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Half-space problem of evaporation and condensation of a binary mixture of vapors is investigated
on the basis of the linearized Boltzmann equation for hard-sphere molecules with the complete
condensation condition. The problem is analyzed numerically by a finite-difference method, in
which the complicated collision integrals are computed by the extension of the method proposed by
Y. Sone, T. Ohwada, and K. Aokif“Temperature jump and Knudsen layer in a rarefied gas over a
plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules,”
Phys. Fluids A1, 363s1989dg to the case of a gas mixture. As a result, the behavior of the mixture
is clarified not only at the level of the macroscopic quantities but also at the level of the velocity
distribution function. In addition, accurate formulas of the temperature, pressure, and concentration
jumps caused by the evaporation and condensation are constructed for arbitrary values of the
concentration of the background reference state by the use of the Chebyshev polynomial
approximation. ©2005 American Institute of Physics. fDOI: 10.1063/1.1882252g

I. INTRODUCTION

It is widely accepted that gas flows under the ordinary
pressure are well described by the Navier–Stokes set of
equations. This is the fundamental set to the conventional
fluid dynamics, which is composed of the mass, momentum,
and energy conservation laws with Newton’s law for the
stress and Fourier’s law for the heat flow.1 Gas flows around
a body are usually studied by the Navier–Stokes set with the
nonslip condition for the flow velocity and the nonjump con-
dition for the temperature at the surface of the body. How-
ever, such conditions are invalid if the phase transition
sevaporation and/or condensationd takes place at the surface
of the body, i.e., if vapor flows around condensed phases are
considered. In fact, it is known that there is a difference of
the temperature between the surface of the condensed phase
and the gas at the surface. The same is true for the pressure:
the pressure of the vapor at the surface is different from its
saturation pressure at the temperature of the surface. These
differences are called the jump of temperature and that of
pressure, respectively.2 In order to study gas flows with the
phase transition by the fluid-dynamic set, one needs bound-
ary conditions that describe these jumps correctly. Such con-
ditions are sometimes called the jump conditions for evapo-
ration and condensation.

When evaporation or condensation takes place, the vapor
sgas phased and its condensed phasesliquid phased are not in
equilibrium, so that the assumption of the local equilibrium
state is violated at the interface of different phases. Hence,
the conventional fluid dynamics must be supplemented there
by another principle that is free from the local-equilibrium
assumption. This causes those studies of the jump condition

that are based on the irreversible thermodynamics and on the
kinetic theory of gasesse.g., Refs. 3–8 and references
thereind. The present study falls into the latter category.

In kinetic theory, the analysis of the jump for evapora-
tion and condensation is finally reduced to a half-space
boundary-value problem of the Boltzmann equation. Physi-
cally it is a problem of a steady vapor flow condensing on or
evaporating from its plane condensed phase that is in a uni-
form equilibrium state at a far distance. The problem is seen
to be solved only conditionally, and the solvable condition,
which is to be given as certain relations among the param-
eters, gives the jump conditions for the fluid-dynamic equa-
tions. When evaporation or condensation is strong, the prob-
lem is for the nonlinear Boltzmann equation and the obtained
jump conditions are for the compressible Euler set of equa-
tions. When evaporation or condensation is weak, the prob-
lem is for the linearized Boltzmann equation and the ob-
tained jump conditions are for thesincompressibled Navier–
Stokes or Stokes set of equations. The reader is referred to
Refs. 6 and 9–11 for information about this issue in the case
of a single-species vapor, in which the correspondence be-
tween the nonlinear Boltzmann and Euler systems and that
between the linearized Boltzmann and Navier–Stokessor
Stokesd systems are established by a systematic asymptotic
analysis of the Boltzmann system for small Knudsen num-
bers. In the case of a mixture of vapors, although there is no
appropriate literature for the general description, it is pos-
sible to show that the same correspondences are true. In the
present paper, we will investigate the half-space problem for
the linearized Boltzmann equation, in order to provide the
jump conditions at the surface of the condensed phase for the
Navier–Stokes or Stokes equations, in the case of a mixture
of two species vapors.adElectronic mail: takata@aero.mbox.media.kyoto-u.ac.jp
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The present paper may be considered as a continuation
of our recent papers12–14 on the half-space problems of the
linearized Boltzmann equation for a mixture. We will estab-
lish an accurate numerical solution of the present problem by
means of the finite-difference method developed in Refs.
12–14. It is an extension of the method in Ref. 15 to gas
mixtures. As before, we carry out the analysis for the hard-
sphere model, which is the most fundamental molecular
model in kinetic theory, and provide the accurate data for
arbitrary values of the concentrationsthe number fraction of
a component speciesd of the background reference equilib-
rium state. The data will serve as the standard to assess other
approximation methods that mainly aim at the practical use
with a more realistic molecular model.

Before moving on to the following section, here we shall
remark on two things. The first one is on the relation of the
linearized problem to the nonlinear one. One may naturally
think that the solution of the former would be an approxi-
mate solution of the latter if the evaporation or condensation
is weak. However it is not true. According to the comprehen-
sive studies for a single-species vapor, the jump conditions
obtained from the linearized problem has a common struc-
ture to evaporation and condensation, while those from the
nonlinear problem has a qualitatively different structure be-
tween evaporation and condensation.16–22 That is, there is a
discrepancy between the linearized and nonlinear problems.
This discrepancy was resolved by Sone by means of a
weakly nonlinear analysis for weak evaporation or
condensation.6,23According to his result, although the linear-
ized problem provides a correct approximation to the nonlin-
ear problem for evaporation, it fails to approximate the latter
for condensation. The same is true in the case of a mixture of
vapors.24 Because of this failure, the solution of the linear-
ized problem is meaningless for condensation as a certain
approximation to that of the nonlinear one. Nevertheless, we
should stress that, as mentioned above in the third paragraph,
the linearized problem plays an essential role to determine
the jump conditions for evaporation and condensation for the
Navier–Stokes or Stokes equations. The linearized problem
itself has a physical significance, independent of the nonlin-
ear one. This is why the linearized problem is studied here.

The second is on the jump conditions for slightly rar-
efied gases. In a slightly rarefied gas, where the Knudsen
number sthe ratio of the mean free path to the reference
lengthd is small, the jump occurs not only on the surface of
the condensed phase but also on the surface of a simple rigid
solid body as a gas rarefaction effect. The sources of such a
jump are the gradients of temperature and concentration nor-
mal to the surface, the curvature of the surface, and so on.
Among them, the jump caused by the gradients of tempera-
ture and concentration25–27 are often studied by kinetic
theory because they occur as the first correction, superior to
the others, to the nonjump condition of the temperature on
the simple solid surface. On the surface of the condensed
phase, however, it is seen that the jump due to these effects is
in general smallersi.e., of the higher order in the Knudsen
numberd than that caused by the evaporation and condensa-
tion. The latter is the jump studied in the present paper.

II. FORMULATION OF THE PROBLEM

A. Problem

We consider a semi-infinite expanse of a binary mixture
of vapors, speciesA and B, bounded by a plane condensed
phase at rest. The condensed phase is a homogeneous mix-
ture of the liquid of speciesA and that ofB with a constant
uniform temperatureT0, and its surface is located atX1=0,
whereXi is the rectangular coordinate system. The mixture
occupies the regionX1.0, and, at a far distance from the
surface, it is in the equilibrium state characterized by the
pressurep0s1+P`d, temperatureT0s1+t`d, and flow velocity
s2kT0/mAd1/2su` ,0 ,0d of the mixture and by the concentra-
tion smolecular number fractiond X0

A+x`
A of speciesA.28 Here

p0 is the saturation pressure of the mixture in contact with
the condensed phase at temperatureT0 andX0

A is the concen-
tration of speciesA in the saturated mixture. In the sequel the
Greek lettersa andb will be symbolically used to represent
the species, i.e.,ha ,bj=hA,Bj.

We will investigate the steady behavior of the mixture
under the following assumptions:sid the molecules of vapor
a are hard spheres of massma and diameterda, and they
collide elastically with each other;sii d the behavior of the
mixture is described by the Boltzmann equation with the
complete condensation condition for the outgoing molecules
from the condensed phase; andsiii d the quantitiesuP`u, ut`u,
ux`

Au, and uu`u are so small that the equations and boundary
conditions can be linearized around the reference equilibrium
state at rest characterized by the temperatureT0 and pressure
p0 of the mixture and by the concentrationX0

A of speciesA.

B. Basic equation and boundary condition

We first summarize the main notation used in the paper.
Then0 is the reference molecular number density of the mix-
ture and is defined byn0=p0/kT0, wherek is Boltzmann’s
constant. Thel0 is the mean free path of the molecules in the
equilibrium state at rest with the molecular number density
n0 and temperatureT0 when gas B is absent si.e., l0
=1/fÎ2psdAd2n0gd. The xi is the nondimensional coordinate
system defined byxi =Xil0

−1sÎp /2d−1. The s2kT0/mAd1/2zi for
s2kT0/mAd1/2zg is the molecular velocity,
n0s2kT0/mAd−3/2sX0

a+fadEa is the velocity distribution func-
tion of the molecules of speciesa, where X0

B=1−X0
A and

Easzd=sm̂a /pd3/2exps−m̂a uzu2d with m̂a=ma /mA. The ratio

of molecular diametersd̂a=da /dA will also be used. The mo-
lecular number density, pressure, temperature, flow velocity,
stress tensor, and heat-flow vector of speciesa are denoted,
respectively, by n0sX0

a+Nad, p0sX0
a+Pad, T0s1+tad,

s2kT0/mAd1/2ui
a, p0sX0

adi j +Pij
ad, and p0s2kT0/mAd1/2Qi

a,
wheredi j is Kronecker’s delta. Those of the mixture are de-
noted by n0s1+Nd, p0s1+Pd, T0s1+td, s2kT0/mAd1/2ui,
p0sdi j +Pijd, andp0s2kT0/mAd1/2Qi.

