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The thermal-slip~thermal-creep! and the diffusion-slip problems for a binary mixture of gases are
investigated on the basis of the linearized Boltzmann equation for hard-sphere molecules with the
diffuse reflection boundary condition. The problems are analyzed numerically by the
finite-difference method incorporated with the numerical kernel method, which was first proposed
by Sone, Ohwada, and Aoki@Phys. Fluids A1, 363~1989!# for a single-component gas. As a result,
the behavior of the mixture is clarified accurately not only at the level of the macroscopic variables
but also at the level of the velocity distribution function. In addition, accurate formulas of the
thermal-slip and the diffusion-slip coefficients for arbitrary values of the concentration of a
component gas are constructed by the use of the Chebyshev polynomial approximation. ©2003
American Institute of Physics.@DOI: 10.1063/1.1624075#

I. INTRODUCTION

When a gas is slightly rarefied or the Knudsen number is
small, the overall behavior of the gas around solid bodies can
be described by a system of fluid-dynamic-type equations
with terms of gas rarefaction effect and slip~or jump! con-
dition for the flow velocity~or the temperature!. Here, the
Knudsen number Kn is the ratio of the mean free path of the
gas molecules to the reference length. The solution of the
system is required to be corrected in a thin layer adjacent to
the solid-body surface. The layer is of the thickness of a few
mean free paths of the gas molecules and is called the Knud-
sen layer. The physical variables are subject to appreciable
change there in the direction normal to the surface. These
features were clarified by a systematic asymptotic analysis of
the Boltzmann equation for small Knudsen numbers~Sone’s
asymptotic theory; see, for instance, Refs. 1–4!. The slip of
flow ~or the jump of temperature! and the Knudsen layer are
considered as typical effects of gas rarefaction because they
vanish when the continuum limit Kn→0 is taken. This is a
common understanding irrespective of whether the gas is
pure or not.

In the meantime, Takata and Aoki5 recently studied the
steady behavior of a binary mixture of a vapor and a non-
condensable gas around condensed phases of the vapor on
the basis of kinetic theory. They carried out an asymptotic
analysis of the Boltzmann equation for small Knudsen num-
bers and derived the fluid-dynamic-type system which de-
scribes the behavior of the mixture in the situation where the
Mach number of the flow is as small as the Knudsen number
while the temperature variation of the condensed phase may
be large. Contrary to the common understanding, the derived
system shows that the slip condition for the flow velocity is
necessary even in describing the behavior of the mixture in

the continuum limit. This is an example of the recently dis-
covered effect of gas rarefaction which remains at vanishing
Knudsen number;6 this phenomenon was termed the ghost
effect ~see Refs. 4, 7, and 8 for details!. The present paper is
intended to provide accurate data of the slip boundary con-
dition which causes the ghost effect in the mixture in a wide
class of physical situations studied in Ref. 5.

According to Ref. 5, the slip condition in the fluid-
dynamic-type system derived there can be obtained by the
analysis of the thermal-slip~thermal-creep!9 and the
diffusion-slip10 flows of a mixture over a plane wall. The
former is the flow of the mixture induced along the wall by a
uniform gradient of the wall temperature along its surface,
and the latter is that induced along the wall by a uniform
gradient of the concentration of a component gas along the
surface. These are both fundamental problems in rarefied gas
dynamics. In the present study, we try to carry out an accu-
rate numerical analysis of these problems on the basis of the
linearized Boltzmann equation for hard-sphere molecules.
An accurate finite-difference method for the linearized Bolt-
zmann equation for a single-component hard-sphere gas was
developed more than a decade ago11,12 and has been applied
to various fundamental problems~e.g., Refs. 13–24!. The
method was recently extended to a binary gas mixture in Ref.
25. We basically use this method in the present study.

The aim of the present study is twofold: first, to com-
plete the slip boundary conditions for the fluid-dynamic-type
equations mentioned above, and second, to establish numeri-
cal solutions of the linearized Boltzmann equation that serve
as the standard solution to the two fundamental problems.
For the first aim, we need the slip conditions for arbitrary
values of the local concentration of a component gas because
it generally varies along the boundary. This means that we
need to obtain the solutions of the two slip-flow problems for
arbitrary values of the background concentration. Therefore,
we construct the solutions in such a way that the results fora!Electronic mail: takata@aero.mbox.media.kyoto-u.ac.jp
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any value of the background concentration can be obtained
immediately. As mentioned above, the numerical method
used in the present study is essentially the same as that de-
veloped in Ref. 25, where the diffusion-slip problem has
been investigated. In this reference, however, the solution
was obtained for several values of the background concen-
tration, not for its arbitrary values. Moreover, the information
given there is limited because the paper is a contribution to
the conference proceedings with limited space. In the present
paper, we reanalyze the problem, parallel to the analysis of
the thermal-slip problem, in a way appropriate to our pur-
pose and present the results for both problems~we will omit
some results concerning the diffusion-slip flow that overlap
with Ref. 25!. We will also describe the method of solution
in a self-contained manner, since it is not given in Ref. 25.

Here, we make a brief remark on the second aim men-
tioned above. The two slip flows considered here have long
been known9,10 and have been investigated in many papers
including some pioneering works26,27at the early stage of the
modern kinetic theory~e.g., Refs. 12, 25, 28–40!. Concern-
ing gas mixtures, however, the existing works~except Ref.
25!, such as the works based on moment and variational
methods and on model equations, are of an approximate na-
ture, and the direct numerical analysis has been avoided be-
cause of the complexity of the Boltzmann equation. In such
circumstances, we try to solve the linearized Boltzmann
equation straightforwardly to obtain reliable numerical solu-
tions, restricting ourselves to the hard-sphere molecular
model, which is not necessarily realistic but is the most fun-
damental model in kinetic theory. Such solutions will serve
to assess other approximate methods. In particular, approxi-
mate methods aiming at obtaining slip coefficients for more
realistic molecular models,34,38,39 which will be useful in
practical applications, can be validated to some extent by
comparing their results for hard-sphere molecules with the
present result.

The paper is organized as follows. First the problems are
formulated in Sec. II. Then preliminary analysis is performed
in Sec. III, where the similarity solution and the expression
of the collision integrals in terms of the integral kernel are
introduced. The numerical method is developed on the basis
of this expression in Sec. IV. The results are given and the
discussions are made in Sec. V. The data of computation are
summarized in Sec. VI.

II. FORMULATION OF THE PROBLEM

A. Problem

We consider a semi-infinite expanse of a binary mixture
of gases, gas A and gas B, over a plane wall. The wall is
located atX150, and the mixture occupies the regionX1

.0, whereXi is the rectangular coordinate system. We will
investigate the steady behavior of the mixture in the follow-
ing situations.

Problem I: The wall is kept at temperatureT01C̃IX2

with C̃I being a constant. Far from the wall, the state of the
mixture is independent ofX1 , the pressure of the mixture
and the concentration of gas A~the number fraction of the

molecules of gas A! are uniform, and the temperature of the

mixture is the same as that of the wallT01C̃IX2 , i.e., it has
a uniform gradient in theX2-direction.

Problem II: The wall is kept at a uniform temperature
T0 . Far from the wall, the state of the mixture is independent
of X1 , the pressure of the mixture is uniform, its temperature
is also uniform and is the same as that of the wallT0 , and
the concentrationXA of gas A has a uniform gradient in the
X2-direction ~thus the concentrationXB of gas B has a uni-
form gradient of the same magnitude in the opposite direc-
tion, becauseXB512XA by definition!.

Problem I is called the thermal-slip problem, and prob-
lem II the diffusion-slip problem.

In what follows, the pressure of the mixture at infinity
(X1→`) is denoted byp0 . The concentration of gas A~or
gas B! at infinity is denoted byX0

A ~or X0
B) in problem I, and

by X0
A1C̃II

AX2 ~or X0
B1C̃II

BX2) in problem II. Note that the

relationsX0
B512X0

A andC̃II
B52C̃II

A hold by definition. The
superscriptsa, b, andg are symbolically used to represent
the gas species, i.e.,a,b,g5A,B.

In the analysis, we make the following assumptions:~i!
the molecules of gasa are hard spheres of massma and
diameterda and they collide elastically each other;~ii ! the
behavior of the mixture is described by the Boltzmann equa-
tion and the diffuse reflection condition for the reflected mol-
ecules on the wall; and~iii ! the magnitude of the gradient of
temperature in problem I and that of concentration in prob-
lem II are so small that the equations and boundary condi-
tions can be linearized around the reference equilibrium state
at rest with temperatureT0 and pressurep0 of the mixture
and concentrationX0

a of gasa.

B. Basic equation and boundary condition

We first summarize the main notation used in the paper.
The n0 is the reference molecular number density of the
mixture and is defined byn05p0 /kT0 , wherek is Boltz-
mann’s constant. Thel 0 is the mean free path of the mol-
ecules in the equilibrium state at rest with the molecular
number densityn0 and temperatureT0 when gas B is absent
~i.e., l 051/@&p(dA)2n0#). Thexi is the nondimensional co-
ordinate system defined byxi5Xi l 0

21(Ap/2)21. The
(2kT0 /mA)1/2z i @or (2kT0 /mA)1/2z] is the molecular veloc-
ity, n0(2kT0 /mA)23/2(X0

a1fa)Ea is the velocity distribu-
tion function of the molecules of gasa, where Ea(z)

5(m̂a/p)3/2exp(2m̂auzu2) with m̂a5ma/mA, and d̂a

5da/dA. The molecular number density, density, pressure,
temperature, flow velocity, stress tensor, and heat-flow vector
of gas a are denoted, respectively, byn0(X0

a1Na),
n0mA(m̂aX0

a1va), p0(X0
a1Pa), T0(11ta),

(2kT0 /mA)1/2ui
a , p0(X0

ad i j 1Pi j
a ), andp0(2kT0 /mA)1/2Qi

a ,
where d i j is Kronecker’s delta. Those of the mixture are
denoted by n0(11N), n0mA((b5A,Bm̂bX0

b1v), p0(1
1P), T0(11t), (2kT0 /mA)1/2ui , p0(d i j 1Pi j ), and
p0(2kT0 /mA)1/2Qi .

The linearized Boltzmann equation in the present case
(]/]t5]/]x350) is written as41–43
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z1

]fa

]x1
1z2

]fa

]x2
5 (

b5A,B
KbaL̃ba~X0

afb,X0
bfa!, ~1!

whereL̃ba is the linearized collision integral defined by

L̃ba~ f ,g!5
1

4A2p
E @ f ~z

*
8 !2 f ~z* !1g~z8!2g~z!#

3Eb~z* !ue"V̂udV~e!d3z* , ~2!

with

z85z1
m̂ba

m̂a ~e"V̂!e, z
*
8 5z* 2

m̂ba

m̂b ~e"V̂!e, ~3a!

V̂5z* 2z, d3z* 5dz* 1dz* 2dz* 3 , ~3b!

Kba5S d̂a1d̂b

2
D 2

, m̂ba5
2m̂am̂b

m̂a1m̂b . ~3c!

Heree is a unit vector,z* the variable of integration corre-
sponding toz, and dV(e) the solid angle element in the
direction ofe. The integration in Eq.~2! is carried out over
the whole space ofz* and over the all directions ofe.

The diffuse reflection condition on the wall (x150) is
written as

fa5cIX0
a~m̂az j

222!x222~pm̂a!1/2E
z1,0

z1faEad3z,

z1.0, ~4a!

for problem I ~thermal slip!, and

fa522~pm̂a!1/2E
z1,0

z1faEad3z, z1.0, ~4b!

for problem II ~diffusion slip!. HerecI is the dimensionless
gradient of the wall temperature defined by

cI5
Ap

2
l 0

C̃I

T0
.

Incidentally, for later use, we also define the dimensionless
concentration gradientcII of gas A away from the wall by

cII 5
Ap

2
l 0C̃II

A .

The macroscopic variablesNa, va, ui
a , etc. of gasa are

written in terms offa as

Na5E faEad3z,

va5m̂aE faEad3z~5m̂aNa!,

ui
a5

1

X0
a E z if

aEad3z,

ta5
2

3

1

X0
a E S m̂az j

22
3

2DfaEad3z, ~5!

Pa5
2

3
m̂aE z j

2faEad3z~5Na1X0
ata!,

Pi j
a 52m̂aE z iz jf

aEad3z,

Qi
a5m̂aE z iz j

2faEad3z2
5

2
X0

aui
a .

