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The thermal-slipithermal-creepand the diffusion-slip problems for a binary mixture of gases are
investigated on the basis of the linearized Boltzmann equation for hard-sphere molecules with the
diffuse reflection boundary condition. The problems are analyzed numerically by the
finite-difference method incorporated with the numerical kernel method, which was first proposed
by Sone, Ohwada, and AoKPhys. Fluids Al, 363(1989] for a single-component gas. As a result,

the behavior of the mixture is clarified accurately not only at the level of the macroscopic variables
but also at the level of the velocity distribution function. In addition, accurate formulas of the
thermal-slip and the diffusion-slip coefficients for arbitrary values of the concentration of a
component gas are constructed by the use of the Chebyshev polynomial approximat23©
American Institute of Physics[DOI: 10.1063/1.1624075

I. INTRODUCTION the continuum limit. This is an example of the recently dis-
covered effect of gas rarefaction which remains at vanishing

When a gas is slightly rarefied or the Knudsen number iKnudsen numbe?;this phenomenon was termed the ghost
small, the overall behavior of the gas around solid bodies casffect (see Refs. 4, 7, and 8 for detailhe present paper is
be described by a system of fluid-dynamic-type equationsntended to provide accurate data of the slip boundary con-
with terms of gas rarefaction effect and sligr jump) con-  dition which causes the ghost effect in the mixture in a wide
dition for the flow velocity(or the temperatuje Here, the  class of physical situations studied in Ref. 5.
Knudsen number Kn is the ratio of the mean free path of the  According to Ref. 5, the slip condition in the fluid-
gas molecules to the reference length. The solution of thelynamic-type system derived there can be obtained by the
system is required to be corrected in a thin layer adjacent tanalysis of the thermal-slip(thermal-creep and the
the solid-body surface. The layer is of the thickness of a fewdiffusion-slipt® flows of a mixture over a plane wall. The
mean free paths of the gas molecules and is called the Knugormer is the flow of the mixture induced along the wall by a
sen layer. The physical variables are subject to appreciabligniform gradient of the wall temperature along its surface,
change there in the direction normal to the surface. Thesgnd the latter is that induced along the wall by a uniform
features were clarified by a systematic asymptotic analysis Qfradient of the concentration of a component gas along the
the Boltzmann equation for small Knudsen numb@sne’s  surface. These are both fundamental problems in rarefied gas
asymptotic theory; see, for instance, Refs. L¥he slip of  dynamics. In the present study, we try to carry out an accu-
flow (or the jump of temperaturend the Knudsen layer are rate numerical analysis of these problems on the basis of the
considered as typical effects of gas rarefaction because thgyearized Boltzmann equation for hard-sphere molecules.
vanish when the continuum limit KrO is taken. This is a = An accurate finite-difference method for the linearized Bolt-
common understanding irrespective of whether the gas ismann equation for a single-component hard-sphere gas was
pure or not. developed more than a decade #dand has been applied

In the meantime, Takata and Aékiecently studied the g various fundamental problente.g., Refs. 13—24 The
steady behavior of a binary mixture of a vapor and a nonmethod was recently extended to a binary gas mixture in Ref.
condensable gas around condensed phases of the vapor g e basically use this method in the present study.
the ba§is of kinetic theory. They carried out an asymptotic  The aim of the present study is twofold: first, to com-
analysis of the Boltzmann equation for small Knudsen numpjete the slip boundary conditions for the fluid-dynamic-type
bers and derived the fluid-dynamic-type system which degquations mentioned above, and second, to establish numeri-
scribes the behavior of the mixture in the situation where the:.a| solutions of the linearized Boltzmann equation that serve
Mach number of the flow is as small as the Knudsen numbegs the standard solution to the two fundamental problems.
while the temperature variation of the condensed phase Mgy the first aim, we need the slip conditions for arbitrary
be large. Contrary to the common understanding, the derivegh|es of the local concentration of a component gas because
system shows that the slip condition for the flow velocity iSj; generally varies along the boundary. This means that we
necessary even in describing the behavior of the mixture ifeeq o obtain the solutions of the two slip-flow problems for
arbitrary values of the background concentration. Therefore,
dElectronic mail: takata@aero.mbox.media.kyoto-u.ac.jp we construct the solutions in such a way that the results for
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any value of the background concentration can be obtainetholecules of gas Aare uniform, and the temperature of the

immediately. As mentioned above, the numerical methodnixture is the same as that of the wailj+ C,X,, i.e., it has
used in the present study is essentially the same as that d§-,niform gradient in the,-direction.
veloped in Ref. 25, where the diffusion-slip problem has  proplem II: The wall is kept at a uniform temperature

been investigated. In this reference, however, the solutioh rar from the wall, the state of the mixture is independent

was obtained for several values of the background concensg .  the pressure of the mixture is uniform, its temperature
tration, not for its arbitrary values. Moreover, the information

given there is limited because the paper is a contribution t

the conference proceedings with limited space. In the pre.se@gz—direction(thus the concentratiok® of gas B has a uni-

paper, we reanalyze the problem, parallel to the analysis of . ) . . .

the thermal-slip problem, in a way appropriate to our pur- orm gradient of the same magnitude in the opposite direc-
’ tion, becaus&®=1—X* by definition.

pose and present the results for both probléwes will omit ) )
some results concerning the diffusion-slip flow that overlap Problem 1 is called the thermal-slip problem, and prob-

with Ref. 25. We will also describe the method of solution €M !l the diffusion-slip problem. _ o
in a self-contained manner, since it is not given in Ref. 25. N what follows, the pressure of the mixture at infinity
Here, we make a brief remark on the second aim men{X1—) is denoted byp,. The concentration of gas for

tioned above. The two slip flows considered here have longas B at infinity is denoted by<g (or Xg) in problem I, and
been knowi'® and have been investigated in many papersy X5+ CjX, (or X§+CEX,) in problem Il. Note that the
including some pioneering works™ at the early stage of the  relationsX8=1— XA andCE = —C* hold by definition. The
modern kinetic theorye.g., Refs. 12, 25, 28—40Concern-  gyperscriptsy, B, and y are symbolically used to represent
ing gas mixtures, however, the existing worlexcept Ref. e gas species, i.ex, 3, y=A,B.

25), such as the works based on moment and variational | the analysis, we make the following assumptiofis:
methods and on model equations, are of an approximate Ng;e molecules of gas are hard spheres of mass*® and
ture, and the direct numerical analysis has been avoided bﬁiameterd“ and they collide elastically each othéii) the

cause of the complexity of the Boltzmann equation. In SUCIﬁbehavior of the mixture is described by the Boltzmann equa-

C|rcumstance§, we try to solve _the I_|near|zed B_oltzmann[ion and the diffuse reflection condition for the reflected mol-
equation straightforwardly to obtain reliable numerical SOIu'ecuIes on the wall; andii) the magnitude of the gradient of

tions, restricting ourselves to the hard-sphere molecula{ . L
L . - . emperature in problem | and that of concentration in prob-
model, which is not necessarily realistic but is the most fun-

d L . . lem Il are so small that the equations and boundary condi-

amental model in kinetic theory. Such solutions will serve . : S

to assess other approximate methods. In particular, approxﬁ'—ons Can.be linearized around the reference eqwhbpum state

mate methods aiming at obtaining slip coefficients for more?t rest with tempezatur@o and pressurg, of the mixture

realistic molecular modefé8%° which will be useful in a@nd concentratioXg of gasa.

practical applications, can be validated to some extent b

comparing their results for hard-sphere molecules with th

present result. We first summarize the main notation used in the paper.
The paper is organized as follows. First the problems arerhe n, is the reference molecular number density of the

formulated in Sec. Il. Then preliminary analysis is performedmixture and is defined byig=po/kTo, Wherek is Boltz-

in Sec. Ill, where the similarity solution and the expressionmann’s constant. Thé, is the mean free path of the mol-

of the collision integrals in terms of the integral kernel aregcles in the equilibrium state at rest with the molecular

introduced. The numerical method is developed on the basigymper density, and temperatur&, when gas B is absent
of this expression in Sec. IV. The results are given and th?i.e. lo=1[v2m(d*)2n,]). Thex; is the nondimensional co-
discussions are made in Sec. V. The data of computation ar(?rdihate system defined byl(_:X_lal(\/;/Z)fl The

I | "

summarized in Sec. V1. (2kTo /M) ¥2; [or (2kTo/mA) Y2 is the molecular veloc-

ity, ng(2kTo/m?) ~32(Xg+ $*)E“ is the velocity distribu-

tion function of the molecules of gas, where E“({)

= (MY m) % expitd?) with m*=m*m?, and d*

=d%/d”. The molecular number density, density, pressure,
We consider a semi-infinite expanse of a binary mixturetemperature, flow velocity, stress tensor, and heat-flow vector

of gases, gas A and gas B, over a plane wall. The wall i®f gas « are denoted, respectively, byg(Xg+N®),

located atX;=0, and the mixture occupies the regidh  nom*(M*X§+ w®), po(Xg+P%), To(1+7%),

>0, whereX; is the rectangular coordinate system. We will (2kT0/mA)1’2ui“, Po(X§ i+ Pﬁ), andpo(2k To/m™) Y @,

investigate the steady behavior of the mixture in the follow-ywhere 5ij is Kronecker’'s delta. Those of the mixture are

ing situations. _ denoted by ng(1+N), nem*(Z,_p gMPXE+w), po(l
Problem I: The wall is kept at temperatufg+C,X,  +P), To(1+7), (2kTo/m™)™u;, po(8;+P;;), and

with C, being a constant. Far from the wall, the state of thepo(2kTo/m*)¥2Q; .

mixture is independent oK, the pressure of the mixture The linearized Boltzmann equation in the present case

and the concentration of gas (the number fraction of the (d/dt=d/dxz=0) is written a§'~*

is also uniform and is the same as that of the Wal] and
%he concentration® of gas A has a uniform gradient in the

. Basic equation and boundary condition

Il. FORMULATION OF THE PROBLEM
A. Problem
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dp” dp” -
§1i+§2 ¢ = > KPILPAXEHP XEP™),
IXq Xy,  p=AB

D

whereLA* is the linearized collision integral defined by

- 1
Ba — 1y 1y
LAa(f,9) 4mf[f@*) (L) +9(8)—9(9)]
XEA(L,)|eV|dQ(e)d, (2)
with
~ Ba . ~ Ba .
g':g+’;]—a(eV)e, g;zg*—‘%—ﬁ(e-we, (33
V=0, —8 3, =dE, 108,208, 3, (3b)
de+af\®  _ 2memf
S e @9

Heree is a unit vector, the variable of integration corre-
sponding tog, and dQ(e) the solid angle element in the
direction ofe. The integration in Eq(2) is carried out over
the whole space of, and over the all directions af

The diffuse reflection condition on the walk{(=0) is
written as

Pr= X2y a2 ipEney
{1<0

£1>0, (43
for problem I(thermal slip, and
p=—2mi?|  perEs g0,
{1<0

for problem Il (diffusion slip). Herec, is the dimensionless
gradient of the wall temperature defined by

V7 €

C|:7|0T—O.

Incidentally, for later use, we also define the dimensionless

concentration gradiert;, of gas A away from the wall by

NT  ~
— A
=7 1oCii -
The macroscopic variabléé*, o, u*, etc. of gasx are

written in terms of¢® as
Na:f ¢aEad3§,

w¥= maf ¢aEad3£( — maNa)’

1

a_ T paEad3
Ui—ngQ(ﬁEdl,

21

3
=3 x_gf (maéjz— 5) P E“d3, )
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2 A 2 3
P“=§m“f HUEdY =N+ X579,

pa = 2 f (4 6 B,

a__ aa 2 japad3 5 @,
Qi—mfgiéjﬁdé—gxoui-

Here and henceforth, unless otherwise stated, the integration
with respect tog is performed over its whole space. The
macroscopic variables of the mixture are expressed in terms
of those of component gases as

N= > N5,

w= 2 wf, P=

(6)
T= 2 XgTB, Pij: 2 Pﬁ.
B=AB B=AB
B ° B B
Qi:B:EAB Qi _Exo(ui_ui) :

If we denote by g+ x“) the concentration of gas, x“ is

expressed as
X*=N*=XgN. (7)

Note that = — x® because of the relationd=NA+NB
andXg+Xg=1.

