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We investigate the I ¼ 1 ππ interaction using the HAL QCD method in lattice QCD. We employ the
(2þ 1)-flavor gauge configurations on 323 × 64 lattice at the lattice spacing a ≈ 0.0907 fm and
mπ ≈ 411 MeV, in which the ρ meson appears as a resonance state. We find that all-to-all propagators
necessary in this calculation can be obtained with reasonable precision by a combination of three
techniques, the one-end trick, the sequential propagator, and the covariant approximation averaging (CAA).
The nonlocal I ¼ 1 ππ potential is determined at the next-to-next-to-leading order (N2LO) of the derivative
expansion for the first time, and the resonance parameters of the ρ meson are extracted. The obtained ρ
meson mass is found to be consistent with the value in the literature, while the value of the coupling gρππ
turns out to be somewhat larger. The latter observation is most likely attributed to the lack of low-energy
information in our lattice setup with the center-of-mass frame. Such a limitation may appear in other
P-wave resonant systems and we discuss possible improvement in future. With this caution in mind, we
positively conclude that we can reasonably extract the N2LO potential and resonance parameters even in
the system requiring the all-to-all propagators in the HAL QCD method, which opens up new possibilities
for the study of resonances in lattice QCD.
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I. INTRODUCTION

Understanding the hadronic resonances from the first-
principle lattice QCD simulation is one of the most
important subjects in particle and nuclear physics. At
present, the finite-volume method [1–3] and the HAL
QCD method [4–7] are employed to extract hadron
interactions. The finite-volume method extracts scattering
phase shifts through finite-volume energy spectra obtained
from temporal correlation functions. It has been success-
fully applied for various two-meson interactions and related
mesonic resonances [8]. In particular, the ρ resonance has
been studied extensively [9–17] as a benchmark, since it is
experimentally well established and is easily investigated
by the single-channel approximation of the I ¼ 1 ππ
P-wave scattering. Recent studies report the results with
multiple lattice spacings [16], and those with pion masses
including physical masses [17].

The HAL QCD method directly constructs inter-hadron
potentials from spatial and temporal correlation functions
calculated in lattice QCD. In this method, the potentials can
be extracted even without ground state saturations for
correlation functions [7]. Scattering parameters are then
obtained by solving the Schrödinger equation in infinite-
volume without any model-dependent ansatz. These fea-
tures make this method particularly useful to study
baryonic systems [18] and coupled channel systems
[19]. The HAL QCD method has been successfully applied
to many hadronic systems (see Ref. [20] and references
therein for the recent status), including the detailed coupled
channel studies for the tetraquark candidate Zcð3900Þ
[21,22] and H-dibaryon [23].
There exists, however, a practical challenge in the HAL

QCD method when expanding the scope to many other
resonances, since the expensive computations of all-to-all
quark propagators are necessary in most cases. To over-
come this difficulty, we have previously explored two
different all-to-all techniques, the LapH method [24] and
the hybrid method [25]. It turned out [26,27] that the LapH
smearing on sink operators with a small number of LapH
vectors enhances nonlocality of the HAL QCD potential
and thus the systematic errors associated with the trunca-
tion of the derivative expansion. Increasing the number of
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LapH vectors to minimize such nonlocality is practically
impossible for larger volumes. On the other hand, the
hybrid method with local sink operators is free from the
enhancement of the nonlocality and is more suitable for
the HAL QCD method. A series of studies with the hybrid
method [28,29], however, has revealed that it requires too
much numerical cost for a reduction of stochastic noises to
perform large-scale simulations for hadronic resonances.
In this paper, we develop a new strategy to handle all-to-

all propagators, where we combine three techniques in
lattice QCD, the one-end trick [30], the sequential propa-
gator calculation [31] and the covariant approximation
averaging (CAA) [32]. We calculate the HAL QCD
potential of the I ¼ 1 ππ scattering on gauge configurations
at mπ ≈ 411 MeV, where the ρ meson is known to appear
as a resonance with mρ ≈ 892 MeV [9]. Numerical accu-
racy in our new strategy allows us to determine the nonlocal
I ¼ 1 ππ potential at the next-to-next-to-leading order
(N2LO) in the derivative expansion for the first time.
Accordingly, resonance parameters are extracted also by
the N2LO analysis. A resonance mass of the ρ meson is
found to be consistent with previous studies, while a
somewhat larger value of the ρππ coupling is obtained.
The latter discrepancy is most likely attributed to the lack of
low-energy information in our lattice setup with the center-
of-mass frame, indicating that calculations with the labo-
ratory frame [33] in addition to the center-of-mass frame
are desirable to study generic P-wave systems in future.
This paper is organized as follows. In Sec. II, we briefly

introduce the HAL QCD method and explain correlation
functions relevant to our calculation. Section III summa-
rizes simulation details. In Sec. IV, we first present results
from the leading order (LO) analysis for two different
source operators. Then, as our main results, we give the
N2LO order potential and resonance parameters, which are
compared with the previous results in the finite-volume
method. Section V is devoted to a summary of this study.
In the Appendix A, we explain the one-end trick, which is a
clever way to treat a certain combination of all-to-all
propagators. Details of calculations of quark contraction
diagrams are given in Appendix B, while possible effects of
smeared quarks for sink operators are investigated in
Appendix C. Some details on the N2LO analysis, namely
the assumption in the potential fit and behavior of our
N2LO potential in terms of energy-dependent local manner,
are given in Appendix D and E.

II. THE HAL QCD METHOD

A fundamental quantity in the HAL QCD method is the
Nambu-Bethe-Salpeter (NBS) wave function, which is
defined as

ψWðrÞ ¼ h0jðππÞI¼1;Iz¼0ðr; 0Þjππ; I ¼ 1; Iz ¼ 0;ki; ð1Þ

where jππ; I ¼ 1; Iz ¼ 0;ki is an asymptotic state for an
elastic I ¼ 1 ππ system in the center-of-mass frame with a
relative momentum k, a total energyW ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
p

and
k ¼ jkj. The operator ðππÞI¼1;Iz¼0ðr; tÞ is a two-pion
operator projected to the I ¼ 1, Iz ¼ 0 channel given by

ðππÞI¼1;Iz¼0ðr; tÞ ¼
1ffiffiffi
2

p fπþs ðrþ x; tÞπ−s ðx; tÞ

− π−s ðrþ x; tÞπþs ðx; tÞg; ð2Þ

πþs ðx; tÞ ¼ dsðx; tÞγ5usðx; tÞ;
π−s ðx; tÞ ¼ usðx; tÞγ5dsðx; tÞ; ð3Þ

where us, ds are smeared up and down quark fields. A detail
of the quark smearing is given in Sec. III. A radial part of
the lth partial component in the NBS wave function
behaves at large r ¼ jrj as [5,34]

ψ l
WðrÞ ≈ AlðkÞeiδlðkÞ

sinðkr − lπ=2þ δlðkÞÞ
kr

; ð4Þ

where AlðkÞ is an overall factor and δlðkÞ is a scattering
phase shift, which is equal to a phase of the S-matrix implied
by its unitarity. By using this property, we can construct an
energy-independent nonlocal potential Uðr; r0Þ as