The linearized Boltzmann equation in the present case
s] /]t=] /]x2=] /]x3=0d is written as29–31

z1
]fa

]x1
= o

b=A,B
KbaL̃basX0

afb,X0
bfad, s1d

whereL̃ba is the linearized collision integral defined by
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L̃basf,gd =
1

4Î2p
E ffsz*8d − fsz*d + gsz8d − gszdgEbsz*d

3ue · V̂ udVsedd3z* , s2d

with

z8 = z +
m̂ba

m̂a
se · V̂de, z*8 = z* −

m̂ba

m̂b
se · V̂de, s3ad

V̂ = z* − z, d3z* = dz*1dz*2dz*3 , s3bd

Kba = S d̂a + d̂b

2
D2

, m̂ba =
2m̂am̂b

m̂a + m̂b
. s3cd

Heree is a unit vector,z* the variable of integration corre-
sponding toz, anddVsed the solid-angle element in the di-
rection ofe. The integration in Eq.s2d is carried out over the
whole space ofz* and over all the directions ofe.

The complete condensation condition at the surface of
the condensed phasesx1=0d is written as

fa = 0, z1 . 0, s4d

and the condition at a far distance from the surfacesx1

→`d is written as

fa → f`
a = X0

aP` + x`
a + 2m̂aX0

az1u` + sm̂azi
2 − 5

2dX0
at`,

s5d

wherex`
B=−x`

A ssee the end of the next paragraphd.
The macroscopic quantitiesNa, ui

a, etc., of speciesa are
written in terms offa as

Na =E faEad3z, s6ad

ui
a =

1

X0
aE zif

aEad3z, s6bd

ta =
2

3

1

X0
aE Sm̂az j

2 −
3

2
DfaEad3z, s6cd

Pa =
2

3
m̂aE z j

2faEad3z s=Na + X0
atad, s6dd

Pij
a = 2m̂aE ziz jf

aEad3z, s6ed

Qi
a = m̂aE ziz j

2faEad3z −
5

2
X0

aui
a. s6fd

Here and henceforth, unless otherwise stated, the integration
with respect toz is performed over its whole space. The
macroscopic quantities of the mixture are expressed in terms
of those of component species as

N = o
b=A,B

Nb, P = o
b=A,B

Pb, s7ad

ui = S o
b=A,B

m̂bX0
bui

bDYS o
b=A,B

m̂bX0
bD , s7bd

t = o
b=A,B

X0
btb, Pij = o

b=A,B
Pij

b , s7cd

Qi = o
b=A,B

FQi
b −

5

2
X0

bsui − ui
bdG . s7dd

If we denote byX0
a+xa the concentration of speciesa, xa is

expressed as

xa = Na − X0
aN. s8d

Note thatxA=−xB because of the relationsN=NA+NB and
X0

A+X0
B=1.

Integrating Eq.s1d multiplied by Ea over the whole
space ofz gives

d

dx1
E z1faEad3z = 0. s9ad

Similarly, integrating Eq.s1d multiplied by m̂aziE
a and that

multiplied by m̂azi
2Ea over the whole space ofz and taking

the summation of the resulting equations fora=A,B give

d

dx1
o

a=A,B
E m̂az1zif

aEad3z = 0, s9bd

d

dx1
o

a=A,B
E m̂az1zi

2faEad3z = 0. s9cd

Equationss9ad–s9cd correspond to the conservation laws of
the mass, momentum, and energy, respectively. Taking into
account the condition at infinity, they are reduced to

u1
a = u`, s10ad

P11 = P`, P12 = P13 = 0, s10bd

Q1 = 0. s10cd

III. PRELIMINARY ANALYSIS

A. Knudsen-layer problem

We will seek the solution of the boundary-value problem
s1d–s5d in the form

fa = f`
a + fK

asx1,zidu`. s11d

Substitution of Eq.s11d to Eqs.s1d–s5d gives the following
equation and boundary condition forfK

a:

z1
]fK

a

]x1
= o

b=A,B
KbaL̃basX0

afK
b,X0

bfK
ad, s12d

fK
a = X0

af− ga − dsm̂azi
2 − 5

2d − 2m̂az1g,

z1 . 0, x1 = 0, s13d

fK
a → 0 as x1 → `, s14d

where
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ga =
P`X0

a + x`
a

u`X0
a , s15ad

d =
t`

u`

. s15bd

We call the half-space problems12d–s14d the Knudsen-layer
problem for evaporation and condensation. For the problem,
there is a unique solutionfK

a if and only if the constantsgA,
gB, andd take special values, andfK

a decays exponentially as
x1→`. This is a consequence of the existence and unique-
ness theorem for the Knudsen-layer problem for a binary
mixture of hard-sphere gasessRef. 32; see also Refs. 33–38
for the corresponding theorems for a single-component gasd.

As is seen from Eq.s15d, the fact thatgA, gB, andd take
special values means that there are certain relations among
the parametersP`, x`

A, t`, andu` that characterize the state
of the vapors at a far distance. To be more specific, the rela-
tions that hold among the parameters can be written as

P` = g u`, s16ad

x`
A = sgA − gBdX0

BX0
Au`, s16bd

t` = d u`, s16cd

or, equivalently,

p` − p0 = gp0s2kT0/m
Ad−1/2v`, s17ad

X`
A − X0

A = sgA − gBdX0
BX0

As2kT0/m
Ad−1/2v`, s17bd

T` − T0 = d T0s2kT0/m
Ad−1/2v`, s17cd

wherep`, X`
A, T`, andv` are the pressure, concentration of

speciesA, temperature, and flow velocity at a far distance,
and

g = gAX0
A + gBX0

B. s18d

The set of relationss16ad–s16cd for s17ad–s17cdg is a natural
extension of the counterpart for a single-component vapor to
a mixture of two species vapors. In the case of a single-
component vapor, it is known5,6 that the state of the vapor at
a far distance in this context can be regarded as that at the
interface in the fluid-dynamic description. In other words,
Eqs.s16ad–s16cd for s17ad–s17cdg are regarded as the bound-
ary condition for the fluid-dynamic equations at the interface.
The same is true in the case of mixtures. Note that the rela-
tions s16ad–s16cd for s17ad–s17cdg give the differencessthe
“jumps”d of those values that the pressure of the mixture,
concentration of speciesA, and temperature of the mixture
take at the surface of the condensed phase in the fluid-
dynamic description from those specifying the state of the
condensed phase. From this viewpoint, we call the relation
s16ad for s17adg the jump condition for pressure,s16bd for
s17bdg that for concentration, ands16cd for s17cdg that for
temperature, respectively.

Sincem̂A= d̂A=1 andX0
A+X0

B=1, the problem is charac-
terized by the three parameters

m̂B sor mB/mAd, d̂B sor dB/dAd, X0
A.

B. Similarity solution and macroscopic
quantities

Thanks to the spherical symmetry6 of the collision op-

eratorL̃ba, we can seek the solutionfK
a as a function ofx1,

z1, andzr, wherezr=Îz2
2+z3

2. By using the new notations

Casx1,z1,zrd = fK
asx1,zidEa, s19ad

LbasCb,Cad = L̃basfK
b,fK

adEa, s19bd

we rewrite Eqs.s12d–s14d as follows:

z1
]Ca

]x1
= o

b=A,B
KbaLbasX0

aCb,X0
bCad, s20d

Ca = X0
af− ga − d„m̂asz1

2 + zr
2d − 5

2… − 2m̂az1gEa,

z1 . 0, x1 = 0, s21d

Ca → 0 as x1 → `. s22d

Here Ea is regarded as a function ofz1 and zr becauseuz u
=sz1

2+zr
2d1/2. The collision integralLba can be expressed in

terms of integral kernels. The explicit form is given in Ap-
pendix A.

The macroscopic quantities defined by Eqs.s6d–s8d can
be expressed by the moments ofCa as follows:

Na = fX0
asga − dd + Vagu`, s23ad

u1
a = u`, s23bd

xa = fX0
asga − gd + Va − X0

aVgu`, s23cd

ta = sd + Qadu`, s23dd

Pa = sgaX0
a + Va + X0

aQadu`, s23ed

P11
a = sgaX0

a + S1
adu`, s23fd

P22
a = P33

a = sgaX0
a + S2

adu`, s23gd

Q1
a = Hau` s23hd

and

N = sg − d + Vdu`, s24ad

u1 = u`, s24bd

t = sd + Qdu`, s24cd

P = sg + V + Qdu`, s24dd

P11 = gu`, s24ed
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P22 = fg + 3
2sV + Qdgu`, s24fd

Q1 = 0, s24gd

where

Vasx1d = 2pE
0

` E
−`

`

zrCadz1dzr, s25ad

S1
asx1d = 4pE

0

` E
−`

`

m̂az1
2zrCadz1dzr, s25bd

S2
asx1d = 2pE

0

` E
−`

`

m̂azr
3Cadz1dzr, s25cd

Qasx1d =
1

3X0
a fS1

asx1d + 2S2
asx1d − 3Vasx1dg, s25dd

Hasx1d = 2pE
0

` E
−`

`

m̂az1zrsz1
2 + zr

2dCadz1dzr s25ed

and

Vsx1d = VAsx1d + VBsx1d, s26ad

Qsx1d = X0
AQAsx1d + X0

BQBsx1d. s26bd

The other quantities in Eqs.s6d–s8d vanish because the inte-
grands in their definitions are odd functions ofz2 or z3. In
deriving the expressions above, the propertiess9ad–s9cd for
Eqs.s10ad–s10cdg have been taken into account. It should be
noted that the relations

S1
A + S1

B = 0, HA + HB = 0 s27d

hold because of Eqs.s7cd ands7dd. The relations will be used
as a measure of accuracy of the numerical solutionssee Ap-
pendix Bd. In the sequel we will call the quantities defined by
Eqs.s25d and s26d the Knudsen-layer functions.