[ll. PRELIMINARY ANALYSIS
A. Asymptotic solution away from the wall

Let us consider the function

5
Pasy= X0 mafz_i Xo+2M*D L= LAY |, (8a)
for problem | and
Dasy= (Saa— Sap) X2+ 2MXgby {7
= X5 [DW(9)=D® ()], (8b)

for problem I, where=|{=+/2?, Sap=3gg=1 and Sap

= 6ga=0. Hereb, andb,, are undetermined constants, and
the functionsA®, D™, andD(®* are the solutions of the
following integral equation&?-*4

> KPOXFLAU(LAR (A" =~ gi( LS g) :
B=A,B

(9a)

subsidiary condition: >, mﬂng AAPERAC=0,
BZAB 0

and
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Kﬁaxgxgtﬁa( LDWE D)

B=AB

5 m*Xg
il Oay m \
subsidiary condition: (9b)
> mPxE f [*D@PER7=0.
B=AB 0

The function ¢5, satisfies the Boltzmann equati¢h).

Takata et al.

¢“=cl Pasyt Pk (X1, 4], (11
wherec=c, for problem | andc=c,, for problem Il. Sub-
stituting Eq.(11) into Egs.(1) and (4a) or (4b) and taking
into account thatp,, satisfies the condition at infinity, we
obtain the following equation and boundary condition for

by

The corresponding macroscopic variables take the following
form: for ¢4, in Eq. (8a),

and

Her
me,

NT= —X&Xy, w%=—MXIXs,

=X, X“=Pe=P=0,

ut=(b—Dr1,) 82, QF=—N"X§8,,

(103

N=—X,, w=—(M"XG+mBXg)x,,

T=Xo, P:Pij:O, ui:bI5i2!

5
Qi=—|A +§(X0DTA+X0DTB) iz,

for ¢>§Syin Eq. (8b),
N=P“=x“=(dan— 0ap) X2,
0*=M(S,po— O4p) X2, T=0,

ut=(by—A a+A,8) 502,

Pii=(8.a— 948)X23 ,

Q= _Xg(f(DA)a_f(DB)a)5i21 (10b)
w=(M=mPf)x,,
=0,

N:P:T:Pij Ui:bllgiZ'

~ ~ 5 B/ A A
Qi=- (DTA_DTB)+§B:2ABXO(AﬁA_ABB) diz-

e, Az, Drg, '@ andX’ are functions ofx5,
andd® and are related to the transport coefficiefsise

Appendix A).

$asy Of (88 multiplied by ¢, is the solution describing the
state at infinity of problem I. Similarly, it is seen from the

It is seen from the form oP, 7, andy“ in Eq. (109 that

form of P, 7, andx® in Eq. (10b) that¢>§sy0f (8b) multiplied

by c,, is the solution describing the state at infinity of prob-

lem

The asymptotic solutior; ¢4, Or € ¢35, iS S€€n to rep-

1%’1&32&8 KELAA(XG b XESK). (12)
= —2MXgh L+ XgLoA%({)
~o(em | pgiEndy
£1<0
{;>0, x;=0, for problem I, (133
b= —2M"Xgby L+ X5 LLIDP*(H)—DP*(Y)]
G ORI
£1<0
{1>0, x,=0, for problem Il (13b
¢g—0, as x;—o. (14

We call the half-space problerl?2), (133, and (14) the
Knudsen-layer problem for the thermal slip and the problem
(12), (13b), and (14) that for the diffusion slip. For each
problem, there is a unique solutiapy if and only if the
constantb, or b;, takes a special value, angiy decays ex-
ponentially as<;—oec. This is a consequence of the existence
and uniqueness theorem for the Knudsen-layer problem for a
binary mixture of hard-sphere gases, which was proved re-
cently in Ref. 45. The theorem is the extension of that for a
single-component gas first conjectured by Gfahd proved
later for various molecular modeté-5tIn this way the con-
stantsb, and b, in the fluid-dynamic solutionsg, ¢35, and
Cii sy, are determined by the analysis of the Knudsen-layer
problem. It is seen from the expressionwgfin Egs. (103
and (10b) thatb, or by, is the flow velocity of the mixture
away from the wall whert;=1 orc, =1.

Since MA=d"=1 and X§+XE=1, both problems are
characterized by the three parameters,
dB(or dB/d"),

mB(or mB/m?), X5

Multiplying Eq. (12) by m*Z,E* for a=A,B, adding

resent the state of the mixture described by the fluid-dynamithe resulting equations, and taking into account the condition
equation. Therefore we calt| ¢y, Or Cj ¢5s, the fluid-

dyn

amic solution.

B. Knudsen-layer problems

(14), one obtains the relation

> P f {10,¢REPA3=0. (15)
B=A,B

Let us now seek the solution of problems | and Il in the
form

This is the momentum conservation law in tkedirection.



Phys. Fluids, Vol. 15, No. 12, December 2003

C. Similarity solution and macroscopic variables

Let us assume thaty is of the form
D= (L21L,)P(X1,41,4,), (16)

where{,= \/gzz §32 This ¢ is compatible with Eqs(12)—
(14), which can be seen by using the spherical symmietfy

the collision operatot.#*. Therefore, using the notations

W(xq,81,8,)=P*(Xq,41,4,)EY, (17a
2 écb“)E“ (17b
s“p "L,

we can transform the boundary-value probl€rd)—(14) for
¢k into that for¥«:

A

LPe(w, w)—@p/zz)Lﬁa(

o =B:ZA’B KAALPY(XGW P XEW ), (19
W e=Xy,(—2m*b+A%)E?,
{1>0, x,=0, for problem I, (199
=X§{,(—2my +DWe—DE*)E,
{,>0, x;=0, for problem I, (19b)
T*—-0, as X;—oo. (20

Note thatE®, A% andD®¢ are now the functions af; and
¢, becauseg—l{l (£5+ %)™ Following the transforma-

tion by Grad? for a smgle component gas, one can derive

the expression ofA* in terms of integral kernels. That is,

LP(f,0)=LE(F )+ L5(9)— LE“(F ) —vP(D)g, (21)
with
Bget)=ee [ “ag, | deucs e g, 0ty
Xf(gligp) (‘]:11213)7 (22)
V()= 1( ! exp( — M*¢?)
0= N exp( — ¢
N
W)fo gexp(—y%ly). 23)

The explicit form of integral kernelsC4* (J=1,2,3) is
given in Appendix B.

Substituting Eq.(11) with the similarity solution(16)
[and(173] into Egs.(5)—(7), we have the following expres-
sion for the macroscopic variables: for problem I,

N*= _C|X8X2, 0= _C|manX2,
'Ta:C|X2, Xa: Pa:O,
ui'=cy(b,— D7, +U") &y,
Pii=¢1S"(6i10j2+ 8126j1),

QP =ci(— N X+ H) 8, (242
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N=—CXp, w=—Cc/(M*X5+mBXE)x,,

ui=c/(b;+U)é&,, 71=cX;, P=0,

Pij=ci(S*+ %) (8,16)2+ 6126)1),

-
Qi=¢|| =M = 5(XgDrat XoDre) +H | 5i2,

and for problem II,
N*=P%= x*=cC(doa— 0aB) X2,
0*=C MY (Japn—bap)X2, 7=0,
ut=cy(by—Aa+A,g+U"5,,
Pii=Cul(San— 8ap)X26ij + S(816j2+ 61201 ],
Qr=cul = X§([TEV =T +H15, (240
N=P=7=0, w=c,(i"—mB)x,,
ui=cy (b +U)é;,,

Pij=C(S*+ S°) (8118121 626)0),

—Cn( (DTA DTB)

21

5 N -
where

U=z || ebveaziag,, (259

>

> r‘nﬁxguﬁ)/(
B=AB B=AB

S$°(x,) =2mh® fo fﬁwglziwdzldgp,

U(xy) =( mﬁxg) . (25b

(250

o) 0 5
H(xy) =7 JO f _mgi( M5+~ E)Wdzldzp,
(250

H(xl)=B2A Hﬁ+5x Bur— U)) (250
The functionsU<, U, S* H¢ andH, which we call the
Knudsen-layer functions, decay exponentiallyxgs-c. In
Egs. (249 and(24b), they appear only in th&,-component
of flow velocitiesuy andus,, in that of heat-flow vector®3;
andQ,, and in thex,;x,-component of stress tensdpg, (or
P35, and P4, (or P,;). On the other hand, from the relation
(15) we find

S+sP=0, (26)

so that the Knudsen-layer function does not appear in the
stress tensoP;; of the mixture. The propert§26) is used as
a measure of accuracy of the numerical solution later. In



3750 Phys. Fluids, Vol. 15, No. 12, December 2003 Takata et al.

summary, excepus, u,, Q3, Q,, andP7, (or P5), the To(d,zy,L,)=2MX2 6 ¢, E?. (32)

macroscopic variables are expressed only by the fluid- e 0" e

dynamic solution: Eq(10a multiplied byc, or Eq.(10b) by ~ The corresponding flow velocityd(x;) of the mixture,

C - which is defined by Eq(25b) [with (253 ] with W ¢ replaced
As is mentioned in Sec. llIBbc; andbyc; are the py Fe takes the value:

flow velocity of the mixture away from the wall. On the

other hand, the expression af in Egs. (248 and (24b U(d)=4. (33

shows that, if the Knudsen-layer function is neglected, the ~ o ] N

flow velocity of the mixture on the wallx,=0) is also Because of Eq(32), W“ satisfies the reflection condition at

given by Xy =d:
q,a(digllgp)zq,a(dl_gligp)' (34)

We solve the boundary-value proble(@9), (309 [or

pY (27 (30b)], and(34) for a givenb,, (or by, ), instead of solving
2= Bntn=0nl 4y | . the original problem(18)—(20) directly. OnceW¥® is ob-
u,=byc b dX2 for problem Il h I blem(18)—(20) d [ ) b

i _ ) ) tained,dis determined by Eq.33). Then,W* andb, (orby,)
This means that the flow velocity of the fluid-dynamic solu- 4.6 obtained from Eq$28) and (31).

tion is subject to the slip on the wall caused by the tempera-
ture or concentration gradient. From this point of view, theg Finite-difference scheme
constantb, is called the coefficient of thermal slip ar|,

dr
u,=h,c,=b, d_x2 , for problem I,

A

the coefficient of diffusion slip. Because of the factd® [see Eqs(16) and(28)], ¥« is
expected to decay rapidly @&, or £, tends to=. Thus in
IV. NUMERICAL ANALYSIS the actual computation we restrict the regiong pand{, to

finite ones. That is, for a proper choice @f(>0) and

Z3(>0), we carry out the numerical computation fbr in
As is mentioned in the first paragraph in Sec. Il B, thethe region G=x,<d, —Zj<{;<Z7, and 0<{,<Z;. The

reduced boundary-value problet8)—(20) has a solution if  regions ofx,, {;, and{, are divided intaN,, 4N, and N,

and only if the undetermined constaht takes a special intervals in the following way:

value, whereéb=b, for problem | andb=b,, for problem II. ©0) (D) (N

A straightforward way to solve the problem is to repeat com- ~ 0=Xi '<xj’'<---<x;*=d,

putation with differento until a solution satisfying the con-

A. Plan of computation

a_ oa(—2Nj) a(—2Nq+1) a(0), _
dition (20) is obtained. However, since such a meth- —Zi={; ~V<{p ~ <--<59(=0)
od is generally inefficient, we adopt the method devised o (2N o
in Ref. 12. <gW<<f®W=z4,

Consider the function a(2N,,

0= gs(o)< é’;’(l)<. e gp

)_sa
=Z.
~ p
\I,a X1, , :’\Ifa X1, , +2maxa5 Ea, 28 _
babry) 0a,80.8) 024y (28 Here Z{ and Z; are taken to bezy=2Z,/{m* and Z7
where§is an undetermined constanE Since the second term. ZP/W with Z; andZ, being constants common WA
on the right is a solution of Eq18), ¥“ also satisfies EQ.