1

2μ
ð∇2 þ k2ÞψWðrÞ ¼

Z
d3r0Uðr; r0ÞψWðr0Þ; ð5Þ

with μ ¼ mπ=2 a reduced mass of two pions. In general,
the HAL QCD potential depends on a choice of hadron
operators in the NBS wave function (the sink operator
ðππÞI¼1;Iz¼0ðr; tÞ in our case), and it is referred to as the
scheme dependence of the potential [26,35]. Physical
observables extracted from potentials in different schemes,
of course, agree with each other by construction. Therefore,
we can utilize this scheme dependence to reduce statistical
and/or systematic uncertainties of observables. As discussed
in Appendix C, a comparison of different schemes shows
that the I ¼ 1 ππ potential has much smoother r depend-
ences in an “equal-time smeared-sink scheme” [Eq. (2)],
where sink quark fields are slightly smeared and two pion
operators are put on the same time slice. We employ this
scheme for the whole analysis in this study.
To extract the potential in lattice QCD simulations, we

begin with a normalized correlation function defined as

Rðr; tÞ≡ Fππðr; tÞ
FπðtÞ2

; ð6Þ

where Fπ and Fππ are a single-pion and a two-pion
correlation function, respectively,
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FπðtÞ ¼
X
x;y;t0

hπ−ðx; tþ t0Þπþðy; t0Þi; ð7Þ

Fππðr; tÞ ¼
X
t0

hðππÞI¼1;Iz¼0ðr; tþ t0ÞJ T−
1

I¼1;Iz¼0ðt0Þi: ð8Þ

Here J
T−
1

I¼1;Iz¼0ðt0Þ is a source operator which creates ππ

scattering states with ðI; IzÞ ¼ ð1; 0Þ in an irreducible
representation T−

1 of the cubic group. Thus Rðr; tÞ is
related to the NBS wave function as

Rðr; tÞ ¼
X
n

BnψWn
ðrÞe−ðWn−2mπÞt þ � � � ; ð9Þ

where Wn and Bn are energy and overlap factor of the nth
elastic state, and the ellipses indicate inelastic contribu-
tions. Using the energy independence of the potential, we
can show that [7]

�∇2

2μ
−
∂
∂tþ

1

8μ

∂2

∂t2
�
Rðr;tÞ¼

Z
d3r0Uðr;r0ÞRðr0;tÞ; ð10Þ

at a sufficiently large t where inelastic contributions in
Rðr; tÞ becomes negligible. In actual calculations, we
introduce a derivative expansion to treat the non-local
potential as

Uðr; r0Þ ¼ ðV0ðrÞ þ V2ðrÞ∇2 þOð∇4ÞÞδðr − r0Þ; ð11Þ

and the effective LO potential is given by

VLOðrÞ ¼
P

g∈Oh
R†ðgr; tÞ½∇2

2μ −
∂
∂t þ 1

8μ
∂2
∂t2�Rðgr; tÞP

g∈Oh
R†ðgr; tÞRðgr; tÞ ; ð12Þ

where invariance of the potential under the cubic
rotation group Oh is utilized to improve signals [36]. In
this study, we further determine the effective N2LO
potential in order to extract resonance parameters more
accurately. The effective N2LO potential UN2LOðr; r0Þ ¼
ðVN2LO

0 þ VN2LO
2 ∇2Þδðr − r0Þ is determined by solving the

following linear equations [37]:

�
1 ∇2RAðr; tÞ=RAðr; tÞ
1 ∇2RBðr; tÞ=RBðr; tÞ

��
VN2LO
0 ðrÞ

VN2LO
2 ðrÞ

�
¼

�
VLO
A ðrÞ

VLO
B ðrÞ

�
;

ð13Þ

where Riði ¼ A;BÞ are the normalized correlation functions
with different source operators J iðt0Þði ¼ A; BÞ, and
VLO
i ðrÞði ¼ A; BÞ are the effective LO potentials obtained

by Riði ¼ A;BÞ. Note that coefficients V0ðrÞ, V2ðrÞ in the
full derivative expansion (Eq. (11)) are independent of source
operators, while effective N2LO coefficients VN2LO

0 ðrÞ,
VN2LO
2 ðrÞ depend on a choice of source operators. In other

words, effective potentials implicitly depend on discrete
energy levels included in their determination due to the
truncation of the derivative expansion [20]. Therefore,
systematic errors in the derivative expansion for physical
observables depend on the magnitude of nonlocality in the
true potential as well as on the difference between the energy
region relevant for physical observables and that employed to
determine the effective potentials [20].
For the source operators, we choose ρ-type

J
T−
1

ρ;I¼1;Iz¼0ðt0Þ and ππ-type J
T−
1

ππ;I¼1;Iz¼0ðt0Þ in this study,
defined by

J
T−
1

ρ;I¼1;Iz¼0ðt0Þ ¼ ρ03ðt0Þ; ð14Þ

J
T−
1

ππ;I¼1;Iz¼0ðt0Þ ¼ ðππÞI¼1;Iz¼0ðp3; t0Þ; ð15Þ

where p3 ¼ ð0; 0; 2π=LÞ. ðππÞI¼1;Iz¼0ðp; tÞ and ρ03 are
given as

ρ03ðtÞ ¼
X
x

1ffiffiffi
2

p ðuðx; tÞγ3uðx; tÞ − dðx; tÞγ3dðx; tÞÞ ð16Þ

ðππÞI¼1;Iz¼0ðp; tÞ ¼
1ffiffiffi
2

p
X
y1;y2

e−ip·y1eip·y2ðπ−ðy1; tÞπþðy2; tÞ

− πþðy1; tÞπ−ðy2; tÞÞ; ð17Þ

where we use local quark fields for source operators.
Calculations of correlation functions with momentum

projected sources generally need all-to-all propagators,
which requires too much numerical cost to calculate exactly.
Therefore, we evaluate all-to-all propagators by the combi-
nation of the one-end trick, the sequential propagator, and
the CAA.We give a brief introduction of the one-end trick in
Appendix A, and details of diagram calculations are pre-
sented in Appendix B.

