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Half-space problem of evaporation and condensation of a binary mixture of vapors is investigated
on the basis of the linearized Boltzmann equation for hard-sphere molecules with the complete
condensation condition. The problem is analyzed numerically by a finite-difference method, in
which the complicated collision integrals are computed by the extension of the method proposed by
Y. Sone, T. Ohwada, and K. AokiTemperature jump and Knudsen layer in a rarefied gas over a
plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules,”
Phys. Fluids A1, 363(1989] to the case of a gas mixture. As a result, the behavior of the mixture

is clarified not only at the level of the macroscopic quantities but also at the level of the velocity
distribution function. In addition, accurate formulas of the temperature, pressure, and concentration
jumps caused by the evaporation and condensation are constructed for arbitrary values of the
concentration of the background reference state by the use of the Chebyshev polynomial
approximation. €005 American Institute of PhysidDOI: 10.1063/1.1882252

I. INTRODUCTION that are based on the irreversible thermodynamics and on the
o . kinetic theory of gasede.g., Refs. 3-8 and references
It is widely accepted that gas flows under the ordinaryy,erein The present study falls into the latter category.
pressure are well described by the Navier—Stokes set o In kinetic theory, the analysis of the jump for evapora-
equations. This is the fundamental set to the conventioneﬂon and condensat’ion is finally reduced to a half-space

fluid dynamics, which is composed of the mass, momentun.'boundary-value problem of the Boltzmann equation. Physi-

and energy conservation laws with Newton’s law for the - .
o cally it is a problem of a steady vapor flow condensing on or
stress and Fourier’s law for the heat flbas flows around : . L :
evaporating from its plane condensed phase that is in a uni-

a body are usually studied by the Navier-Stokes set with th orm equilibrium state at a far distance. The problem is seen
nonslip condition for the flow velocity and the nonjump con- q . ’ P -
to be solved only conditionally, and the solvable condition,

dition for the temperature at the surface of the body. How hich is o be ai tai lati th
ever, such conditions are invalid if the phase transition’’ '¢11 1S 10 D€ given as certain refations among the param-

(evaporation and/or condensatidakes place at the surface Sters: gives the jump conditions for the fluid-dynamic equa-
of the body, i.e., if vapor flows around condensed phases afi?ns- When evaporation or condensation is strong, the prob-
considered. In fact, it is known that there is a difference of €M iS for the nonlinear Boltzmann equation and the obtained
the temperature between the surface of the condensed phd¥8'P conditions are for the compressible Euler set of equa-
and the gas at the surface. The same is true for the pressufns. When evaporation or condensation is weak, the prob-
the pressure of the vapor at the surface is different from itéém iS for the linearized Boltzmann equation and the ob-
saturation pressure at the temperature of the surface. Thened jump conditions are for tHéncompressibleNavier—
differences are called the jump of temperature and that obtokes or Stokes set of equations. The reader is referred to
pressure, respectiveﬁﬂn order to Study gas flows with the Refs. 6 and 9-11 for information about this issue in the case
phase transition by the fluid-dynamic set, one needs boundf @ single-species vapor, in which the correspondence be-
ary conditions that describe these jumps correctly. Such corfween the nonlinear Boltzmann and Euler systems and that
ditions are sometimes called the jump conditions for evapobetween the linearized Boltzmann and Navier—Stokars
ration and condensation. Stoke$ systems are established by a systematic asymptotic

When evaporation or condensation takes place, the vap@nalysis of the Boltzmann system for small Knudsen num-
(gas phaseand its condensed phafigjuid phase are notin  bers. In the case of a mixture of vapors, although there is no
equilibrium, so that the assumption of the local equilibriumappropriate literature for the general description, it is pos-
state is violated at the interface of different phases. Hencesible to show that the same correspondences are true. In the
the conventional fluid dynamics must be supplemented therpresent paper, we will investigate the half-space problem for
by another principle that is free from the local-equilibrium the linearized Boltzmann equation, in order to provide the
assumption. This causes those studies of the jump conditigamp conditions at the surface of the condensed phase for the