(18): and W8 (see Table Xl in Sec. VI For later convenience,

chiefly for the computation of collision integrals, the lattice
g _ _ _ points of {; are chosen to be symmetric with respect to
L ax =ﬁ=§/;8 KAaLA(XGW B XET ). 29 =0, ie., $W=—740D We denote the value of a
' physical quantity at a lattice point by attaching the subscript
The boundary condition fo ® on the wall is obtained from |abel corresponding to the point, e-g-:ﬁ’ﬁ,j,k)
Egs. (199 and(19b) with (28) as

=Po(x{), 50, ¢4™). For steady and spatially one-

Fa=x2¢,(—2m%b,, +AY)E® dimensional problems, it is known that the velocity distribu-
05r * ' tion function is, in general, discontinuous &=0 on the
{1>0, x;=0, for problem I, (8308 wall (x,=0) (see, for instance, Ref. 53Thus V¢ has two
q,azxgé/ (—2mb,, +DWa_pBaga limiting values\Tf‘*(O,i 0,£,) on the wall. Taking it into ac-
* 1 ~
’ count, we prepare two sets of valugg, ..o for the lattice
£1>0, x;=0, for problem II, (30D point (0,0£4M) in the computation.
where We obtain the discrete solutiohl"if“i’j’k) as the limit of the
by, =bj—8, by, =by—8. (31) sequencd WM} (n=0,1,2, ..) constructed by the itera-

tion using the following finite-difference scheme for Eq.
Since ¥* decays exponentiallysee the first paragraph in (29):

Sec. Il B), it is negligible at a distance large enough, say at _ .
~ ) 5, o~ 5, +
x,=d. Consequently¥* at x;=d can be written as {0V P D= =5 TP+ iy (35
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where V;,. corresponds t@/dx,, andvj ,, and C(I ik are
defined as

T 19 =KAXGAED 1) + KBXGrB (1D, 1),
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CL M =[KEBXG(LEP+ L35~ L5
+KABXGLEPI(WBM) 1y

+ KABXS(Zi\B_ZQ\B)(‘T’A(n))(i,j,k) : (369

For Vjj, the following formulas are used: for<lj<2N,,

(369 a(n) _ Jran)
(\I’(lj v~ Yo, k))/hl (i=1),
Cﬁ(r)k)_[KAAXOA(E?A"‘E?A_E@A) Vi P =5 wo(h; 1,h)‘l’(.1k) W1(h| LhTE
+ KBAXBTBA)(FAM) - +wa(hy_y,hy) T (. 2] K) (2$ISNX),(37@
+KBAXQ(LEA-Z5N (TBM) i (36h  and for—2N;<j=<0,
|
2Gem Sam Lgam (i=N,—1)
Vijkq,a(n): (N T 2 F (N1 T 5 F (N 1,k [ TN X , (37h)
W (N, i DT ES; g FWalhio i ) TED g —wolhi 2. hi ) TET,)  (0<i<N—2),
|
where We repeat step6)—(v) for n=0,1,2,.. ., until \P“(j‘ k) con-
verges. TherW(; ; ,, andb are obtalned by Eq928) and
) (-1) a+2b (31) with Eq. (33) The Knudsen-layer functions are obtained
hi=x3’—xi *, Wo(a,b) batb)’ from the (discrete solution by the integrationgEgs. (258 —
(25d)] using Simpson’s formula.
(38) .
‘b b In the actual computation, we repeat the above process
= with newb asb, in order to reduce the errors coming from
Wl(avb) a.b ’ Wz(a!b) a(a+ b) * g

The termsC“(]1

tions A% andD(*  which are the solutions of Eq&a) and
(9b), appear in the boundary conditiof0g and (30b). In

the present work, we use their accurate numerical data oll"

tained in Ref. 44 for arbitrary values c)(é for a binary
mixture of hard-sphere gases.

The solution procedure is as follows. Start with appro-

a(0)

priate initial data® ), and b, . Suppose thail (], is

known. Thert® &(",." is computed by the following process.

(i)  ComputeC{()y using (M, and T M, .

(i)  Using the boundary condltlo(BOa) [or (30b)], com-

pute T &0 (1<j<2N;) from i=1 to N, succes-

sively by Eq (35) with (373.

Compute T({"53) (-1=j=-2N;) using the

boundary conditior{34). Since the lattice points df;

is symmetric with respect t¢,=0, \Iff;(,:ﬁlk)) is given

by TR iR =TE -

(iv) ComputeW gl (—1=j=—2N;) from i=N,—1
to 0 successwely by Eq35) with (37b), using the
data'P'({"3) obtained iniii ).

(iii )

(v)  Compute ")) and WG (i=1,...NJ by
Eq. (35 with 7{)=0. Compute‘l’f’éy%}()) by the

boundary conditior{30g [or (30b)].

the second term on the right-hand side of E2B).

k) are computed by the numerical kernel C. Numerical kernel method
method first proposed in Ref. 11 for a single-component gas.
The details of the method is given in Sec. IV C. The func-

In order to Obtall’C(, iy we have to carry out the com-
plicated five-fold integrations numerically, which requires
heavy computation. In Ref. 11, an accurate and efficient
method for the computation of collision integrals was pro-
posed for a single-component gas. We apply this method to
the computation o€{,, . We first introduce the following
piecewise quadratic functlor&‘”m(g1 gp) of {; and{,, lo-
calized around the lattice poing{",¢4(™):

B (£1.4,) =Y ML) X0z (£ L0 Y (L) xpoze1 (£,

(39)
whereY{*“(y) with y=¢,,{, andz={;,{, are defined by

( (y_za(2m+2))(y_za(2m+l))

(Za(2m) _ Za(2m+ 2))(Za(2m) _ Za(2m+ 1)) !
for Za(2m)<y<za(2m+2),
(y_ Za(2m72)) (y_ Za(me 1))
(Za(Zm) _ Za(2m72))(za(2m) _ Za(2mf 1)) !

Yam(Y) = { (409

for z¢CM-2)<y<za@m)

L 0, otherwise,
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(y_ Za(2m+2))(y_ Za(2m))
(Za(2m+ 1) _ Za(2m+ 2)) (Za(2m+ 1) _ Za(Zm)) '
Y52 a(y)=

for za(2m)<y<za(2m+2),

0, otherwise.
(40b)

In Eq. (39), x[a,n(y) denotes the characteristic function of

the interval [a,b], i.e., x[ap(y)=1 for asys<b and

X{ap)(¥) =0 otherwise. Then we expand®™ atx,=x{" in

terms of By" m(1, {,) as follows:
2N, 2N;
\Pa(n)(x(l) lglvgp)sz:O EO (‘\I,afn)'n)Bﬁ;'l(gllgp)

+‘I’ Im) I m(81,4,). (41

In the above expressmn and in E¢42a and (42h) below,
the U¢(M) and{ff(I "\ m for i=1=0 should be regarded as
\If{“o('l()m) and ¥ (0 Om) because? * is discontinuous at;
=0 on the wall. The substitution of E41) into Eqgs.(36b)
and (360 gives the following expression fa@f :

2N, 2N,
C(| = 2 2 (Cher ¥ (A.(P)m) JBﬁTm\P(I Im)
AA_ ‘I’ " m)+C I,mqrg(,rl)l,m))y
(429
2N, 2N,
(| ] k) Z Z (C]AETm\P'(BI‘(P,%)_FC?ETm\PE(,R)m)
+CfE_—| m\I’A(n)| m)+CBB_ \I,(I Zhm)s
(42b)
where
O = IKAXA(ER+ TP T4
+KBAX3£ ](BI m)(] k) » (433
CoTm=KEAXG(LPA-ZEN (BP9 » (43b)
Chkrm=KABXG(L8=Z5%) (B g » (430
o8 = [KPPXE(E5+ T5°- 75°)
+KABXEZE1(BPm) (1.4 - (43d)

We callCf7  andCPyy , the numerical kernels dtf’l(j‘)k)
Note thatC]ékI m (a,8=A,B) is the integral of a given func-
tion and can be computed beforehand. '[[ﬁ’, m has the
property
Cl—im

C7Jklm1 (44)

because of the symmetry propertyZbﬁ*“ (J=1,2,3) and the
lattice of 7, symmetric with respect tg,=0. Further,K#*
and Xé are not contained in the integral§}A(Bf';
Z ( etc. Thus we prepare the database
4 (Bﬂ )(l 0 L5*(Bm) ik, and Z5*(Bfr) .k for dif-

ferent values ofn forj——ZNl,.. Ny, 1=0,.. 1

Takata et al.

and k,m=0,...,2N,. The integration is performed accu-
rately numencally by the Gauss—Legendre formiflahen
the numerical kerneﬂ:] k1.m IS constructed from the database
before the process of iteration by Ed433—(43d). In the
process of iteration, the computation of the collision integrals
is a simple multiplication of matrices, i.e., Eq&l2g and
(42b), and thus is performed efficiently.

D. Chebyshev polynomials

One of the purposes of the present work is to provide the
data for the slip boundary condition for the fluid-dynamic
type system derived in Ref. (Bee Sec.)l The slip condition
is a linear combination of the thermal-slip and the diffusion-
slip conditions given in Eq(27). As is seen from Sec. IlI B,
the slip coefficientsh, and b,, in Eq. (27) depend on the
concentratiorxé. But in the physical situations investigated
in Ref. 5 the concentration generally varies along the bound-
ary. Accordingly it is required to prepare formulas from
which the values ob, andb,, are readily obtained for arbi-
trary values ofxé. We use the Chebyshev polynomial
approximation® with respect t@(é to meet this requirement.
This approximation is useful not only for the slip coefficients
but also for other physical quantities such as the Knudsen-
layer functions. Therefore we describe it in general form.

Let us denote by, (n=0,1,2,. . .) theChebyshev poly-
nomial defined for 6= 6< 7 by the relation

T,(cos#)=cosné.

(45

Any function F of XQ can be approximated by the polyno-
mials of degree up t®N in the Chebyshev basis as

N

F(X5)= 2 anTh(2X5—1), (46)
where
N—1
1
an=r— 2 [FTa(+FisaTa(Yie )], (47)
n k=0
with €= EN:2 and61=~ T EN-1T 1, and
1+
Fo=F| 22X, (49
2
with y, being the Chebyshev abscissa:
7T
yk=cos( kﬁ) (k=0,1,...,N). (49

The approximation46) takes the exact value & at Xé
=(1+yy /2.

Since the functionF of X§ is arbitrary, any physical
quantity for an arbitrary value dﬁé can be obtained by the
formula (46) from its data computed N+ 1 discrete values
of X5, i.e., Xo=(1+y /2 (k=0,1,... ,N).