III. SIMULATION DETAILS

We employ (2þ 1)-flavor full QCD configurations
generated by the PACS-CS Collaborations [38] on a
323 × 64 lattice with the Iwasaki gauge action [39] at
β ¼ 1.90 and a nonperturbatively improved Wilson-clover
action [40] at cSW ¼ 1.715 and hopping parameters
ðκud; κsÞ ¼ ð0.13754; 0.13640Þ. These parameters corre-
spond to a lattice spacing a ¼ 0.0907 fm, and a pion mass
mπ ≈ 411 MeV, where the ρ meson appears as a resonance
with mρ ≈ 892 MeV [9]. The calculations are performed
in the center-of-mass frame with the periodic boundary
condition for all spacetime directions. In this report,
dimensionful quantities without the corresponding unit
are written in lattice unit unless otherwise stated.
Table I and II show general setups and parameters of the

one-end trick and the CAA, respectively. We employ
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smeared quark operators qsðx; tÞ ¼
P

y fðx − yÞqðy; tÞ
at the sink with the Coulomb gauge fixing, in order to
improve signals of potentials at short distance. A smearing
function f is given by

fðxÞ ¼

8>><
>>:

Ae−Bjxj ð0 < jxj < RÞ
1 ðjxj ¼ 0Þ
0 ðjxj ≥ RÞ;

ð18Þ

with A ¼ 1.0, B ¼ 1.0, R ¼ 3.5. As discussed in
Appendix C, these parameters make potential smoother
without worsening the convergence of the derivative
expansion. For the one-end trick, we generate a single
Z4 noise vector for each insertion. To suppress the
corresponding stochastic noises, we employ a dilution
technique [25] in color, spinor, and space indices. Color
and spinor indices are fully diluted, and for the space
dilution, we take s2 (even-odd) dilution and s4 dilution [29]
in the ππ-type source and the ρ-type source, respectively.
In the CAA, we exactly estimate a low-mode part with
300 eigenmodes, and a high-mode part is estimated by an
average over loosely solved solutions on 64 different
spatial points x¼ðx0þ8l;y0þ8m;z0þ8nÞmod 32, with
l; m; n ∈ f0; 1; 2; 3g. Finer and looser solutions are
obtained with 1.0 × 10−24 and 9.0 × 10−6 for the squared
residue, respectively. We randomly choose the reference
point x0 ¼ ðx0; y0; z0Þ for each configuration.
Figure 1 show an effective mass of a pion obtained by an

average over 200 configurations (×64 time
slice average). A fit to the pion propagator FπðtÞ at t ¼
½tmin; tmax� ¼ ½14; 29� with a cosh function gives
mπ ¼ 413.5ð1.4Þ MeV. We also check a tmin dependence
of the effective mass, and the dependence is negligible

compared with statistical errors as far as tmin ≥ 13.
Therefore we confirm that a ground state saturation in
FπðtÞ is achieved at t ¼ 13. A possible leading inelastic
contribution for two pions in this setup comes from a
P-waveKK state with energyWKK ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ ð2π=LÞ2
p

≈
1530 MeV in noninteracting case, while the two-pion
ground state energy is reported as E0 ¼ 914ð11Þ MeV in
Ref. [9]. We therefore expect inelastic contributions in
Fππðr; tÞ are suppressed at t ≈ 1=½WKK − E0� ≈ 3.5. These
considerations suggest that inelastic contributions in Rðr; tÞ
become negligible at t ≥ 13, so that potentials can be
reliably extracted at t ≥ 13. Hereafter, we show results at
t ¼ 14 and 18 for ρ-type source and ππ-type source,
respectively.
In lattice QCD, the rotational symmetry is broken to

the cubic symmetry, and there exist higher partial wave
components in the irreducible representation of the cubic
group (l ¼ 3; 5;… partial waves in this study). This leads
to systematic uncertainties in the HAL QCD potential,
which exhibit as multivalued structures of potentials as a
function of r. We address this issue by performing the
approximated partial wave decomposition recently intro-
duced to lattice QCD [41]. In practice, we remove the
dominant contaminations, the l ¼ 3 partial wave compo-
nent, when we evaluate the potential at r ¼ ½2; 14.8�.
Tunable parameters of the decomposition [41], a
number of radial bases nmax, a number of partial waves
considered lmax and a width of the shell Δ, are taken as
ðnmax; lmax;ΔÞ ¼ ð4; 5; 1.2Þ at 2 ≤ r ≤ 10 or (4,5,1.5) at
r > 10, where we use larger Δ at larger r to avoid artificial
oscillation of decomposed data due to too small Δ.

IV. RESULT

A. Effective leading-order potentials

Figure 2 (Left) show the results for effective LO potentials
without the partial wave decomposition. We observed that

TABLE I. Numerical setup for the calculation.

Source
type Scheme

Nconf (Number of
time slice ave.) Statistical error

ππ-type Equal-time,
smeared-sink

100 (64) Jackknife with
bin–size 5

ρ-type Equal-time,
smeared-sink

200 (64) Jackknife with
bin–size 10

TABLE II. Setups for the one-end trick and the CAA in this
study. Neig is the number of low eigenmodes. Color and spinor
dilutions are always used.

One-end trick CAA

Source
type

Noise
vector

Space
dilution Neig

Number of
averaged points

ππ-type Z4 noise s2 (even-odd) 300 64
ρ-type Z4 noise s4 300 64

FIG. 1. Effective mass of a pion (blue circles) and the fit result
by a cosh function at t ¼ ½tmin; tmax� ¼ ½14; 29� (cyan solid line
with bands).
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the potentials are attractive at all distances. Figure 2 (Right)
represents potentials after the partial wave decomposition
with the P-wave centrifugal term added, which become
much smoother as multivalued structures are eliminated. The
potentials with the centrifugal term reveal characteristic
features for an existence of a resonance state such as an
attractive pocket at short distances and a potential barrier
around r ¼ 0.5 fm. We also notice that potentials obtained
from different source operators are different from each other,
which fact suggests a presence of non-negligible higher-
order contributions in the derivative expansion.
We fit LO potentials with a sum of Gaussian terms

given by

VðrÞ ¼ a0e−ðr−a1Þ
2=a2

2 þ a3e
−ðr−a4Þ2=a25 þ a6e−ðr−a7Þ

2=a2
8 :

ð19Þ
For the fit, we utilize data projected to the l ¼ 1 component
by the partial wave decomposition at r ¼ ½2; 14.8� as

already discussed, combined with the original lattice data
at r ≤ 2, to which the partial wave decomposition cannot
be reliably applied. We also remove data at very short
distances (r ¼ 0, 1) since they suffer from large discretiza-
tion errors. Remaining systematic uncertainties caused
by nonsmoothness at short distances are estimated by
differences among three different fit results: a result using
all allowed data (Fit), a result removing data at r ≤ 0.3 fm
which deviate more than 1σ upward from Fit (Fit−), and a
result removing data at r ≤ 0.3 fm which deviate more than
1σ downward from Fit (Fitþ). In this study, we employ the
uncorrelated fit unless otherwise stated. The fit results
using all allowed data (Fit) are shown in Figure 3, and
comparisons of three fit results at short distances are given
in Fig. 4. Resultant fit parameters and χ2=dof are given in
Table III and IV. As seen in Fig. 4, the nonsmooth behavior
of the potential at short distances, which is probably caused
by contaminations from higher partial waves, affects the
fit result at r≲ 0.25 fm. Since the removal of such

FIG. 2. Left: effective LO potentials. Blue and red points show the results from the ρ-type source and the ππ-type source, respectively.
Inset shows an enlarged view of potentials. Right: improved potentials obtained by the partial wave decomposition with the P-wave
centrifugal term, VcðrÞ ¼ 1

2μ
1·2
r2 .