Here and henceforth, unless otherwise stated, the integration
with respect toz is performed over its whole space. The
macroscopic variables of the mixture are expressed in terms
of those of component gases as

N5 (
b5A,B

Nb, v5 (
b5A,B

vb, P5 (
b5A,B

Pb,

ui5S (
b5A,B

m̂bX0
bui

bD Y S (
b5A,B

m̂bX0
bD ,

~6!

t5 (
b5A,B

X0
btb, Pi j 5 (

b5A,B
Pi j

b ,

Qi5 (
b5A,B

FQi
b2

5

2
X0

b~ui2ui
b!G .

If we denote by (X0
a1xa) the concentration of gasa, xa is

expressed as

xa5Na2X0
aN. ~7!

Note that xA52xB because of the relationsN5NA1NB

andX0
A1X0

B51.

III. PRELIMINARY ANALYSIS

A. Asymptotic solution away from the wall

Let us consider the function

fasy
a 5X0

aF S m̂az22
5

2D x212m̂abIz22z2Aa~z!G , ~8a!

for problem I and

fasy
a 5~daA2daB!x212m̂aX0

abII z2

2X0
az2@D (A)a~z!2D (B)a~z!#, ~8b!

for problem II, wherez5uzu5Az j
2, dAA5dBB51 anddAB

5dBA50. HerebI and bII are undetermined constants, and
the functionsAa, D (A)a, andD (B)a are the solutions of the
following integral equations:42–44

(
b5A,B

KbaX0
bL̃ba~z iA

b,z iA
a!52z i S m̂az22

5

2D ,

~9a!

subsidiary condition: (
b5A,B

m̂bX0
bE

0

`

z4AbEbdz50,

and
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(
b5A,B

KbaX0
aX0

bL̃ba~z iD
(g)b,z iD

(g)a!

52z i S dag2
m̂aX0

a

(b5A,Bm̂bX0
bD ,

~9b!
subsidiary condition:

(
b5A,B

m̂bX0
bE

0

`

z4D (a)bEbdz50.

The functionfasy
a satisfies the Boltzmann equation~1!.

The corresponding macroscopic variables take the following
form: for fasy

a in Eq. ~8a!,

Na52X0
ax2 , va52m̂aX0

ax2 ,

ta5x2 , xa5Pa5Pi j
a 50,

ui
a5~bI2D̂Ta!d i2 , Qi

a52l̂a8X0
ad i2 ,

~10a!
N52x2 , v52~m̂AX0

A1m̂BX0
B!x2 ,

t5x2 , P5Pi j 50, ui5bId i2 ,

Qi52F l̂81
5

2
~X0

AD̂TA1X0
BD̂TB!Gd i2 ,

and forfasy
a in Eq. ~8b!,

Na5Pa5xa5~daA2daB!x2 ,

va5m̂a~daA2daB!x2 , ta50,

ui
a5~bII 2D̂aA1D̂aB!d i2 ,

Pi j
a 5~daA2daB!x2d i j ,

~10b!
Qi

a52X0
a~ĜD

(A)a2ĜD
(B)a!d i2 ,

v5~m̂A2m̂B!x2 ,

N5P5t5Pi j 50, ui5bII d i2 ,

Qi52F ~D̂TA2D̂TB!1
5

2 (
b5A,B

X0
b~D̂bA2D̂bB!Gd i2 .

Here l̂a8, D̂ab , D̂Ta , ĜD
(a)b , and l̂8 are functions ofX0

A ,
m̂B, andd̂B and are related to the transport coefficients~see
Appendix A!.

It is seen from the form ofP, t, andxa in Eq. ~10a! that
fasy

a of ~8a! multiplied by cI is the solution describing the
state at infinity of problem I. Similarly, it is seen from the
form of P, t, andxa in Eq. ~10b! thatfasy

a of ~8b! multiplied
by cII is the solution describing the state at infinity of prob-
lem II.

The asymptotic solutioncIfasy
a or cII fasy

a is seen to rep-
resent the state of the mixture described by the fluid-dynamic
equation. Therefore we callcIfasy

a or cII fasy
a the fluid-

dynamic solution.

B. Knudsen-layer problems

Let us now seek the solution of problems I and II in the
form

fa5c@fasy
a 1fK

a~x1 ,z i !#, ~11!

wherec5cI for problem I andc5cII for problem II. Sub-
stituting Eq.~11! into Eqs.~1! and ~4a! or ~4b! and taking
into account thatfasy

a satisfies the condition at infinity, we
obtain the following equation and boundary condition for
fK

a :

z1

]fK
a

]x1
5 (

b5A,B
KbaL̃ba~X0

afK
b ,X0

bfK
a !, ~12!

fK
a522m̂aX0

abIz21X0
az2Aa~z!

22~pm̂a!1/2E
z1,0

z1fK
aEad3z,

z1.0, x150, for problem I, ~13a!

fK
a522m̂aX0

abII z21X0
az2@D (A)a~z!2D (B)a~z!#

22~pm̂a!1/2E
z1,0

z1fK
aEad3z,

z1.0, x150, for problem II, ~13b!

fK
a→0, as x1→`. ~14!

We call the half-space problem~12!, ~13a!, and ~14! the
Knudsen-layer problem for the thermal slip and the problem
~12!, ~13b!, and ~14! that for the diffusion slip. For each
problem, there is a unique solutionfK

a if and only if the
constantbI or bII takes a special value, andfK

a decays ex-
ponentially asx1→`. This is a consequence of the existence
and uniqueness theorem for the Knudsen-layer problem for a
binary mixture of hard-sphere gases, which was proved re-
cently in Ref. 45. The theorem is the extension of that for a
single-component gas first conjectured by Grad46 and proved
later for various molecular models.47–51 In this way the con-
stantsbI and bII in the fluid-dynamic solutions,cIfasy

a and
cII fasy

a , are determined by the analysis of the Knudsen-layer
problem. It is seen from the expression ofui in Eqs. ~10a!
and ~10b! that bI or bII is the flow velocity of the mixture
away from the wall whencI51 or cII 51.

Since m̂A5d̂A51 and X0
A1X0

B51, both problems are
characterized by the three parameters,

m̂B~or mB/mA!, d̂B~or dB/dA!, X0
A .

Multiplying Eq. ~12! by m̂az2Ea for a5A,B, adding
the resulting equations, and taking into account the condition
~14!, one obtains the relation

(
b5A,B

m̂bE z1z2fK
bEbd3z50. ~15!

This is the momentum conservation law in thex2-direction.
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C. Similarity solution and macroscopic variables

Let us assume thatfK
a is of the form

fK
a5~z2 /zr!Fa~x1 ,z1 ,zr!, ~16!

wherezr5Az2
21z3

2. This fK
a is compatible with Eqs.~12!–

~14!, which can be seen by using the spherical symmetry4 of
the collision operatorL̃ba. Therefore, using the notations

Ca~x1 ,z1 ,zr!5Fa~x1 ,z1 ,zr!Ea, ~17a!

L̃ba~Cb,Ca!5~zr /z2!L̃baS z2

zr
Fb,

z2

zr
FaDEa, ~17b!

we can transform the boundary-value problem~12!–~14! for
fK

a into that forCa:

z1

]Ca

]x1
5 (

b5A,B
KbaL̃ba~X0

aCb,X0
bCa!, ~18!

Ca5X0
azr~22m̂abI1Aa!Ea,

z1.0, x150, for problem I, ~19a!

Ca5X0
azr~22m̂abII 1D (A)a2D (B)a!Ea,

z1.0, x150, for problem II, ~19b!

Ca→0, as x1→`. ~20!

Note thatEa, Aa, andD (b)a are now the functions ofz1 and
zr becausez5uzu5(z1

21zr
2)1/2. Following the transforma-

tion by Grad52 for a single-component gas, one can derive
the expression ofL̃ba in terms of integral kernels. That is,

L̃ba~ f ,g!5L̃1
ba~ f !1L̃2

ba~g!2L̃3
ba~ f !2nb~z!g, ~21!

with

L̃J
ba~ f !5EaE

0

`

djrE
2`

`

dj1K J
ba~j1 ,jr ,z1 ,zr!

3 f ~j1 ,jr! ~J51,2,3!, ~22!

na~z!5
1

2&
S 1

Am̂a
exp~2m̂az2!

1S 2z1
1

m̂az D E
0

Am̂az
exp~2y2!dyD . ~23!

The explicit form of integral kernelsK J
ba (J51,2,3) is

given in Appendix B.
Substituting Eq.~11! with the similarity solution~16!

@and~17a!# into Eqs.~5!–~7!, we have the following expres-
sion for the macroscopic variables: for problem I,

Na52cIX0
ax2 , va52cIm̂

aX0
ax2 ,

ta5cIx2 , xa5Pa50,

ui
a5cI~bI2D̂Ta1Ua!d i2 ,

Pi j
a 5cIS

a~d i1d j 21d i2d j 1!,

Qi
a5cI~2l̂a8X0

a1Ha!d i2 , ~24a!

N52cIx2 , v52cI~m̂AX0
A1m̂BX0

B!x2 ,

ui5cI~bI1U !d i2 , t5cIx2 , P50,

Pi j 5cI~SA1SB!~d i1d j 21d i2d j 1!,

Qi5cI S 2l̂82
5

2
~X0

AD̂TA1X0
BD̂TB!1H D d i2 ,

and for problem II,

Na5Pa5xa5cII ~daA2daB!x2 ,

va5cII m̂
a~daA2daB!x2 , ta50,

ui
a5cII ~bII 2D̂aA1D̂aB1Ua!d i2 ,

Pi j
a 5cII @~daA2daB!x2d i j 1Sa~d i1d j 21d i2d j 1!#,

Qi
a5cII @2X0

a~ĜD
(A)a2ĜD

(B)a!1Ha#d i2 , ~24b!

N5P5t50, v5cII ~m̂A2m̂B!x2 ,

ui5cII ~bII 1U !d i2 ,

Pi j 5cII ~SA1SB!~d i1d j 21d i2d j 1!,

Qi5cII S 2~D̂TA2D̂TB!

2
5

2 (
b5A,B

X0
b~D̂bA2D̂bB!1H D d i2 ,

where

Ua~x1!5
p

X0
a E

0

`E
2`

`

zr
2Cadz1dzr , ~25a!

U~x1!5S (
b5A,B

m̂bX0
bUbD Y S (

b5A,B
m̂bX0

bD , ~25b!

Sa~x1!52pm̂aE
0

`E
2`

`

z1zr
2Cadz1dzr , ~25c!

Ha~x1!5pE
0

`E
2`

`

zr
2S m̂a~z1

21zr
2!2

5

2DCadz1dzr ,

~25d!

H~x1!5 (
b5A,B

S Hb1
5

2
X0

b~Ub2U ! D . ~25e!

The functionsUa, U, Sa, Ha, and H, which we call the
Knudsen-layer functions, decay exponentially asx1→`. In
Eqs.~24a! and ~24b!, they appear only in thex2-component
of flow velocitiesu2

a andu2 , in that of heat-flow vectorsQ2
a

andQ2 , and in thex1x2-component of stress tensorsP12
a ~or

P21
a ) and P12 ~or P21). On the other hand, from the relation

~15! we find

SA1SB50, ~26!

so that the Knudsen-layer function does not appear in the
stress tensorPi j of the mixture. The property~26! is used as
a measure of accuracy of the numerical solution later. In
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summary, exceptu2
a , u2 , Q2

a , Q2 , and P12
a ~or P21

a ), the
macroscopic variables are expressed only by the fluid-
dynamic solution: Eq.~10a! multiplied bycI or Eq.~10b! by
cII .

As is mentioned in Sec. III B,bIcI and bII cII are the
flow velocity of the mixture away from the wall. On the
other hand, the expression ofui in Eqs. ~24a! and ~24b!
shows that, if the Knudsen-layer function is neglected, the
flow velocity of the mixture on the wall (x150) is also
given by

u25bIcI5bI S dt

dx2
D , for problem I,

~27!

u25bII cII 5bII S dxA

dx2
D , for problem II.

This means that the flow velocity of the fluid-dynamic solu-
tion is subject to the slip on the wall caused by the tempera-
ture or concentration gradient. From this point of view, the
constantbI is called the coefficient of thermal slip andbII

the coefficient of diffusion slip.

IV. NUMERICAL ANALYSIS

A. Plan of computation

As is mentioned in the first paragraph in Sec. III B, the
reduced boundary-value problem~18!–~20! has a solution if
and only if the undetermined constantb takes a special
value, whereb5bI for problem I andb5bII for problem II.
A straightforward way to solve the problem is to repeat com-
putation with differentb until a solution satisfying the con-
dition ~20! is obtained. However, since such a meth-
od is generally inefficient, we adopt the method devised
in Ref. 12.