V. RESULTS AND DISCUSSIONS

In the present paper, we carry out the computation for

ofmB/mA=2, 4,5, and 10 and for various values X, re-

stricting ourselves to the casi/d"=1. The computation
for other values ofd®/d* can be performed by using the
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FIG. 1. Coefficient of thermal slip, and related quantitie$a) Slip coefficientb, , (b) momentumM, away from the wall, andc) kinetic energyK, per unit
volume away from the wall. Both closed and open circles indicate the present result. The solid line indicates the present result using (&d)iofmeildata
used to construct the formula are marked with a closed circle. The dashed line indicates the res®itrfoe 1.

same code and database 2f*( BE) G, 0; 5%(B® AT abséentA f\lrg eqL_JaI to _the_value_ Ap=1 multiplied_ by
etc. In what follows, we assume thaf/m”=1, because the (M /mM") This relation is easily seen by changing the
results for mB/mA<1 can be obtained from those for reference molecular mass fromf* to m®.

mB/m”>1 by a simple transformation. The slip coefficienth, corresponds to the flow velocity
of the mixture away from the wall wher)=1. The momen-
A. Slip coefficient tum (OM;,0) and the kinetic energl{, per unit volume of

o _ ) the mixture away from the wall is related bp as follows:
The coefficient of thermal slip, vs the concentration

X5 of gas A is shown in Fig. (B). Sinceb, is positive, the M, /¢;ngm™(2k Ty /m™)¥2=pb, ,

flow induced along the wall is in the direction from the (50)
colder part to the hotter at a large distance from the wall. The K| /C|2I00= ,30b|2,

b, is larger for smaller molecular mass ratin®/m* and

becomes largest an®/m*=1. Form®/mA=1, itis indepen- where po(=m X+ mBXE)=(1-mB)X5+mE.  These
dent ofxé because there is no differen@xcept “color” or  quantities vsxé are shown in Figs. (b) and Xc). The mo-
“label” ) between molecules of a different kind. F@f/m”  mentum is larger for largem®/m*. It decreases monotoni-
=2, b, increases monotonically with increasiig , the con-  cally asXj increases. The values Xf=0 are the same as
centration of the gas with smaller molecular mass. In conthe value atX5=1 multiplied by M®/m*)¥2 The kinetic
trast, form®/m*=4, 5, and 10,b, first decreases slightly, energy is larger for smaller difference of mass. It takes the
takes the minimum at arourvd§=0.15~0.25, and then in- same value ak§=0 and 1 and attains the minimum at an
creases monotonically a)s increases from zero to 1. At intermediate value o)(é (XQ:O.5~O.7).

Xo 1, b, is independent oan/m because of the absence The coefficient of diffusion slipb,, vs Xé is shown
of gas B. Incidentally, the values mé 0, where gas Ais in Fig. 2@). Sinceb,, is positive, the flow induced along

LN B S s S B B B L L E B S S S B e BB S B e LA B B N S S B B S S B B

W

mB/mA =10
mB/mA =10

N
TN BT

K1/ Smo
»

o]
LA LN B B I B e I e e e

-
IS

My fepnomA(2kTy/mA)H2

T
[N
Al

o [=]

o

(4,
f

FIG. 2. Coefficient of diffusion slifp,, and related quantitiesa) Slip coefficientb,, , (b) momentumM,, away from the wall, andc) kinetic energyK,, per
unit volume away from the wall. See the caption of Fig. 1.
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TABLE I. Coefficientb(™ (n=0,... N) in Eq. (51) for the thermal-slip  TABLE II. Coefficientb{’ (n=0,... N) in Eq.(51) for the diffusion-slip

coefficientb, . coefficientb,, .
mB/m? mB/m?
n 2 (N=5) 4 (N=8) 5 (N=8) 10 (N=16) n 2 (N=8) 4 (N=12) 5 (N=12) 10 N=16)
0 7.63642(1)* 9.17923(1) 9.84826(1) 1.27740 0 249793¢1)* 6.73235(1) 8.66287C1) 1.71982
1 —1.32632(-1) —3.17398(1) —3.92397(-1) —6.903 26( 1) 1 5.31606(2) 255179¢1) 3.68719¢1) 9.66600¢ 1)
2 1.66396(2) 5.12603¢2) 6.06550(2) 6.84937(2) 2 427174¢3) 4.68653¢2) 8.07502¢2) 3.14293¢1)
3 —1.25175¢3) —5.74465(-3) —7.004 42(-3) —8.197 29¢ 3) 3  5.14404¢4) 1.01504¢2) 2.00150¢2) 1.09560¢ 1)
4  1.02588(4) 5.45554(4) 5.60533(4) —3.54147(4) 4 472189¢5) 2.12351¢3) 4.94761¢3) 3.94440¢2)
5 —8.94758(-6) —1.01207(-4) —1.479 12(-4) —3.841 75(-4) 5  5.62893(6) 4.69641(-4) 1.26793(3) 1.45152(2)
6 - 8.14885(-6) 4.051 81¢ 6) —8.992 59(5) 6 5.54615¢7) 1.03165(4) 3.27088(4) 5.42339( 3)
7 - —1.85388(6) —3.979 89¢ 6) —3.471 91¢5) 7 6.63470(8) 2.31888(5) 8.56221(5) 2.04847(3)
8 - 1.637 69¢ 7) —1.316 47(-7) —1.145 87(5) 8  6.74049¢9) 5.21745(-6) 2.25515(5) 7.80244(4)
9 - - - —4.326 05( 6) 9 - 1.188 34¢6) 5.98659¢6) 2.990 82¢ 4)
10 - - - —1.592 96¢ 6) 10 - 2.70543(¢7) 1.60365(6) 1.15247(4)
1 - - - —5.670 10¢7) 1 - 6.449 01¢-8) 4.58402¢7) 4.46001(5)
12 - - - —1.86957(7) 12 - 1.42769¢8) 1.14978(7) 1.73405(5)
13 - - - —8.234 80¢ 8) 13 - - - 6.776 19¢ 6)
14 - - - —4.147 64(8) 14 - - - 2.702 63¢ 6)
15 - - - —1.556 78(8) 15 - - - 1.191 30¢ 6)
16 - - - 8.944 66¢ 10) 16 - - - 4.12502¢7)
%Read as 7.6364210 1. %Read as 2.4979310 1.
N
the wall in the far field is in the direction of increasing b;= E bS”)Tn(ZXQ—l)/i)O (I=1,11), (51
n=0

X5+CiX,, i.e., from the part with lower concentration of
the gas with smaller molecular mass to the part with highewith po=(1—m®)X5+m? and the data ob{™ and b{{"
concentration of the same gas. Thg increases monotoni- listed in Tables | and Il. The solid lines in Figs. 1 and 2 are
cally asX5 increases. It is larger for larger mass rati®/m”®  drawn by using this formula.

when X3=0.5. For smaller values o5, however, its de- The thermal-slip and the diffusion-slip problems for a
pendence om&/m* is not monotonic, and it becomes largest mixture have been studied by various approximation meth-
at aroundn®/m*=4 or 5. Form®/m*=1, where there is no 0ds(the variational method, the moment method, etc.by
difference between molecules of different ki, vanishes the direct computation of model Boltzmann equations. Some
and thus the diffusion-slip flow is not induced. This fact canof the approximation methods aim at providing the slip co-
be shown analytically by making use of a propertypsf)«  efficients for different molecular models, including the more
given in Appendix B of Ref. 56 and the existence andrealistic Lennard-Jones potential. In contrast, in the present
uniqueness theorem for the Knudsen-layer problem for #@aper, we have analyzed the Boltzmann equation faithfully
single-component gatsee Appendix € In the meantime, and accurately, restricting ourselves to the hard-sphere mol-
by, is nonzero aXy=0 and 1. It appears strange at a glanceecules. Our aim is to establish reliable results at the level of
because the “mixture” in these cases is, in reality, a singlethe velocity distribution functions that can serve as the stan-
component gas, where there is no diffusion-slip flow. How-dard solutions for these two problems for the hard-sphere
ever, atXy=0 and 1, the concentration gradiedf (or ¢;)
should vanish because <0X§+C{}X,<1 by definition.

LA LA L N BRI

Therefore, the diffusion-slip flow, which is the producthpf 0'7:
andc,, , vanishes, and no contradiction arises. [

The induced momentum (d,,,0) and the kinetic en- 06F .
ergy K,; per unit volume of the mixture away from the wall __________ i
are shown in Figs. (®) and Zc). They are related to the slip R 7]
coefficientb,, through Eq.(50) with the subscriptl being by =T ]
replaced by the subscript. Both M, andK,, are larger for 04 gy .
largerm®/m* and for largerX} . O/ B, - 1

As is seen from Figs. 1 and 2, the dependencg b 0.3 =TT . 3
(J=1,11) [cf. the first equation in Eq(50) and the corre- ) o ]
sponding relation foM,,] on X} is simpler than that ob . o ?_t ------------------- 107
Therefore we make the approximation formulabgffor ar- o~ L ‘0'5' —— '/i =
bitrary values ofXg by applying Eq.(46) to pob;, not di- ' Xo

reCtIy to pJ itself. The glata .usec.j to make the formula E?lreFIG. 3. A comparison with the previous resultd|: vs Xﬁ. The solid line
shown V\_”th a closed circle in Figs. 1 and 2. The resultingingicates the present result, the dashed line the formula in Ref. 34, the
formula is dot—dashed line that in Ref. 38, and the open circle the result in Ref. 12.
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T LI RN M Tables Ill and IV show such a comparison. It is seen that
among the existing results the formula in Ref. 38, which is
derived by a special kind of half-space moment method with
the second-order Chapman—Enskog expansions, agrees best
to the present result. In the figures and the tables, the formula
in Ref. 34, which is derived by the same method as Ref. 38
with the first-order Chapman—Enskog expansions, is also
shown. Incidentally, this formula is the same in its form as
the formula in Ref. 29 that is derived by the use of varia-
tional principle and the first-order Chapman—Enskog expan-
sions. The formula given in Ref. 32, where the simplification
of the approximate formuld$®* is discussed, shows less

10°F

brr

107F

5 T agreement with the present result. The results by Yalamov,

4 Yushkanov, and Savkd¥ (half-space moment methpand
by Sharipov and Kalempa (finite-difference analysis based

FIG. 4. A comparison with the previous results b; vs m®/m* for X§ on the McCormack mod®)) are close to the formula in Ref.
=0,0.1,0.3,0.5,0.7,0.9, and 1. The closed circle indicates the present r&4 rather than to the present result.

m? Im

sult; the dashed line the formula in Ref. 34; the solid line that in Ref. 38; the ; A_ 1 ; : sl _
open circle the result in Ref. 39 fot)=0.1,0.3,0.5,0.7, and 0.9; and the The open circle aX"=1 in Fig. 3 indicates the thermal

open diamond that in Ref. 33 fof2=0.5 and 0.99, slip coefficient for a single-component hard-sphere gas ob-
tained by the finite-difference method on which the present
method is basetf It should be mentioned that Loyafkehas
molecular model that is not necessarily realistic but is theobtained essentially the same value. He numerically solved
most fundamental model in kinetic theory. Such standard socan approximate linearized Boltzmann equation that is de-
lutions are useful to validate convenient expressions for theived by taking the first five terms of the expansion of the
slip coefficients obtained by approximation methods that carollision-integral kernel in terms of the associate Legendre
be extended to more realistic models rather easily. By théunctions3!°® According to Ref. 23, the deviation of the ap-
way, it should be mentioned that the extension of the presemiroximate kernel from the original one is not smaifi fact,
method to other molecular models is straightforward thoughhe singularity contained in the original kernel is not repro-
it gives rise to some complexity. duced by the approximate kerinein this sense, the equation
Keeping the above discussion in mind, we now compards not necessarily a good approximation of the linearized
the present result with existing results obtained by other apBoltzmann equation. Nevertheless, the thermal-slip coeffi-
proximation methods. When the latter contain the results focient obtained from this equation is accurate. Recently, Siew-
other molecular models, we take only those for the hardert developed an efficient and accurate method for a single-
sphere molecules in the comparison. Figures 3 and 4 ancbmponent gas by combining the approximate equation

TABLE IIl. A comparison with the previous results for the thermal-slip coefficignt

X5=0.1
mB/mA Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38
2 0.4599 0.5023 - 0.4993 0.4507
4 0.3199 0.3515 - 0.3466 0.3141
5 0.2854 0.3140 - 0.3091 0.2804
10 0.2028 0.2242 — 0.2200 0.1997
X5=0.5
mB/m? Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38
1.5 - 0.6193 0.631 0.6142 0.5521
0.4981 0.5514 - 0.5389 0.4869
7/3 - 0.5149 0.513 0.4984 0.4518
0.3469 0.4000 0.385 0.3726 0.3424
5 0.3082 0.3604 - 0.3308 0.3056
9 - 0.2776 0.259 0.2475 0.2313
10 0.2198 0.2655 — 0.2360 0.2209
X5=0.9
me/m? Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38
2 0.6023 0.6616 - 0.6539 0.5911
4 0.5231 0.5975 - 0.5668 0.5183
5 0.4929 0.5743 - 0.5341 0.4912

