
Taming Highly Unstable Radical Anions and 1,4-Organodilithiums
by Flow Microreactors: Controlled Reductive Dimerization of
Styrenes
Yiyuan Jiang and Hideki Yorimitsu*

Cite This: JACS Au 2022, 2, 2514−2521 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The reduction of styrenes with lithium arenide in a
flow microreactor leads to the instantaneous generation of highly
unstable radical anions that subsequently dimerize to yield the
corresponding 1,4-organodilithiums. A flow reactor with fast
mixing is essential for this reductive dimerization as the efficiency
and selectivity are low under batch conditions. A series of styrenes
undergo dimerization, and the resulting 1,4-organodilithiums are
trapped with various electrophiles. Trapping with divalent
electrophiles affords precursors for useful yet less accessible cyclic
structures, for example, siloles from dichlorosilanes. Thus, we
highlight the power of single-electron reduction of unsaturated compounds in flow microreactors for organic synthesis.
KEYWORDS: radical anion, reductive dimerization, dilithiation, flow microreactor, silole

1. INTRODUCTION
Organolithium reagents play an important role in organic
synthesis, and their versatile reactivity has led to various
applications.1−3 Accordingly, many methods have been
developed for generating organolithium species, including
lithiation at carbon−heteroatom bonds, deprotonation at
acidic C−H bonds, and addition of lithium reagents across
unsaturated bonds. In light of the paramount importance of
organolithium species, organodilithium species that have two
carbon−lithium bonds in a single molecule are a fascinating
prospect, especially in the construction of cyclic frame-
works.4−7 However, the generation of such dilithium species
presents several problems (Figure 1): (A) doubly prefunction-
alized precursors, most often dihalides, are not readily
available; (B) as the second lithiation is more difficult than
the first, unwanted intramolecular reductive C−C-bond
formation can precede the desired second lithiation; (C)
dilithiated species, which are inherently unstable and highly
reactive, are generated under harsh conditions; therefore, the
variety of useful dilithium species is currently limited.

A different way to generate dilithium species is the reductive
dimerization of unsaturated compounds.8−13 This is a classical
straightforward method for generating synthetically useful 1,4-
dilithium species. However, this reductive dimerization lacks
generality and is far from synthetically and practically useful.
The impracticality originates from the difficulty in taming high-
energy anionic intermediates. Styrene, for example, undergoes
single-electron reduction from a strongly reducing alkali metal
(Figure 2). The resulting radical anion of styrene could
selectively homocouple to yield the corresponding benzylic

1,4-dilithium species; however, rapid reaction of the dilithium
species with remaining styrene occurs. This is a well-known
process for initiating anionic polymerization of styrene.14−17

Here, we disclose a method for efficiently generating 1,4-
dilithium species via reductive dimerization of styrenes by
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Figure 1. Difficulty in generating dilithium species.
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suppressing the unwanted polymerization with flow micro-
reactors. The resulting high-energy dilithium species are
indeed useful reagents for the synthesis of various cyclic
skeletons such as siloles. Our findings will open a door to
taming highly reactive radical anions and dianionic species for
organic synthesis.

2. RESULTS AND DISCUSSION
First, we tried reductive dimerization of styrene (1a) in a batch
reactor (Table 1). Styrene was added to a reductant in THF,

then the reaction was terminated with methanol to monitor the
formation of 1,4-diphenylbutane (2a). When lithium powder
(2 equimolar amounts) was used as the reductant, styrene was
completely consumed without formation of 2a (entry 1). We
considered that electron transfer from the heterogeneous
reductant to styrene was too slow causing anionic polymer-
ization to outcompete dimerization. To favor dimerization, we
used lithium naphthalenide (LiNp) as a homogeneous
reductant to promote rapid reduction and consumption of
styrene. Unfortunately, the polymerization still predominated
to yield 2a in low yields along with trimeric byproduct 3 even
at low temperatures (entries 2 and 3). Increasing the amount
of LiNp for more rapid reduction resulted in only marginal
improvement in the yield of 2a (entries 4 and 5). No
significant changes were observed regardless of the duration of
adding styrene (entries 6 and 7). The stronger reducing
reagent lithium 4,4′-di-tert-butylbiphenylide (LiDTBB) did not
improve the yield of 2a (entry 8). These unsuccessful results

convinced us that the reductive dimerization to form the 1,4-
dilithium species cannot predominate over polymerization in
batch reactors.