IV. NUMERICAL ANALYSIS

Following Refs. 39 and 12–14, we solve the boundary-
value problems20d–s22d by the use of the following tech-
nique.

Consider the functionC̃a and the constantsg*
a and d*

defined by

C̃asx1,z1,zrd = Casx1,z1,zrd

+ X0
afe1

a + e2„m̂
asz1

2 + zr
2d − 5

2…gEa, s28ad

g*
a = ga − e1

a, d* = d − e2, s28bd

where e1
a and e2 are undetermined constants. The function

C̃a satisfies Eq.s20d and boundary conditions21d with ga

andd replaced byg*
a andd* , i.e.,

z1
]C̃a

]x1
= o

b=A,B
KbaLbasX0

aC̃b,X0
bC̃ad, s29d

C̃a = X0
af− g*

a − d*„m̂
asz1

2 + zr
2d − 5

2… − 2m̂az1gEa,

z1 . 0, x1 = 0. s30d

At a large distanced for which Ca is negligibly small,C̃a

satisfies the reflection condition

C̃asd,z1,zrd = C̃asd,− z1,zrd, s31d

ande1
a ande2 are related to the following moments ofC̃a:

e1
a =

Ṽasdd + X0
aQ̃sdd

X0
a , e2 = Q̃sdd, s32d

where Ṽasx1d and Q̃sx1d are the quantities defined by Eqs.

s25ad–s25dd ands26bd with Ca replaced byC̃a. We solve the
boundary-value problems29d–s31d for given values ofg*

a

andd* under a proper choice ofd. OnceC̃a is obtained,e1
a

and e2 are determined by Eq.s32d. ThenCa, ga, andd are
obtained by Eq.s28d. In the actual computation, we repeat
this solution process by puttingga andd as newg*

a andd* in
order to avoid the accumulation of the numerical errors
caused by the computation of the collision integrals of the
second term of Eq.s28ad in the wide region ofx1 space.

The numerical method is essentially the same as that in
Refs. 12–14. To be more specific, with positive parametersd,
Z1, and Zr large enough, we limitx1, z1, and zr spaces to
finite regions given by 0øx1ød, −Z1øÎm̂az1øZ1, and 0
øÎm̂azrøZr for species a and use the same finite-
difference scheme and the same lattice systems as those in
Ref. 14. The finite regions are divided intoNx, 4N1, and 2Nr

intervals as 0=x1
s0d, ¯ ,x1

sNxd=d, −Z1/Îm̂a=z1
s−2N1d, ¯

,z1
s0ds=0d,z1

s1d, ¯ ,z1
s2N1d=Z1/Îm̂a, and 0=zr

s0d, ¯

,zr
s2Nrd=Zr /Îm̂a for speciesa sthus lattice points in the mo-

lecular space depend on speciesd; the interval of lattice is
uniform for zr but nonuniform forx1 and z1: smaller inter-
vals for smallerx1 and smalleruz1u. The only difference from
Ref. 14 is the form of the collision integrals.

In the finite-difference scheme, the unknown function

C̃a is solved iteratively. The collision integrals

LbasX0
aC̃b ,X0

bC̃ad at the lattice pointsx1
sid ,z1

s jd ,zr
skdd at thenth

step of iteration are computed as

LbasX0
aC̃b,X0

bC̃adsx1
sid,z1

s jd,zr
skdd

= o
l=−2N1

2N1

o
m=0

2Nr

fM1s j ,k,l,md
ba C̃bsn−1dsx1

sid,z1
sld,zr

smdd

+ M2s j ,k,l,md
ba C̃asn−1dsx1

sid,z1
sld,zr

smddg

− X0
bnbsz1

s jd,zr
skddC̃asndsx1

sid,z1
s jd,zr

skdd, s33d

whereC̃asnd denotesC̃a at thenth step of iteration, andnb is
a given function defined by Eq.sA2bd. Herenb is regarded as
a function ofz1 and zr since uz u =sz1

2+zr
2d1/2. The M1s j ,k,l,md

ba

and M2s j ,k,l,md
ba are universal matrices, which we call thenu-

merical kernel; they are independent of the step of iteration

and the unknown functionsC̃a andC̃b and thus can be pre-
pared before the iteration solution process. Since the colli-
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sion integrals are different from those in Ref. 14, we newly
construct and store the data of the numerical kernel in the
present work. Several tests are performed to assess the accu-
racy of the computation of the collision integrals. The results
are summarized in Appendix B.

After a series of accuracy tests parallel to those per-
formed in Refs. 13 and 14, we adoptsS1,M1d andsS4,M1d
in Ref. 14 as the standard lattice system; the former is used
for mB/mA=2 and the latter is used formB/mA=4,5,10.
HereS1 andS4 are the lattice systems forx1 space. For the
former, the computation region is limited to 0øx1

ø24.08sd=24.08d and there are 301 lattice pointssNx

=300d. For the latter, the region is 0øx1ø32.49sd
=32.49d and there are 341 lattice pointssNx=340d. M1 is the
lattice system forz1 andzr spaces. The computation regions
are limited to −4.5øÎm̂az1ø4.5 and 0øÎm̂azrø4.5 for
speciesa sZ1=Zr=4.5d, and there are 101 and 55 lattice
points, respectivelysN1=25 andNr=27d. sSee Refs. 13 and
14 for the complete information about the lattice system.d
The results of the accuracy tests are summarized in Appendix
B. The results shown in the following section are obtained by
the use of the standard lattice systems.

The computation was mainly performed by using a par-
allel code for ten CPUs on the FUJITSU VPP800 in the
Academic Center for Computing and Media Studies of
Kyoto University. First the computation was carried out for a
smaller lattice system with 301373321 points in
sx1,z1,zrd-spacefsystemsS1,M7dg, and the resulting data
were transformed into the data for the standard lattice system
by interpolation and extrapolation. Then, the computation for
the standard systemsS1,M1d or sS4,M1d was performed by
using the transformed data as the initial guess in the iterative
solution process. For each set of parameters
smB/mA,dB/dA,X0

Ad, it takes about half an hour for the
smaller system, 3 h for systemsS1,M1d, and 3.5 h for sys-
tem sS4,M1d. The computing time does not depend much on
the values of the parameters. Auxiliary computations were
carried out on the FUJITSU VPP800 in the Center for Plan-
ning and Information Systems of the Japan Aerospace Explo-
ration Agency.

V. RESULTS AND DISCUSSIONS

In the present paper, we carry out the computation for
mB/mA=2, 4, 5, and 10 and for various values ofX0

A, restrict-
ing ourselves to the casedB/dA=1. Hereinafter, we assume
that mB/mAù1, because the results formB/mA,1 can be
obtained from those formB/mA.1 by a simple transforma-
tion.

A. Coefficients in the jump condition

The coefficientsg, gA−gB, andd in the jump condition
s17d versus the concentrationX0

A of speciesA are shown in
Fig. 1. Sinceg is negative, the pressure of the mixture at a
far distance is lowershigherd than that of the saturated mix-
ture of vapors if the evaporationscondensationd takes place
fsee Eq.s17adg. The same is true for the temperature of the
mixture becaused is also negative. On the contrary, since
gA−gB is positive, the concentration of the species with
smaller molecular masssspeciesA in the present parameter
settingsd at a far distance is higherslowerd than that of the
saturated mixture if the evaporationscondensationd takes
place. The coefficients are independent ofX0

A for mB/mA=1
because there is no difference between molecules of different
kinds. They are, however, not uniform formB/mAÞ1 and
become monotonically increasing or decreasing functions of
X0

A. It should be noted that the values ofg andd at X0
A=0 sthe

case of pure gasBd are the same as those atX0
A=1 sthe case

of pure gasAd multiplied byÎmB/mA. This is easily seen by
a simple transformation of the reference velocity.

The numerical computations are performed for several
values ofX0

A, the results of which are indicated by closed or
open circles in Fig. 1. From the data shown by closed circles,
following Ref. 13, we constructed the formulas ofgA, gB,
andd for arbitrary values ofX0

A by the use of the Chebyshev
polynomial approximationsRef. 40d. The formulas are writ-
ten as

FIG. 1. Coefficients in the jump conditions17d. sad g vs X0
A, sbd gA−gB vs X0

A, andscd d vs X0
A. Both closed and open circles indicate the present result. The

solid line indicates the present result using the formulas34d. The data used to construct the formula are marked with closed circles. The dashed line indicates
the result formB/mA=1.
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h = o
n=0

N

hsndTns2X0
A − 1d, s34d

with h=gA, gB, and d, where Tnsxd sn=0,1,2, . . .d is the
Chebyshev polynomial of degreen defined for 0øuøp by
the relation

Tnscosud = cosnu. s35d

The data ofgAsnd, gBsnd, anddsnd are listed in Tables I–III. The
solid line in Fig. 1 is drawn by using Eq.s34d. The accuracy
of this formula is checked by comparing with the data shown
by open circles in the figure. The results are summarized at
the end of Appendix B. Some of the values ofg, gA−gB, and
d obtained by Eq.s34d are shown in Table IV.