FIG. 3. Left: fit result with the ρ-type source. Inset shows an enlarged view of them. Right: the same plot with the ππ-type source.
Both results are obtained with all allowed data points.
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contaminations at short distances is impractical, we esti-
mate systematic errors for physical observables by
differences among fit results, taking the result using all
allowed data as a central value.
Figure 5 shows phase shifts obtained from fitted poten-

tials, where systematic errors associated with removals of
data at short distances are shown by light color bands on top
of statistical errors by dark color bands. Shown together is
the previous finite-volume result reported in Ref. [9], which
employs the same gauge configurations. The phase shift
obtained with the ρ-type source crosses 90 degrees aroundffiffiffi
s

p
≈ 870 MeV, while it only reaches around 130 degrees

as the energy increases. On the other hand, the phase shift
obtained with the ππ-type source crosses 90 degrees at
much higher energy, around

ffiffiffi
s

p
≈ 1050 MeV, with much

broader width. These behaviors are probably caused by
truncation errors of the derivative expansion for the LO
potential. Since the ρ-type source strongly overlaps the ρ
resonance state, which corresponds to the ground state in
this setup, the resultant phase shift with the ρ source
reproduces the ρ resonance structure relatively well. On the
other hand, since the ππ-type source mainly overlaps

P-wave ππ scattering states, which appear in the energy
region far above the ρ resonance in this lattice setup, it is
difficult for the phase shift with the ππ-type source to
capture the resonance structure correctly.

B. The N2LO analysis

As we have two LO potentials, we can proceed to the
N2LO analysis. The effective N2LO potentials are obtained
through Eq. (13) as

VN2LO
2 ðrÞ ¼ VLO

ρ ðrÞ − VLO
ππ ðrÞ

∇2RρðrÞ=RρðrÞ −∇2RππðrÞ=RππðrÞ
ð20Þ

VN2LO
0 ðrÞ ¼ VLO

ρ ðrÞ − VN2LO
2 ðrÞ∇2RρðrÞ=RρðrÞ: ð21Þ

In Fig. 6 (upper left), we show VN2LO
2 obtained from raw

data (blue points), and l ¼ 1 data with the partial wave
decomposition (red points). Thanks to the removal of
higher partial wave contaminations, we can significantly
reduce fluctuations of VN2LO

2 , as seen in the figure.

FIG. 4. Systematic uncertainty in the fit of the potential at short distances. Left: three fit results with the ρ-type source. Red and blue
points show data used in Fit− and Fitþ, respectively, and magenta and green lines are results of Fit− and Fitþ. We also show the fit result
with all allowed data (Fit) by a cyan line for a comparison. Right: the same plot with the ππ-type source.

TABLE III. Fit parameters for effective LO potential with the ππ-type source.

a0 a1 a2 a3 a4 a5 a6 a7 a8 χ2=dof

Fit −0.0821ð42Þ 8.04(38) 5.15(44) −5.94ð11Þ −0.649ð93Þ 3.995(74) 0.548(21) 4.670(15) 2.009(26) 0.85
Fitþ −0.0976ð75Þ 6.95(63) 5.75(56) −5.20ð10Þ −0.09ð10Þ 3.658(99) 0.525(34) 4.611(17) 2.0286(34) 0.24
Fit− −0.0983ð10Þ 6.84(79) 5.84(57) −5.66ð14Þ −0.28ð14Þ 3.76(17) 0.574(71) 4.517(43) 2.109(53) 0.14

TABLE IV. Fit parameters for effective LO potential with the ρ-type source.

a0 a1 a2 a3 a4 a5 a6 a7 a8 χ2=dof

Fit −0.1146ð74Þ 9.64(33) 5.23(47) −6.35ð17Þ −1.03ð15Þ 4.456(95) 0.711(25) 4.818(23) 2.068(29) 1.15
Fitþ −0.124ð11Þ 8.8 9(65) 5.83(68) −5.57ð16Þ −0.42ð15Þ 4.12(14) 0.712(41) 4.752(27) 2.111(36) 0.29
Fit− −0.120ð17Þ 9.1(1.1) 5.75(97) −6.18ð21Þ −0.74ð23Þ 4.34(27) 0.81(11) 4.650(72) 2.227(79) 0.18
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A somewhat singular behavior at r ≈ 0.5 fm is caused by
a vanishing denominator of VN2LO

2 in Eq. (20). We however
expect that this singular behavior is canceled by a vanishing
numerator at the same point. As discussed in Appendix D,
this expectation is shown to be true as long as the N4LO
(and higher order) terms in the derivative expansion are
negligible. Furthermore, we assume that 1–2μVN2LO

2 > 0,
which is also shown to be true in Appendix D if the N4LO
or higher order terms are negligible. We thus fit VN2LO

2 (red
point) by a smooth function, a 3-Gaussian function in
Eq. (19), where data with 1–2μVN2LO

2 ≤ 0 are excluded in
the fit. Fit parameters for VN2LO

2 are summarized in Table V
and the fit result is shown by a cyan band in Fig. 6 (upper
right). Since significant nonsmooth behavior is not
observed for VN2LO

2 at short distances, systematic errors
associated with removals of data mentioned before are not
included in the analysis for VN2LO

2 .
Let us consider a determination of VN2LO

0 ðrÞ next. We
first fit the Laplacian term ∇2RρðrÞ=RρðrÞ by the same
3-Gaussian function, and resultant parameters are given in
Table VI. We then obtain VN2LO

0 ðrÞ by combining all the fit

FIG. 5. Phase shifts at the LO analysis. Blue (orange) band
shows the ρ-type (ππ-type) source result. Statistical errors are
given by dark color bands, whereas systematic errors estimated
by three different fits at short distances are represented by light
color bands. The previous finite-volume results by the PACS-CS
Collaboration [9] are also given by navy stars for comparison.

FIG. 6. Effective N2LO potentials. Upper left: VN2LO
2 determined from raw data (blue circles) and data obtained with the partial wave

decomposition (red triangles). Upper right: the fit result (cyan band) using the decomposed data (red triangles). Lower: VN2LO
0 obtained

by three fit results, Fit(cyan), Fit−ðmagentaÞ and FitþðgreenÞ. Shown together are the effective LO potentials for a comparison.
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results in Eq. (21). We estimate systematic errors of
VN2LO
0 ðrÞ at short distances through those of VLO

ρ and
∇2RρðrÞ=RρðrÞ. Figure 6 (lower) shows the resultant

VN2LO
0 , together with effective LO potentials, VLO

ρ and
VLO
ππ , for a comparison. As expected, there exists a large

difference between VLO
ρ;ππ and VN2LO

0 in Fig. 6 (lower).
To obtain the N2LO phase shifts, we solve the radial

Schrödinger equation with the N2LO potential, rewritten as

�
d2

dr2
−
lðlþ 1Þ

r2
−
2μV0ðrÞ − k2

1 − 2μV2ðrÞ
�
ϕ ¼ 0: ð22Þ

The N2LO phase shifts and the corresponding k3 cot δ1=
ffiffiffi
s

p
are shown in Fig. 7, together with the LO phase shifts and
the previous finite-volume result for comparisons. We have
checked that the N2LO phase shifts do not vary beyond the
magnitude of statistical errors even if we choose a different
timeslice for the ππ-type source in the N2LO analysis.
As can be seen in Fig. 7, except for the region s <

0.75 GeV2 (
ffiffiffi
s

p
< 870 MeV), the N2LO phase shifts and

k3 cot δ1=
ffiffiffi
s

p
are roughly consistent with the finite-volume

results. The deviation observed in the low-energy region

can be understood from the truncation error of the deriva-
tive expansion as discussed in Sec. II. In this study, the
calculations are performed only in the center-of-mass
energy frame, where the corresponding energy levels on
the current lattice volume do not cover the low-energy
region near the ππ threshold. Therefore, the N2LO approxi-
mation in this study could suffer from the large truncation
error of the derivative expansion in such a low-energy
region. This discrepancy actually affects a determination of
some resonance parameters as will be discussed later. The
detailed investigation is left for future studies since it needs
much higher precision with possibly an additional technical
development of the laboratory-frame calculation [33].