10 0.3937 0.4951 - 0.4273 0.4030
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TABLE IV. A comparison with the previous results for the diffusion-slip coefficiept

X5=0.1
me/m# Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38 Ref. 39
2 0.1098 0.0470 - 0.1022 0.1163 0.1030
4 0.1309 0.0644 — 0.1202 0.1384 0.1234
5 0.1300 0.0661 - 0.1189 0.1369 0.1227
10 0.1155 0.0624 - 0.1046 0.1201 0.1093
X6=0.5
me/m? Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38 Ref. 39
1.5 - 0.0451 0.103 0.0990 0.1088 -
0.1637 0.0769 — 0.1549 0.1702 0.1550
713 - 0.0930 0.184 0.1797 0.1974 -
0.2514 0.1378 0.243 0.2373 0.2605 0.2399
5 0.2634 0.1493 - 0.2486 0.2728 0.2517
9 - 0.1597 0.257 0.2503 0.2742 -
10 0.2619 0.1590 - 0.2473 0.2709 0.2513
X5=0.9
me/m? Present result Ref. 32 Ref. 33 Ref. 34 Ref. 38 Ref. 39
2 0.2666 0.1340 - 0.2569 0.2728 0.2552
4 0.6805 0.4012 — 0.6646 0.6923 0.6598
5 0.8365 0.5094 - 0.8200 0.8513 0.8133
10 1.311 0.8575 - 1.2998 1.3412 1.2816

based on more term@ine term$ of the kernel expansion boundary condition (the so-called Cercignani—Lampis
and his analytical discrete-ordinate metif8dhis gives an modef?).4°

accurate result for the velocity and heat-flow profiles as well

as the slip coefficient for a single-component gas by fasB. Knudsen-layer functions

computation. It should be stressed, however, that the result )
obtained by the direct numerical analysis in Refs. 12 and 23  1he Knudsen-layer functions of component gagb%
served to assess the new method. Incidentally, the SieweRndU® for the thermal slip(problem ) are shown in Fig. 5
method has been used for a more sophisticated model of ti&0d in Tables V and VI, anéi*/Xg and HB/Xg are in the

FIG. 5. Knudsen-layer functiond”
andU® for the thermal slig(problem
). (& X§=0.25, (b) X§=0.5, (c)
X4=0.75, and(d) X5=0.9.
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TABLE V. Knudsen-layer function&®, UB, HA/X?, andHB/XS for the thermal slip(problem ) in the casem®/m*=2.
—uA -yt HAIXG HB/X5
Xl\Xg 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0.0000 0.4177 0.4207 0.4298 0.3092 0.3085 0.3126 1.2690 1.2932 1.3330 0.9567 0.9452 0.9466
0.0283 0.3902 0.3929 0.4014 0.2886 0.2877 0.2915 1.1657 1.1881 1.2257 0.8791 0.8674 0.8682
0.0516 0.3744 0.3769 0.3852 0.2768 0.2760 0.2796 1.1076 1.1292 1.1656 0.8359 0.8242 0.8248
0.0973 0.3491 0.3514 0.3593 0.2582 0.2573 0.2607 1.0165 1.0369 1.0715 0.7685 0.7571 0.7576
0.1435 0.3280 0.3301 0.3376 0.2426 0.2417 0.2450 0.9419 0.9612 0.9945 0.7134 0.7024 0.7028
0.2005 0.3057 0.3076 0.3148 0.2263 0.2253 0.2284 0.8647 0.8831 0.9148 0.6566 0.6460 0.6465
0.2934 0.2752 0.2769 0.2837 0.2039 0.2029 0.2059 0.7620 0.7790 0.8086 0.5809 0.5711 0.5718
0.4052 0.2450 0.2465 0.2528 0.1817 0.1807 0.1835 0.6633 0.6789 0.7064 0.5081 0.4991 0.5000
0.5010 0.2232 0.2245 0.2304 0.1656 0.1647 0.1673 0.5938 0.6083 0.6341 0.4566 0.4484 0.4495
0.5703 0.2091 0.2104 0.2160 0.1553 0.1544 0.1569 0.5499 0.5638 0.5885 0.4242 0.4164 0.4176
0.7611 0.1763 0.1773 0.1823 0.1311 0.1302 0.1325 0.4503 0.4624 0.4845 0.3500 0.3434 0.3449
0.9749 0.1472 0.1480 0.1523 0.1096 0.1088 0.1107 0.3652 0.3758 0.3952 0.2864 0.2808 0.2825
1.1604 0.1266 0.1273 0.1312 0.0944 0.0936 0.0954 0.3073 0.3167 0.3341 0.2427 0.2379 0.2398
1.3574 0.1085 0.1091 0.1125 0.0810 0.0803 0.0818 0.2576 0.2659 0.2815 0.2050 0.2010 0.2029
1.6176 0.0890 0.0895 0.0924 0.0665 0.0659 0.0672 0.2059 0.2129 0.2264 0.1655 0.1622 0.1641
1.9474 0.0698 0.0701 0.0725 0.0522 0.0516 0.0527 0.1567 0.1624 0.1736 0.1275 0.1249 0.1268
24121 0.0501 0.0503 0.0521 0.0375 0.0370 0.0378 0.1084 0.1127 0.1213 0.0896 0.0879 0.0896
2.9000 0.0357 0.0358 0.0372 0.0268 0.0264 0.0269 0.0748 0.0780 0.0845 0.0628 0.0616 0.0631
3.3427 0.0264 0.0265 0.0276 0.0198 0.0195 0.0199 0.0539 0.0564 0.0615 0.0460 0.0451 0.0464
3.8645 0.0187 0.0187 0.0195 0.0140 0.0138 0.0141 0.0371 0.0388 0.0426 0.0321 0.0315 0.0326
4.8136 0.0101 0.0101 0.0106 0.0076 0.0074 0.0075 0.0192 0.0201 0.0224 0.0170 0.0167 0.0174
5.7335 0.0056 0.0056 0.0059 0.0042 0.0041 0.0042 0.0103 0.0109 0.0122 0.0094 0.0092 0.0097
7.6095 0.0017 0.0017 0.0018 0.0013 0.0013 0.0013 0.0030 0.0032 0.0037 0.0029 0.0028 0.0030
9.5607 0.0005 0.0005 0.0006 0.0004 0.0004 0.0004 0.0009 0.0009 0.0011 0.0009 0.0009 0.0009
11.4142 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TABLE VI. Knudsen-layer function&)®, UB, HA/XZ, andHB/X§ for the thermal slip(problem ) in the casem®/m*=5.
—uA —-u®B HAIXE HB/XE
Xl\Xé\ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0.0000 0.3488 0.3632 0.3930 0.1911 0.1908 0.1992 1.0097 1.0911 1.2116 0.5783 0.5570 0.5552
0.0283 0.3243 0.3376 0.3659 0.1779 0.1773 0.1854 0.9189 0.9953 1.1096 0.5293 0.5078 0.5053
0.0516 0.3102 0.3229 0.3504 0.1705 0.1698 0.1778 0.8679 0.9417 1.0525 0.5023 0.4811 0.4784
0.0973 0.2877 0.2996 0.3258 0.1587 0.1580 0.1657 0.7887 0.8582 0.9635 0.4605 0.4398 0.4372
0.1435 0.2690 0.2802 0.3053 0.1489 0.1482 0.1558 0.7242 0.7902 0.8908 0.4265 0.4065 0.4040
0.2005 0.2494 0.2598 0.2838 0.1387 0.1380 0.1453 0.6582 0.7203 0.8159 0.3915 0.3723 0.3702
0.2934 0.2228 0.2322 0.2545 0.1248 0.1241 0.1311 0.5713 0.6281 0.7166 0.3451 0.3273 0.3256
0.4052 0.1967 0.2052 0.2256 0.1110 0.1104 0.1170 0.4890 0.5405 0.6215 0.3006 0.2844 0.2832
0.5010 0.1780 0.1857 0.2048 0.1011 0.1005 0.1068 0.4319 0.4793 0.5547 0.2694 0.2544 0.2536
0.5703 0.1661 0.1733 0.1915 0.0947 0.0941 0.1002 0.3963 0.4411 0.5128 0.2497 0.2355 0.2350
0.7611 0.1385 0.1446 0.1606 0.0798 0.0793 0.0848 0.3168 0.3551 0.4177 0.2050 0.1928 0.1928
0.9749 0.1144 0.1195 0.1333 0.0666 0.0661 0.0711 0.2505 0.2830 0.3370 0.1669 0.1565 0.1570
1.1604 0.0976 0.1020 0.1142 0.0572 0.0569 0.0613 0.2065 0.2346 0.2823 0.1409 0.1318 0.1327
1.3574 0.0829 0.0867 0.0975 0.0490 0.0487 0.0527 0.1695 0.1938 0.2356 0.1185 0.1107 0.1118
1.6176 0.0674 0.0705 0.0796 0.0402 0.0399 0.0433 0.1319 0.1520 0.1873 0.0952 0.0888 0.0900
1.9474 0.0522 0.0547 0.0621 0.0315 0.0313 0.0341 0.0973 0.1130 0.1415 0.0729 0.0678 0.0692
2.4121 0.0370 0.0388 0.0443 0.0226 0.0224 0.0245 0.0646 0.0758 0.0970 0.0509 0.0473 0.0486
2.9000 0.0261 0.0273 0.0314 0.0161 0.0159 0.0175 0.0427 0.0507 0.0663 0.0355 0.0329 0.0341
3.3427 0.0191 0.0201 0.0232 0.0119 0.0118 0.0129 0.0298 0.0356 0.0474 0.0258 0.0239 0.0250
3.8645 0.0134 0.0141 0.0164 0.0084 0.0083 0.0091 0.0197 0.0237 0.0322 0.0179 0.0166 0.0175
4.8136 0.0071 0.0075 0.0088 0.0045 0.0045 0.0049 0.0095 0.0116 0.0163 0.0094 0.0087 0.0094
5.7335 0.0039 0.0041 0.0049 0.0025 0.0025 0.0027 0.0048 0.0059 0.0086 0.0052 0.0048 0.0052
7.6095 0.0012 0.0013 0.0015 0.0008 0.0008 0.0008 0.0013 0.0016 0.0024 0.0016 0.0015 0.0016
9.5607 0.0004 0.0004 0.0005 0.0002 0.0002 0.0002 0.0003 0.0004 0.0007 0.0005 0.0004 0.0005
11.4142 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0001 0.0002
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




3758 Phys. Fluids, Vol. 15, No. 12, December 2003

Takata et al.

TABLE VII. Knudsen-layer function—S*/X5 for the thermal slip(problem ) in the casem®/m”*=2 and 5.

m8/mh=2 m8/mA=5
X\XG 0.25 0.5 0.75 0.25 0.5 0.75
0.0000 0.0281 0.0188 0.0096 0.0420 0.0288 0.0152
0.0283 0.0281 0.0188 0.0095 0.0418 0.0287 0.0151
0.0516 0.0280 0.0187 0.0095 0.0416 0.0286 0.0151
0.0973 0.0278 0.0186 0.0094 0.0412 0.0282 0.0149
0.1435 0.0275 0.0184 0.0094 0.0406 0.0278 0.0146
0.2005 0.0271 0.0181 0.0092 0.0399 0.0273 0.0143
0.2934 0.0263 0.0176 0.0090 0.0385 0.0264 0.0138
0.4052 0.0253 0.0169 0.0086 0.0367 0.0251 0.0132
0.5010 0.0243 0.0163 0.0083 0.0352 0.0241 0.0126
0.5703 0.0237 0.0159 0.0081 0.0340 0.0233 0.0122
0.7611 0.0217 0.0146 0.0075 0.0310 0.0212 0.0111
0.9749 0.0197 0.0133 0.0068 0.0277 0.0191 0.0100
1.1604 0.0180 0.0121 0.0062 0.0251 0.0173 0.0091
1.3574 0.0163 0.0110 0.0057 0.0225 0.0156 0.0083
1.6176 0.0142 0.0096 0.0050 0.0195 0.0136 0.0072
1.9474 0.0119 0.0081 0.0042 0.0162 0.0113 0.0061
2.4121 0.0093 0.0064 0.0033 0.0124 0.0088 0.0048
2.9000 0.0071 0.0049 0.0026 0.0093 0.0067 0.0037
3.3427 0.0055 0.0038 0.0020 0.0072 0.0052 0.0030
3.8645 0.0041 0.0029 0.0015 0.0053 0.0039 0.0023
4.8136 0.0024 0.0017 0.0009 0.0030 0.0023 0.0014
5.7335 0.0014 0.0010 0.0006 0.0018 0.0014 0.0009
7.6095 0.0005 0.0003 0.0002 0.0006 0.0005 0.0003
9.5607 0.0002 0.0001 0.0001 0.0002 0.0002 0.0001
11.4142 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

same tables. Each function decays monotonically and rapidlgoncentration of the gas with smaller molecular mass, while
to zero as the distance from the wall increases. These funder UB andHE/X§, it is little influenced by the value ofj .