Consider the function

C̃a~x1 ,z1 ,zr!5Ca~x1 ,z1 ,zr!12m̂aX0
a d zr Ea, ~28!

whered is an undetermined constant. Since the second term
on the right is a solution of Eq.~18!, C̃a also satisfies Eq.
~18!:

z1

]C̃a

]x1
5 (

b5A,B
KbaL̃ba~X0

aC̃b,X0
bC̃a!. ~29!

The boundary condition forC̃a on the wall is obtained from
Eqs.~19a! and ~19b! with ~28! as

C̃a5X0
azr~22m̂abI* 1Aa!Ea,

z1.0, x150, for problem I, ~30a!

C̃a5X0
azr~22m̂abII * 1D (A)a2D (B)a!Ea,

z1.0, x150, for problem II, ~30b!

where

bI* 5bI2d, bII * 5bII 2d. ~31!

Since Ca decays exponentially~see the first paragraph in
Sec. III B!, it is negligible at a distance large enough, say at
x15d. ConsequentlyC̃a at x15d can be written as

C̃a~d,z1 ,zr!52m̂aX0
a d zrEa. ~32!

The corresponding flow velocityŨ(x1) of the mixture,
which is defined by Eq.~25b! @with ~25a!# with Ca replaced
by C̃a, takes the valued:

Ũ~d!5d. ~33!

Because of Eq.~32!, C̃a satisfies the reflection condition at
x15d:

C̃a~d,z1 ,zr!5C̃a~d,2z1 ,zr!. ~34!

We solve the boundary-value problem~29!, ~30a! @or
~30b!#, and~34! for a givenbI* ~or bII * ), instead of solving
the original problem~18!–~20! directly. OnceC̃a is ob-
tained,d is determined by Eq.~33!. Then,Ca andbI ~or bII )
are obtained from Eqs.~28! and ~31!.

B. Finite-difference scheme

Because of the factorEa @see Eqs.~16! and~28!#, C̃a is
expected to decay rapidly asuz1u or zr tends to`. Thus in
the actual computation we restrict the regions ofz1 andzr to
finite ones. That is, for a proper choice ofZ1

a(.0) and
Zr

a(.0), we carry out the numerical computation forC̃a in
the region 0<x1<d, 2Z1

a<z1<Z1
a , and 0<zr<Zr

a . The
regions ofx1 , z1 , andzr are divided intoNx , 4N1 , and 2Nr

intervals in the following way:

05x1
(0),x1

(1),¯,x1
(Nx)

5d,

2Z1
a5z1

a(22N1)
,z1

a(22N111)
,¯,z1

a(0)~50!

,z1
a(1),¯,z1

a(2N1)
5Z1

a ,

05zr
a(0),zr

a(1),¯,zr
a(2Nr)

5Zr
a .

Here Z1
a and Zr

a are taken to beZ1
a5Z1 /Am̂a and Zr

a

5Zr /Am̂a with Z1 and Zr being constants common toC̃A

and C̃B ~see Table XII in Sec. VI!. For later convenience,
chiefly for the computation of collision integrals, the lattice
points of z1 are chosen to be symmetric with respect to
z150, i.e., z1

a( j )52z1
a(2 j ) . We denote the value of a

physical quantity at a lattice point by attaching the subscript

label corresponding to the point, e.g.,C̃ ( i , j ,k)
a

5C̃a(x1
( i ) ,z1

a( j ) ,zr
a(k)). For steady and spatially one-

dimensional problems, it is known that the velocity distribu-
tion function is, in general, discontinuous atz150 on the

wall (x150) ~see, for instance, Ref. 53!. ThusC̃a has two
limiting valuesC̃a(0,60,zr) on the wall. Taking it into ac-
count, we prepare two sets of valuesC̃ (0,60,k)

a for the lattice
point (0,0,zr

a(k)) in the computation.
We obtain the discrete solutionC̃ ( i , j ,k)

a as the limit of the
sequence$C̃ ( i , j ,k)

a(n) % (n50,1,2,. . . ) constructed by the itera-
tion using the following finite-difference scheme for Eq.
~29!:

z1
a( j )

“i jkC̃a(n11)52 ñ ( j ,k)
a C̃ ( i , j ,k)

a(n11)1C( i , j ,k)
a(n) , ~35!
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where“i jk corresponds to]/]x1 , and ñ ( j ,k)
a and C( i , j ,k)

a(n) are
defined as

ñ ( j ,k)
a 5KAaX0

AnA~z1
a( j ) ,zr

a(k)!1KBaX0
BnB~z1

a( j ) ,zr
a(k)!,

~36a!

C( i , j ,k)
A(n) 5@KAAX0

A~L̃1
AA1L̃2

AA2L̃3
AA!

1KBAX0
BL̃2

BA#~C̃A(n)!( i , j ,k)

1KBAX0
A~L̃1

BA2L̃3
BA!~C̃B(n)!( i , j ,k) , ~36b!

C( i , j ,k)
B(n) 5@KBBX0

B~L̃1
BB1L̃2

BB2L̃3
BB!

1KABX0
AL̃2

AB#~C̃B(n)!( i , j ,k)

1KABX0
B~L̃1

AB2L̃3
AB!~C̃A(n)!( i , j ,k) . ~36c!

For “i jk , the following formulas are used: for 1< j <2N1 ,

“i jkC̃a(n)5H ~C̃ (1,j ,k)
a(n) 2C̃ (0,j ,k)

a(n) !/h1 ~ i 51!,

w0~hi 21 ,hi !C̃ ( i , j ,k)
a(n) 2w1~hi 21 ,hi !C̃ ( i 21,j ,k)

a(n)

1w2~hi 21 ,hi !C̃ ( i 22,j ,k)
a(n) ~2< i<Nx!,

~37a!

and for22N1< j <0,

“i jkC̃a(n)5H S 2C̃ (Nx , j ,k)
a(n) 2

3

2
C̃ (Nx21,j ,k)

a(n) 2
1

2
C̃ (Nx21,2 j ,k)

a(n) D /hNx
~ i 5Nx21!,

2w2~hi 12 ,hi 11!C̃ ( i 12,j ,k)
a(n) 1w1~hi 12 ,hi 11!C̃ ( i 11,j ,k)

a(n) 2w0~hi 12 ,hi 11!C̃ ( i , j ,k)
a(n) ~0< i<Nx22!,

~37b!

where

hi5x1
( i )2x1

( i 21) , w0~a,b!5
a12b

b~a1b!
,

~38!

w1~a,b!5
a1b

ab
, w2~a,b!5

b

a~a1b!
.

The termsC( i , j ,k)
a(n) are computed by the numerical kernel

method first proposed in Ref. 11 for a single-component gas.
The details of the method is given in Sec. IV C. The func-
tionsAa andD (b)a, which are the solutions of Eqs.~9a! and
~9b!, appear in the boundary conditions~30a! and ~30b!. In
the present work, we use their accurate numerical data ob-
tained in Ref. 44 for arbitrary values ofX0

A for a binary
mixture of hard-sphere gases.

The solution procedure is as follows. Start with appro-
priate initial dataC̃ ( i , j ,k)

a(0) and b* . Suppose thatC̃ ( i , j ,k)
a(n) is

known. ThenC̃ ( i , j ,k)
a(n11) is computed by the following process.

~i! ComputeC( i , j ,k)
a(n) usingC̃ ( i , j ,k)

A(n) andC̃ ( i , j ,k)
B(n) .

~ii ! Using the boundary condition~30a! @or ~30b!#, com-
pute C̃ ( i , j ,k)

a(n11) (1< j <2N1) from i 51 to Nx succes-
sively by Eq.~35! with ~37a!.

~iii ! Compute C̃ (Nx , j ,k)
a(n11) (21> j >22N1) using the

boundary condition~34!. Since the lattice points ofz1

is symmetric with respect toz150, C̃ (Nx , j ,k)
a(n11) is given

by C̃ (Nx , j ,k)
a(n11) 5C̃ (Nx ,2 j ,k)

a(n11) .

~iv! ComputeC̃ ( i , j ,k)
a(n11) (21> j >22N1) from i 5Nx21

to 0 successively by Eq.~35! with ~37b!, using the
dataC̃ (Nx , j ,k)

a(n11) obtained in~iii !.

~v! Compute C̃ (0,20,k)
a(n11) and C̃ ( i ,0,k)

a(n11) ( i 51, . . . ,Nx) by
Eq. ~35! with z1

( j )50. Compute C̃ (0,10,k)
a(n11) by the

boundary condition~30a! @or ~30b!#.

We repeat steps~i!–~v! for n50,1,2,. . . , until C̃ ( i , j ,k)
a(n) con-

verges. ThenC ( i , j ,k)
a and b are obtained by Eqs.~28! and

~31! with Eq. ~33!. The Knudsen-layer functions are obtained
from the ~discrete! solution by the integrations@Eqs.~25a!–
~25d!# using Simpson’s formula.

In the actual computation, we repeat the above process
with new b asb* in order to reduce the errors coming from
the second term on the right-hand side of Eq.~28!.

C. Numerical kernel method

In order to obtainC( i , j ,k)
a(n) , we have to carry out the com-

plicated five-fold integrations numerically, which requires
heavy computation. In Ref. 11, an accurate and efficient
method for the computation of collision integrals was pro-
posed for a single-component gas. We apply this method to
the computation ofC( i , j ,k)

a(n) . We first introduce the following
piecewise quadratic functionsBl ,m

a6(z1 ,zr) of z1 andzr , lo-
calized around the lattice point (z1

a( l ) ,zr
a(m)):

Bl ,m
a6~z1 ,zr!5Yl

az1~z1!x [0,Z
1
a]~6z1!Ym

azr~zr!x [0,Z
r
a]~zr!,

~39!

whereYl
az(y) with y5z1 ,zr andz5z1 ,zr are defined by

Y2m
az ~y!55

~y2za(2m12)!~y2za(2m11)!

~za(2m)2za(2m12)!~za(2m)2za(2m11)!
,

for za(2m),y,za(2m12),

~y2za(2m22)!~y2za(2m21)!

~za(2m)2za(2m22)!~za(2m)2za(2m21)!
,

for za(2m22),y,za(2m),

0, otherwise,

~40a!
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Y2m11
az ~y!5H ~y2za(2m12)!~y2za(2m)!

~za(2m11)2za(2m12)!~za(2m11)2za(2m)!
,

for za(2m),y,za(2m12),

0, otherwise.
~40b!

In Eq. ~39!, x [a,b] (y) denotes the characteristic function of
the interval @a,b#, i.e., x [a,b] (y)51 for a<y<b and
x [a,b] (y)50 otherwise. Then we expandC̃a(n) at x15x1

( i ) in
terms ofBl ,m

a6(z1 ,zr) as follows:

C̃a(n)~x1
( i ) ,z1 ,zr!5 (

m50

2Nr

(
l 50

2N1

„C̃ ( i ,l ,m)
a(n) Bl ,m

a1~z1 ,zr!

1C̃ ( i ,2 l ,m)
a(n) B2 l ,m

a2 ~z1 ,zr!…. ~41!

In the above expression and in Eqs.~42a! and ~42b! below,
the C̃ ( i ,l ,m)

a(n) andC̃ ( i ,2 l ,m)
a(n) for i 5 l 50 should be regarded as

C̃ (0,10,m)
a(n) and C̃ (0,20,m)

a(n) becauseC̃a is discontinuous atz1

50 on the wall. The substitution of Eq.~41! into Eqs.~36b!
and ~36c! gives the following expression forC( i , j ,k)

a(n) :

C( i , j ,k)
A(n) 5 (

m50

2Nr

(
l 50

2N1

~Cj ,k,l ,m
AA1 C̃ ( i ,l ,m)

A(n) 1Cj ,k,l ,m
BA1 C̃ ( i ,l ,m)

B(n)

1Cj ,k,2 l ,m
AA2 C̃ ( i ,2 l ,m)

A(n) 1Cj ,k,2 l ,m
BA2 C̃ ( i ,2 l ,m)

B(n) !,

~42a!

C( i , j ,k)
B(n) 5 (

m50

2Nr

(
l 50

2N1

~Cj ,k,l ,m
AB1 C̃ ( i ,l ,m)

A(n) 1Cj ,k,l ,m
BB1 C̃ ( i ,l ,m)

B(n)

1Cj ,k,2 l ,m
AB2 C̃ ( i ,2 l ,m)

A(n) 1Cj ,k,2 l ,m
BB2 C̃ ( i ,2 l ,m)

B(n) !,

~42b!

where

Cj ,k,l ,m
AA6 5@KAAX0

A~L̃1
AA1L̃2

AA2L̃3
AA!