C. Resonance parameters

In this subsection, we extract resonance parameters for the
ρ meson in the N2LO analysis using two different methods.

1. Breit-Wigner fit

We first extract resonance parameters in the conventional
way, by fitting the scattering phase shifts with the
Breit-Wigner form as

TABLE V. Fit parameters of the VN2LO
2 .

a0 a1 a2 a3 a4 a5 a6 a7 a8 χ2=dof

−12.8ð6.4Þ 8.82(24) 1.37(11) −9.4ð5.8Þ 9.86(94) 3.97(78) 5.7(4.7) 4.8(2.4) 6.48(72) 0.063

TABLE VI. Fit parameters of the Laplacian term ∇2Rρ=Rρ.

a0 a1 a2 a3 a4 a5 a6 a7 a8 χ2=dof

Fit −0.0271ð12Þ 9.04(43) 6.21(36) −1.135ð25Þ −0.70ð13Þ 4.33(12) 0.1452(78) 4.743(26) 2.143(36) 3.44
Fitþ −0.0270ð18Þ 9.03(67) 6.25(52) −0.993ð19Þ −0.07ð11Þ 4.17(14) 0.175(18) 4.591(46) 2.264(61) 1.54
Fit− −0.0249ð16Þ 9.71(61) 5.76(50) −1.165ð24Þ −0.71ð15Þ 4.56(15) 0.188(20) 4.550(60) 2.348(69) 1.09

FIG. 7. The N2LO phase shifts (left) and k3 cot δ1=
ffiffiffi
s

p
(right), together with LO results (left figure) and previous finite-volume result

by the PACS-CS Collaboration [9] (both figure) for comparisons. Large statistical errors at s > 0.9 GeV2 in k3 cot δ1=
ffiffiffi
s

p
(right) are

mainly caused by a divergent behavior of cot δ at the phase shift around 180 degrees.
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k3 cot δ1ðkÞffiffiffi
s

p ¼ 6π

g2ρππ
ðm2

ρ − sÞ; ð23Þ

where mρ and gρππ are fit parameters corresponding to a
resonance mass and a ρ → ππ effective coupling, respec-
tively. We show the fit result in Fig. 8, which gives

mρ ¼ 888ð19Þðþ6
−2Þ MeV; ð24Þ

gρππ ¼ 13.4ð2.6Þðþ0.8
−0.0Þ; ð25Þ

with χ2=dof ¼ 0.18, where the first errors are statistical and
the second ones are systematic errors associated with the
short-range behavior of VN2LO

0 .
We have checked that resonance parameters remain

unchanged within statistical errors even if we add a
centrifugal barrier modification as a higher order term in
k2 [42] to the standard Breit-Wigner form in Eq. (23).

2. Direct pole search

Theoretically, a resonance state is defined as a pole of
the S-matrix on the second Riemann sheet, which provides
us the second method to extract resonance parameters in
the HAL QCD method. To access the S-matrix in complex
energy region, we solve the Schrödinger equation with
arguments rotated by r → reiθ, k → ke−iθ [43–45],
which reads

�
d2

dr2
−
lðlþ 1Þ

r2
−
2μe2iθV0ðeiθrÞ − k2

1 − 2μV2ðeiθrÞ
�
ϕ ¼ 0: ð26Þ

The regular solution ϕ to this equation behaves at long
distances as

ϕ →
i
2
½J lðke−iθÞĥ−l ðkrÞ − J �

l ðke−iθÞĥþl ðkrÞ�; ð27Þ

where ĥ�l ðzÞ ¼ n̂lðzÞ � iĵlðzÞ are the Riccati-Hankel func-
tions and J l is the Jost function for the angular momentum
l. The S-matrix on the ray of ke−iθ can therefore be
obtained as

slðke−iθÞ ¼
J �

l ðke−iθÞ
J lðke−iθÞ

; ð28Þ

from which we can search a pole position kpole ¼
jkpoleje−iθpole by changing an input θ and k. The resonance
mass and the decay width are extracted from the pole
position

ffiffiffi
s

p
pole as

ffiffiffi
s

p
pole ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2pole þm2

π

q
¼ mρ − iΓρ=2; ð29Þ

where the decay width is related to the coupling constant
gρππ as

gρππ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πΓρm2

ρ

k3ρ

s
; kρ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ=4 −m2
π

q
: ð30Þ

The direct pole search gives

mρ ¼ 886ð17Þðþ4
−1Þ MeV; ð31Þ

Γρ=2 ¼ 22ð8.6Þðþ4.5
−0.0Þ MeV; ð32Þ

gρππ ¼ 12.7ð2.9Þðþ0.7
−0.0Þ; ð33Þ

where the first errors are statistical while the second ones
are systematic errors associated with the short-range
behavior of VN2LO

0 .

3. Comparison to the previous result

Let us compare our N2LO results with the previous
PACS-CS (2011) result using the finite-volume method [9],
both of which employ the same gauge configurations. We
plot mρ and gρππ in Fig. 9. While mρ’s are consistent with
each other in all three cases, the Breit-Wigner fit, the pole
search and the PACS-CS (2011) result, coupling constants
in our both results are about twice as large as the previous
one. This discrepancy can be clearly seen as a difference in
slopes of k3 cot δ1=

ffiffiffi
s

p
data at s < 0.9 GeV2 in Fig. 8,

which directly correspond to the coupling as −6π=g2ρππ . In
particular, a significant disagreement between the lowest
energy level in PACS-CS and our data at s ≈ 0.75 GeV2 is
a main source of the discrepancy for the slope. We note that
the lowest energy level in PACS-CS (2011) is obtained in
the laboratory frame with P ¼ ð0; 0; 2π=LÞ. Since such a
low-energy region cannot be covered by the center-of-mass

FIG. 8. The Breit-Wigner fit for the N2LO phase shifts
k3 cot δ1ðkÞ=

ffiffiffi
s

p
(blue points). The green band represents the fit

with statistical errors and a range of the energy used in the fit. We
also show data and Breit-Wigner fit of PACS-CS (2011) [9] by the
black points and the dashed line, respectively, for a comparison.
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frame employed in this study and the nonlocality of the
potential in I ¼ 1 ππ systems turns out to be large, our
N2LO approximation is likely to suffer from large trunca-
tion errors in the derivative expansion at low energies.
This observation gives us a useful lesson for the study of