We presumed that slow mixing in a batch reactor was a
major factor in the failure. It generally takes a few seconds for a
solution to become homogeneous when mixing two different
components in a batch reactor.18 The results in Table 1
suggest that the time it takes to form a homogeneous solution
is slower than the formation of the radical anion, the
homocoupling, and the unwanted polymerization. To over-
come the homogeneity problem, we decided to use flow
microreactors that can control fast reactions by fast
mixing19−44 and that realizes what selectivity should be
without minding the mixing issue.45−50 We envisaged that
fast mixing of styrene and a sufficiently powerful homogeneous
reductant would allow quick radical anion generation/styrene
consumption, thereby avoiding the undesired polymerization
(Figure 3). As another advantage, the reaction time and

temperature can be precisely controlled using flow micro-
reactors in order to tame unstable dilithium species. To the
best of our knowledge, reduction of unsaturated compounds
by alkali metal arenides using flow microreactors has not been
developed, although lithiation of easy-to-reduce halides with
lithium arenide has been reported.51−54

We have designed a flow system with two micromixers (M1
and M2) and two microtube reactors (R1 and R2) for the
reductive dimerization of styrene (Table 2). We designed the
system in order to mix styrene and LiNp (0.40 M THF) with
extreme efficiency to make a homogeneous solution in M1. As
the mixture flows from M1 to M2 through R1, the
instantaneous formation of the radical anion of styrene and
subsequent dimerization should occur to give the 1,4-dilithium
species. Finally, protonation with methanol in M2 and R2
yields the desired product 2a and a major byproduct 3a to
monitor the selectivity of dimerization/polymerization. For the
first attempt, we used a T-shaped mixer having a 500 μm
internal diameter and a total flow rate of 6 mL/min at M1
(Table 2, entry 1), but the product 2a was obtained in only
49% yield. To our delight, the yields of 2a increased up to 77%
as the flow rate increased, most likely due to more efficient
mixing at M1 (entries 2−4).55 Moreover, when a smaller
diameter mixer (φ = 250 μm) was used at M1 for more
efficient mixing, the yield dramatically increased to 96% (entry
5). When sodium naphthalenide (NaNp) was used instead of
LiNp as the reductant, a larger amount of byproduct 3 was
formed (entry 6). This can be explained through the higher
nucleophilicity of organosodium compounds in comparison to
organolithiums, leading to a more efficient reaction of the
sodium 1,4-dianion with styrene. In order to prevent the
formation of 3 by smoother electron transfer to styrene, the

Figure 2. Reductive dimerization of styrene using lithium metal.

Table 1. Reductive Dimerization of Styrene Using a Batch
Reactor

entry reductant x equiv
temp.
(°C)

yield of 2a
(%)a

yield of 3
(%)a

1b Li powder 2 0 0 0
2 LiNp 2 0 30 6
3 LiNp 2 −78 40 2
4 LiNp 4 0 46 6
5 LiNp 6 0 50 4
6c LiNp 2 0 29 3
7d LiNp 2 0 41 4
8 LiDTBB 2 0 43 4

aYields were determined by GC analysis. bWith 0.4 mmol of 1a.
Stirred for 12 h. cAdded over 5 min. dAdded in one stroke.

Figure 3. Flow microreactors to avoid polymerization.
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stronger reducing reagent LiDTBB was used (entry 7). With
just 1.2 equiv of LiDTBB, only a trace amount of 3 was
detected, and the yield of 2a was 96%. We thus decided to use
LiDTBB as the reductant for further study.