1KBAX0
BL̃2

BA#~Bl ,m
A6!( j ,k) , ~43a!

Cj ,k,l ,m
BA6 5KBAX0

A~L̃1
BA2L̃3

BA!~Bl ,m
B6!( j ,k) , ~43b!

Cj ,k,l ,m
AB6 5KABX0

B~L̃1
AB2L̃3

AB!~Bl ,m
A6!( j ,k) , ~43c!

Cj ,k,l ,m
BB6 5@KBBX0

B~L̃1
BB1L̃2

BB2L̃3
BB!

1KABX0
AL̃2

AB#~Bl ,m
B6!( j ,k) . ~43d!

We callCj ,k,l ,m
Aa6 andCj ,k,l ,m

Ba6 the numerical kernels ofC( i , j ,k)
a(n) .

Note thatCj ,k,l ,m
ba6 (a,b5A,B) is the integral of a given func-

tion and can be computed beforehand. TheCj ,k,l ,m
ba6 has the

property

Cj ,k,2 l ,m
ba2 5C2 j ,k,l ,m

ba1 , ~44!

because of the symmetry property ofL̃J
ba (J51,2,3) and the

lattice of z1 symmetric with respect toz150. Further,Kba

and X0
A are not contained in the integralsL̃1

AA(Bl ,m
A1),

L̃2
BA(Bl ,m

A1), etc. Thus we prepare the database of
L̃1

ba(Bl ,m
b1)( j ,k) , L̃2

ba(Bl ,m
a1)( j ,k) , and L̃3

ba(Bl ,m
b1)( j ,k) for dif-

ferent values ofm̂B for j 522N1 , . . . ,2N1 , l 50, . . . ,2N1 ,

and k,m50, . . . ,2Nr . The integration is performed accu-
rately numerically by the Gauss–Legendre formula.54 Then
the numerical kernelCj ,k,l ,m

ba6 is constructed from the database
before the process of iteration by Eqs.~43a!–~43d!. In the
process of iteration, the computation of the collision integrals
is a simple multiplication of matrices, i.e., Eqs.~42a! and
~42b!, and thus is performed efficiently.

D. Chebyshev polynomials

One of the purposes of the present work is to provide the
data for the slip boundary condition for the fluid-dynamic
type system derived in Ref. 5~see Sec. I!. The slip condition
is a linear combination of the thermal-slip and the diffusion-
slip conditions given in Eq.~27!. As is seen from Sec. III B,
the slip coefficientsbI and bII in Eq. ~27! depend on the
concentrationX0

A . But in the physical situations investigated
in Ref. 5 the concentration generally varies along the bound-
ary. Accordingly it is required to prepare formulas from
which the values ofbI andbII are readily obtained for arbi-
trary values of X0

A . We use the Chebyshev polynomial
approximation55 with respect toX0

A to meet this requirement.
This approximation is useful not only for the slip coefficients
but also for other physical quantities such as the Knudsen-
layer functions. Therefore we describe it in general form.

Let us denote byTn (n50,1,2,. . . ) theChebyshev poly-
nomial defined for 0<u<p by the relation

Tn~cosu!5cosnu. ~45!

Any function F of X0
A can be approximated by the polyno-

mials of degree up toN in the Chebyshev basis as

F~X0
A!5 (

n50

N

anTn~2X0
A21!, ~46!

where

an5
1

Nen
(
k50

N21

@FkTn~yk!1Fk11Tn~yk11!#, ~47!

with e05eN52 ande15¯5eN2151, and

Fk5FS 11yk

2 D , ~48!

with yk being the Chebyshev abscissa:

yk5cosS k
p

ND ~k50,1,. . . ,N!. ~49!

The approximation~46! takes the exact value ofF at X0
A

5(11yk)/2.
Since the functionF of X0

A is arbitrary, any physical
quantity for an arbitrary value ofX0

A can be obtained by the
formula ~46! from its data computed atN11 discrete values
of X0

A , i.e., X0
A5(11yk)/2 (k50,1,. . . ,N).

V. RESULTS AND DISCUSSIONS

In the present paper, we carry out the computation for
mB/mA52, 4, 5, and 10 and for various values ofX0

A , re-
stricting ourselves to the casedB/dA51. The computation
for other values ofdB/dA can be performed by using the
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same code and database ofL̃1
ba(Bl ,m

b1)( j ,k) , L̃2
ba(Bl ,m

a1)( j ,k) ,
etc. In what follows, we assume thatmB/mA>1, because the
results for mB/mA,1 can be obtained from those for
mB/mA.1 by a simple transformation.

A. Slip coefficient

The coefficient of thermal slipbI vs the concentration
X0

A of gas A is shown in Fig. 1~a!. SincebI is positive, the
flow induced along the wall is in the direction from the
colder part to the hotter at a large distance from the wall. The
bI is larger for smaller molecular mass ratiomB/mA and
becomes largest atmB/mA51. FormB/mA51, it is indepen-
dent ofX0

A because there is no difference~except ‘‘color’’ or
‘‘label’’ ! between molecules of a different kind. FormB/mA

52, bI increases monotonically with increasingX0
A , the con-

centration of the gas with smaller molecular mass. In con-
trast, for mB/mA54, 5, and 10,bI first decreases slightly,
takes the minimum at aroundX0

A50.15;0.25, and then in-
creases monotonically asX0

A increases from zero to 1. At
X0

A51, bI is independent ofmB/mA because of the absence
of gas B. Incidentally, the values atX0

A50, where gas A is

absent, are equal to the value atX0
A51 multiplied by

(mB/mA)21/2. This relation is easily seen by changing the
reference molecular mass frommA to mB.

The slip coefficientbI corresponds to the flow velocity
of the mixture away from the wall whencI51. The momen-
tum (0,MI ,0) and the kinetic energyKI per unit volume of
the mixture away from the wall is related tobI as follows:

MI /cIn0mA~2kT0 /mA!1/25 r̂0bI ,
~50!

KI /cI
2p05 r̂0bI

2 ,

where r̂0([m̂AX0
A1m̂BX0

B)5(12m̂B)X0
A1m̂B. These

quantities vsX0
A are shown in Figs. 1~b! and 1~c!. The mo-

mentum is larger for largermB/mA. It decreases monotoni-
cally asX0

A increases. The values atX0
A50 are the same as

the value atX0
A51 multiplied by (mB/mA)1/2. The kinetic

energy is larger for smaller difference of mass. It takes the
same value atX0

A50 and 1 and attains the minimum at an
intermediate value ofX0

A (X0
A50.5;0.7).

The coefficient of diffusion slipbII vs X0
A is shown

in Fig. 2~a!. Since bII is positive, the flow induced along

FIG. 1. Coefficient of thermal slipbI and related quantities.~a! Slip coefficientbI , ~b! momentumMI away from the wall, and~c! kinetic energyKI per unit
volume away from the wall. Both closed and open circles indicate the present result. The solid line indicates the present result using the formula~51!. The data
used to construct the formula are marked with a closed circle. The dashed line indicates the result formB/mA51.

FIG. 2. Coefficient of diffusion slipbII and related quantities.~a! Slip coefficientbII , ~b! momentumMII away from the wall, and~c! kinetic energyKII per
unit volume away from the wall. See the caption of Fig. 1.
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the wall in the far field is in the direction of increasing
X0

A1C̃II
AX2 , i.e., from the part with lower concentration of

the gas with smaller molecular mass to the part with higher
concentration of the same gas. ThebII increases monotoni-
cally asX0

A increases. It is larger for larger mass ratiomB/mA

when X0
A*0.5. For smaller values ofX0

A , however, its de-
pendence onmB/mA is not monotonic, and it becomes largest
at aroundmB/mA54 or 5. FormB/mA51, where there is no
difference between molecules of different kind,bII vanishes
and thus the diffusion-slip flow is not induced. This fact can
be shown analytically by making use of a property ofD (b)a

given in Appendix B of Ref. 56 and the existence and
uniqueness theorem for the Knudsen-layer problem for a
single-component gas~see Appendix C!. In the meantime,
bII is nonzero atX0

A50 and 1. It appears strange at a glance
because the ‘‘mixture’’ in these cases is, in reality, a single-
component gas, where there is no diffusion-slip flow. How-
ever, atX0

A50 and 1, the concentration gradientC̃II
A ~or cII )

should vanish because 0<X0
A1C̃II

AX2<1 by definition.
Therefore, the diffusion-slip flow, which is the product ofbII

andcII , vanishes, and no contradiction arises.
The induced momentum (0,MII ,0) and the kinetic en-

ergy KII per unit volume of the mixture away from the wall
are shown in Figs. 2~b! and 2~c!. They are related to the slip
coefficient bII through Eq.~50! with the subscriptI being
replaced by the subscriptII . Both MII andKII are larger for
largermB/mA and for largerX0

A .
As is seen from Figs. 1 and 2, the dependence ofr̂0bJ

(J5I ,II ) @cf. the first equation in Eq.~50! and the corre-
sponding relation forMII ] on X0

A is simpler than that ofbJ .
Therefore we make the approximation formula ofbJ for ar-
bitrary values ofX0

A by applying Eq.~46! to r̂0bJ , not di-
rectly to bJ itself. The data used to make the formula are
shown with a closed circle in Figs. 1 and 2. The resulting
formula is

bJ5 (
n50

N

bJ
(n)Tn~2X0

A21!/ r̂0 ~J5I ,II !, ~51!

with r̂05(12m̂B)X0
A1m̂B and the data ofbI

(n) and bII
(n)

listed in Tables I and II. The solid lines in Figs. 1 and 2 are
drawn by using this formula.

The thermal-slip and the diffusion-slip problems for a
mixture have been studied by various approximation meth-
ods~the variational method, the moment method, etc.! or by
the direct computation of model Boltzmann equations. Some
of the approximation methods aim at providing the slip co-
efficients for different molecular models, including the more
realistic Lennard-Jones potential. In contrast, in the present
paper, we have analyzed the Boltzmann equation faithfully
and accurately, restricting ourselves to the hard-sphere mol-
ecules. Our aim is to establish reliable results at the level of
the velocity distribution functions that can serve as the stan-
dard solutions for these two problems for the hard-sphere

FIG. 3. A comparison with the previous results I:bI vs X0
A . The solid line

indicates the present result, the dashed line the formula in Ref. 34, the
dot–dashed line that in Ref. 38, and the open circle the result in Ref. 12.

TABLE I. Coefficient bI
(n) (n50, . . . ,N) in Eq. ~51! for the thermal-slip

coefficientbI .

n

mB/mA

2 (N55) 4 (N58) 5 (N58) 10 (N516)

0 7.636 42(21)a 9.179 23(21) 9.848 26(21) 1.277 40
1 21.326 32(21) 23.173 98(21) 23.923 97(21) 26.903 26(21)
2 1.663 96(22) 5.126 03(22) 6.065 50(22) 6.849 37(22)
3 21.251 75(23) 25.744 65(23) 27.004 42(23) 28.197 29(23)
4 1.025 88(24) 5.455 54(24) 5.605 33(24) 23.541 47(24)
5 28.947 58(26) 21.012 07(24) 21.479 12(24) 23.841 75(24)
6 – 8.148 85(26) 4.051 81(26) 28.992 59(25)
7 – 21.853 88(26) 23.979 89(26) 23.471 91(25)
8 – 1.637 69(27) 21.316 47(27) 21.145 87(25)
9 – – – 24.326 05(26)
10 – – – 21.592 96(26)
11 – – – 25.670 10(27)
12 – – – 21.869 57(27)
13 – – – 28.234 80(28)
14 – – – 24.147 64(28)
15 – – – 21.556 78(28)
16 – – – 8.944 66(210)

aRead as 7.6364231021.