P-wave (or higher partial wave) resonances by the HAL
QCD method with the center-of-mass frame. If the non-
locality of the potential happens to be large, the truncation
errors could be large at low-energies near the threshold.
While a resonance mass is likely to be well reproduced
as long as the resonance appears in the energy region
accessible in the center-of-mass frame, the decay width (the
effective coupling) may suffer from larger systematics since
it is sensitive to energy dependence on a much wider range
around the resonance. As a possible option to control this
systematics, if the resonance mass can be roughly guessed,
one may tune lattice parameters such as a box size carefully
so as to cover a wide energy range even in the center-of-
mass frame. This procedure, however, is difficult in practice
and applicability for searches of unknown resonances is
also limited. The second option is to establish the existence
of a resonance and to estimate its mass by the HAL QCD
method in the center-of-mass frame, which is supplemented
by the finite-volume method in the laboratory frame to
estimate its width reliably. The third option is to perform
the HAL QCD method with a combination of both the
center-of-mass and laboratory frames. In fact, a theoretical
framework has been already proposed for the HAL QCD
method in the laboratory frame [33]. While extraction of
HAL QCD potentials from NBS wave functions in the
laboratory frame is indeed a numerical challenge, the first
numerical trial is now ongoing.

V. SUMMARY

We study the I ¼ 1 ππ interaction at mπ ≈ 411 MeV,
where the ρ meson emerges as the resonance with
mρ ≈ 892 MeV. We calculate all-to-all propagators by a
combination of the one-end trick, the sequential propagator,
and the covariant approximation averaging. Thanks to
those techniques, we successfully determine the potential
in this channel at the N2LO of the derivative expansion for
the first time and calculate the resonance parameters of
the ρ meson.
The mass and decay width of the ρ resonance are

directly extracted from the pole position of the S-matrix,ffiffiffi
s

p
pole ¼ 886ð17Þ − i22ð9Þ, whose real part agrees with the

ρ resonance mass in the previous study but whose imagi-
nary part leads to the coupling constant gρππ twice as large
as the previous one. Larger coupling gρππ originates from
the discrepancy in phase shifts at s≲ 0.75 GeV2, whose
energy region cannot be covered in the center-of-mass
frame of our lattice setup. This observation provides a
useful lesson for studies of P-wave resonances by the HAL
QCD method and future direction for the improvement is
discussed.
Although the issue above remains to be verified explic-

itly, the result in this study shows that hadronic resonances
which require all-to-all calculations can be investigated
with reasonable precisions even at the N2LO level in the
HAL QCD method. This study opens new doors toward
understanding hadronic resonances by the HAL QCD
method, including more challenging systems such as
I ¼ 0 ππ (σ resonance), I ¼ 1=2 Kπ (κ resonance) and
exotic resonances.
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APPENDIX A: THE ONE-END TRICK

In this Appendix, we briefly explain the one-end trick
[30], which enables us to estimate a combination of two

all-to-all propagators with a space summation by using a
single noisy estimator. Let us consider a combination of
quark propagators given by

X
y

eip·yD−1
f ðx1; t1; y; t0ÞΓD−1

f0 ðy; t0;x2; t2Þ; ðA1Þ

where D−1
f is a quark propagator with a flavor f, Γ is

some product of gamma matrices, and xi ¼ ðxi; tiÞ are
arbitrary. We abbreviate color and spin indices for sim-
plicity. Such a structure typically appears at the source side
of correlation functions including meson operators. For
example, in the separated diagram in Fig. 10, it appears
twice as

ðþÞ
X
y1;y2

eipz·y1e−ipz·y2 tr½D−1ðxþ r; t; y1; t0Þγ5D−1ðy1; t0;xþ r; tÞγ5�tr½D−1ðx; t; y2; t0Þγ5D−1ðy2; t0;x; tÞγ5�: ðA2Þ

The calculation of those structures naively needs two stochastic estimations for each, since each of them contains two all-to-
all propagators. The one-end trick, however, utilize the γ5-Hermiticity of the Dirac operator to estimate that structure with a
single noise insertion as follows.

X
y

eip·yD−1ðx1; y; t0ÞΓD−1ðy; t0; x2Þ ¼
X
y;z

eip·yD−1ðx1; y; t0Þδy;zΓD−1ðz; t0; x2Þ

≈
X
y;z

eip·yD−1ðx1; y; t0Þ
�
1

Nr

XNr−1

r¼0

η½r�ðyÞη†½r�ðzÞ
�
ΓD−1ðz; t0; x2Þ

¼ 1

Nr

XNr−1

r¼0

�X
y

D−1ðx1; y; t0Þη½r�ðyÞeip·y
��X

z
γ5D−1ðx2; z; t0Þγ5Γ†η½r�ðzÞ

�†
; ðA3Þ

where we insert the stochastic estimator δy;z ≈
1
Nr

PNr−1
r¼0 η½r�ðzÞη†½r�ðyÞ in the second line and use the

γ5-Hermiticity in the last line. We define “one-end
vectors” as

ξp;t0½r�ðxÞ≡
X
y

D−1ðx; y; t0Þη½r�ðyÞeip·y ðA4Þ

χΓ;t0½r�ðxÞ≡
X
y

D−1ðx; y; t0Þγ5Γ†η½r�ðyÞ; ðA5Þ

then the final expression becomes

X
y

D−1ðx1; t1; y; t0ÞΓD−1ðy; t0;x2; t2Þ

≈
1

Nr

XNr−1

r¼0

ξp;t0½r�ðx1; t1Þ ⊗ χ†Γ;t0½r�ðx2; t2Þγ5: ðA6Þ

The one-end vectors ξ and χ are obtained by solving the
linear equation Dξ ¼ ηeip·y and Dχ ¼ γ5Γ†η, respectively.
The dilution technique for noise reduction can be com-
bined as well. This trick is particularly suitable for the
HAL QCD method since it does not introduce any
stochastic estimations at the sink side, which otherwise
strongly affects spatial dependences of the NBS wave
function. Moreover, a numerical cost and stochastic noises
are also reduced in accordance with a decrease in the
number of noise vectors.

APPENDIX B: NUMERICAL EVALUATION
FOR EACH DIAGRAM

Here we outline details of numerical evaluation for each
diagram calculations in this study. Figure 10 gives repre-
sentative quark contraction diagrams appearing in the two-
pion correlation functions, and the techniques utilized in
the evaluations of quark propagator are shown by different
colors and symbols. Other diagrams similar to these
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representatives are calculated similarly.In the following, we assume to employ a single noise vector for each insertion. Color
and spin indices are implicit for simplicity as well.