On the other hand, the dependence)@wiffers among the
functions. The functiont)” andH*/X} depend orXj espe-
cially whenmB/m* is large. This is also true fdg®, but less
dependent orXf. The HB/X§ is almost independent o)
irrespective ofm&/mA.

tions depend monotonically on the mass rati/m”. For
UA andH”/Xg, the dependence is larger for smalé}, the

TABLE VIII. Knudsen-layer functionsU” and H* for the thermal slip

(problem ) in the caseX5=1.

X1 —uA HA
0.0000 0.4452 1.3895
0.0283 0.4161 1.2794
0.0516 0.3995 1.2178
0.0973 0.3730 1.1215
0.1435 0.3509 1.0426
0.2005 0.3275 0.9609
0.2934 0.2956 0.8519
0.4052 0.2639 0.7467
0.5010 0.2409 0.6722
0.5703 0.2260 0.6251
0.7611 0.1913 0.5173
0.9749 0.1602 0.4243
1.1604 0.1383 0.3604
1.3574 0.1189 0.3052
1.6176 0.0979 0.2470
1.9474 0.0771 0.1909
2.4121 0.0556 0.1348
2.9000 0.0399 0.0949
3.3427 0.0297 0.0697
3.8645 0.0211 0.0488
4.8136 0.0115 0.0261
5.7335 0.0064 0.0145
7.6095 0.0020 0.0045
9.5607 0.0006 0.0014

11.4142 0.0002 0.0005
15.2205 0.0000 0.0000

The functionS*/Xg is shown in Table VII. The results
for mB/m*=4 and 10 are omitted, but they are very close to
that formB/mA=5. It is seen thaB"/X§ decays monotoni-
cally and rapidly to zero as;—c0 and that it depends 0)0’3
monotonically. The functiorS® can be obtained from the
table by the relatior{26).

The functionsU” andH” for X5=1 are shown in Table
VIII. Since gas B is absent in this case, they are independent
of mB/m” and can be regarded as the counterparts of a
single-component gas. From a different viewpoint, they can
also be regarded a$* andH”/X{ for arbitrary values oK%
in the case om®/m”=1. It is also seen from a change of a
role between gas A and B thet® andHB/X§ at X5=0 are,
respectively, UA and H” in the table multiplied by
(mB/m*) ~Y2 Incidentally, the corresponding Knudsen-layer
functions for a single-component gas have already been ob-
tained in Ref. 12 by the same numerical method, i.e., the
finite-difference method incorporating the numerical kernel
method. In the present work, they are obtained with higher
accuracy, but the difference is at most.10™* for U” and
1.8x10 4 for HA.

The Knudsen-layer functions” and UB for the diffu-
sion slip (problem I)) are shown in Fig. 6 and in Tables IX
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and X, andH” andH® are in the same tables. They decay  The functions" for m®/m*=2 and 5 is shown in Table
rapidly asx,—, but the way of decay is, in general, non- XI. It decays monotonically and rapidly to zeroas—c°. It
monotonic, except folA. It is clearly seen that the magni- is seen thag" increases monotonically with increasing .

tude of UA decreases with increasingé while that of UB These are true also for the other cases. A further comparison
increases. with the other cases shows that the dependenc&ris

TABLE IX. Knudsen-layer functions)”, U8, HA, andH® for the diffusion slip(problem I in the casen®/m”A=2.

UA —-U B _ HA H B

Xl\Xé 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0.0000 1.6011 0.8978 0.6785 0.3385 0.5723 1.3017 0.1147 0.1296 0.1459 0.0037 0.0150 0.0265
0.0283 1.4468 0.8159 0.6202 0.3027 0.5148 1.1784 0.0984 0.1121 0.12730.0049 0.0054 0.0159
0.0516 1.3610 0.7701 0.5875 0.2830 0.4832 1.1106 0.0898 0.1029 0.11740.0090 0.0007 0.0106
0.0973 1.2282 0.6991 0.5366 0.2528 0.4347 1.0060 0.0771 0.0892 0.10260.0148  —0.0058 0.0032
0.1435 1.1208 0.6414 0.4950 0.2287 0.3957 0.9215 0.0672 0.0786 0.09%10.0188  —0.0105 —0.0022
0.2005 1.0116 0.5824 0.4523 0.2044 0.3562 0.8354 0.0576 0.0681 0.07980.0223  —0.0147 —0.0071
0.2934 0.8691 0.5048 0.3957 0.1730 0.3048 0.7227 0.0457 0.0552 0.06560.0258 —0.0191  —0.0125
0.4052 0.7356 0.4315 0.3417 0.1440 0.2568 0.6164 0.0354 0.0437 0.05290.0280 —0.0222  —0.0165
0.5010 0.6437 0.3806 0.3038 0.1243 0.2239 0.5429 0.0287 0.0363 0.04460.0288 —0.0236 —0.0185
0.5703 0.5870 0.3490 0.2801 0.1122 0.2037 0.4972 0.0248 0.0318 0.03960.0290 —0.0242  —0.0195
0.7611 0.4613 0.2782 0.2266 0.0859 0.1589 0.3952 0.0168 0.0227 0.0290.0283  —0.0244  —0.0206
0.9749 0.3584 0.2194 0.1815 0.0648 0.1224 0.3107 0.0110 0.0158 0.02£20.0264  —0.0233  —0.0203
1.1604 0.2909 0.1804 0.1510 0.0512 0.0987 0.2547 0.0076 0.0117 0.0163.0245 —0.0218 —0.0194
1.3574 0.2352 0.1476 0.1252 0.0403 0.0791 0.2078 0.0052 0.0087 0.0125.0222 —0.0201 —0.0181
1.6176 0.1794 0.1145 0.0986 0.0296 0.0597 0.1604 0.0030 0.0059 0.0090.0194 -0.0176 —0.0161
1.9474 0.1290 0.0839 0.0737 0.0202 0.0422 0.1169 0.0015 0.0036 0.00610.0160  —0.0148 —0.0137
24121 0.0827 0.0552 0.0497 0.0120 0.0264 0.0762 0.0004 0.0019 0.0030.0121  —-0.0113 —0.0106

2.9000 0.0528 0.0362 0.0334 0.0070 0.0164 0.0494-0.0001 0.0011 0.0023 -—0.0089 —0.0084 —0.0079
3.3427 0.0356 0.0250 0.0235 0.0043 0.0107 0.0337—-0.0002 0.0006 0.0016 —0.0068 —0.0063 —0.0061
3.8645 0.0227 0.0163 0.0157 0.0024 0.0066 0.0217-0.0002 0.0004 0.0011 -—-0.0048 —0.0046  —0.0044
4.8136 0.0102 0.0077 0.0077 0.0008 0.0027 0.0099-0.0001 0.0002 0.0006 —0.0026 —0.0025 —0.0024
5.7335 0.0049 0.0038 0.0040 0.0003 0.0012 0.0048-0.0001 0.0001 0.0004 -0.0015 —0.0014 —0.0013

7.6095 0.0011 0.0010 0.0011 0.0000 0.0002 0.0011 0.0000 0.0001 0.00010.0004 —0.0004 —0.0004
9.5607 0.0003 0.0002 0.0003 0.0000 0.0000 0.0002 0.0000 0.0000 0.00610.0001  —0.0001  —0.0001
11.4142 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE X. Knudsen-layer function&)”, U8, HA, andH® for the diffusion slip(problem Il in the casen®/ m”=5.

UA —-U B _ HA H B

Xl\Xé 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0.0000 1.5707 0.9926 0.8897 0.1864 0.3526 0.9398 0.1493 0.1739 0.20670.0120 —0.0021 0.0096
0.0283 1.4204 0.9077 0.8241 0.1644 0.3146 0.8508 0.1318 0.1544 0.184M0.0170  —0.0083 0.0017
0.0516 1.3366 0.8599 0.7870 0.1526 0.2943 0.8030 0.1224 0.1438 0.1720.0193  —0.0113  —0.0020
0.0973 1.2068 0.7854 0.7283 0.1347 0.2633 0.7299 0.1080 0.1278 0.154%.0224 —0.0153 —0.0072
0.1435 1.1018 0.7245 0.6799 0.1205 0.2386 0.6711 0.0967 0.1150 0.13990.0244  —0.0181  —0.0109
0.2005 0.9949 0.6618 0.6293 0.1064 0.2138 0.6112 0.0854 0.1022 0.12520.0260 —0.0204 —0.0143
0.2934 0.8553 0.5787 0.5613 0.0884 0.1817 0.5326 0.0711 0.0858 0.1063.0273  —0.0228 —0.0179
0.4052 0.7245 0.4995 0.4950 0.0720 0.1519 0.4583 0.0581 0.0709 0.08870.0278  —0.0242 —0.0204
0.5010 0.6345 0.4440 0.4477 0.0611 0.1317 0.4065 0.0494 0.0608 0.0760.0276  —0.0246  —0.0216
0.5703 0.5789 0.4093 0.4175 0.0544 0.1192 0.3742 0.0442 0.0546 0.06940.0272  —0.0246  —0.0221
0.7611 0.4556 0.3308 0.3481 0.0402 0.0919 0.3015 0.0330 0.0414 0.0533.0256  —0.0239 —0.0225
0.9749 0.3545 0.2646 0.2875 0.0291 0.0699 0.2404 0.0243 0.0309 0.04640.0233  —0.0223  —0.0218
1.1604 0.2883 0.2201 0.2454 0.0222 0.0556 0.1995 0.0188 0.0243 0.03210.0213  —0.0207 —0.0207
1.3574 0.2334 0.1823 0.2087 0.0167 0.0440 0.1648 0.0145 0.0189 0.0253.0192 —0.0189 —0.0194
1.6176 0.1785 0.1435 0.1698 0.0115 0.0325 0.1293 0.0105 0.0138 0.018M.0165 —0.0166 —0.0174
1.9474 0.1287 0.1071 0.1319 0.0072 0.0224 0.0961 0.0070 0.0094 0.01290.0136  —0.0139  —0.0150
24121 0.0829 0.0722 0.0937 0.0036 0.0134 0.0643 0.0041 0.0056 0.00#0.0102  —0.0107 —0.0119
2.9000 0.0532 0.0485 0.0663 0.0016 0.0079 0.0428 0.0023 0.0033 0.00460.0075  —0.0080 —0.0092
3.3427 0.0360 0.0341 0.0488 0.0007 0.0048 0.0299 0.0015 0.0021 0.00290.0057  —0.0061  —0.0072
3.8645 0.0231 0.0228 0.0343 0.0001 0.0027 0.0198 0.0008 0.0012 0.00170.0041 —0.0045 —0.0054

4.8136 0.0105 0.0112 0.0184 —0.0002 0.0009 0.0095 0.0003 0.0005 0.0007-0.0022  —0.0025  —0.0032

5.7335 0.0051 0.0058 0.0102 -0.0002 0.0002 0.0048 0.0001 0.0002 0.0003-0.0013 —0.0014 —0.0019