TABLE II. Coefficient bII
(n) (n50, . . . ,N) in Eq. ~51! for the diffusion-slip

coefficientbII .

n

mB/mA

2 (N58) 4 (N512) 5 (N512) 10 (N516)

0 2.497 93(21)a 6.732 35(21) 8.662 87(21) 1.719 82
1 5.316 06(22) 2.551 79(21) 3.687 19(21) 9.666 00(21)
2 4.271 74(23) 4.686 53(22) 8.075 02(22) 3.142 93(21)
3 5.144 04(24) 1.015 04(22) 2.001 50(22) 1.095 60(21)
4 4.721 89(25) 2.123 51(23) 4.947 61(23) 3.944 40(22)
5 5.628 93(26) 4.696 41(24) 1.267 93(23) 1.451 52(22)
6 5.546 15(27) 1.031 65(24) 3.270 88(24) 5.423 39(23)
7 6.634 70(28) 2.318 88(25) 8.562 21(25) 2.048 47(23)
8 6.740 49(29) 5.217 45(26) 2.255 15(25) 7.802 44(24)
9 – 1.188 34(26) 5.986 59(26) 2.990 82(24)
10 – 2.705 43(27) 1.603 65(26) 1.152 47(24)
11 – 6.449 01(28) 4.584 02(27) 4.460 01(25)
12 – 1.427 69(28) 1.149 78(27) 1.734 05(25)
13 – – – 6.776 19(26)
14 – – – 2.702 63(26)
15 – – – 1.191 30(26)
16 – – – 4.125 02(27)

aRead as 2.4979331021.

3754 Phys. Fluids, Vol. 15, No. 12, December 2003 Takata et al.



molecular model that is not necessarily realistic but is the
most fundamental model in kinetic theory. Such standard so-
lutions are useful to validate convenient expressions for the
slip coefficients obtained by approximation methods that can
be extended to more realistic models rather easily. By the
way, it should be mentioned that the extension of the present
method to other molecular models is straightforward though
it gives rise to some complexity.

Keeping the above discussion in mind, we now compare
the present result with existing results obtained by other ap-
proximation methods. When the latter contain the results for
other molecular models, we take only those for the hard-
sphere molecules in the comparison. Figures 3 and 4 and

Tables III and IV show such a comparison. It is seen that
among the existing results the formula in Ref. 38, which is
derived by a special kind of half-space moment method with
the second-order Chapman–Enskog expansions, agrees best
to the present result. In the figures and the tables, the formula
in Ref. 34, which is derived by the same method as Ref. 38
with the first-order Chapman–Enskog expansions, is also
shown. Incidentally, this formula is the same in its form as
the formula in Ref. 29 that is derived by the use of varia-
tional principle and the first-order Chapman–Enskog expan-
sions. The formula given in Ref. 32, where the simplification
of the approximate formulas29,34 is discussed, shows less
agreement with the present result. The results by Yalamov,
Yushkanov, and Savkov33 ~half-space moment method! and
by Sharipov and Kalempa39 ~finite-difference analysis based
on the McCormack model57! are close to the formula in Ref.
34 rather than to the present result.

The open circle atXA51 in Fig. 3 indicates the thermal-
slip coefficient for a single-component hard-sphere gas ob-
tained by the finite-difference method on which the present
method is based.12 It should be mentioned that Loyalka31 has
obtained essentially the same value. He numerically solved
an approximate linearized Boltzmann equation that is de-
rived by taking the first five terms of the expansion of the
collision-integral kernel in terms of the associate Legendre
functions.31,58According to Ref. 23, the deviation of the ap-
proximate kernel from the original one is not small~in fact,
the singularity contained in the original kernel is not repro-
duced by the approximate kernel!. In this sense, the equation
is not necessarily a good approximation of the linearized
Boltzmann equation. Nevertheless, the thermal-slip coeffi-
cient obtained from this equation is accurate. Recently, Siew-
ert developed an efficient and accurate method for a single-
component gas by combining the approximate equation

FIG. 4. A comparison with the previous results II:bII vs mB/mA for X0
A

50, 0.1, 0.3, 0.5, 0.7, 0.9, and 1. The closed circle indicates the present re-
sult; the dashed line the formula in Ref. 34; the solid line that in Ref. 38; the
open circle the result in Ref. 39 forX0

A50.1,0.3,0.5,0.7, and 0.9; and the
open diamond that in Ref. 33 forX0

A50.5 and 0.99.

TABLE III. A comparison with the previous results for the thermal-slip coefficientbI .

mB/mA

X0
A50.1

Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38

2 0.4599 0.5023 – 0.4993 0.4507
4 0.3199 0.3515 – 0.3466 0.3141
5 0.2854 0.3140 – 0.3091 0.2804
10 0.2028 0.2242 – 0.2200 0.1997

X0
A50.5

mB/mA Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38

1.5 – 0.6193 0.631 0.6142 0.5521
2 0.4981 0.5514 – 0.5389 0.4869

7/3 – 0.5149 0.513 0.4984 0.4518
4 0.3469 0.4000 0.385 0.3726 0.3424
5 0.3082 0.3604 – 0.3308 0.3056
9 – 0.2776 0.259 0.2475 0.2313
10 0.2198 0.2655 – 0.2360 0.2209

X0
A50.9

mB/mA Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38

2 0.6023 0.6616 – 0.6539 0.5911
4 0.5231 0.5975 – 0.5668 0.5183
5 0.4929 0.5743 – 0.5341 0.4912
10 0.3937 0.4951 – 0.4273 0.4030
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based on more terms~nine terms! of the kernel expansion
and his analytical discrete-ordinate method.40 This gives an
accurate result for the velocity and heat-flow profiles as well
as the slip coefficient for a single-component gas by fast
computation. It should be stressed, however, that the result
obtained by the direct numerical analysis in Refs. 12 and 23
served to assess the new method. Incidentally, the Siewert
method has been used for a more sophisticated model of the

boundary condition ~the so-called Cercignani–Lampis
model59!.40

B. Knudsen-layer functions

The Knudsen-layer functions of component gasesUA

andUB for the thermal slip~problem I! are shown in Fig. 5
and in Tables V and VI, andHA/X0

A and HB/X0
B are in the

FIG. 5. Knudsen-layer functionsUA

andUB for the thermal slip~problem
I!. ~a! X0

A50.25, ~b! X0
A50.5, ~c!

X0
A50.75, and~d! X0

A50.9.

TABLE IV. A comparison with the previous results for the diffusion-slip coefficientbII .

mB/mA

X0
A50.1

Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38 Ref. 39

2 0.1098 0.0470 – 0.1022 0.1163 0.1030
4 0.1309 0.0644 – 0.1202 0.1384 0.1234
5 0.1300 0.0661 – 0.1189 0.1369 0.1227
10 0.1155 0.0624 – 0.1046 0.1201 0.1093

X0
A50.5

mB/mA Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38 Ref. 39

1.5 – 0.0451 0.103 0.0990 0.1088 –
2 0.1637 0.0769 – 0.1549 0.1702 0.1550

7/3 – 0.0930 0.184 0.1797 0.1974 –
4 0.2514 0.1378 0.243 0.2373 0.2605 0.2399
5 0.2634 0.1493 – 0.2486 0.2728 0.2517
9 – 0.1597 0.257 0.2503 0.2742 –
10 0.2619 0.1590 – 0.2473 0.2709 0.2513

X0
A50.9

mB/mA Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38 Ref. 39

2 0.2666 0.1340 – 0.2569 0.2728 0.2552
4 0.6805 0.4012 – 0.6646 0.6923 0.6598
5 0.8365 0.5094 – 0.8200 0.8513 0.8133
10 1.311 0.8575 – 1.2998 1.3412 1.2816
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TABLE V. Knudsen-layer functionsUA, UB, HA/X0
A , andHB/X0

B for the thermal slip~problem I! in the casemB/mA52.

x1\X0
A

2UA 2UB HA/X0
A HB/X0

B

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0000 0.4177 0.4207 0.4298 0.3092 0.3085 0.3126 1.2690 1.2932 1.3330 0.9567 0.9452 0.9466
0.0283 0.3902 0.3929 0.4014 0.2886 0.2877 0.2915 1.1657 1.1881 1.2257 0.8791 0.8674 0.8682
0.0516 0.3744 0.3769 0.3852 0.2768 0.2760 0.2796 1.1076 1.1292 1.1656 0.8359 0.8242 0.8248
0.0973 0.3491 0.3514 0.3593 0.2582 0.2573 0.2607 1.0165 1.0369 1.0715 0.7685 0.7571 0.7576
0.1435 0.3280 0.3301 0.3376 0.2426 0.2417 0.2450 0.9419 0.9612 0.9945 0.7134 0.7024 0.7028
0.2005 0.3057 0.3076 0.3148 0.2263 0.2253 0.2284 0.8647 0.8831 0.9148 0.6566 0.6460 0.6465
0.2934 0.2752 0.2769 0.2837 0.2039 0.2029 0.2059 0.7620 0.7790 0.8086 0.5809 0.5711 0.5718
0.4052 0.2450 0.2465 0.2528 0.1817 0.1807 0.1835 0.6633 0.6789 0.7064 0.5081 0.4991 0.5000
0.5010 0.2232 0.2245 0.2304 0.1656 0.1647 0.1673 0.5938 0.6083 0.6341 0.4566 0.4484 0.4495
0.5703 0.2091 0.2104 0.2160 0.1553 0.1544 0.1569 0.5499 0.5638 0.5885 0.4242 0.4164 0.4176
0.7611 0.1763 0.1773 0.1823 0.1311 0.1302 0.1325 0.4503 0.4624 0.4845 0.3500 0.3434 0.3449
0.9749 0.1472 0.1480 0.1523 0.1096 0.1088 0.1107 0.3652 0.3758 0.3952 0.2864 0.2808 0.2825
1.1604 0.1266 0.1273 0.1312 0.0944 0.0936 0.0954 0.3073 0.3167 0.3341 0.2427 0.2379 0.2398
1.3574 0.1085 0.1091 0.1125 0.0810 0.0803 0.0818 0.2576 0.2659 0.2815 0.2050 0.2010 0.2029
1.6176 0.0890 0.0895 0.0924 0.0665 0.0659 0.0672 0.2059 0.2129 0.2264 0.1655 0.1622 0.1641
1.9474 0.0698 0.0701 0.0725 0.0522 0.0516 0.0527 0.1567 0.1624 0.1736 0.1275 0.1249 0.1268
2.4121 0.0501 0.0503 0.0521 0.0375 0.0370 0.0378 0.1084 0.1127 0.1213 0.0896 0.0879 0.0896
2.9000 0.0357 0.0358 0.0372 0.0268 0.0264 0.0269 0.0748 0.0780 0.0845 0.0628 0.0616 0.0631
3.3427 0.0264 0.0265 0.0276 0.0198 0.0195 0.0199 0.0539 0.0564 0.0615 0.0460 0.0451 0.0464
3.8645 0.0187 0.0187 0.0195 0.0140 0.0138 0.0141 0.0371 0.0388 0.0426 0.0321 0.0315 0.0326
4.8136 0.0101 0.0101 0.0106 0.0076 0.0074 0.0075 0.0192 0.0201 0.0224 0.0170 0.0167 0.0174
5.7335 0.0056 0.0056 0.0059 0.0042 0.0041 0.0042 0.0103 0.0109 0.0122 0.0094 0.0092 0.0097
7.6095 0.0017 0.0017 0.0018 0.0013 0.0013 0.0013 0.0030 0.0032 0.0037 0.0029 0.0028 0.0030
9.5607 0.0005 0.0005 0.0006 0.0004 0.0004 0.0004 0.0009 0.0009 0.0011 0.0009 0.0009 0.0009

11.4142 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE VI. Knudsen-layer functionsUA, UB, HA/X0
A , andHB/X0

B for the thermal slip~problem I! in the casemB/mA55.