1. Separated diagram

As already seen, a separated diagram in Fig. 10 is written as

Gsep
x;t0ðr; tÞ ¼ ðþÞ

X
y1;y2

eipz·y1e−ipz·y2 tr ½D−1ðxþ r; t; y1; t0Þγ5D−1ðy1; t0;xþ r; tÞγ5�

× tr ½D−1ðx; t; y2; t0Þγ5D−1ðy2; t0;x; tÞγ5�: ðB1Þ

By using the one-end trick twice, we obtain

Gsep
x;t0ðr; tÞ ¼ ðþÞ

X
i;j

ð χðiÞ†γ5;t0½r�ðxþ r; tÞξðiÞpz;t0½r�ðxþ r; tÞÞð χðjÞ†γ5;t0½s�ðx; tÞξ
ðjÞ
−pz;t0½s�ðx; tÞÞ; ðB2Þ

where i, j are indices for dilutions and r, s distinguish independent noise vectors. In practice, the center-of-mass coordinate
x is averaged over the whole spacetime to improve the statistical errors,

Gsep
t0 ðr; tÞ ¼ 1

L3

X
x

Gsep
x;t0ðr; tÞ: ðB3Þ

2. Box diagrams

A box diagram shown in Fig. 10 is written as

Gbox
x;t0ðr; tÞ ¼ ð−Þ

X
y1;y2

eipz·y1e−ipz·y2 tr½D−1ðxþ r; t; y1; t0Þγ5D−1ðy1; t0; y2; t0Þγ5D−1ðy2; t0;x; tÞγ5D−1ðx; t; rþ x; tÞγ5�

ðB4Þ

For an estimation of this diagram, we first utilize the one-end trick for a summation of y2,

ð−Þ
X
i

X
y1

eipz·y1 tr½D−1ðxþ r; t; y1; t0Þγ5ξðiÞ−pz;t0½r�ðy1; t0Þχ
ðiÞ†
γ5;t0½r�ðx; tÞD−1ðx; t; rþ x; tÞγ5�: ðB5Þ

We next exactly calculate another all-to-all propagator D−1ðxþ r; t; y1; t0Þ by the sequential propagator technique [31],

where we consider a linear equation with a sequential source vector eipz·y1γ5ξ
ðiÞ
−pz;t0½r�ðy1; t0Þ as

ðDζÞðxÞ ¼ eipz·xγ5ξ
ðiÞ
−pz;t0½r�ðx; tÞδt;t0 ; ðB6Þ

FIG. 10. Representative diagrams appeared in this study. Blue solid, orange dashed, and green dotted lines are calculated with the one-
end trick, sequential propagator and point-to-all propagator, respectively. Statistical improvement by the CAA is also employed
for green dotted lines.
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whose solution ζ is given by

ζðiÞpz;−pz;t0½r�ðx; tÞ ¼
X
y1

D−1ðx; t; y1; t0Þγ5ξðiÞ−pz;t0½r�ðy1; t0Þeipz·y1 : ðB7Þ

Substituting Eq. (B7) into Eq. (B5), we obtain

Gbox
x;t0ðr; tÞ ¼ ð−Þ

X
i

χðiÞ†γ5;t0½r�ðx; tÞH−1ðx; t; rþ x; tÞζðiÞpz;−pz;t0½r�ðrþ x; tÞ; ðB8Þ

where H−1 is an inverse of the hermitized Dirac operator H ¼ γ5D.
To increase statistics of the box diagrams, instead of an average over all xwith an additional noisy estimation, we employ

the covariant approximation averaging (CAA) for x, which is given by

Gbox;imp
x0;t0 ðr; tÞ ¼ Gbox;exact

x0;t0 ðr; tÞ −Gbox;relaxed
x0;t0 ðr; tÞ þ 1

NG

X
x0

Gbox;relaxed
x0;t0

ðr; tÞ; ðB9Þ

where NG is the number of a summation over x0. Here Gbox;exact=relaxed is defined as

Gbox;exact=relaxed
x0;t0 ðr; tÞ ¼ ð−Þ

X
i

�
1

L3

X
x

XNlow

n

1

λn
χðiÞ†γ5;t0½r�ðx; tÞvðnÞðx; tÞvðnÞ†ðxþ r; tÞζðiÞpz;−pz;t0½r�ðrþ x; tÞ

þ χðiÞ†γ5;t0½r�ðx0; tÞH−1
high;exact=relaxedðx0; t; rþ x0; tÞζðiÞpz;−pz;t0½r�ðrþ x0; tÞ

�
; ðB10Þ

where λn and vðnÞ are the nth eigenvalue and eigenvector of H, respectively, Nlow is the number of low-eigenmodes used in
the CAA, while H−1

high;exact=relaxed is an inverse of H projected onto a space spanned by remaining high-eigenmodes solved
with a tight/relaxed stopping condition. Since χ and ζ are already solved with high precision, we only relax a precision of
the sink-to-sink propagator (green dotted line in Fig. 10). Furthermore, we averaged over all x in the low-eigenmode part to
maximize statistics.

3. Triangle diagram

A triangle diagram shown in Fig. 10 is written as

Gtri
x;t0ðr; tÞ ¼ ð−Þ

X
y

tr½D−1ðrþ x; t; y; t0Þγ3D−1ðy; t0;x; tÞγ5D−1ðx; t; rþ x; tÞγ5�: ðB11Þ

Using the one-end trick for a summation over y, we obtain

Gtri
x;t0ðr; tÞ ¼ ð−Þ

X
i

χðiÞ†γ3;t0½r�ðx; tÞH−1ðx; t; rþ x; tÞξðiÞ0;t0½r�ðrþ x; tÞ: ðB12Þ

As in the case of the box diagram, we employ the CAA for x, which gives an improved triangle diagram as

Gtri;imp
x0;t0 ðr; tÞ ¼ Gtri;exact

x0;t0 ðr; tÞ −Gtri;relaxed
x0;t0 ðr; tÞ þ 1

NG

X
x0

Gtri;relaxed
x0;t0

ðr; tÞ; ðB13Þ

where

Gtri;exact=relaxed
x0;t0 ðr; tÞ ¼ ð−Þ

X
i

�
1

L3

X
x

XNlow

n

1

λn
χðiÞ†γ5;t0½r�ðx; tÞvðnÞðx; tÞvðnÞ†ðxþ r; tÞξðiÞ0;t0½r�ðrþ x; tÞ

þ χðiÞ†γ5;t0½r�ðx0; tÞH−1
high;exact=relaxedðx0; t; rþ x0; tÞξðiÞ0;t0½r�ðrþ x0; tÞ

�
: ðB14Þ
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APPENDIX C: SMEARED-SINK SCHEME

In this Appendix, we discuss properties of the smeared-
sink scheme in detail.

1. Point-sink scheme vs smeared-sink scheme
in I = 1 ππ system

To see why the smeared-sink scheme is needed for the
I ¼ 1 ππ potential, let us compare potentials between the
point-sink scheme and the smeared-sink scheme. Figure 11
(left) shows the I ¼ 1 ππ potentials calculated from the
ππ-type source with Nconf ¼ 18 (×64 time slice average).
While the potential in the point-sink scheme show large
nonsmooth and scattered behavior at short distances, which
makes a fit to this potential difficult, such behavior is absent
for the potential in the smeared-sink scheme. Since the
potential in the point-sink scheme without box diagrams
does not show such nonsmooth behavior [Fig. 11 (right)], it
is probably caused by box diagrams, which contain quark
creation/annihilation processes.