In the case of gas mixtures, compared to the jump phe-
nomenon caused by the gradients of temperature and concen-
tration, much less attention has been paid to the present prob-
lem. This is probably due to that a mixture of

noncondensable gases instead of that of vapors was mainly
treated in the literature.27 The available data are limited. Here
we make a comparison, in Table V, with the data in Refs. 25
and 26.41 Their data are obtained by an approximation
method that they call themodification of Maxwell’s method
or the Maxwell–Loyalka method. Their method is based on
an arbitrary assumption. Nevertheless both results agree with
the present one within 3% for the coefficientsg, gA−gB, and
d. On the contrary, the agreement is poorer if one observes
the coefficientsgA andgB separately. The data ofgA in Ref.
25 differs from the present one by about 8% at worst. Inci-
dentally, the formulas ofg in Refs. 25 and 26 are common to
each other.

As is stressed in the Introduction, the linearized problem
itself has a physical significance, independent of the nonlin-
ear problem. Nevertheless one may still have an interest in
the range of “validity” of the solution of the linearized prob-
lem when regarded as an approximation for the nonlinear

TABLE I. Data of gAsnd sn=0, . . . ,Nd in Eq. s34d.

mB/mA

n 2 sN=8d 4 sN=8d 5 sN=8d 10 sN=12d

0 −2.169 57 −2.212 35 −2.229 51 −2.294 26

1 3.272 90s−2da 8.992 91s−2d 1.141 49s−1d 2.090 38s−1d
2 −4.571 78s−3d −2.106 28s−2d −2.947 27s−2d −6.718 39s−2d
3 2.908 33s−4d 2.451 73s−3d 3.938 65s−3d 1.288 72s−2d
4 −2.037 58s−7d −6.921 72s−5d −1.923 33s−4d −1.754 17s−3d
5 −1.939 31s−6d −3.199 94s−5d −4.275 62s−5d 1.501 21s−4d
6 1.738 91s−7d 6.059 70s−6d 1.076 90s−5d −2.670 55s−6d
7 5.165 64s−10d −1.767 19s−7d −6.060 30s−7d −8.501 90s−7d
8 −1.639 32s−9d −1.150 97s−7d −1.994 79s−7d −1.518 00s−7d
9 ¯ ¯ ¯ 1.191 74s−7d
10 ¯ ¯ ¯ −3.244 54s−8d
11 ¯ ¯ ¯ 5.638 43s−9d
12 ¯ ¯ ¯ −8.125 55s−11d
aRead as 3.272 90310−2.

TABLE II. Data of gBsnd sn=0, . . . ,Nd in Eq. s34d.

mB/mA

n 2 sN=8d 4 sN=8d 5 sN=8d 10 sN=12d

0 −3.002 35 −4.221 32 −4.712 49 −6.638 85

1 2.135 60s−2da 4.202 06s−2d 4.912 84s−2d 7.508 82s−2d
2 −3.983 24s−3d −1.622 20s−2d −2.189 57s−2d −4.496 30s−2d
3 3.134 06s−4d 2.494 54s−3d 3.813 69s−3d 1.002 26s−2d
4 −8.255 13s−6d −1.985 29s−4d −3.802 38s−4d −1.678 59s−3d
5 −1.211 69s−6d −7.711 30s−6d 6.031 01s−7d 2.032 04s−4d
6 1.612 22s−7d 4.473 15s−6d 6.824 65s−6d −1.572 12s−5d
7 −4.002 06s−9d −4.393 04s−7d −9.504 70s−7d 4.867 96s−7d
8 −1.112 97s−9d −3.668 51s−8d −4.137 92s−8d −6.612 65s−8d
9 ¯ ¯ ¯ 6.195 92s−8d
10 ¯ ¯ ¯ −2.215 63s−8d
11 ¯ ¯ ¯ 5.026 48s−9d
12 ¯ ¯ ¯ −2.024 69s−10d
aRead as 2.135 60310−2.
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problem. Figure 2 shows a comparison with the results of the
nonlinear problem taken from Ref. 42 in the case of evapo-
ration, where numerical simulation is carried out by the di-
rect simulation Monte Carlo method. In the figure,p` /p0,
T` /T0, andX`

A are plotted as a function of the flow velocity
v` fsee Eq.s17dg. The smooth transition of the results in Ref.

42 to the present results asv` decreases is observed. In the
case of condensation, the nonlinear problem concludes a
jump condition of different form from Eq.s17d, however
small the flow Mach number might be.sSee the second para-
graph from the end of the Introduction. There is a qualitative
difference of the condition between the evaporation and con-

TABLE III. Data of dsnd sn=0, . . . ,Nd in Eq. s34d.

mB/mA

n 2 sN=8d 4 sN=8d 5 sN=8d 10 sN=12d

0 −5.423 40s−1da −6.485 14s−1d −6.880 32s−1d −8.317 95s−1d
1 9.412 08s−2d 2.251 63s−1d 2.769 64s−1d 4.738 93s−1d
2 −7.630 13s−3d −3.501 37s−2d −4.920 37s−2d −1.142 98s−1d
3 2.384 17s−4d 2.696 31s−3d 4.703 25s−3d 1.855 08s−2d
4 2.503 36s−5d 1.386 91s−4d 6.520 90s−5d −2.057 33s−3d
5 −3.579 18s−6d −6.593 03s−5d −9.838 94s−5d 1.114 54s−4d
6 9.504 55s−8d 6.373 86s−6d 1.315 56s−5d 7.317 05s−6d
7 2.543 76s−8d 6.754 26s−7d 6.380 40s−7d −9.832 02s−7d
8 −3.700 56s−9d −2.811 32s−7d −5.162 62s−7d −5.328 45s−7d
9 ¯ ¯ ¯ 2.241 87s−7d
10 ¯ ¯ ¯ −4.707 31s−8d
11 ¯ ¯ ¯ 6.218 38s−9d
12 ¯ ¯ ¯ 1.185 42s−10d
aRead as −5.423 40310−1.

TABLE IV. The values ofg, gA−gB, andd by the formulas34d.

−g

X0
A\mB/mA 2 4 5 10

0 3.0280 4.2822 4.7877 6.7708

0.1 2.9381 4.0615 4.5134 6.2831

0.3 2.7593 3.6268 3.9749 5.3362

0.5 2.5817 3.1983 3.4456 4.4122

0.7 2.4050 2.7738 2.9217 3.5000

0.9 2.2289 2.3517 2.4009 2.5935

1 2.1411 2.1411 2.1411 2.1411

gA−gB

X0
A\mB/mA 2 4 5 10

0 0.8208 1.9564 2.4105 4.1856

0.1 0.8235 1.9691 2.4287 4.2322

0.3 0.8286 1.9931 2.4623 4.3089

0.5 0.8334 2.0139 2.4907 4.3667

0.7 0.8377 2.0314 2.5140 4.4106

0.9 0.8417 2.0459 2.5327 4.4446

1 0.8435 2.0521 2.5407 4.4591

−d

X0
A\mB/mA 2 4 5 10

0 0.6443 0.9112 1.0187 1.4407

0.1 0.6197 0.8377 0.9219 1.2345

0.3 0.5746 0.7122 0.7608 0.9261

0.5 0.5347 0.6134 0.6388 0.7196

0.7 0.4997 0.5372 0.5483 0.5818

0.9 0.4693 0.4792 0.4819 0.4896

1 0.4556 0.4556 0.4556 0.4556
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densation cases.d In this sense, the comparison would be
meaningless and is not made here. Incidentally, the qualita-
tive difference of the jump condition between the evapora-
tion and condensation was studied recently in Ref. 24 in the
case of a binary mixture of vapors by an asymptotic analysis
of the nonlinear problem for small Mach numbers.

B. Knudsen-layer functions and velocity distribution
functions

The Knudsen-layer functionsVA/X0
A, VB/X0

B, QA, and
QB are shown in Figs. 3 and 4 and in Tables VI and VII.
They decay rapidly to zero as the distance from the wall
increasessthe variations are not always monotonicd. Their
dependence onX0

A is larger for largermB/mA. The functions
VA/X0

A andQA sor VB/X0
B andQBd do not vanish atX0

A=0 sor
X0

A=1d because they are the quantities normalized by the
reference concentration. The Knudsen-layer functionsV and
Q for the mixture, which are linear combinations of the func-
tions above, are shown in Fig. 5. Corresponding to the rela-
tion betweensd ,gd at X0

A=0 and that atX0
A=1 ssee the first

paragraph in Sec. V Ad, the profiles forX0
A=0 are the same as

those forX0
A=1 multiplied byÎmB/mA. The functionsV and

Q at X0
A=1, which can be considered as the corresponding

functions for a single-species vapor, are shown in Table VIII.
They have already been obtained in Ref. 39 by the same
numerical method, i.e., the combination of the finite-
difference and the numerical kernel methods. In the present

TABLE V. A comparison with the previous results of the coefficientsg, gA−gB, andd in the jump condition
s17d.