x1\X0
A

2UA 2UB HA/X0
A HB/X0

B

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0000 0.3488 0.3632 0.3930 0.1911 0.1908 0.1992 1.0097 1.0911 1.2116 0.5783 0.5570 0.5552
0.0283 0.3243 0.3376 0.3659 0.1779 0.1773 0.1854 0.9189 0.9953 1.1096 0.5293 0.5078 0.5053
0.0516 0.3102 0.3229 0.3504 0.1705 0.1698 0.1778 0.8679 0.9417 1.0525 0.5023 0.4811 0.4784
0.0973 0.2877 0.2996 0.3258 0.1587 0.1580 0.1657 0.7887 0.8582 0.9635 0.4605 0.4398 0.4372
0.1435 0.2690 0.2802 0.3053 0.1489 0.1482 0.1558 0.7242 0.7902 0.8908 0.4265 0.4065 0.4040
0.2005 0.2494 0.2598 0.2838 0.1387 0.1380 0.1453 0.6582 0.7203 0.8159 0.3915 0.3723 0.3702
0.2934 0.2228 0.2322 0.2545 0.1248 0.1241 0.1311 0.5713 0.6281 0.7166 0.3451 0.3273 0.3256
0.4052 0.1967 0.2052 0.2256 0.1110 0.1104 0.1170 0.4890 0.5405 0.6215 0.3006 0.2844 0.2832
0.5010 0.1780 0.1857 0.2048 0.1011 0.1005 0.1068 0.4319 0.4793 0.5547 0.2694 0.2544 0.2536
0.5703 0.1661 0.1733 0.1915 0.0947 0.0941 0.1002 0.3963 0.4411 0.5128 0.2497 0.2355 0.2350
0.7611 0.1385 0.1446 0.1606 0.0798 0.0793 0.0848 0.3168 0.3551 0.4177 0.2050 0.1928 0.1928
0.9749 0.1144 0.1195 0.1333 0.0666 0.0661 0.0711 0.2505 0.2830 0.3370 0.1669 0.1565 0.1570
1.1604 0.0976 0.1020 0.1142 0.0572 0.0569 0.0613 0.2065 0.2346 0.2823 0.1409 0.1318 0.1327
1.3574 0.0829 0.0867 0.0975 0.0490 0.0487 0.0527 0.1695 0.1938 0.2356 0.1185 0.1107 0.1118
1.6176 0.0674 0.0705 0.0796 0.0402 0.0399 0.0433 0.1319 0.1520 0.1873 0.0952 0.0888 0.0900
1.9474 0.0522 0.0547 0.0621 0.0315 0.0313 0.0341 0.0973 0.1130 0.1415 0.0729 0.0678 0.0692
2.4121 0.0370 0.0388 0.0443 0.0226 0.0224 0.0245 0.0646 0.0758 0.0970 0.0509 0.0473 0.0486
2.9000 0.0261 0.0273 0.0314 0.0161 0.0159 0.0175 0.0427 0.0507 0.0663 0.0355 0.0329 0.0341
3.3427 0.0191 0.0201 0.0232 0.0119 0.0118 0.0129 0.0298 0.0356 0.0474 0.0258 0.0239 0.0250
3.8645 0.0134 0.0141 0.0164 0.0084 0.0083 0.0091 0.0197 0.0237 0.0322 0.0179 0.0166 0.0175
4.8136 0.0071 0.0075 0.0088 0.0045 0.0045 0.0049 0.0095 0.0116 0.0163 0.0094 0.0087 0.0094
5.7335 0.0039 0.0041 0.0049 0.0025 0.0025 0.0027 0.0048 0.0059 0.0086 0.0052 0.0048 0.0052
7.6095 0.0012 0.0013 0.0015 0.0008 0.0008 0.0008 0.0013 0.0016 0.0024 0.0016 0.0015 0.0016
9.5607 0.0004 0.0004 0.0005 0.0002 0.0002 0.0002 0.0003 0.0004 0.0007 0.0005 0.0004 0.0005

11.4142 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0001 0.0002
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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same tables. Each function decays monotonically and rapidly
to zero as the distance from the wall increases. These func-
tions depend monotonically on the mass ratiomB/mA. For
UA andHA/X0

A , the dependence is larger for smallerX0
A , the

concentration of the gas with smaller molecular mass, while
for UB andHB/X0

B , it is little influenced by the value ofX0
A .

On the other hand, the dependence onX0
A differs among the

functions. The functionsUA andHA/X0
A depend onX0

A espe-
cially whenmB/mA is large. This is also true forUB, but less
dependent onX0

A . The HB/X0
B is almost independent ofX0

A

irrespective ofmB/mA.
The functionSA/X0

A is shown in Table VII. The results
for mB/mA54 and 10 are omitted, but they are very close to
that for mB/mA55. It is seen thatSA/X0

A decays monotoni-
cally and rapidly to zero asx1→` and that it depends onX0

A

monotonically. The functionSB can be obtained from the
table by the relation~26!.

The functionsUA andHA for X0
A51 are shown in Table

VIII. Since gas B is absent in this case, they are independent
of mB/mA and can be regarded as the counterparts of a
single-component gas. From a different viewpoint, they can
also be regarded asUA andHA/X0

A for arbitrary values ofX0
A

in the case ofmB/mA51. It is also seen from a change of a
role between gas A and B thatUB andHB/X0

B at X0
A50 are,

respectively, UA and HA in the table multiplied by
(mB/mA)21/2. Incidentally, the corresponding Knudsen-layer
functions for a single-component gas have already been ob-
tained in Ref. 12 by the same numerical method, i.e., the
finite-difference method incorporating the numerical kernel
method. In the present work, they are obtained with higher
accuracy, but the difference is at most 1.131024 for UA and
1.831024 for HA.

The Knudsen-layer functionsUA and UB for the diffu-
sion slip ~problem II! are shown in Fig. 6 and in Tables IX

TABLE VII. Knudsen-layer function2SA/X0
A for the thermal slip~problem I! in the casemB/mA52 and 5.

x1\X0
A

mB/mA52 mB/mA55

0.25 0.5 0.75 0.25 0.5 0.75

0.0000 0.0281 0.0188 0.0096 0.0420 0.0288 0.0152
0.0283 0.0281 0.0188 0.0095 0.0418 0.0287 0.0151
0.0516 0.0280 0.0187 0.0095 0.0416 0.0286 0.0151
0.0973 0.0278 0.0186 0.0094 0.0412 0.0282 0.0149
0.1435 0.0275 0.0184 0.0094 0.0406 0.0278 0.0146
0.2005 0.0271 0.0181 0.0092 0.0399 0.0273 0.0143
0.2934 0.0263 0.0176 0.0090 0.0385 0.0264 0.0138
0.4052 0.0253 0.0169 0.0086 0.0367 0.0251 0.0132
0.5010 0.0243 0.0163 0.0083 0.0352 0.0241 0.0126
0.5703 0.0237 0.0159 0.0081 0.0340 0.0233 0.0122
0.7611 0.0217 0.0146 0.0075 0.0310 0.0212 0.0111
0.9749 0.0197 0.0133 0.0068 0.0277 0.0191 0.0100
1.1604 0.0180 0.0121 0.0062 0.0251 0.0173 0.0091
1.3574 0.0163 0.0110 0.0057 0.0225 0.0156 0.0083
1.6176 0.0142 0.0096 0.0050 0.0195 0.0136 0.0072
1.9474 0.0119 0.0081 0.0042 0.0162 0.0113 0.0061
2.4121 0.0093 0.0064 0.0033 0.0124 0.0088 0.0048
2.9000 0.0071 0.0049 0.0026 0.0093 0.0067 0.0037
3.3427 0.0055 0.0038 0.0020 0.0072 0.0052 0.0030
3.8645 0.0041 0.0029 0.0015 0.0053 0.0039 0.0023
4.8136 0.0024 0.0017 0.0009 0.0030 0.0023 0.0014
5.7335 0.0014 0.0010 0.0006 0.0018 0.0014 0.0009
7.6095 0.0005 0.0003 0.0002 0.0006 0.0005 0.0003
9.5607 0.0002 0.0001 0.0001 0.0002 0.0002 0.0001

11.4142 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE VIII. Knudsen-layer functionsUA and HA for the thermal slip
~problem I! in the caseX0

A51.

x1 2UA HA

0.0000 0.4452 1.3895
0.0283 0.4161 1.2794
0.0516 0.3995 1.2178
0.0973 0.3730 1.1215
0.1435 0.3509 1.0426
0.2005 0.3275 0.9609
0.2934 0.2956 0.8519
0.4052 0.2639 0.7467
0.5010 0.2409 0.6722
0.5703 0.2260 0.6251
0.7611 0.1913 0.5173
0.9749 0.1602 0.4243
1.1604 0.1383 0.3604
1.3574 0.1189 0.3052
1.6176 0.0979 0.2470
1.9474 0.0771 0.1909
2.4121 0.0556 0.1348
2.9000 0.0399 0.0949
3.3427 0.0297 0.0697
3.8645 0.0211 0.0488
4.8136 0.0115 0.0261
5.7335 0.0064 0.0145
7.6095 0.0020 0.0045
9.5607 0.0006 0.0014

11.4142 0.0002 0.0005
15.2205 0.0000 0.0000
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and X, andHA and HB are in the same tables. They decay
rapidly asx1→`, but the way of decay is, in general, non-
monotonic, except forUA. It is clearly seen that the magni-
tude of UA decreases with increasingX0

A while that of UB

increases.

The functionSA for mB/mA52 and 5 is shown in Table
XI. It decays monotonically and rapidly to zero asx1→`. It
is seen thatSA increases monotonically with increasingX0

A .
These are true also for the other cases. A further comparison
with the other cases shows that the dependence onX0

A is

FIG. 6. Knudsen-layer functionsUA

and UB for the diffusion slip~prob-
lem II!. ~a! X0

A50.25, ~b! X0
A50.5,

~c! X0
A50.75, and~d! X0

A50.9.

TABLE IX. Knudsen-layer functionsUA, UB, HA, andHB for the diffusion slip~problem II! in the casemB/mA52.

x1\X0
A

UA 2UB 2HA HB

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0000 1.6011 0.8978 0.6785 0.3385 0.5723 1.3017 0.1147 0.1296 0.1459 0.0037 0.0150 0.0265
0.0283 1.4468 0.8159 0.6202 0.3027 0.5148 1.1784 0.0984 0.1121 0.127320.0049 0.0054 0.0159
0.0516 1.3610 0.7701 0.5875 0.2830 0.4832 1.1106 0.0898 0.1029 0.117420.0090 0.0007 0.0106
0.0973 1.2282 0.6991 0.5366 0.2528 0.4347 1.0060 0.0771 0.0892 0.102620.0148 20.0058 0.0032
0.1435 1.1208 0.6414 0.4950 0.2287 0.3957 0.9215 0.0672 0.0786 0.091120.0188 20.0105 20.0022
0.2005 1.0116 0.5824 0.4523 0.2044 0.3562 0.8354 0.0576 0.0681 0.079820.0223 20.0147 20.0071
0.2934 0.8691 0.5048 0.3957 0.1730 0.3048 0.7227 0.0457 0.0552 0.065620.0258 20.0191 20.0125
0.4052 0.7356 0.4315 0.3417 0.1440 0.2568 0.6164 0.0354 0.0437 0.052920.0280 20.0222 20.0165
0.5010 0.6437 0.3806 0.3038 0.1243 0.2239 0.5429 0.0287 0.0363 0.044620.0288 20.0236 20.0185
0.5703 0.5870 0.3490 0.2801 0.1122 0.2037 0.4972 0.0248 0.0318 0.039620.0290 20.0242 20.0195
0.7611 0.4613 0.2782 0.2266 0.0859 0.1589 0.3952 0.0168 0.0227 0.029220.0283 20.0244 20.0206
0.9749 0.3584 0.2194 0.1815 0.0648 0.1224 0.3107 0.0110 0.0158 0.021220.0264 20.0233 20.0203
1.1604 0.2909 0.1804 0.1510 0.0512 0.0987 0.2547 0.0076 0.0117 0.016320.0245 20.0218 20.0194
1.3574 0.2352 0.1476 0.1252 0.0403 0.0791 0.2078 0.0052 0.0087 0.012520.0222 20.0201 20.0181
1.6176 0.1794 0.1145 0.0986 0.0296 0.0597 0.1604 0.0030 0.0059 0.009020.0194 20.0176 20.0161
1.9474 0.1290 0.0839 0.0737 0.0202 0.0422 0.1169 0.0015 0.0036 0.006120.0160 20.0148 20.0137
2.4121 0.0827 0.0552 0.0497 0.0120 0.0264 0.0762 0.0004 0.0019 0.003720.0121 20.0113 20.0106
2.9000 0.0528 0.0362 0.0334 0.0070 0.0164 0.049420.0001 0.0011 0.0023 20.0089 20.0084 20.0079
3.3427 0.0356 0.0250 0.0235 0.0043 0.0107 0.033720.0002 0.0006 0.0016 20.0068 20.0063 20.0061
3.8645 0.0227 0.0163 0.0157 0.0024 0.0066 0.021720.0002 0.0004 0.0011 20.0048 20.0046 20.0044
4.8136 0.0102 0.0077 0.0077 0.0008 0.0027 0.009920.0001 0.0002 0.0006 20.0026 20.0025 20.0024
5.7335 0.0049 0.0038 0.0040 0.0003 0.0012 0.004820.0001 0.0001 0.0004 20.0015 20.0014 20.0013
7.6095 0.0011 0.0010 0.0011 0.0000 0.0002 0.0011 0.0000 0.0001 0.000120.0004 20.0004 20.0004
9.5607 0.0003 0.0002 0.0003 0.0000 0.0000 0.0002 0.0000 0.0000 0.000120.0001 20.0001 20.0001