Navier—Stokes or Stokes equations, in the case of a mixture

dElectronic mail: takata@aero.mbox.media.kyoto-u.ac.jp of two species vapors.
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The present paper may be considered as a continuatidh FORMULATION OF THE PROBLEM
qf our recent pape}%‘14 on t'he half-spgce problemg of the A problem
linearized Boltzmann equation for a mixture. We will estab- . S _ _
lish an accurate numerical solution of the present problem by e consider a semi-infinite expanse of a binary mixture
means of the finite-difference method developed in RefsOf vapors, species and B, bounded by a plane condensed
12-14. It is an extension of the method in Ref. 15 to gad’hase at rest. The condensed phase is a homogeneous mix-
mixtures. As before, we carry out the analysis for the hard{Ure of the liquid of specieé and that ofB8 with a constant
sphere model, which is the most fundamental moleculabNiform temperaturdy, and its surface is located #4=0,
model in kinetic theory, and provide the accurate data fofVNereXi is the rectangular coordinate system. The mixture
arbitrary values of the concentrati¢the number fraction of occupies the regio; >0, and, at a far distance from the

a component speciesf the backaround reference equilib- surface, it is in the equilibrium state characterized py the
b pecie g d rIessurq:>0(1+Poo),temperaturé’o(1+7-x),and flow velocity

rium state. The data will serve as the standard to assess ot? )
o . . . KTo/mYY(u.,,0,0) of the mixture and by the concentra-
approximation methods that mainly aim at the practical use”" '© e T . .

bp y P ion (molecular number fraction<+x2 of speciesA.?® Here

with a more realistic molecular model. . . . . .
IpO is the saturation pressure of the mixture in contact with

Before moving on to the following section, here we shal A
; , X . the condensed phase at temperafiyandXj is the concen-
remark on two things. The first one is on the relation of the, _.. L )
linearized problem to the nonlinear one. One mav naturall tration of specied\ in the saturated mixture. In the sequel the
. b : ' y NGreek lettersy and B will be symbolically used to represent
think that the solution of the former would be an approxi- the species, i.ela, B}={A,B}
mate solution of the latter if the evaporation or condensation We will investigate the steady behavior of the mixture

is weak. However it is not true. According to the comprehen-, 4o the following assumption&) the molecules of vapor

sive studies for a single-species vapor, the jump conditions, 5re hard spheres of mass® and diameted®, and they
obtained from the linearized problem has a common stiuczgjjige elastically with each othexii) the behavior of the

ture to evaporation and condensation, while those from thg,iviure is described by the Boltzmann equation with the
nonlinear problem has a qualitatively different structure be'complete condensation condition for the outgoing molecules
tween evaporation and condensatt8rf? That is, there is a from the condensed phase; afiii}) the quantitiesP..|, |r.|,
discrepancy between the linearized and nonlinear problem%L and|u,| are so small that the equations and boundary
This discrepancy was resolved by Sone by means of @onditions can be linearized around the reference equilibrium
weakly nonlinear analysis for weak evaporation orstate at rest characterized by the temperafigrand pressure
condensatiofi**According to his result, although the linear- p, of the mixture and by the concentratio® of speciesA.
ized problem provides a correct approximation to the nonlin-
ear problem for evaporation, it fails to approximate the latterB. Basic equation and boundary condition
for condensation. The same is true in the case of a mixture of , . . . .

We first summarize the main notation used in the paper.

vapors®* Because of this failure, the solution of the linear- . : .
. . . . Theny is the reference molecular number density of the mix-
ized problem is meaningless for condensation as a certain . . B . ,
o : ture and is defined byg=py/kTy, wherek is Boltzmann’s
approximation to that of the nonlinear one. Nevertheless, we : .
. . . onstant. The, is the mean free path of the molecules in the

should stress that, as mentioned above in the third paragraph, .. _ . . .
- "equilibrium state at rest with the molecular number density

:Ee .Ilneanzec(ij{).roblim plays a?' essegtlal rgle tot'det(:rmtlrrl\ o and temperatureT, when gasB is absent i.e., I
€ Jump conditions Tor vaporation and condensation for e:1/[\s’27-r(dA)2n0]). The x; is the nondimensional coordinate

Navier—Stokes or Stokes equations. The linearized problerg stem defined by, =XI-1(\7/2)"L. The (2kT,/m)Y2¢, [or

itself has a physical significance, independent of the nonlin 4 %i=Ailo Y ‘ 0 !