X0
A=0.1

−g gA−gB −d

mB/mA Present result Refs. 25 and 26 Present result Ref. 25 Ref. 26 Present result Ref. 25 Ref. 26

2 2.9381 2.9161 0.8235 0.8345 0.8192 0.6197 0.6085 0.6085

4 4.0615 4.0292 1.9691 2.0146 1.9437 0.8377 0.8226 0.8226

5 4.5134 4.4762 2.4287 2.4902 2.3989 0.9219 0.9050 0.9051

10 6.2831 6.2232 4.2322 4.3561 4.1863 1.2345 1.2081 1.2084

X0
A=0.5

−g gA−gB −d

mB/mA Present result Refs. 25 and 26 Present result Ref. 25 Ref. 26 Present result Ref. 25 Ref. 26

2 2.5817 2.5616 0.8334 0.8345 0.8130 0.5347 0.5253 0.5253

4 3.1983 3.1696 2.0139 2.0146 1.9753 0.6134 0.6038 0.6040

5 3.4456 3.4128 2.4907 2.4902 2.4417 0.6388 0.6293 0.6295

10 4.4122 4.3610 4.3667 4.3561 4.2732 0.7196 0.7099 0.7106

X0
A=0.9

−g gA−gB −d

mB/mA Present result Refs. 25 and 26 Present result Ref. 25 Ref. 26 Present result Ref. 25 Ref. 26

2 2.2289 2.2122 0.8417 0.8345 0.8246 0.4693 0.4608 0.4608

4 2.3517 2.3327 2.0459 2.0146 1.9999 0.4792 0.4707 0.4707

5 2.4009 2.3809 2.5327 2.4902 2.4744 0.4819 0.4733 0.4733

10 2.5935 2.5691 4.4446 4.3561 4.3362 0.4896 0.4809 0.4810

FIG. 2. Comparison of the jump conditions17d with the counterpart of the
nonlinear problem in the case of evaporationsX0

A=0.5d. sad X`
A vs

s2kT0/mAd−1/2v`, sbd p` /p0 and T` /T0 vs s2kT0/mAd−1/2v`. The solid,
dashed, and dot-dashed lines indicate the present resultsslinear problemd,
while the symbolsh, L, ands connected with a dotted line the results in
Ref. 42snonlinear problemd. The mass ratio is shown in the figure.
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work, they are obtained with a higher accuracy. The differ-
ence is, at most, 7.7310−5 for V and 2.7310−5 for Q. The
Knudsen-layer functionsS1

A andHA are also shown in Fig. 6
and Table IX. The functionsS1

B andHB are readily obtained
from the figure and the table by the relations27d. Note that
S1

A, S1
B, HA, andHB all vanish atX0

A=0 and 1.
The results forX0

A=0.25 and 0.75 in the figures and
tables in this section are obtained by the use of Chebyshev
polynomial approximation from the data ofVA/X0

A, VB/X0
B,

QA, QB, S1
A/X0

A, S1
B/X0

B, HA/X0
A, andHB/X0

B at the values of
X0

A indicated by closed circles in Fig. 1. TheFORTRAN code
generating the Knudsen-layer functions for an arbitrary value
of X0

A is available from the authors.
The reduced velocity distribution functionsCA and CB

and their contour plots in the case ofmB/mA=5 and X0
A

=0.5 are shown in Figs. 7 and 8. There is a discontinuity at
z1=0 on the wallsx1=0d fsee Figs. 7sad and 8sadg. The dis-
continuity disappears immediately inside the gas,43 but its
trace remains as a steep gradient aroundz1=0 near the wall
fsee Figs. 7sbd and 8sbdg. As the distance from the wall in-
creases,Ca decays to zero with keeping the distinct differ-
ence in the shape between the positive and the negative re-
gions ofz1 fsee the transition of the contour plots from Fig.
7sad to Fig. 7sdd and from Fig. 8sad to Fig. 8sddg.

In Fig. 7sad, the distribution of outgoing molecules of
speciesA from the condensed phasesz1.0d is rather flat in
zr for small uzu. This feature is not always true. Figure 9
shows, as an example, the functionCA at x1=0 for different
values ofX0

A for mB/mA=5. The variation of the function in
zr for small uzu depends much onX0

A. This is a reflection of
the dependence of magnitude ofd relative to −gA+ 5

2d on X0
A

because the velocity distribution of outgoing molecules is
given by Eq.s21d with a=A. WhenX0

A=0.9, −d is about half
of −gA+ 5

2d, so that the term ofzr
2 in the parentheses in Eq.

s21d is not appreciable in the figure. On the other hand, when
X0

A=0.5 and 0.1, −d is comparable or much superior to −gA

+ 5
2d, and the term ofzr

2 becomes significant and its feature is
readily seen in the figure. For speciesB, according to the
numerical results, −d is always smaller than half of −gB

+ 5
2d, and thus the feature of the termm̂Bzr

2 is not appreciable
in the figure. The distribution of outgoing molecules of spe-
cies B is always similar to that in Fig. 8sad in its shape.
Incidentally, theCA/X0

A for X0
A=0.1 and 0.9 in Fig. 9 is the

one obtained by the use of Chebyshev polynomial approxi-
mation from its data at the values ofX0

A indicated by closed
circles in Fig. 1.

FIG. 3. Knudsen-layer functions
VA/X0

A and VB/X0
B. sad X0

A=0.25, sbd
X0

A=0.5, andscd X0
A=0.75.
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FIG. 4. Knudsen-layer functionsQA

andQB. sad X0
A=0.25,sbd X0

A=0.5, and
scd X0

A=0.75.

TABLE VI. Knudsen-layer functionsVA/X0
A, VB/X0

B, QA, andQB in the case ofmB/mA=2.

VA/X0
A VB/X0

B QA QB

x1\X0
A 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0000 0.3133 0.3367 0.3584 0.5667 0.5973 0.6258 0.1291 0.0989 0.0733 0.0397 0.0099 −0.0155

0.0271 0.2742 0.2957 0.3157 0.5006 0.5279 0.5532 0.1192 0.0909 0.0671 0.0365 0.0098 −0.0128

0.0988 0.2218 0.2409 0.2585 0.4125 0.4359 0.4575 0.1038 0.0787 0.0576 0.0311 0.0085 −0.0104

0.2011 0.1770 0.1937 0.2093 0.3366 0.3567 0.3753 0.0890 0.0669 0.0485 0.0257 0.0067 −0.0089

0.3838 0.1281 0.1419 0.1549 0.2522 0.2686 0.2838 0.0707 0.0526 0.0375 0.0189 0.0043 −0.0078

0.5833 0.0950 0.1066 0.1175 0.1937 0.2072 0.2199 0.0567 0.0417 0.0292 0.0138 0.0023 −0.0072

0.7967 0.0713 0.0811 0.0903 0.1507 0.1620 0.1728 0.0457 0.0332 0.0228 0.0100 0.0008 −0.0068

1.1424 0.0470 0.0544 0.0616 0.1047 0.1133 0.1217 0.0330 0.0236 0.0156 0.0058 −0.0008 −0.0063

1.6669 0.0266 0.0316 0.0367 0.0639 0.0698 0.0757 0.0208 0.0145 0.0090 0.0022 −0.0020 −0.0055

2.4139 0.0128 0.0158 0.0190 0.0340 0.0376 0.0413 0.0111 0.0075 0.0041 −0.0001 −0.0024 −0.0044

3.3368 0.0057 0.0073 0.0091 0.0167 0.0187 0.0208 0.0052 0.0033 0.0015 −0.0010 −0.0021 −0.0032

4.7525 0.0019 0.0025 0.0033 0.0062 0.0070 0.0079 0.0016 0.0009 0.0001 −0.0010 −0.0013 −0.0018

7.6134 0.0003 0.0004 0.0006 0.0010 0.0012 0.0013 0.0001 0.0000 −0.0002 −0.0004 −0.0004 −0.0005

11.4643 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0000 0.0000 −0.0001 −0.0001 −0.0001 −0.0001

15.3020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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VI. CONCLUDING REMARKS

In the present paper, we have investigated the half-space
problem of evaporation and condensation for a binary mix-
ture of vapors on the basis of the linearized Boltzmann equa-

tion. The hard-sphere molecular model, which is the most
fundamental model in kinetic theory, is adopted, and an ac-
curate numerical solution is established at the level of the
velocity distribution function as well as the macroscopic

TABLE VII. Knudsen-layer functionsVA/X0
A, VB/X0

B, QA, andQB in the case ofmB/mA=5.

VA/X0
A VB/X0

B QA QB

x1\X0
A 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0000 0.2166 0.2832 0.3365 0.9696 1.0789 1.1681 0.2728 0.1678 0.0975 −0.0157 −0.1137 −0.1810

0.0271 0.1818 0.2448 0.2950 0.8578 0.9558 1.0348 0.2572 0.1567 0.0901 −0.0140 −0.1019 −0.1604

0.0988 0.1358 0.1936 0.2394 0.7108 0.7966 0.8654 0.2324 0.1396 0.0786 −0.0133 −0.0880 −0.1356

0.2011 0.0975 0.1501 0.1917 0.5845 0.6605 0.7216 0.2076 0.1229 0.0677 −0.0134 −0.0765 −0.1152

0.3838 0.0573 0.1031 0.1394 0.4436 0.5086 0.5611 0.1757 0.1019 0.0542 −0.0139 −0.0638 −0.0930

0.5833 0.0319 0.0719 0.1037 0.3451 0.4015 0.4474 0.1499 0.0855 0.0440 −0.0141 −0.0545 −0.0774

0.7967 0.0152 0.0502 0.0780 0.2721 0.3213 0.3617 0.1284 0.0722 0.0360 −0.0140 −0.0472 −0.0654

1.1424 −0.0001 0.0285 0.0513 0.1928 0.2329 0.2663 0.1019 0.0562 0.0267 −0.0134 −0.0383 −0.0517

1.6669 −0.0097 0.0115 0.0287 0.1209 0.1509 0.1763 0.0737 0.0397 0.0177 −0.0118 −0.0288 −0.0378

2.4139 −0.0126 0.0015 0.0133 0.0666 0.0868 0.1044 0.0481 0.0253 0.0103 −0.0092 −0.0198 −0.0253

3.3368 −0.0108 −0.0021 0.0053 0.0340 0.0467 0.0579 0.0292 0.0151 0.0056 −0.0064 −0.0126 −0.0160

4.7525 −0.0067 −0.0025 0.0013 0.0132 0.0194 0.0252 0.0141 0.0072 0.0024 −0.0034 −0.0064 −0.0081

7.6134 −0.0020 −0.0010 0.0000 0.0023 0.0039 0.0054 0.0035 0.0018 0.0005 −0.0009 −0.0016 −0.0021

11.4643 −0.0004 −0.0002 0.0000 0.0003 0.0005 0.0008 0.0006 0.0003 0.0001 −0.0001 −0.0003 −0.0004

15.3020 −0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 −0.0001

FIG. 5. Knudsen-layer functionsV
and Q. sad mB/mA=2, sbd mB/mA=5,
and scd mB/mA=10.
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quantities. The obtained jump coefficients would serve as the
standard to assess the validity of approximate solution meth-
ods aiming at practical purposes.