11.4142 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE X. Knudsen-layer functionsUA, UB, HA, andHB for the diffusion slip~problem II! in the casemB/mA55.

x1\X0
A

UA 2UB 2HA HB

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0000 1.5707 0.9926 0.8897 0.1864 0.3526 0.9398 0.1493 0.1739 0.206720.0120 20.0021 0.0096
0.0283 1.4204 0.9077 0.8241 0.1644 0.3146 0.8508 0.1318 0.1544 0.184720.0170 20.0083 0.0017
0.0516 1.3366 0.8599 0.7870 0.1526 0.2943 0.8030 0.1224 0.1438 0.172720.0193 20.0113 20.0020
0.0973 1.2068 0.7854 0.7283 0.1347 0.2633 0.7299 0.1080 0.1278 0.154520.0224 20.0153 20.0072
0.1435 1.1018 0.7245 0.6799 0.1205 0.2386 0.6711 0.0967 0.1150 0.139920.0244 20.0181 20.0109
0.2005 0.9949 0.6618 0.6293 0.1064 0.2138 0.6112 0.0854 0.1022 0.125220.0260 20.0204 20.0143
0.2934 0.8553 0.5787 0.5613 0.0884 0.1817 0.5326 0.0711 0.0858 0.106320.0273 20.0228 20.0179
0.4052 0.7245 0.4995 0.4950 0.0720 0.1519 0.4583 0.0581 0.0709 0.088720.0278 20.0242 20.0204
0.5010 0.6345 0.4440 0.4477 0.0611 0.1317 0.4065 0.0494 0.0608 0.076720.0276 20.0246 20.0216
0.5703 0.5789 0.4093 0.4175 0.0544 0.1192 0.3742 0.0442 0.0546 0.069420.0272 20.0246 20.0221
0.7611 0.4556 0.3308 0.3481 0.0402 0.0919 0.3015 0.0330 0.0414 0.053320.0256 20.0239 20.0225
0.9749 0.3545 0.2646 0.2875 0.0291 0.0699 0.2404 0.0243 0.0309 0.040420.0233 20.0223 20.0218
1.1604 0.2883 0.2201 0.2454 0.0222 0.0556 0.1995 0.0188 0.0243 0.032120.0213 20.0207 20.0207
1.3574 0.2334 0.1823 0.2087 0.0167 0.0440 0.1648 0.0145 0.0189 0.025320.0192 20.0189 20.0194
1.6176 0.1785 0.1435 0.1698 0.0115 0.0325 0.1293 0.0105 0.0138 0.018720.0165 20.0166 20.0174
1.9474 0.1287 0.1071 0.1319 0.0072 0.0224 0.0961 0.0070 0.0094 0.012920.0136 20.0139 20.0150
2.4121 0.0829 0.0722 0.0937 0.0036 0.0134 0.0643 0.0041 0.0056 0.007720.0102 20.0107 20.0119
2.9000 0.0532 0.0485 0.0663 0.0016 0.0079 0.0428 0.0023 0.0033 0.004620.0075 20.0080 20.0092
3.3427 0.0360 0.0341 0.0488 0.0007 0.0048 0.0299 0.0015 0.0021 0.002920.0057 20.0061 20.0072
3.8645 0.0231 0.0228 0.0343 0.0001 0.0027 0.0198 0.0008 0.0012 0.001720.0041 20.0045 20.0054
4.8136 0.0105 0.0112 0.0184 20.0002 0.0009 0.0095 0.0003 0.0005 0.000720.0022 20.0025 20.0032
5.7335 0.0051 0.0058 0.0102 20.0002 0.0002 0.0048 0.0001 0.0002 0.000320.0013 20.0014 20.0019
7.6095 0.0012 0.0016 0.0032 20.0001 0.0000 0.0012 0.0000 0.0001 0.000120.0004 20.0005 20.0007
9.5607 0.0003 0.0004 0.0010 0.0000 0.0000 0.0003 0.0000 0.0000 0.000020.0001 20.0001 20.0002

11.4142 0.0001 0.0001 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.000020.0001
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE XI. Knudsen-layer functionSA for the diffusion slip~problem II!.

x1\X0
A

mB/mA52 mB/mA55

0.25 0.5 0.75 0.25 0.5 0.75

0.0000 0.3644 0.3917 0.4239 0.3579 0.4170 0.5027
0.0283 0.3499 0.3770 0.4088 0.3436 0.4021 0.4872
0.0516 0.3388 0.3656 0.3972 0.3328 0.3907 0.4753
0.0973 0.3188 0.3451 0.3762 0.3131 0.3700 0.4534
0.1435 0.3005 0.3262 0.3567 0.2951 0.3509 0.4329
0.2005 0.2799 0.3050 0.3347 0.2749 0.3292 0.4097
0.2934 0.2504 0.2743 0.3028 0.2459 0.2979 0.3755
0.4052 0.2201 0.2426 0.2695 0.2162 0.2652 0.3393
0.5010 0.1977 0.2191 0.2447 0.1943 0.2408 0.3119
0.5703 0.1833 0.2038 0.2285 0.1801 0.2249 0.2938
0.7611 0.1496 0.1679 0.1902 0.1471 0.1872 0.2502
0.9749 0.1201 0.1361 0.1559 0.1182 0.1535 0.2102
1.1604 0.0998 0.1140 0.1317 0.0983 0.1298 0.1814
1.3574 0.0823 0.0949 0.1107 0.0812 0.1090 0.1557
1.6176 0.0642 0.0749 0.0883 0.0634 0.0871 0.1277
1.9474 0.0473 0.0558 0.0668 0.0468 0.0659 0.1000
2.4121 0.0310 0.0373 0.0455 0.0308 0.0450 0.0714
2.9000 0.0202 0.0247 0.0307 0.0201 0.0305 0.0505
3.3427 0.0138 0.0171 0.0217 0.0138 0.0215 0.0372
3.8645 0.0089 0.0112 0.0145 0.0089 0.0144 0.0260
4.8136 0.0040 0.0053 0.0070 0.0041 0.0071 0.0138
5.7335 0.0019 0.0026 0.0035 0.0020 0.0036 0.0076
7.6095 0.0004 0.0006 0.0009 0.0005 0.0009 0.0023
9.5607 0.0001 0.0001 0.0002 0.0001 0.0002 0.0007

11.4142 0.0000 0.0000 0.0001 0.0000 0.0001 0.0002
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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FIG. 7. Reduced velocity distribution functionCA/X0
A

of gas A and its contour plots for the thermal slip~prob-
lem I! in the case ofmB/mA55 and X0

A50.5. ~a! x1

50, ~b! x150.052, ~c! x150.201, ~d! x150.405, ~e!
x150.975, and~f! x152.004. In the contour plots the
curves are drawn with the interval 0.02. The outermost
curve indicates the contourCA/X0

A50.02.

FIG. 8. Reduced velocity distribution function
CB/((m̂B)3/2X0

B) of gas B and its contour plots for the
thermal slip~problem I! in the case ofmB/mA55 and
X0

A50.5. ~a! x150, ~b! x150.052, ~c! x150.201, ~d!
x150.405, ~e! x150.975, and~f! x152.004. See the
caption of Fig. 7.
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larger for larger difference of molecular mass. TheSB can be
obtained again from the table by the relation~26!.

Incidentally, some of the results forX0
A50.25, 0.75, and

0.9 in the figures and tables in this section are obtained by
applying the formula~46! to the functionsUA, UB, HA/X0

A ,
HB/X0

B , andSA/X0
A for problem I and toX0

AUA, X0
BUB, HA,

HB, andSA for problem II. TheFORTRANcode generating the
Knudsen-layer functions for an arbitrary value ofX0

A is avail-
able from the authors.

C. Velocity distribution functions

Figures 7 and 8 show the reduced velocity distribution
functionsCA andCB and their contour plots for the thermal-
slip problem~problem I! in the case ofmB/mA55 andX0

A

50.5. There is a discontinuity atz150 on the wall (x1

50) @see Figs. 7~a! and 8~a!#. The discontinuity disappears
inside the gas. This is because the characteristic line of the
Boltzmann equation~18! alongz150 does not enter the gas
region, so that the discontinuity does not propagate into the
gas.53 Its trace remains, however, as a steep gradient around
z150 near the wall@see Figs. 7~b! and 8~b!#. As the distance
from the wall increases,Ca is deformed chiefly aroundz1

50 with keeping the difference of shape between the posi-
tive and the negative regions ofz1 and decays to zero@see
the transition from Fig. 7~a! to 7~f! and from Fig. 8~a! to
8~f!#. These are true also for other cases.

A comparison with the other cases shows that the func-
tion CB/((m̂B)3/2X0

B) is almost independent ofm̂B andX0
A if

it is considered as a function ofAm̂Bz1 andAm̂Bzr . On the
other hand, the functionCA/X0

A rather depends onm̂B

and X0
A mainly in z1,0 region. The difference betweenz1

.0 andz1,0 regions is larger for largerm̂B and for smaller
X0

A .
We omit the results for the diffusion-slip problem be-

cause an example of the reduced velocity distribution func-
tion has already been shown in Ref. 25. The qualitative fea-
tures are the same as those described in the first paragraph.

VI. DATA OF COMPUTATION

In the present work, we use the following lattice sys-
tems:

x1
( i )520ln„p(N̄x)/~p(N̄x)20.7p( i )!…11024S i

N̄x
D

~ i 50,1,. . . ,Nx!, ~52a!

with

p( i )525~ i 3/N̄x
2!/@1125~ i /N̄x!

2#, ~52b!

and

z1
a(2 j )5~ Z̄1 /Am̂a!~ j /N̄1!3 ~ j 52N1 , . . . ,N1!, ~53a!

z1
a(2 j 11)5~z1

a(2 j )1z1
a(2 j 12)!/2

~ j 52N1 , . . . ,N121!, ~53b!

zr
a(k)5~ Z̄r /Am̂a!~k/2N̄r! ~k50, . . . ,2Nr!. ~53c!

TABLE XII. Lattice systems.

Lattice system d N̄x
Nx Z̄1 Z̄r

Z1 Zr N̄1 N̄r
N1 Nr

S1 24.08 300 300 – – – – – – – –
S2 24.08 600 600 – – – – – – – –
S3 27.74 300 320 – – – – – – – –
S4 32.20 300 340 – – – – – – – –
M1 – – – 4.5 4.5 4.5 4.5 25 27 25 27
M2 – – – 4.5 4.5 4.5 4.5 25 36 25 36
M3 – – – 4.5 4.5 4.5 4.5 25 24 25 24
M4 – – – 4.5 4.5 4.5 4.5 28 24 28 24
M5 – – – 4.5 4.5 4.5 4.5 28 18 28 18
M6 – – – 4.5 4.5 5.0 5.25 28 18 29 21
M7 – – – 4 4 4 4 18 10 18 10
M8 – – – 4.5 4.5 4.5 4.5 25 18 25 18

TABLE XIII. A comparison of bI among the different lattice systems for
mB/mA52.

Lattice systems Maximum relative error ofbI

~S1,M7! vs ~S3,M7! 7.831027

~S1,M5! vs ~S1,M6! 3.731026

~S1,M7! vs ~S2,M7! 6.631026

~S1,M3! vs ~S1,M4! 2.331026

~S1,M3! vs ~S1,M1! 2.131025

~S1,M1! vs ~S1,M2!a 3.531025

aThis case was checked only forX0
A51, while the others were for 8 sample

values ofX0
A .

TABLE XIV. A comparison ofbII among the different lattice systems for
mB/mA52.

Lattice systems Maximum relative error ofbII

~S1,M7! vs ~S3,M7!a 1.731027

~S1,M7! vs ~S2,M7!a 1.931027

~S1,M5! vs ~S1,M6!a 5.631027

~S1,M8! vs ~S1,M5!b 9.131026

~S1,M8! vs ~S1,M3!b 8.031025

~S1,M3! vs ~S1,M1!c 1.931025

aThis case was checked only forX0
A50.5.

bThis case was checked for 9 sample values ofX0
A .

cThis case was checked for 5 sample values ofX0
A .
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HereN̄x , N̄1 , andN̄r are given positive integers andZ̄1 and
Z̄r are given constants.