We suspect that this nonsmooth and scattered structure is
related to a singular behavior of the NBS wave function at
short distances, caused by quark creation/annihilation
processes in this channel. According to the argument by
the operator product expansion [49–53], the I ¼ 1 ππ
operator at the sink strongly couples to the ρ operator at
short distance, whose mass dimension is lower than the ππ
operator by 3, and the NBS wave function behaves as
ψWðrÞ ∼ 1

r3 Yl¼1;m¼0ðΩrÞ at short distances. This implies
that the NBS wave function is highly localized and singular
around the origin, which is indeed the case in the point-sink
scheme, as seen in Fig. 12 (Left). Since data available
around the origin are restricted on a discrete space, it is
difficult to extract a potential smoothly from such a
localized wave function by a discretized Laplacian. In
the smeared-sink scheme, on the other hand, a singular
structure of the NBS wave function at short distances is
much milder as seen in Fig. 12 (Right), so that the potential
reconstructed from discrete data shows a smoother

FIG. 11. A comparison in I ¼ 1 ππ potential between two schemes at t ¼ 14. Left: the effective LO potentials from the ππ-type source
operator. Blue (red) points show data in the point-sink (smeared-sink) scheme. Right: those from the NBS wave function without box
diagrams.

FIG. 12. The NBS wave function at x ¼ 0 in the point-sink scheme (left) and the smeared-sink scheme (right).
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behavior at short distances. We also expect similar
behaviors of HAL QCD potentials at short distances
generally for other systems which contain quark creation/
annihilation diagrams.

2. Effect on the derivative expansion

The previous HAL QCD study with the LapH method
[26] has revealed that the LapH sink-smearing significantly
enhances nonlocalities of HAL QCD potentials, which
makes the derivative expansion less reliable. Therefore we
would like to check whether our sink-smearing scheme
given in Eq. (2) is free from such a problem. For this
purpose, we calculate I ¼ 2 ππ potential in both point-sink
and smeared-sink schemes and compare LO phase shifts
between the two schemes.
Calculations of NBS wave functions in both schemes

are performed by using the one-end trick with full color/
spin dilution and s2 space dilution for a single Z4 noise.
A number of configuration is Nconf ¼ 10 (×64 time-
slice average), and statistical errors are estimated by the
jackknife method with bin-size 1.
Figure 13 (left) shows effective LO potentials at t ¼ 14.

Potentials between two schemes show significantly different
behaviors only at short distances, which however do not
affect phase shifts at

ffiffiffi
s

p
< 1200 MeV, as plotted in Fig. 13

(right). Thus the smeared-sink does not enhance nonlocality
of the I ¼ 2 ππ potential in this energy region. Since a
relevant energy range for the ρ resonance in this study is well
covered by this energy region (

ffiffiffi
s

p
< 1200 MeV), we also

expect that nonlocality of the I ¼ 1 ππ potential is not
enhanced by the smeared-sink scheme, either.

APPENDIX D: ASSUMPTIONS FOR THE
ANALYSIS OF VN2LO

2

In this Appendix, we discuss assumptions made for the
analysis of VN2LO

2 . The effective LO potential is related to
the exact nonlocal potential as

VLO
i ¼ V0 þ V2

∇2Ri

Ri
þ V4

∇4Ri

Ri
þ � � � : ðD1Þ

Let us consider a case where the N4LO and higher terms are
negligibly small. In this case, the effective LO potential and
the exact N2LO potential V0, V2 can be related by

VLO
i ¼ V0 þ V2

∇2Ri

Ri
; ði ¼ A;BÞ; ðD2Þ

which leads to

ΔVLO≡VLO
A −VLO

B ¼V2

�∇2RA

RA
−
∇2RB

RB

�
≡V2Δ

�∇2R
R

�
:

ðD3Þ

Using this relation, we find

Δ
�∇2R

R

�
¼ 0 at r ¼ r0 ⇒ ΔVLO ¼ 0 and

ΔVLO
ene ¼ 0 at r ¼ r0; ðD4Þ

FIG. 13. A comparison between point-sink and smeared-sink schemes for the I ¼ 2 ππ system. Left: effective LO potentials. Blue
(red) points show data in the point-sink (smeared-sink) scheme. Right: corresponding phase shifts.

FIG. 14. Behaviors of ΔVLOðblue circlesÞ, Δð∇2R=RÞ
ðred trianglesÞ, and ΔVLO

eneðgreen squaresÞ.
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where ΔVLO
ene ≡ ΔVLO − Δð∇2R

R Þ=2μ. Therefore, if Δð∇2R
R Þ

vanishes at r0; r1; � � �, both ΔVLO and ΔVLO
ene must become

zero also at those points.
Figure 14 shows data ofΔVLO,Δð∇2R

R Þ, andΔVLO
ene in this

study. While Δð∇2R
R Þ has a single zero, ΔVLO and ΔVLO

ene

have zeros at slightly different positions, probably due to
the neglected higher order effects in ΔVLO and ΔVLO

ene. We
assume in our N2LO analysis that our data are well
described without N4LO and higher order terms so that
ΔVLO, Δð∇2R

R Þ, and ΔVLO
ene share a common zero point. This

assumption motivates us to employ a nonsingular function
which satisfies 2μVN2LO

2 − 1ð¼ 2μΔVLO
ene=Δð∇2R

R ÞÞ < 0 at

all r in the fit of VN2LO
2 .

APPENDIX E: ENERGY-DEPENDENT LOCAL
N2LO POTENTIAL

Here, we discuss our N2LO potential in a different
point of view, an energy-dependent local form. We can
convert the energy-independent nonlocal N2LO potential

UN2LO ¼ VN2LO
0 þ VN2LO

2 ∇2 to an energy-dependent local
form VN2LOðr; kÞ as [37]

VN2LOðr; kÞ ¼ VN2LO
0 − k2VN2LO

2

1 −mπVN2LO
2

: ðE1Þ

Figure 15 shows this energy-dependent local potentials with
the centrifugal term at several energies: near threshold
(

ffiffiffi
s

p ¼ 830 MeV), near the ground state energy in the
center-of-mass frame (

ffiffiffi
s

p ¼ 910 MeV), and at higher
energy (

ffiffiffi
s

p ¼ 1050 MeV). At low energies, we observe
that the attractive pocket of the VN2LOðr; kÞ is smaller than
that of the LO potential VLO

ρ which makes N2LO phase shifts
smaller than LO phase shifts. Around the CM ground state
energy, VN2LOðr; kÞ and VLO

ρ are almost identical, since VLO
ρ

is obtained from correlators saturated by that state. At high-
energy region, a difference between VN2LOðr; kÞ and VLO

ρ

becomes larger in all ranges. The significant improvement
by the N2LO analysis for the phase shifts at high energies
can be understood from this difference.

FIG. 15. Energy-dependent local N2LO potentials. Upper left: near threshold (
ffiffiffi
s

p ¼ 830 MeV). Upper right: near the CM frame
ground state energy (

ffiffiffi
s

p ¼ 910 MeV). Lower left: higher energy (
ffiffiffi
s

p ¼ 1050 MeV). For a comparison, we show the effective LO
potential with ρ-type source.
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