. . . ; . (2kTo/ MM Y2Z] is the molecular velocity,
ear one. This is why the linearized problem is studied here, 312y e | D !
The second is on the jump conditions for slightly rar- No(2KTo/ M) ~32(XE + ¢p*)E* is the velocity distribution func

fied | lightl fied Here the Knudselon Of the molecules of species, where X§=1-Xg5 and
efied gases. In a slightly rarefied gas, where the Knu SeE“(g):(m“/w)3’2exp(—r‘n“|§|2) with e=m*/m~. The ratio
number (the ratio of the mean free path to the reference ¢ molecular di do=de/d* will also b d.Th
length is small, the jump occurs not only on the surface of® mlo ecu arb |a(rjnete.rt - Wi taso etuse 1;I € ”}O' it
the condensed phase but also on the surface of a simple rig“atcu artnum er gnhs' yt’ fp;ressuret, er‘?pera ure, dOW vte SCI Y.
solid body as a gas rarefaction effect. The sources of such ress fensor, an ea; ow vector oaspeueare enoted,

) i . respectively, by ng(Xg+N®), po(Xg+P%), To(1+7%),
jump are the gradients of temperature and concentration no KT,/ M) 120 (X238 +P9). and  po(2KTy/mA)H2Q¢

mal to the surface, the curvature of the surface, and so on: " © i Pol Aot Ty, PoleXto N

Among them, the jump caused by the gradients of temperav_vhereéij is Kronecker’s delta. Those of the mixture are de-

1/2,,.
ture and concentratiéh?’ are often studied by kinetic noted by no(1+N), p0(1+l;)2, To(1+7), (2KTo/m") ™,
i . : 80(&»+Pi~), and pg(2kTo/ M) Y2Q;.

theory because they occur as the first correction, superior t I ) o

: . The linearized Boltzmann equation in the present case
the others, to the nonjump condition of the temperature o 1 t=dl axy= 3l %, =0) is written 22931
the simple solid surface. On the surface of the condense 2 3
phase, however, it is seen that the jump due to these effectsis _ ¢
in general smallefi.e., of the higher order in the Knudsen L ox,
numbej than that caused by the evaporation and condensa- _
tion. The latter is the jump studied in the present paper. whereL?® is the linearized collision integral defined by

= > KALA (X3P XEg™), (1)
B=AB
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~Bags L , , u=( > mPXEuf > APXE), (7b)
L? (f,g)—mf [f(¢) - £(&) +9(¢) - 9(DIEA(L) (B:A’B 0 )/(B:A’B 0)
x|e-V|dQ(e)d¢., 2) =X X+, Pj= > P (70)
p=AB B=AB
with
Na P B_2yBu - uf
reevie Ve g=t-toee @ 97 BEAB[Q 2ol )] (rd
. If we denote byXg+ x* the concentration of species x“ is
V=86-¢ L =dbqdodss, (3b)  expressed as
Ja 4 a8\ ? o) X“=N“=XoN. (8
KA = (d +d ) , b= ?m —. (3c)  Note thaty”*=—-x® because of the relatios=NA+N® and
2 it + i’ XA+ xB=1,

Integrating Eq.(1) multiplied by E* over the whole

Heree is a unit vector. the variable of integration corre- X
space of¢ gives

sponding toZ, andd()(e) the solid-angle element in the di-

rection ofe. The integration in Eq(2) is carried out over the d 5
whole space of. and over all the directions . d—le {1p“E*d°C=0. (93
The complete condensation condition at the surface of
the condensed phase, =0) is written as Similarly, integrating Eq(1) multiplied by m*,E* and that
N multiplied by rh“g?E“ over the whole space df and taking
$*=0, &4>0, (4) the summation of the resulting equations &orA,B give
and the condition at a far distance from the surfége
— ) is written as d f M*{14 ¢*E*d*C =0, (9b)
X1 o= A,B
B — P2 = XGP., + Y&+ 2MXEL U, + (A2 = 2)XG .,
©) J ML 2P EdRL=0. (90)
d X a= A,B