With the success in using flow microreactors, we investigated
the reductive dimerization of various styrenes (Table 3).
Methyl and trimethylsilyl substituents did not hamper the
reaction to yield the corresponding dimerization products 2b
and 2c. Biphenyl-type substrate 1d reacted smoothly; however,
the yield of 2d was moderate because of some side reactions
including the formation of ethylbiphenyl. The reaction of p-
methoxystyrene (1e) afforded dimer 2e in only 9% yield with
concomitant formation of styrene via reductive demethox-
ylation (Table S5). In order to suppress the demethoxylation,
the reaction temperature was lowered to −78 °C, using 2.0
equiv of LiDTBB for efficient reduction. Under these
conditions, 2e was formed exclusively even with a 500 μm
internal diameter mixer. The cryogenic conditions were also
applicable to other methoxy-, dimethylamino-, and methyl-
sulfanyl-substituted substrates to yield the desired products
2f−2i without loss of the functional groups. Moreover, under
further modified conditions, the dimerization of halogenated
styrenes 1j and 1k proceeded to yield 2j and 2k, respectively.
These halogenated dimers could hardly be obtained in a batch
reactor (Table S9). Unfortunately, 3-bromostyrene and 4-
chlorostyrene underwent reduction of the halogen groups, and
styrene was mainly obtained. Electron-deficient vinylpyridine
(1l) also dimerized to form 2l in a moderate yield.
Divinylbenzene (1m) was dimerized to give the product 2m,
while the other vinyl group was left mostly untouched. The
boryl group in 1n survived to afford 2n in 32% yield, although
the boryl group can easily react with radical anions of
styrenes.56 In addition to styrenes, vinylsilane 1o could be
dimerized to form 2o in good yield because of the α effect of
the silyl group.

We tried cross-dimerization of two different styrenes
(Scheme 1). As the amount of styrene was increased, the
yield increased (Table S8). When a mixture of p-methoxystyr-

Table 2. Reductive Dimerization of Styrene Using Flow
Microreactors

entry
internal diameter of

M1 (μm)
total flow rate at M1

(mL/min)
yield of 2a

(%)a
yield of 3

(%)a

1 500 6 49 3
2 500 8 53 5
3 500 10 70 5
4 500 12 77 5
5 250 12 96 2
6b 250 12 81 7
7c 250 12 96 trace

aYields were determined by GC analysis. The internal diameter of M2
was 500 μm. bNaNp (0.40 M) was used instead of LiNp. c1.2 equiv of
LiDTBB (0.40 M) was used instead of LiNp.

Table 3. Reductive Dimerization of Various Styrenes Using
Flow Microreactors

aYields were determined by GC analysis unless noted. A T-shaped
mixer with 250 μm internal diameter was used at M1. b2.0 equiv of
LiDTBB was used. cA T-shaped mixer with 500 μm internal diameter
was used at M1. dIsolated yield. eAn anchor-shaped mixer with 250
μm internal diameter at M1 was used.
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ene (1e) and 20 equiv of styrene (1a) was exposed to the
reduction in the flow microreactor system, the desired
heterodimer 2p was obtained in 87% yield, along with a
small amount of the homodimer 2e and a considerable amount
of 2a, following a statistic standpoint.

Besides protonation, the 1,4-dilithium species reacted with a
variety of electrophiles (Scheme 2). Doubly methylated,

allylated, benzylated, and trimethylsilylated products 4a−4d
were obtained in excellent yields. Trifluoroacetylation
proceeded to give the product 4e in a moderate yield. The
reaction with dichlorodimethylsilane provided a cyclic
compound, silacyclopentane 4f, in 80% yield.

The silacyclopentane skeleton is a potential precursor to
siloles of optoelectronic interest;57−60 however, only one
example of dehydrogenative oxidation of a silacyclopentane is
known.61 As demonstrated in the synthesis of 4f, our reductive
dimerization/silylative cyclization sequence provides access to

3,4-unsubstituted 2,5-diarylsiloles, which show an efficient
conjugation over the rather coplanar skeleton because of the
lack of substituents at the third and fourth positions. Despite
many precedents for the synthesis and applications of
nonplanar 2,3,4,5-tetraarylsiloles,62−64 there are few methods
available for the synthesis of 3,4-unsubstituted 2,5-diarylsiloles.
For the methods that are available, inconvenient starting
materials65 or transition-metal catalysts are required.66