In the case of a single-species vapor, according to Refs.
9 and 10, when the evaporation and condensation take place
rather weakly, the vapor flow under the ordinary pressure can
be described by the Navier–Stokessor Stokesd equations
equipped with the nonslip tangential velocity and the coun-
terpart of the jump conditions17d as the boundary condition
on the surface of the condensed phase. This is concluded by
a systematic asymptotic analysis of the Boltzmann equation.
It is possible by the parallel analysis to show that the same is
true in the case of a mixture of vapors. That is, the Navier–
Stokessor Stokesd equations for gas mixtures equipped with
the conditions17d and the nonslip tangential velocity at the
surface of the condensed phase can describe the behavior of
the vapors with the phase change at the surface under the
ordinary pressure; consequently they would have a large po-
tential application field, typically in chemical engineering
processes such as distillation.

Further, recently, one of the authors demonstrated in the
simple two-surface problem that the analysis of the present
problem, together with the jump problems related to the tem-
perature and concentration gradients, is inevitable to under-
stand a certain singular behavior of a mixture of two species

TABLE VIII. Knudsen-layer functionsV andQ for X0
A=1, i.e., for a single-

species vapor.

x1 V Q

0.0000 0.3782 0.0520

0.0271 0.3338 0.0475

0.0988 0.2745 0.0404

0.2011 0.2234 0.0336

0.3838 0.1667 0.0252

0.5833 0.1275 0.0191

0.7967 0.0988 0.0143

1.1424 0.0683 0.0091

1.6669 0.0415 0.0045

2.4139 0.0220 0.0013

3.3368 0.0109 −0.0002

4.7525 0.0041 −0.0007

7.6134 0.0008 −0.0004

11.4643 0.0001 −0.0001

15.3020 0.0000 0.0000

FIG. 6. Knudsen-layer functionsS1
A

andHA. sad X0
A=0.25,sbd X0

A=0.5, and
scd X0

A=0.75.
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vapors in the continuum limit.44 There, the source of the
singular behavior was clarified as a new category of the
ghost effect6,45–47 that some of the gas rarefaction effects
remain finite in the continuum limit. This gives a new sig-
nificant role to the linearized jump problems for the under-
standing of the behavior of continuum gas flows with the
phase transition.
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TABLE IX. Knudsen-layer functionsS1
A andHA.

S1
A HA

mB/mA=2 mB/mA=5 mB/mA=2 mB/mA=5

x1\X0
A 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0000 0.0039 0.0039 0.0021 0.0159 0.0122 0.0044 0.0155 0.0190 0.0131 0.0363 0.0404 0.0256

0.0271 0.0039 0.0038 0.0020 0.0157 0.0120 0.0044 0.0152 0.0185 0.0127 0.0357 0.0396 0.0250

0.0988 0.0037 0.0036 0.0019 0.0151 0.0116 0.0042 0.0143 0.0174 0.0119 0.0341 0.0376 0.0236

0.2011 0.0034 0.0034 0.0018 0.0143 0.0109 0.0040 0.0132 0.0160 0.0109 0.0321 0.0351 0.0219

0.3838 0.0031 0.0030 0.0016 0.0130 0.0099 0.0036 0.0116 0.0139 0.0094 0.0289 0.0314 0.0193

0.5833 0.0027 0.0026 0.0014 0.0117 0.0090 0.0032 0.0101 0.0121 0.0081 0.0259 0.0279 0.0170

0.7967 0.0023 0.0023 0.0012 0.0105 0.0080 0.0029 0.0087 0.0104 0.0070 0.0231 0.0247 0.0149

1.1424 0.0019 0.0018 0.0010 0.0089 0.0067 0.0024 0.0070 0.0083 0.0055 0.0192 0.0204 0.0122

1.6669 0.0013 0.0013 0.0007 0.0068 0.0052 0.0019 0.0050 0.0059 0.0039 0.0147 0.0155 0.0092

2.4139 0.0008 0.0008 0.0004 0.0047 0.0036 0.0013 0.0031 0.0037 0.0024 0.0101 0.0106 0.0062

3.3368 0.0005 0.0005 0.0002 0.0030 0.0023 0.0008 0.0018 0.0021 0.0014 0.0064 0.0067 0.0039

4.7525 0.0002 0.0002 0.0001 0.0015 0.0012 0.0004 0.0008 0.0009 0.0006 0.0032 0.0034 0.0019

7.6134 0.0000 0.0000 0.0000 0.0004 0.0003 0.0001 0.0001 0.0002 0.0001 0.0008 0.0009 0.0005

11.4643 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001

15.3020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FIG. 7. Reduced velocity distribution
function CA/X0

A of speciesA and its
contour plots formB/mA=5 and X0

A

=0.5. sad x1=0, sbd x1=0.052, scd x1

=0.384, andsdd x1=1.964. In the con-
tour plots the curves are drawn with
the interval of 0.01. The contour of
positive values ofCA is indicated by a
solid line and that of negative values
of CA by a dashed line.
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program of the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japand.

APPENDIX A: COLLISION INTEGRALS

The collision integralsLba can be written in the form

Lbasf,gd = L1
basfd + L2

basgd − L3
basfd − nbsuzudg, sA1d

where

LJ
basfd = EaE

0

`

djrE
−`

`

dj1KJ
basj1,jr,z1,zrdfsj1,jrd

sJ = 1,2,3d, sA2ad

naszd =
1

2Î2
F 1

Îm̂a
exps− m̂az2d

+ S2z +
1

m̂az
DE

0

Îm̂az
exps− y2ddyG . sA2bd

The integral kernelsKJ
ba are of the following form:

K1
ba = 5Î 2

p
S m̂−

ba

m̂baD2

jrJ1
basj1,jr,z1,zrd if m̂a Þ m̂b,

K2
ba if m̂a = m̂b,

sA3ad

K2
ba = Sp

2
m̂am̂bD1/2

sm̂bad−2jre
m̂auzu2J2

basj1,jr,z1,zrd,

sA3bd

K3
ba = Î2pjrfsj1 − z1d2 + sjr + zrd2g1/2Eskd, sA3cd

with

J1
ba =E

0

p

dwjuj − zuI1
basj1,jr,wj,z1,zrd, sA4ad

J2
ba =E

0

p

dwj

1

uj − zu
I2

basj1,jr,wj,z1,zrd, sA4bd

I1
ba = e−abaE

0

1

dt coshs− abatd

3 E
0

p/2

ds coshsbbaÎ1 − t2sin sd, sA4cd

I2
ba = expX−

m̂b

4
S m̂a

m̂b
uj − zu +

uzu2 − uju2

uj − zu D2C , sA4dd

and

aba = sm̂−
bad2S uju2

2m̂a
+

uzu2

2m̂b
−

j · z

m̂baD , sA5ad

bba = − m̂−
bauj 3 zu, sA5bd

m̂−
ba =

2m̂bm̂a

m̂b − m̂a
for m̂b Þ m̂a, sA5cd

FIG. 8. Reduced velocity distribution
function CB/X0

Bsm̂Bd3/2 of speciesB
and its contour plots formB/mA=5 and
X0

A=0.5. sad x1=0, sbd x1=0.052, scd
x1=0.384, andsdd x1=1.964. In the
contour plots the curves are drawn
with the interval of 0.02. The contour
of positive values ofCB is indicated
by a solid line and that of negative val-
ues ofCB by a dashed line.
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k =
4jrzr

sj1 − z1d2 + sjr + zrd2 . sA5dd

The functionE in Eq. sA3cd is the complete elliptic integral
of the second kind48 defined by

Eskd =E
0

p/2

s1 − k sin2 ud1/2du. sA6d

In the above expressions, the absolute values of vectors and
the inner product ofj andz are expressed in terms ofz1, zr,
j1, jr, andwj as follows:

uj − zu = suju2 + uzu2 − 2j · zd1/2, sA7ad

uj 3 zu = fuju2uzu2 − sj · zd2g1/2, sA7bd

uju2 = j1
2 + jr

2, uzu2 = z1
2 + zr

2, sA7cd

j · z = j1z1 + jrzrcoswj. sA7dd

APPENDIX B: DATA OF COMPUTATION

We summarize the data of computation in this appendix.

sid In the present paper, we use the lattice systems gener-
ated by Eq.s34d in Ref. 14 forx1 and by Eq.s53d in
Ref. 13 forz1zr plane. To be specific, in addition to the

systemsS1–S4 for x1 and M1–M8 for z1zr plane in
the references, we use one system forx1, which we call
S5, and two systems forz1zr plane, which we callM9
andM10. The systemS5 is defined by Eq.s34d in Ref.