7.6095 0.0012 0.0016 0.0032 —0.0001 0.0000 0.0012 0.0000 0.0001 0.0001-0.0004 —0.0005 —0.0007

9.5607 0.0003 0.0004 0.0010 0.0000 0.0000 0.0003 0.0000 0.0000 0.006.0001  —0.0001  —0.0002
11.4142 0.0001 0.0001 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.06@0001
15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE XI. Knudsen-layer functior8” for the diffusion slip(problem IJ).

m8/mi=2 m&/mt=5
X\X5 0.25 0.5 0.75 0.25 0.5 0.75
0.0000 0.3644 0.3917 0.4239 0.3579 0.4170 0.5027
0.0283 0.3499 0.3770 0.4088 0.3436 0.4021 0.4872
0.0516 0.3388 0.3656 0.3972 0.3328 0.3907 0.4753
0.0973 0.3188 0.3451 0.3762 0.3131 0.3700 0.4534
0.1435 0.3005 0.3262 0.3567 0.2951 0.3509 0.4329
0.2005 0.2799 0.3050 0.3347 0.2749 0.3292 0.4097
0.2934 0.2504 0.2743 0.3028 0.2459 0.2979 0.3755
0.4052 0.2201 0.2426 0.2695 0.2162 0.2652 0.3393
0.5010 0.1977 0.2191 0.2447 0.1943 0.2408 0.3119
0.5703 0.1833 0.2038 0.2285 0.1801 0.2249 0.2938
0.7611 0.1496 0.1679 0.1902 0.1471 0.1872 0.2502
0.9749 0.1201 0.1361 0.1559 0.1182 0.1535 0.2102
1.1604 0.0998 0.1140 0.1317 0.0983 0.1298 0.1814
1.3574 0.0823 0.0949 0.1107 0.0812 0.1090 0.1557
1.6176 0.0642 0.0749 0.0883 0.0634 0.0871 0.1277
1.9474 0.0473 0.0558 0.0668 0.0468 0.0659 0.1000
2.4121 0.0310 0.0373 0.0455 0.0308 0.0450 0.0714
2.9000 0.0202 0.0247 0.0307 0.0201 0.0305 0.0505
3.3427 0.0138 0.0171 0.0217 0.0138 0.0215 0.0372
3.8645 0.0089 0.0112 0.0145 0.0089 0.0144 0.0260
4.8136 0.0040 0.0053 0.0070 0.0041 0.0071 0.0138
5.7335 0.0019 0.0026 0.0035 0.0020 0.0036 0.0076
7.6095 0.0004 0.0006 0.0009 0.0005 0.0009 0.0023
9.5607 0.0001 0.0001 0.0002 0.0001 0.0002 0.0007
11.4142 0.0000 0.0000 0.0001 0.0000 0.0001 0.0002

15.2205 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE XII. Lattice systems.

Lattice system d N, I\ Z, zZ, Z, z, N; N, N, N,
S1 24.08 300 300 - - - - - - - -
S2 24.08 600 600 - - — - - - - -
S3 27.74 300 320 - - - - — — — -
S4 32.20 300 340 - — — - - - - -
M1 - — - 4.5 4.5 4.5 4.5 25 27 25 27
M2 - — — 45 4.5 4.5 4.5 25 36 25 36
M3 - - — 4.5 4.5 4.5 4.5 25 24 25 24
M4 - - - 45 45 45 4.5 28 24 28 24
M5 - - - 4.5 4.5 4.5 4.5 28 18 28 18
M6 - — — 45 45 5.0 5.25 28 18 29 21
M7 - — — 4 4 4 4 18 10 18 10
M8 - — - 4.5 4.5 45 4.5 25 18 25 18

larger for larger difference of molecular mass. fecan be  and X{ mainly in £;<0 region. The difference betweeh

obtained again from the table by the relati@®). >0 and{; <0 regions is larger for largeh® and for smaller
Incidentally, some of the results fot)=0.25, 0.75, and  X5.

0.9 in the figures and tables in this section are obtained by We omit the results for the diffusion-slip problem be-

applying the formul&46) to the functionsU”, UB, HA/X%, cause an example of the reduced velocity distribution func-

HB/XE, andS*/X{ for problem | and toXgU”, X§UB, HA,  tion has already been shown in Ref. 25. The qualitative fea-

HB, andS* for problem Il. TheFoRTRAN code generating the tures are the same as those described in the first paragraph.

Knudsen-layer functions for an arbitrary value)(ﬁ is avail-

able from the authors.

VI. DATA OF COMPUTATION

C. Velocity distribution functions . )
. o In the present work, we use the following lattice sys-
Figures 7 and 8 show the reduced velocity distribution;ems:

functions¥* and¥® and their contour plots for the thermal-
slip problem(problem ) in the case om®/m*=5 andX}
=0.5. There is a discontinuity af;=0 on the wall &;
=0) [see Figs. #@ and 8a)]. The discontinuity disappears
inside the gas. This is because the characteristic line of the (i=0,1,...,Ny), (529
Boltzmann equatiofl8) along{,;=0 does not enter the gas .

region, so that the discontinuity does not propagate into thg\’Ith

gas> Its trace remains, however, as a steep gradient around p(i)z25(i3/ﬁ§)/[1+25(ilﬁx)2], (52b)
£1=0 near the wallsee Figs. {b) and 8b)]. As the distance

from the wall increasesV @ is deformed chiefly around, ~ @nd

=0 with keeping the difference of shape between the posi- é«a(Zj):(z /\/W)(jlﬁ 2 (j=—Ng,...Np), (533
tive and the negative regions ¢f and decays to zerfsee ! ! ! Lol

. — — ) i
x{)=20In(pM9/ (p™Nd —0.7p1)) + 104( :)

Ny

the transition from Fig. @& to 7(f) and from Fig. &) to L5 D= (2@ g 242y
8(f)]. These are true also for other cases. .
A comparison with the other cases shows that the func- (J==Ny, ... Ny = 1), (53b

tion WB/((mB)%2xF) is almost independent @h® and X} if
it is considered as a function aff®¢; and ymB¢,. On the
other hand, the function?”/X§ rather depends on®

W=(Z,1m*)(k/2N,)  (k=0,...,N,). (530

TABLE XIV. A comparison ofb,, among the different lattice systems for
TABLE XIll. A comparison of b, among the different lattice systems for mf/m*=2.

mB8/mi=2.
Lattice systems Maximum relative error bf
Lattice systems Maximum relative error bf —
(S1,M7) vs (S3,M7? 1.7x10

(S1,M7 vs (S3,M7) 7.8x1077 (S1,M? vs (S2,M7)? 1.9x1077
(S1,M5) vs (S1,M6 3.7x10°° (S1,M5) vs (S1,M6? 5.6x10°7
(S1,M7 vs (S2,M7) 6.6x10°° (S1,M8 vs (S1,mM5P° 9.1x10°°
(S1,M3 vs (S1,M49 2.3x10°° (S1,M8) vs (S1,M3" 8.0x10°°
(S1,M3) vs (S1,M1) 2.1x10°° (S1,M3 vs (S1,M1° 1.9x10°°
(S1,M1) vs (S1,M22 3.5x107°

2This case was checked only ff=0.5.
#This case was checked only m€= 1, while the others were for 8 sample PThis case was checked for 9 sample valueK@f
values ofXj . °This case was checked for 5 sample valueX®f
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TABLE XV. Maximum error of the integralsZA*(f2 %) with f* TABLE XVII. Maximum error of the left-hand side of E¢55) for 6 sample
=m*{,E*. The data for system M1 are shown in the upper line and thosevalues ofX§ for system M3. The maximum value ¢f,(3,,— 8,)E"| is
for system M3 in the lower. The maximum value|off“E¢| is also shown  also shown for comparison in parentheses just below the data.

for comparison in parentheses.

mB/m?
mB/m?
a 2 4 5 10
(B.) 2 4 ° 10 A 1.39x10°° 2.43x10°° 2.91x10°° 5.26x10°°
(A,A) 3.51x10°® 351x10% 351x10° 3.51x10°° (0.077 (0.077 (0.077 (0.077
4.46x10°%  4.46x10°°% 4.46x10°°% 4.46x10°° B 1.19x10°° 5.48x10°° 9.66x10°° 6.12x10°*
(0.064 (0.064 (0.064 (0.0649 (0.15 (0.3 (0.39 0.77

(B,A) 1.89x10°® 2.64x10°% 3.03x10°°® 5.06x10°°
2.46x10° % 3.29x10°% 3.77x10% 6.42x10°°®

(0.053 (0.047 (0.046 (0.043
(A,B) 6.15x10° % 3.24x10°° 594x10° 4.11x10*
7.92<10°%  4.14x10°° 7.61x10°° 5.32x10°*

systems M1 and M3. The error comes from the paff

(0.237 (0.908 (1.407 (5.528 > .
(B,B) 9.93x10°% 2.81x10°° 393x10°° 1.11x10°* +£§“—£§“ because” can be computed exactfyote that
1.26x10°° 357x10°° 4.99x10°°  1.41x10°* the integral in Eq(23) is the error functiofh The maximum
(0.182 (0.519 (0.719 (2.033 value of|r‘n“§pE“VB| is, therefore, shown in parentheses in
the table. The second is that the relation,
HereN,, N;, andN, are given positive integers a and > KPaXELP({ APEP,{ ACE®)

. =A,B
Zp are given constants. p

The lattice systems generated by E@s2a—(53¢) and
used for various accuracy tests are listed in Table XIl. Com- +Z,
parisons among the results for different lattice systems were
made for various purposes in the casen®m”=2. Apart  which comes from Eq(9a), should hold. The maximum er-
of the results are shown in Tables XIIl and XIV. For ex- ror of the quantity on the left for the system M1 is shown in
ample, for problem I, a comparison is made between theable XVI, together with the maximum value ¢f ,(m*¢?
systems(S1,M7) and (S3,M7) for an estimate of the appro- —5/2)E?| in parentheses. The last is the relation
priate value ofd. Similarly a comparison is made between
(S1,M5 and(S1,M6) for an estimate of the appropriate val-

2

5
Mg — —) E*=0, (54)

> KPaXEXELP(;, DABIPER, [ DARIE)

ues ofZ; andZ,. The comparison betwee{$1,M7) and s5A B
(S2,M7) is for determining the number of lattice points in
X;. The comparisons amon(s1,M1), (S1,M2, (S1,M3, +{,E“(Sqa—648) =0, (59

and (S1,M4) are for determining the number of points (AB)a_ (A (B)a )
(N1,N,) in (£1,£,). After such a series of tests, the systemWith D =DYV—D™%. The relation comes from Eg.