The lattice systems generated by Eqs.~52a!–~53c! and
used for various accuracy tests are listed in Table XII. Com-
parisons among the results for different lattice systems were
made for various purposes in the case ofmB/mA52. A part
of the results are shown in Tables XIII and XIV. For ex-
ample, for problem I, a comparison is made between the
systems~S1,M7! and ~S3,M7! for an estimate of the appro-
priate value ofd. Similarly a comparison is made between
~S1,M5! and~S1,M6! for an estimate of the appropriate val-
ues of Z1 and Zr . The comparison between~S1,M7! and
~S2,M7! is for determining the number of lattice pointsNx in
x1 . The comparisons among~S1,M1!, ~S1,M2!, ~S1,M3!,
and ~S1,M4! are for determining the number of points
(N1 ,Nr) in (z1 ,zr). After such a series of tests, the system
~S1,M1! is chosen as the standard lattice system for problem
I, ~S1,M3! for problem II in the casemB/mA52, and ~S4,
M3! for problem II in the casemB/mA54, 5, 10. The data in
Sec. V are the results for these systems.

In order to estimate the accuracy of the collision inte-
grals for the standard lattice systems, we make use of three
properties of L̃ba. The first is that the relation
L̃ba(m̂bzrEb,m̂azrEa)50 should hold. This comes from
the fact that the original linearized collision integrals vanish
when the collision invariants are substituted. Table XV
shows the maximum error of the quantity on the left for the

systems M1 and M3. The error comes from the partL̃1
ba

1L̃2
ba2L̃3

ba becausenb can be computed exactly@note that
the integral in Eq.~23! is the error function#. The maximum
value of um̂azrEanbu is, therefore, shown in parentheses in
the table. The second is that the relation,

(
b5A,B

KbaX0
bL̃ba~zrAbEb,zrAaEa!

1zrS m̂az22
5

2DEa50, ~54!

which comes from Eq.~9a!, should hold. The maximum er-
ror of the quantity on the left for the system M1 is shown in
Table XVI, together with the maximum value ofuzr(m̂az2

25/2)Eau in parentheses. The last is the relation

(
b5A,B

KbaX0
aX0

bL̃ba~zrD (AB)bEb,zrD (AB)aEa!

1zrEa~daA2daB!50, ~55!

with D (AB)a5D (A)a2D (B)a. The relation comes from Eq.
~9b!. The maximum error of the quantity on the left for the
system M3 is shown in Table XVII, together with the maxi-
mum value ofuzrEa(daA2daB)u in parentheses.

As mentioned in Sec. III C, Eq.~26! provides another
measure of accuracy. For the standard lattice system the
value of uSA1SBu, which should theoretically be zero, is
bounded as follows: for problem I,

uSA1SBu, H2.5731025 ~mB/mA52,4,5!,
3.2831025 ~mB/mA510!,

at 21 (mB/mA52) or 17 ~the other cases! sample values of
X0

A , and for problem II,

uSA1SBu, H2.7431025 ~mB/mA52,4,5!,
2.9331024 ~mB/mA510!,

at 9 (mB/mA52), 13 (mB/mA54,5), or 17 (mB/mA510)
sample values ofX0

A . For the same values ofX0
A ,

we compared the maximum values ofuCa(d,•,•)u,
uCa(•,6Z1

a ,•)u, and uCa(•,•,Zr
a)u to the maximum value

of uCau. The former three values should be negligible in
order that the computation in the finite region of (x1 ,z1 ,zr)
is justified. The results are

TABLE XV. Maximum error of the integralsL̃ba( f b, f a) with f a

5m̂azrEa. The data for system M1 are shown in the upper line and those
for system M3 in the lower. The maximum value ofunb f aEau is also shown
for comparison in parentheses.

~b,a!

mB/mA

2 4 5 10

~A,A! 3.5131026 3.5131026 3.5131026 3.5131026

4.4631026 4.4631026 4.4631026 4.4631026

~0.064! ~0.064! ~0.064! ~0.064!
~B,A! 1.8931026 2.6431026 3.0331026 5.0631026

2.4631026 3.2931026 3.7731026 6.4231026

~0.053! ~0.047! ~0.046! ~0.043!
~A,B! 6.1531026 3.2431025 5.9431025 4.1131024

7.9231026 4.1431025 7.6131025 5.3231024

~0.237! ~0.908! ~1.407! ~5.528!
~B,B! 9.9331026 2.8131025 3.9331025 1.1131024

1.2631025 3.5731025 4.9931025 1.4131024

~0.182! ~0.514! ~0.719! ~2.033!

TABLE XVI. Maximum error of the left-hand side of Eq.~54! for 6 sample

values ofX0
A for system M1. The maximum value ofuzr(m̂az22

5
2)Eau is

also shown for comparison in parentheses just below the data.

a

mB/mA

2 4 5 10

A 1.5831025 1.5831025 1.5831025 2.0131025

~0.16! ~0.16! ~0.16! ~0.16!
B 3.1231025 6.3031025 7.8831025 3.7131024

~0.32! ~0.64! ~0.81! ~1.61!

TABLE XVII. Maximum error of the left-hand side of Eq.~55! for 6 sample
values ofX0

A for system M3. The maximum value ofuzr(daA2daB)Eau is
also shown for comparison in parentheses just below the data.

a

mB/mA

2 4 5 10

A 1.3931025 2.4331025 2.9131025 5.2631025

~0.077! ~0.077! ~0.077! ~0.077!
B 1.1931025 5.4831025 9.6631025 6.1231024

~0.15! ~0.31! ~0.38! ~0.77!
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uCA~d,•,• !u
maxuCAu

, H8.331028 ~mB/mA52,4,5!,
2.931027 ~mB/mA510!,

uCB~d,•,• !u
maxuCBu

, H2.631027 ~mB/mA52,4,5!,
3.031026 ~mB/mA510!,

max„uCA~•,6Z1
A ,• !u,uCA~•,•,Zr

A!u…
maxuCAu

,5.731028,

max„uCB~•,6Z1
B ,• !u,uCB~•,•,Zr

B!u…
maxuCBu

,8.631028,

for problem I and

uCA~d,•,• !u
maxuCAu

, H4.931028 ~mB/mA52,4,5!,
2.531026 ~mB/mA510!,

uCB~d,•,• !u
maxuCBu

, H1.531028 ~mB/mA52,4,5!,
7.731027 ~mB/mA510!,

max„uCA~•,6Z1
A ,• !u,uCA~•,•,Zr

A!u…
maxuCAu

,6.031029,

max„uCB~•,6Z1
B ,• !u,uCB~•,•,Zr

B!u…
maxuCBu

,2.231028,

for problem II.
Finally, we provide the information about the accuracy

of the Chebyshev polynomial approximation with respect to
X0

A . ThebI obtained by the formula~51! with the coefficient
bI

(n) in Table I is compared with that computed directly. The
comparison was made at 15 sample values ofX0

A for
mB/mA52, at 8 values formB/mA54, at 12 values for
mB/mA55, and at 4 values formB/mA510. The relative
errors to the directly computed data are, at most, 331026,
931028, 431027, and 231027, respectively. The corre-
sponding comparison was made forbII at 4 sample values of
X0

A for mB/mA52 and at 5 values formB/mA54, 5, 10. The
relative errors are, at most, 731029, 331028, 631028,
and 231027, respectively.

In the present work, we slightly improved the accuracy
of numerical solutions in Refs. 12 and 25. The improvement
was achieved chiefly by computing in a wider region ofzr

than that in Ref. 12 and by making the lattice system finer
nearz150 than that in Ref. 25. As a result, some of the data
of slip coefficients in those references are different from the
present ones at the last figure.

APPENDIX A: TRANSPORT COEFFICIENTS
AND FUNCTIONS A a AND D „b…a

The coefficientsl̂a8, D̂ab , D̂Ta , ĜD
(a)b , and l̂8 (a,b

5A,B) are defined by the moments ofAa or D (b)a as fol-
lows:

l̂a85
5

2
I 4

aS F m̂az22
5

2GAaD ,

D̂ab5
5

2
I 4

a~D (b)a!, D̂Ta5
5

2
I 4

a~Aa!,

~A1!

ĜD
(b)a5

5

2
I 4

aS F m̂az22
5

2GD (b)aD ,

l̂85X0
Al̂A81X0

Bl̂B8,

where

I n
a~F !5

8p

15 E
0

`

znFEadz. ~A2!

Since m̂A5d̂A51 and X0
B512X0

A , they are functions of
X0

A , m̂B, andd̂B @see the definitions ofAa andD (b)a in Eqs.
~9a! and ~9b!#. There are some relations amongD̂ab , D̂Ta ,
and ĜD

(a)b :

D̂ab5D̂ba , D̂Ta5X0
AĜD

(a)A1X0
BĜD

(a)B ,

m̂AX0
AD̂aA1m̂BX0

BD̂aB50, ~A3!

m̂AX0
AD̂TA1m̂BX0

BD̂TB50.

The last two relations are the subsidiary conditions forAa

and D (b)a @see Eqs.~9a! and ~9b!#. The D̂ab and D̂Ta are
directly related to the generalized diffusion coefficient42 Dab

and the thermal diffusion coefficient42 DTa as follows:

Dab5~Ap/2!D̂ab~2kT0 /mA!1/2l 0 ,
~A4!

DTa5~Ap/2!D̂Ta~2kT0 /mA!1/2l 0 .

The reader is referred to Appendix A in Refs. 56 and 5 for
further details.

APPENDIX B: EXPRESSION OF INTEGRAL KERNELS

Here we give the explicit expression ofKJ
ba (J51,2,3)

in Eq. ~22!:

K1
ba5HA2

pS m̂2
ba

m̂baD 2

jrJ 1
ba~j1 ,jr ,z1 ,zr!, if m̂aÞm̂b,

K2
ba , if m̂a5m̂b,

~B1!

K 2
ba5S p

2
m̂am̂bD 1/2

~m̂ba!22jrem̂auzu2J 2
ba~j1 ,jr ,z1 ,zr!,

~B2!

K 3
ba5

A2p

3k
jr@~j12z1!21~jr1zr!2#1/2

3@~k22!E~k!12~12k!F~k!#, ~B3!

with

J 1
ba5E

0

p

dwj coswjuj2zuI 1
ba~j1 ,jr ,wj ,z1 ,zr!, ~B4!
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J 2
ba5E

0

p

dwj

coswj

uj2zu
I 2

ba~j1 ,jr ,wj ,z1 ,zr!, ~B5!

I 1
ba5e2abaE

0

1

dt cosh~2abat !

3E
0

p/2

dscosh~bbaA12t2 sins!, ~B6!

I 2
ba5expS 2

m̂b

4 S m̂a

m̂b uj2zu1
uzu22uju2

uj2zu D 2D , ~B7!

and

aba5~m̂2
ba!2S uju2

2m̂a 1
uzu2

2m̂b 2
j"z

m̂baD , ~B8!

bba52m̂2
bauj3zu, ~B9!

m̂2
ba5

2m̂bm̂a

m̂b2m̂a , for m̂bÞm̂a, ~B10!

k5
4jrzr

~j12z1!21~jr1zr!2 . ~B11!

The functionsF and E in Eq. ~B3! are, respectively, the
complete elliptic integrals of the first and the second kinds54

defined by

F~k!5E
0

p/2

~12k sin2 u!21/2du, ~B12!

E~k!5E
0

p/2

~12k sin2 u!1/2du. ~B13!

In the above expressions, the absolute values of vectors and
the inner product ofj andz are expressed in terms ofz1 , zr ,
j1 , jr , andwj as follows:

uj2zu5~ uju21uzu222j•z!1/2,

ujÃzu5@ uju2uzu22~j•z!2#1/2,
~B14!

uju25j1
21jr

2 , uzu25z1
21zr

2 ,

j•z5j1z11jrzr cosw j .

APPENDIX C: PROOF OF NO DIFFUSION SLIP
FOR THE MIXTURE OF IDENTICAL MOLECULES

When the molecules of different species are mechani-
cally identical, i.e.,mB/mA5dB/dA51, L̃ba is reduced to the
collision operator for a single-component gas, sayL̃, and the
relation

(
a5A,B

X0
a@D (A)a~z!2D (B)a~z!#50,

holds.56 As a result, by adding Eqs.~12!, ~13b!, and~14! for
a5A and those fora5B, respectively, one obtains the fol-
lowing boundary-value problem forC5CA1CB:

z1

]C

]x1
5L̃~C!, ~C1!

C522z2bII , z1.0, x150, ~C2a!

C→0, as x1→`, ~C2b!

where L̃( f )5L̃ba( f , f ) with m̂b5m̂a51. This is the
Knudsen-layer problem for a single-component gas, and thus
there is the theorem for the existence and uniqueness of the
solution ~see Sec. III B!. Since the setC50 andbII 50 is
seen to satisfy Eqs.~C1!–~C2b!, C50 is the unique solu-
tion, and the diffusion-slip flow is not induced (bII 50).
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