14 with N̄x=Nx=800. The systemM9 is defined by Eq.

s53d in Ref. 13 with Z̄1=Z̄r=4.5, N̄1=25, N̄r=18, N1

=26, andNr=21. The systemM10 is defined by the

same equation withZ̄1=Z̄r=4.5, N̄1=28, N̄r=30, N1

=28, andNr=30.
sii d Comparisons among the results for different lattice sys-

tems were made formB/mA=2. A part of the results are
shown in Table X. Here we summarize the main infor-
mation about the lattice systems. ForS1, S2, andS5,
the x1 space is commonly truncated atx1=24.08sd
=24.08d, and there are 301, 601, and 801 points, re-
spectively. SystemS4 is the same asS1 in the region

FIG. 9. Reduced velocity distribution functionCA/X0
A of speciesA and its

contour plots at the surface of the condensed phasex1=0 for mB/mA=5. sad
X0

A=0.1, sbd X0
A=0.5, andscd X0

A=0.9. See the caption of Fig. 7.

TABLE X. Comparisons of the coefficientsgA, gB, and d among different lattice systems formB/mA=2.
Comparisons were made atX0

A=0, 0.3, 0.7, and 1.

Maximum relative error

Lattice systems gA gB d

sS1,M8d vs sS4,M8d 7.4310−7 4.8310−7 1.7310−6

sS1,M8d vs sS1,M9d 5.6310−7 4.8310−7 2.5310−6

sS1,M8d vs sS2,M8d 1.7310−6 2.7310−6 1.9310−6

sS1,M8d vs sS1,M5d 1.8310−6 1.8310−6 8.1310−6

sS1,M8d vs sS1,M3d 3.7310−6 4.1310−6 3.6310−5

sS1,M1d vs sS1,M3d 1.1310−6 1.2310−6 5.8310−6

sS1,M1d vs sS1,M2d 2.0310−6 2.1310−6 6.2310−6

sS1,M1d vs sS5,M10da 8.3310−7 1.5310−6 2.8310−6

aA comparison was made atX0
A=0.3, 0.7, and 1 for this case.
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0øx1ø24.08 and covers a wider regions0øx1

ø32.49d with 341 points. ForM1–M3, M5, M8, and
M10, the velocity space is commonly truncated at
uz1u =zr=4.5/Îm̂a sZ1=Zr=4.5d, and there are 101
355, 101373, 101349, 113337, 101337, and
113361 points, respectively. SystemM9 is the same
as M8 in the region −4.5øÎm̂az1ø4.5 and 0
øÎm̂azrø4.5 and covers a wider regions−5.06
øÎm̂az1ø5.06 and 0øÎm̂azrø5.25d with 105343
points. The comparisons in the table are made to assess
the appropriate size of the lattice intervals and that of
the truncation region. For example, the comparison be-
tweensS1,M8d and sS4,M8d is made for an estimate
of the appropriate value ofd. Similarly the comparison
betweensS1,M8d andsS1,M9d is made for an estimate
of the appropriate values ofZ1 andZr. The comparison
betweensS1,M8d and sS2,M8d is for determining the
number of lattice points inx1. The comparisons among
sS1,M1d, sS1,M2d, sS1,M3d, sS1,M5d, and sS1,M8d
are for determining the number of points inz1zr plane.
After such a series of tests, the systemsS1,M1d is
chosen for mB/mA=2 and sS4,M1d is chosen for
mB/mA=4, 5, and 10 as the standard lattice system. The
comparison between the standard systemsS1,M1d and
the finest systemsS5,M10d are also shown for refer-
ence in Table X.

siii d Since we newly constructed the numerical kernel in the
present work, we carried out several tests to assess the
accuracy of the computation of the collision integrals.
Here we show the results for the standard lattice system
M1. First, we check the fundamental properties of the
linearized collision integrals for the collision invari-
ants:LbasgbEb ,gaEad=0 for ga=1,m̂az1,m̂a uzu2. The
computed uLbasgbEb ,gaEadu is not exactly zero be-
cause the error comes from the partL1

ba+L2
ba−L3

ba fsee
Eq. sA1d; nb can be computed exactly because the in-
tegral in Eq.sA2bd is the error functiong. The maxi-
mum value ofuLbasgbEb ,gaEadu relative to the maxi-
mum of ugaEanbu is bounded by 2.5310−5 for ga=1,
5.1310−5 for ga=m̂az1, and 7.1310−5 for ga=m̂a uzu2,
except for the casemB/mA=10 with a=A and b=B.
For this case, the maximum is bounded by 5.5310−5,
9.3310−5, and 1.3310−4 for ga=1, m̂az1, andm̂a uzu2,
respectively.
Second, we consider functionsAasuz u d, Basuz u d, and
Dsbdasuz u d that are the solutions for the following inte-
gral equations:

o
b=A,B

KbaX0
bLbasz1A

bEb,z1A
aEad + z1sm̂auzu2 − 5

2dEa

= 0, sB1d

o
b=A,B

KbaX0
bLbasz11B

bEb,z11B
aEad + 2m̂az11E

a = 0,

sB2d

o
b=A,B

KbaX0
bX0

aLbasz1D
sgdbEb,z1D

sgdaEad + z1Sdag

−
m̂aX0

a

o
b=A,B

m̂bX0
bDEa = 0, sB3d

with subsidiary conditions

o
b=A,B

m̂bX0
bE

0

`

z4AbszdEbszddz = 0,

o
b=A,B

m̂bX0
bE

0

`

z4DsadbszdEbszddz = 0,

wherez11=z1
2− 1

3 uzu2, dAA=dBB=1, dAB=dBA=0, anda
andg run from A to B. It is seen from the third equa-
tion thatDa=DsAda−DsBda satisfies the relation

o
b=A,B

KbaX0
bX0

aLbasz1D
bEb,z1D

aEad + z1sdaA − daBdEa

= 0. sB4d

We computed the quantity on the left-hand side of Eqs.
sB1d, sB2d, andsB4d, which is theoretically zero, by the
use of highly accurate data of the functionsAa, Ba, and
Dsbda obtained in Ref. 49. We denote these quantities
by LB1, LB2, andLB4, respectively. The maximum of
uLB1u, uLB2u, anduLB4u relative to the maximum of the
absolute value of the second term in the same equation,
uz1sm̂a uzu2− 5

2
dEau, u2m̂az11E

au, and uz1sdaA−daBdEau, is
bounded by 8.0310−5, 1.2310−4, and 2.1310−4, re-
spectively, formB/mA=2, 4, and 5. FormB/mA=10, it
is bounded by 1.8310−4, 4.0310−4, and 4.6310−4,
respectively.

sivd As mentioned in Sec. III B, Eq.s27d provides another
measure of accuracy. For the standard lattice systems,
the values ofuS1

A+S1
Bu anduHA+HBu, which are theoreti-

cally zero, are computed for the values ofX0
A indicated

by a closed circle in Fig. 1. They are bounded asuS1
A

+S1
Bu ,5.9310−6 and uHA+HBu ,4.8310−6. See Fig.

6 and Table IX for the magnitude of the functionsS1
A

andHA.
svd For the same values ofX0

A as sivd, we compared the
maximum values ofuCasd, · , ·du, uCas· , ±Z1

a , ·du, and
uCas· , · ,Zr

adu to the maximum value ofuCau, where

Z1
a=Z1/Îm̂a andZr

a=Zr /Îm̂a. The former three values
should be negligible in order that the computation in
the finite region ofsx1,z1,zrd is justified. The results
are

uCAsd, · , ·du
maxuCAu

, H3.53 10−6 smB/mA = 2,10d,

1.93 10−7 smB/mA = 4,5d,

uCBsd, · , ·du
maxuCBu

, H4.93 10−7 smB/mA = 2,10d,

3.23 10−8 smB/mA = 4,5d,
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maxsuCAs·, ±Z1
A, · du,uCAs·, · ,Zr

Adud
maxuCAu

, 5.93 10−8,

maxsuCBs·, ±Z1
B, · du,uCBs·, · ,Zr

Bdud
maxuCBu

, 1.73 10−8.

svid The accuracy of the Chebyshev polynomial approxima-
tion with respect toX0

A was checked. The coefficients
gA, gB, and d obtained by the formulas34d with the
datagAsnd, gBsnd, anddsnd in Tables I–III are compared
with those computed directly. The comparison was
made at common six sample values ofX0

A indicated by
an open circle in Fig. 1. The relative errors to the di-
rectly computed data are less than 3.5310−7.

1In the case of gas mixtures, the constitutive equation for the diffusion
velocity is also necessary. In the present paper, we call the set of the
convection-diffusion-type equations including this equation the Navier–
Stokes set.

2These jumps are different from those on the surface of a simple rigid solid
body in a slightly rarefied gas. The former is finite under the ordinary
pressure, while the latter vanishes. See also the last paragraph in the In-
troduction.

3M. N. Kogan, “Kinetic theory in aerothermodynamics,” Prog. Aerosp. Sci.
29, 271 s1992d.

4T. Ytrehus, “Molecular-flow effects in evaporation and condensation at
interfaces,” Multiphase Sci. Technol.9, 205 s1997d.

5Y. Sone, “Kinetic theoretical studies of the half-space problem of evapo-
ration and condensation,” Transp. Theory Stat. Phys.29, 227 s2000d.

6Y. Sone,Kinetic Theory and Fluid Dynamics, Modeling and Simulation in
Science, Engineering and TechnologysBirkhäuser, Boston, 2002d.