To our delight, a variety of 2,5-diarylsiloles 5−18 were
obtained by the reaction of the initially obtained silacyclo-
pentanes with 2,3-dichloro-5,6-dicyano-p-benzoquinone
(DDQ) (Scheme 3). Several comments are worth noting:
(1) methoxy, methylsulfanyl, trimethylsilyl, and methyl groups
were compatible under oxidative conditions using strongly
oxidizing DDQ to yield 5−8 and 10 in good yields. (2) Our
initial attempts on the synthesis of dinaphthyl product 12
resulted in failure in the reductive dimerization stage because
of clogging. We presumed that polymerization occurs because
of the high reactivity of 2-vinylnaphthalene. When we used the
less-reactive 1,2,3,4-tetrahydro-6-vinylnaphthalene instead of
2-vinylnaphthalene, clogging did not occur, and the corre-
sponding silacyclopentane was afforded. Then, global oxidation
by DDQ yielded silole 12. (3) In addition to dichlorodime-
thylsilane, other dichlorosilanes are available for use in this
procedure, and siloles 11−16 were obtained in good yields. (4)
Flow synthesis can be scaled up easily, and this is also the case
for the gram-scale synthesis of silole 18. The productivity in
the flow system was calculated to be 23 mmol/h. (5) The use
of tetrachlorosilane as the electrophile provided spirobisilole
17, which is otherwise difficult to synthesize. (6) Germole 19
was obtained after trapping with dichlorodiphenylgermane,
which represents a rare example of the synthesis of germoles.

In addition, using our cross-dimerization method (Scheme
1), we could obtain more fascinating 2,5-unsymmetrical siloles
20−24 in moderate yields (Scheme 4).

Finally, we synthesized other cyclic compounds by treating
the generated dilithium species with electrophiles other than
silicon and germanium (Scheme 5). Trapping with dimethox-
yphenylphosphine followed by oxidation yielded phospholane
oxides 25 that are known to be precursors for chiral phosphine
ligands.67−71 Treatment of the dilithium species with elemental
sulfur afforded a mixture of the corresponding tetrahydrothio-
phene 26 and 1,2-dithiane 26′, which was convergently
converted to 26 by treatment with P(NMe2)3. Cyclopentene
27 was formed by the reaction with an ester and the
subsequent dehydration from the tertiary alcohol intermediate
27′. When carbamic chloride was used instead, cyclopentanone
28 was obtained in 89% yield.

3. CONCLUSIONS
In conclusion, the use of flow microreactors has realized a
facile, rapid, and efficient generation of 1,4-dilithium species by
reductive dimerization of styrenes. Fast mixing of styrenes and
lithium arenides is crucial to achieve selective dimerization by
suppressing unwanted polymerization. A series of styrenes are
applicable to this dimerization, and the resulting 1,4-dilithium
species reacted with various electrophiles. Trapping with
difunctional electrophiles, such as dichlorosilanes, provides
useful precursors for various cyclic compounds that are
otherwise difficult to obtain, for example, siloles. Further
exploration of single-electron reduction of unsaturated
compounds in flow microreactors is ongoing in our laboratory.

Scheme 1. Cross-Dimerization of Two Different Styrenes

Scheme 2. Reaction with Dianions and Electrophiles

a3.0 equiv of electrophile. b1.0 equiv of electrophile.
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4. METHODS

4.1. Typical Procedure for Reductive Dimerization of
Styrenes
The dimerization of 1b is representative (Table 3). A flow
microreactor system consisting of two T-shaped micromixers (M1

