coefficients. Formally,
given a D dimensional vector a as the uncompressed activa-
tion and D′ dimensional vector a′ as a compressed activation,
the compression and decompression functions are denoted as

f cmp(a | M ) = wa, (18)

f dec(a′) = wTa′ + b, (19)

where w is a D′ × D matrix and b indicates D dimensional
bias vector, respectively.

To determine the parameters w, PCA is used. In more
detail, ith row of w is an eigenvector of the data covariance
matrix S of the pre-trained dataset, which corresponds to ith
largest eigenvalue. The data covariance S is denoted as

S =
1
|A|

∑
a∈A

(a− a)(a− a)T, (20)

a :=
1
|A|

∑
a∈A

a, (21)

where

A = {f in(xj | win) | xj ∈ preobtained dataset}. (22)

The bias vector b is denoted as

b =
D∑

i=D′+1

(aTui)ui, (23)

where ui is an eigenvector of S, corresponding to ith largest
eigenvalue.
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