7V. I. Roldughin and V. M. Zhdanov, “Non-equilibrium thermodynamics
and kinetic theory of gas mixtures in the presence of interfaces,” Adv.
Colloid Interface Sci.98, 121 s2002d.

8K. Aoki, S. Takata, and S. Taguchi, “Vapor flows with evaporation and
condensation in the continuum limit: effect of a trace of noncondensable
gas,” Eur. J. Mech. B/Fluids22, 51 s2003d.

9Y. Sone and Y. Onishi, “Kinetic theory of evaporation and condensation—
Hydrodynamic equation and slip boundary condition,” J. Phys. Soc. Jpn.
44, 1981s1978d.

10Y. Onishi and Y. Sone, “Kinetic theory of slightly strong evaporation and
condensation—Hydrodynamic equation and slip boundary condition for
finite Reynolds number,” J. Phys. Soc. Jpn.47, 1676s1979d.

11K. Aoki and Y. Sone, “Gas flows around the condensed phase with strong
evaporation or condensation: Fluid dynamic equation and its boundary
condition on the interface and their application,” inAdvances in Kinetic
Theory and Continuum Mechanics, edited by R. Gatignol and Soubbara-
mayersSpringer, Berlin, 1991d, p. 43.

12S. Takata “Diffusion slip for a binary mixture of hard-sphere molecular
gases: Numerical analysis based on the linearized Boltzmann equation,” in
Rarefied Gas Dynamics, edited by T. J. Bartel and M. A. GallissAIP,
Melville, NY, 2001d, p. 22

13S. Takata, S. Yasuda, S. Kosuge, and K. Aoki, “Numerical analysis of
thermal-slip and diffusion-slip flows of a binary mixture of hard-sphere
molecular gases,” Phys. Fluids15, 3745s2003d.

14S. Yasuda, S. Takata, and K. Aoki, “Numerical analysis of the shear flow
of a binary mixture of hard-sphere gases over a plane wall,” Phys. Fluids
16, 1989s2004d.

15Y. Sone, T. Ohwada, and K. Aoki, “Temperature jump and Knudsen layer
in a rarefied gas over a plane wall: Numerical analysis of the linearized
Boltzmann equation for hard-sphere molecules,” Phys. Fluids A1, 363
s1989d.

16Y. Sone, K. Aoki, and I. Yamashita, “A study of unsteady strong conden-
sation on a plane condensed phase with special interest in formation of
steady profile,” inRarefied Gas Dynamics, edited by V. Boffi and C.

CercignanisTeubner, Stuttgart, 1986d, Vol. II, p. 323.
17Y. Sone, K. Aoki, H. Sugimoto, and T. Yamada, “Steady evaporation and

condensation on a plane condensed phase,” Theor Appl. Mech.19 s3d, 89
s1988d.

18Y. Sone and H. Sugimoto, “Strong evaporation from a plane condensed
phase,” inAdiabatic Waves in Liquid-Vapor Systems, IUTAM Symposium,
Göttingen, 1989, edited by G. E. A. Meier and P. A. ThompsonsSpringer,
Berlin, 1990d, p. 293.

19K. Aoki, K. Nishino, Y. Sone, and H. Sugimoto, “Numerical analysis of
steady flows of a gas condensing on or evaporating from its plane con-
densed phase on the basis of kinetic theory: Effect of gas motion along the
condensed phase,” Phys. Fluids A3, 2260s1991d.

20Y. Sone, F. Golse, T. Ohwada, and T. Doi, “Analytical study of transonic
flows of a gas condensing on its plane condensed phase on the basis of
kinetic theory,” Eur. J. Mech. B/Fluids17, 277 s1998d.

21S. Ukai, T. Yang, and S.-H. Yu, “Nonlinear boundary layers of the Boltz-
mann equation: I. Existence,” Commun. Math. Phys.236, 373 s2003d.

22S. Ukai, T. Yang, and S.-H. Yu, “Nonlinear stability of boundary layers of
the Boltzmann equation, I. The caseM`,−1,” Commun. Math. Phys.
244, 99 s2004d.

23Y. Sone, “Kinetic theory of evaporation and condensation—Linear and
nonlinear problems,” J. Phys. Soc. Jpn.45, 315 s1978d.

24S. Takata, “Half-space problem of weak evaporation and condensation of
a binary mixture of vapors,” inRarefied Gas Dynamics, edited by M.
Capitelli sAIP, New York, in pressd.

25J. W. Cipolla, Jr., H. Lang, and S. K. Loyalka, “Temperature and partial
pressure jumps during evaporation and condensation of a multicomponent
gas mixture,” inRarefied Gas Dynamics, edited by M. Becker and M.
Fiebig sDFLR, Porz-Wahn, 1974d, Vol. II, F. 4.

26I. V. Volkov and V. S. Galkin, “Analysis of temperature jump and partial
pressure coefficients of a binary evaporating gas mixture,” Fluid Dyn.26,
914 s1991d.

27Y. Onishi, “Kinetic theory analysis for temperature and density fields of a
slightly rarefied binary gas mixture over a solid wall,” Phys. Fluids9, 226
s1997d.

28As far as the linearized problem, which will be studied heressee the next
paragraphd, is concerned, the present setting that there is no tangential
flow at a far distance is most general. Even if one starts with thessuper-
ficiald general setting of flow velocity assu1` ,u2` ,u3`d, no tangential flow
u2`=u3`=0 is concluded because of the existence and uniqueness theorem
to be described in Sec. III A. In contrast, for the nonlinear problem, it is
not the case, and one has to consider the nonzero tangential flow in gen-
eral.

29M. N. Kogan,Rarefied Gas DynamicssPlenum, New York, 1969d.
30S. Chapman and T. G. Cowling,The Mathematical Theory of Non-

Uniform Gases, 3rd ed.sCambridge University Press, Cambridge, 1995d.
31J. O. Hirshfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases

and LiquidssWiley, New York, 1954d.
32K. Aoki, C. Bardos, and S. Takata, “Knudsen layer for gas mixtures,” J.

Stat. Phys.112, 629 s2003d.
33H. Grad, “Singular and nonuniform limits of solutions of the Boltzmann

equation,” inTransport Theory, edited by R. Bellman, G. Birkhoff, and I.
Abu-ShumayssAMS, Providence, RI, 1969d, p. 269.

34N. B. Maslova, “Kramers problem in the kinetic theory of gases,” USSR
Comput. Math. Math. Phys.22, 208 s1982d.

35C. Bardos, R. E. Caflisch, and B. Nicolaenko, “The Milne and Kramers
problems for the Boltzmann equation of a hard sphere gas,” Commun.
Pure Appl. Math.39, 323 s1986d.

36C. Cercignani, “Half-space problems in the kinetic theory of gases,” in
Trends in Applications of Pure Mathematics to Mechanics, edited by E.
Kröner and K. KirchgässnersSpringer, Berlin, 1986d, p. 35.

37F. Coron, F. Golse, and C. Sulem, “A classification of well-posed kinetic
layer problems,” Commun. Pure Appl. Math.41, 409 s1988d.

38F. Golse and F. Poupaud, “Stationary solutions of the linearized Boltz-
mann equation in a half-space,” Math. Methods Appl. Sci.11, 483s1989d.

39Y. Sone, T. Ohwada, and K. Aoki, “Evaporation and condensation on a
plane condensed phase: Numerical analysis of the linearized Boltzmann
equation for hard-sphere molecules,” Phys. Fluids A1, 1398s1989d.

40C. Gasquet and P. Witomski,Fourier Analysis and ApplicationssSpringer,
New York, 1999d.

41The definition ofbi in s34d in Ref. 25 would be wrong. In the present
comparison, we used the formulass38d and s39d in Ref. 25 with bi

=mi /2kT0.
42A. Frezzotti, “Kinetic theory description of the evaporation of multi-

047105-18 Yasuda, Takata, and Aoki Phys. Fluids 17, 047105 ~2005!



component substances,” inRarefied Gas Dynamics, edited by C. Shen
sPeking University Press, Beijing, 1997d, p. 837.

43Y. Sone and S. Takata, “Discontinuity of the velocity distribution function
in a rarefied gas around a convex body and theS layer at the bottom of the
Knudsen layer,” Transp. Theory Stat. Phys.21, 501 s1992d.

44S. Takata, “Kinetic theory analysis of the two-surface problem of a vapor–
vapor mixture in the continuum limit,” Phys. Fluids16, 2182s2004d.

45Y. Sone, K. Aoki, S. Takata, H. Sugimoto, and A. V. Bobylev, “Inappro-
priateness of the heat-conduction equation for description of a temperature
field of a stationary gas in the continuum limit: Examination by
asymptotic analysis and numerical computation of the Boltzmann equa-
tion,” Phys. Fluids8, 628 s1996d; 8, 841sEd s1996d.

46Y. Sone, “Flows induced by temperature fields in a rarefied gas and their
ghost effect on the behavior of a gas in the continuum limit,” Annu. Rev.
Fluid Mech. 32, 779 s2000d.

47A. V. Bobylev, “Quasistationary hydrodynamics for the Boltzmann equa-
tion,” J. Stat. Phys.80, 1063s1995d.

48M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions
sDover, New York, 1968d.

49S. Takata, S. Yasuda, K. Aoki, and T. Shibata, “Various transport coeffi-
cients occurring in binary gas mixtures and their database,” inRarefied
Gas Dynamics, edited by A. D. Ketsdever and E. P. MuntzsAIP, New
York, 2003d, p. 106.

047105-19 Evaporation and condensation of a binary mixture Phys. Fluids 17, 047105 ~2005!