Scheme 3. Synthesis of 3,4-Unsubstituted 2,5-Diarylsiloles from Reductive Dimerization Using Flow Micoreactors

aFlow reactions were conducted under the following conditions: T = −78 °C, tR1 = 7.9 s, 2.0 equiv of LiDTBB, 1.0 equiv of R2SiCl2. b0.75 equiv of
DDQ was used. cFlow reactions were conducted under the following conditions: T = 0 °C, tR1 = 0.17 s, 1.2 equiv of LiDTBB, 0.6 equiv of R2SiCl2.
dFlow reactions were conducted under the following conditions: T = 0 °C, tR1 = 9.8 s, 1.2 equiv of LiDTBB, 0.6 equiv of R2SiCl2. eFor 8 h in the
oxidation step. fFor 6 h in the oxidation step. g3.0 equiv of DDQ was used. hFor 14 h at room temperature in the oxidation step. iFlow reactions
were conducted under the following conditions: T = −78 °C, tR1 = 7.9 s, 2.0 equiv of LiDTBB, 0.625 equiv of SiCl4. jFlow reactions were
conducted under the following conditions: T = −78 °C, tR1 = 7.9 s, 2.0 equiv of LiDTBB, 1.0 equiv of Ph2GeCl2.

Scheme 4. Synthesis of 2,5-Unsymmetrical Siloles

aFlow reactions were conducted under the following conditions: T =
−78 °C, tR1 = 7.9 s bFlow reactions were conducted under the
following conditions: T = 0 °C, tR1 = 0.17 s.

Scheme 5. Synthesis of Various Cyclic Compounds

aYields were based on the electrophile.
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and M2), two microtube reactors (R1 and R2), and three precooling
units [P1, P2, and P3 (inner diameter ϕ = 1000 μm; length L = 100
cm)] was used. The flow microreactor system was immersed in a
cooling bath (0 °C). A solution of 1b (0.20 M THF; flow rate: 6 mL/
min) and a solution of LiDTBB (0.40 M THF; flow rate: 3.6 mL/
min) were introduced to M1 (ϕ = 250 μm) using syringe pumps, and
the mixed solution was passed through R1 (ϕ = 1000 μm; L = 3.5
cm). A solution of methanol (1.0 M THF; flow rate: 3.6 mL/min)
was introduced to M2 (ϕ = 500 μm) using a syringe pump, and the
resulting solution was passed through R2 (ϕ = 1000 μm; L = 200
cm). After a steady state was reached, the product solution was
collected for 20 s and was treated with aqueous HCl. The yield of 2b
was determined to be 96% by GC analysis.

4.2. Typical Procedure for the Synthesis of Siloles

The synthesis of 10 is representative (Scheme 3). A flow microreactor
system consisting of two T-shaped micromixers (M1 and M2), two
microtube reactors (R1 and R2), and three precooling units [P1, P2,
and P3 (inner diameter ϕ = 1000 μm; length L = 100 cm)] was used.
The flow microreactor system was immersed in a cooling bath (0 °C).
A solution of 1b (0.20 M THF; flow rate: 6.0 mL/min) and a solution
of LiDTBB (0.40 M THF; flow rate: 3.6 mL/min) were introduced to
M1 (ϕ = 250 μm) using syringe pumps, and the mixed solution was
passed through R1 (ϕ = 1000 μm; L = 3.5 cm). A solution of
Me2SiCl2 (0.20 M THF; flow rate: 3.6 mL/min) was introduced to
M2 (ϕ = 500 μm) using a syringe pump, and the resulting solution
was passed through R2 (ϕ = 1000 μm; L = 200 cm). After a steady
state was reached, the product solution was collected for 40 s (0.8
mmol scale) and stirred at room temperature. After 2 min, the mixture
was treated with saturated aqueous NH4Cl, and the resulting biphasic
solution was extracted three times with AcOEt. The combined
organic layer was dried over Na2SO4 and concentrated under reduced
pressure. DDQ (0.188 g, 0.8 mmol, 1.0 equiv for 1b) and toluene (5
mL) were then added to the crude mixture, and the reaction mixture
was stirred at 100 °C for 3 h. The resulting suspension was filtered
through Celite, and saturated aqueous NaHCO3 was added to the
filtrate. The resulting biphasic solution was extracted three times with
hexane. The combined organic layer was dried over Na2SO4 and
concentrated under reduced pressure. The residue was purified by
column chromatography on silica gel (hexane) to give 10 (79.7 mg,
0.274 mmol, 69%) as a yellow solid.
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