(S1,MY) is chosen as the standard lattice system for problent®?- The maximum error of the quantity on the left for the
I, (S1,M3 for problem Il in the casen®/mA=2, and(S4, system M3 is shown in Table XVII, together with the maxi-

M3) for problem Il in the casen®/m”=4, 5, 10. The data in Mum value ofl{,E“(5,a— 8,g)| in parentheses.
Sec. V are the results for these systems. As mentioned in Sec. IlIC, Eq26) provides another
In order to estimate the accuracy of the collision inte-measure of accuracy. For the standard lattice system the
grals for the standard lattice systems, we make use of threglue of |S"+S°|, which should theoretically be zero, is
properties of £f% The first is that the relation bounded as follows: for problem I,
LP(mP¢ EP M E*)=0 should hold. This comes from o [257X10°° (mEImA=24.5),
the fact that thg .origi_nal Iipearized coIIisiop integrals vanish |S*+S |<[3.28>< 1075 (mB/mA=10),
when the collision invariants are substituted. Table XV
shows the maximum error of the quantity on the left for theat 21 mB/m”=2) or 17 (the other cas@ssample values of
X2, and for problem II,

TA|BLE )(f\)/(lA :/Iaximtxm e;/rlcir c:hthe Ieft'-hand sic:e 0;50254);? fss)s:Tple |SA+ SBl <[ 2 74x10°5 (mB/mA= 2,45,
values ofXg for system M1. The maximum value me?—3)E? is 4 B/ A
also shown for comparison in parentheses just belov[:/ the data. 2.93x10 (m>/m"=10),
me/m? at 9 (mB/m*=2), 13 MB®/m*=4,5), or 17 M®/m"=10)
N 5 2 : n” sample values ofX). For the same values oKj,
we compared the maximum values div<(d,-,-)|,
A 1.58x10°° 1.58x10°° 1.58x10°° 2.01x10°° |‘I’a( . +7¢ ' ) ) and |\I,a( . ’Zg)| to the maximum value
B 31(&1160,5 63(&1160,5 78(&1?0,5 37(%(13),4 of |¢|. The former three values should be negligible in
(0.32 (0.64 " (0.81) (161 order that the computation in the finite region & ({1,Z,)

is justified. The results are
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WA, ,-)| (8.3x10°8 (mB/m*=245), - 5 5
ar e 2 A%
max ¥4 <l2.9x107 (mB/mP=10), N =S1g) M- S AT,
A 5 . 5
|‘1’B(0|,~,-)|< 2.6x1077 (mf/m*=2,459), Aa,3=§|ff(D(5)“). DTa:§|ff(Aa),
B 3.0x10°° (m®/m*=10),
max ¥ °| ( ) (AD)
(B — ar2_ (B)a
max( WA, =28, )L |WAC - Z8)) for gl ( 50 )
ma WA 5.7x 108, i ) )
N =XGAA + XENB,
max(Wo(, =27, LIV Z)D o where
max ¥ *| . ’ 8w (=
I,‘f(F)=—f {"FE*d¢. (A2)
15 Jo
for problem | and R
Since M*=d*=1 and X§=1—Xj, they are functions of
|[WA,-,-)| [4.9x10°8 (mB/m*=24,5)), X5, mB, andd® [see the def|n|t|0ns oA andD ) jn Egs.
max VA <12.5x10°® (m®/mA=10), (9a) and(9b)] There are some relations amofg, D1,
andI"{8:
|WB(d,-,-)| (1.5x10°% (mB/m*=2,45) 2 N A AP (@A B (a)B
o *o A, s=Az,, D7,=XyT +XgI' ,
ma{We |7.7x1077 (mP/mP=10), op - Tper TTem 700D 0" b
AAXOA o+ MBXEA 5=0, (A3)
max(| WA, =25, )[PAC, -, Z))]) R R
| m; >4‘I'|A|| Al 6.0x10°°, MAXAD o+ MBXED 15=0.
The last two relations are the subsidiary conditions ASr
max(|WB(-,=Z3,)[,|WB(-,-,ZD)]) B and DP« [see Egs(9a) and (9b)]. The A4 and Dy, are
mad P 2.2x10°°, directly related to the generalized diffusion coefficfént,,
and the thermal diffusion coefficiéitD, as follows:
for prcblem Il . . . AQB:(\/;lz)AaB(ZkTO/mA)llqoy
Finally, we provide the information about the accuracy (A4)

of the Chebyshev polynomial approximation with respect to Dy, = (\/m/2) Dy, (2kTo/m*)¥,,.

P Theb, obtained by the formul&1) with the coefficient

" in Table | is compared with that computed directly. The
companson was made at 15 sample vaIuesX@f for
mB/mA=2, at 8 values form®/m*=4, at 12 values for
mB/m”=5, and at 4 values fom®/m*=10. The relative
errors to the directly computed data are, at most,18 6, APPENDIX B: EXPRESSION OF INTEGRAL KERNELS
9x10 8 4x1077, and 2<10° 7, respectively. The corre- _ o _
sponding comparison was made for at 4 sample values of _Here we give the explicit expression BE* (J=1,2,3)
XA for mB/mA=2 and at 5 values fon®/mA=4, 5, 10. The N EQ. (22):
relative errors are, at most,x710"°, 3x10 8, 6x10 8, (

The reader is referred to Appendix A in Refs. 56 and 5 for
further details.

and 2< 10/, respectively. ) TEE,€,.00,0,), i TP,

b= P
In the present work, we slightly improved the accuracy _
of numerical solutions in Refs. 12 and 25. The improvement K5, it me=m,
was achieved chiefly by computing in a wider regionZgf (B1)
than that in Ref. 12 and by making the lattice system finer - 12 s
near{; =0 tha}n tha_t in Ref. 25. As a result, some of the dataxC 5= (§m“mﬁ) (Iaﬁa)—ngem“Ia TEUEE,,00,0,),
of slip coefficients in those references are different from the (B2)

present ones at the last figure.

V2w

K5 = g EL(E = L)%+ (£, )71

APPENDIX A: TRANSPORT COEFFICIENTS
~ . with
The coefficients\®’, A4, Dr,, 5%, and\’ (a,B8
= (Be - o g o
|o$sB) are defined by the moments Af" or D as fol Jf _ jo de, COSpy §—§||f (£1.€,,96,01,8,), (BA)
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V=-2%b,, >0, x;=0, (C2a
f d¢ﬂ§ B (£1.6,.0¢.01.4,), (B5) v '
v—0, as X;—®, (C2b
| B gab J dt cosH — a#“t) where T(f)=LPo(f,f) with mP=me=1. This is the
1 Knudsen-layer problem for a single-component gas, and thus

" there is the theorem for the existence and uniqueness of the
XJ” dscoshb?ey1—tZsins) (B6) solution (see Sec. llIB. Since the se? =0 andb;, =0 is
0

seen to satisfy Eq4C1)—(C2b), ¥=0 is the unique solu-
s 2 14212 tion, and the diffusion-slip flow is not inducedh(=0).

L 42— 14

15e=expg — B|§ 4+ =g | | (B7)
and 1Y. Sone, “Asymptotic theory of flow of rarefied gas over a smooth bound-

ary 1,” in Rarefied Gas Dynamic®dited by L. Trilling and H. Y. Wach-
B |§| |§|2 §§ man (Academic, New York, 1969 \Vol. |, p. 243.
( a L

578 7 Ba (BS) 2Y. Sone, “Asymptotic theory of flow of rarefied gas over a smooth bound-
2m 2m” ary I1,” in Rarefied Gas Dynamic®dited by D. Dini(Editrice Tecnico

Ba - Ba Scientifica, Pisa, 1971Vol. Il, p. 737.
bP=—pu” |§>< ﬂ, (B9) 3Y. Sone, “Asymptotic theory of a steady flow of a rarefied gas past bodies
A for small Knudsen numbers,” ildvances in Kinetic Theory and Con-
« Ba 2mPme B aa tinuum Mechanicsedited by R. Gatignol and Soubbaramay®pringer-
= e aas for mPEme (B10) Verlag, Berlin, 1991, p. 19.
Y. Sone Kinetic Theory and Fluid Dynamic#lodeling and Simulation in
Y Science, Engineering and Technolo@irkhauser, Boston, 2002
p>p ) (Bll) 5S. Takata and K. Aoki, “The ghost effect in the continuum limit for a
(£,—(1)%+ (&,+ gP)Z vapor—gas mixture around condensed phases: Asymptotic analysis of the
Boltzmann equation,” Transp. Theory Stat. Ph§8, 205(2001); erratum,
The functionsF and E in Eq. (B3) are, respectively, the ipid. 31, 289(2002.
complete elliptic integrals of the first and the second kifids °Y. Sone, K. Aoki, S. Takata, H. Sugimoto, and A. V. Bobylev, “Inappro-
defined by priateness of the heat-conduction equation for description of a temperature
field of a stationary gas in the continuum limit: Examination by asymptotic
w2 analysis and numerical computation of the Boltzmann equation,” Phys.
F(k)= f (1—ksir? 6) Y2, (B12) Fluids 8, 628(1996; erratum,ibid. 8, 841 (1996.
0 Y. Sone, “Continuum gas dynamics in the light of kinetic theory and new
features of rarefied gas flows,” iRarefied Gas Dynamicedited by C.
12 Shen(Peking University Press, Beijing, 199p. 3.
E(k)= (1 k sir? 0)d 6. (B13) 8Y. Sone, “Flows induced by temperature fields in a rarefied gas and their
ghost effect on the behavior of a gas in the continuum limit,” Annu. Rev.
luid Mech.32, 779 (2000.
. H. KennardKinetic Theory of Gase@icGraw-Hill, New York, 1938.

k:

In the above expressions, the absolute values of vectors a

the inner product of and{ are expressed interms 8f, {,, 4. A. Kramers and J. Kistemaker, “On the slip of a diffusing gas mixture
1, §,, and g, as follows: along a wall,” Physica Amsterdam 10, 699 (1943.
11y, Sone, T. Ohwada, and K. Aoki, “Temperature jump and Knudsen layer
|§_ 41 = (|§|2+ |§]2— Zf' f)llz, in a rarefied gas over a plane wall: Numerical analysis of the linearized
Boltzmann equation for hard-sphere molecules,” Phys. Fluids, 863
|Exd=[14°14°- (& %17 (1989.

(B14) 12T, Ohwada, Y. Sone, and K. Aoki, “Numerical analysis of the shear and

|§| 2_ gi_,_ gﬁ, |§]2: ﬁ.}. 5!2) , thermal creep flows of a rarefied gas over a plane wall on the basis of the
linearized Boltzmann equation for hard-sphere molecules,” Phys. Fluids A
(= + . 1, 1588(1989.
=661t 6,8, CoS¢ 137 Ohwada, K. Aoki, and Y. Sone, “Heat transfer and temperature distri-
bution in a rarefied gas between two parallel plates with different tempera-
APPENDIX C: PROOF OF NO DIFFUSION SLIP tures: Numerical analysis of the Boltzmann equation for a hard sphere
FOR THE MIXTURE OF IDENTICAL MOLECULES molecule,” in Rarefied Gas Dynamics: Theoretical and Computational

Techniquesedited by E. P. Muntz, D. P. Weaver, and D. H. Campbell

When the molecules of different species are mechani;, (AIAA, Washington, DC, 198§ p. 70.

14y. Sone, T. Ohwada, and K. Aoki, “Evaporation and condensation on a
B/mA— AB/HA— Ba ;
Ca”y identical, i.e.m*/m"=d"/d"=1, L is reduced to the plane condensed phase: Numerical analysis of the linearized Boltzmann

collision operator for a single-component gas, kayand the  equation for hard-sphere molecules,” Phys. Fluids,A.398(1989.
relation 15T, Ohwada, Y. Sone, and K. Aoki, “Numerical analysis of the Poiseuille
and thermal transpiration flows between two parallel plates on the basis of
the Boltzmann equation for hard-sphere molecules,” Phys. Fluids A
> XGDW()-D®*({)]=0, 2042(1989.
a=AB 16y, Sone, S. Takata, and T. Ohwada, “Numerical analysis of the plane
Couette flow of a rarefied gas on the basis of the linearized Boltzmann

holds® As a result, by adding Eq$12), (13b), and(14) for equation for hard-sphere molecules,” Eur. J. Mech. B/Flugjs273
a=A and those forw =B, respectively, one obtains the fol-  (1990.
lowing boundary-value problem fob = WA+ \pB: 17y, Sone, T. Ohwada, and K. Aoki, “Evaporation and condensation of a

rarefied gas between its two parallel plane condensed phases with different
oV temperatures and negative temperature-gradient phenomenon: Numerical
{1—=L(V), (Cy analysis of the Boltzmann equation for hard-sphere molecules\iath-
JXq ematical Aspects of Fluid and Plasma Dynamicscture Notes in Math-
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ematics Vol. 1460, edited by G. Toscani, V. Boffi, and S. Rionero *'C. E. Siewert and F. Sharipov, “Model equations in rarefied gas dynamics:
(Springer-Verlag, Berlin, 1991p. 186. Viscous-slip and thermal-slip coefficients,” Phys. Fluit4 4123(2002.

18T. Ohwada and Y. Sone, “Analysis of thermal stress slip flow and negative®|. N. Ivchenko, S. K. Loyalka, and R. V. Tompson, “Boundary slip phe-
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