wherex2=-y2 (see the end of the next paragraph
The macroscopic quantitiéd®, u?, etc., of species are  Equations(9a—9c) correspond to the conservation laws of

written in terms of¢® as the mass, momentum, and energy, respectively. Taking into
account the condition at infinity, they are reduced to
Na = J ¢aEad3g, (Ga) ug =U,, (10a)
u'= oo f G B, (6b)
Q.=0. (100
21 o 3 3
™= 5% m“gj - 5 P E D¢, (60) Ill. PRELIMINARY ANALYSIS
0

A. Knudsen-layer problem

o 2ol 2 iamads —na L va We will seek the solution of the boundary-value problem
P*= 3m J GORATENT+ X7, (6d) (1)—(5) in the form

¢ = %+ dr(Xq, §) e (11)

= Zrh“f LG B, (66)  Substitution of Eq(11) to Egs.(1)<5) gives the following

equation and boundary condition fe:
— AN 2 jaEan3 Suza a(ﬁK Ba,Ba ]
=i | GPPEDRL - SXGuf. (61) = D KPLPY(XG B, XEdR), (12)
2 Lox, B=AB

Here and henceforth, unless otherwise stated, the integration
with respect tog is performed over its whole space. The

¢ =Xg[ - v - alirg? - 3) - 2],

macroscopic quantities of the mixture are expressed in terms 1>0, x=0, (13
of those of component species as
¢ —0 as X3 — o, (14)
N=3 NE, P=3 PP, (72) - '

B=AB B=AB where
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_PLXG+ XS 15 Since*=d*=1 andX4+X5=1, the problem is charac-
V= uXg (158 terized by the three parameters
B (or mB/m?), B (or d¥db), XA
5= = (15h)
Uso B. Similarity solution and macroscopic

We call the half-space problefi2)—(14) the Knudsen-layer duantities

problem for evaporation and condensation. For the problem, Thanks to the spherical symmetrgf the collision op-
there is a unique solutio if and only if the constants”,  eratorL %, we can seek the solutiof¢ as a function o,

75, and&ta}ke_ special values, angk decays_, exponentially as ¢ and £, where(,= \,/§§+§§_ By using the new notations
X,— 0. This is a consequence of the existence and unique-

ness theorem for the Knudsen-layer problem for a binary — W“(X1,¢1,4,) = (X1, §)E, (193
mixture of hard-sphere gaséRef. 32; see also Refs. 33—-38
for the corresponding theorems for a single-component gas | (5 p«) :[ﬁa(qsg, HHE®, (19b)

As is seen from Eq(15), the fact thaty”, vB, and  take _
special values means that there are certain relations amoM¢e rewrite Eqs(12)—~(14) as follows:

the parameter®.,, x.., 7., andu., that characterize the state P
of the vapors at a far distance. To be more specific, the rela- {1~ — = > KPALAA(XGWh XEwe), (20)
tions that hold among the parameters can be written as 1 B=AB
P.=yu., (163 we=Xg[ -yt - sl + ) - §) - 2irg JEY,
§l>ol X:I_:ol (21)
X = (= PXEXou, (16b)
P —0 as X, — . (22
T = O U, (160

Here E® is regarded as a function @f and{, becausg(|
=(+52)Y2 The collision integral »* can be expressed in
terms of integral kernels. The explicit form is given in Ap-
P = Po = YPo(2K Ty 2, (17 pendix A.

° ° The macroscopic quantities defined by E(—(8) can
be expressed by the momentsbf as follows:

or, equivalently,

X = Xg = (¥ = PIXEXG(2KTo/m) V., (17b)
N =[X5(y* = 8) + Q*]u,, (239
T~ To= 8 To(2kTy/m™) V2., 17¢
0= 8 To(2KT/mfY) (179 e 230
wherep.., X2, T.., andv., are the pressure, concentration of
speciesA, temperature, and flow velocity at a far distance,  x*=[X5(y* -y + Q%= X7Q]u.., (230
and
™ =(8+0%Uu,, (230
7=7%+ X, (18)
. . P = (y*X§ + Q%+ X{O)u,, 2
The set of relation$16a—(16¢) [or (17a—(179)] is a natural (rX 0@ (239
extension of the counterpart for a single-component vapor to o _ o
a mixture of two species vapors. In the case of a single- Pi1= (%o + S, (230)
component vapor, it is know{ that the state of the vapor at o _ e _ .
a far distance in this context can be regarded as that at the P22= P = (¥ X0 + $)u.., (239
interface in the fluid-dynamic description. In other words, R
Eqgs.(168—(160) [or (179—(170)] are regarded as the bound- Q1 =H"U (23h)

ary condition for the fluid-dynamic equations at the interface ;g4
The same is true in the case of mixtures. Note that the rela-

tions (16a—(160) [or (17a—(170)] give the differencesthe N=(y-s+Qu,, (243
“jumps”) of those values that the pressure of the mixture,
concentration of specied, and temperature of the mixture U = Uy, (24b)
take at the surface of the condensed phase in the fluid-
dynamic description from those specifying the state of the 7= (5+0)u,, (240
condensed phase. From this viewpoint, we call the relation
(169 [or (17a] the jump condition for pressuré¢l6b) [or P=(y+Q+0)u,, (240

(17b)] that for concentration, antl6¢) [or (17¢)] that for
temperature, respectively. Pi1= YU, (24¢
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Poo=[y+3(@+6)u., @40 Fe=xl- - s (@ - 3) - 2menE
leoa (24g) §1>0, X1=0. (30)
where At a large distancel for which W is negligibly small, e
w o satisfies the reflection condition
O%(xy) = wa f £, vedsde,, (259 ~ ~
' o Jo Tt V(d, &1,8,) = V- (0., (31)
w o ande] ande, are related to the following moments v
S¥(x) = 4 J j Megig,wed,dg,, (25b) - -
0 J— o Q4(d) +X50(d) ~
1= ©=0(), (32
—_ A #nra ~ ~
S0a)= wa 0 f — MgV edadL,, (259 where Q%(x;) and ®(x,;) are the quantities defined by Egs.
(258—(25d) and(26hb) with W replaced by®. We solve the
®%(x.) = 1 ‘2 30° - boundary-value problent29—31) for given values ofys
(xy) = 3xg[$(xl) S(x) (xa)], (250 and & under a proper choice af. OnceW* is obtained e

and e, are determined by Eq32). ThenW¥?, +*, and § are
S obtained by Eq(28). In the actual computation, we repeat
H%(xy) = Zﬁf f M {1g,(5 + L) Wedg,de, (259 this solution process by putting® and 5 as newy2 andé. in
0 7 order to avoid the accumulation of the numerical errors
and caused by the computation of the collision integrals of the
_ second term of Eq289 in the wide region of,; space.

Q) = 040x) + Q°0x0), (263 The numerical method is essentially the same as that in
Refs. 12—-14. To be more specific, with positive parameters
Z,, andZ, large enough, we limik;, {3, and{, spaces to
The other quantities in Eq$6)—(8) vanish because the inte- finite regions given by &x;<d, -Z;< V”rh“glszl, and 0
grands in their definitions are odd functions &for ¢s. In < \e"r“n“gpszp for species @« and use the same finite-
deriving the expressions above, the propertBs—(9c) [or  difference scheme and the same lattice systems as those in
Egs.(109—100)] have been taken into account. It should beRef. 14. The finite regions are divided intg, 4N;, and N,
noted that the relations intervals as 0x”<---<x™=d, -z;/\Vme=<...

$+$£=0, HA+HB=0 (27) <§(O)N(?O)<§(D<"'<5(12N1)221/\'@' and 0% <

_ _ <{ 7 '=Z,/Nm* for speciesx (thus lattice points in the mo-
hold because of Eq$7c) and(7d). The relations will be used Iecalar space depend on spetiehe interval of lattice is
as a measure of accuracy of the numerical soluts&® Ap-  yniform for ¢, but nonuniform forx, and ¢;: smaller inter-
pendix B). In the sequel we will call the quantities defined by 5|5 for smalleix; and smalletZ,|. The only difference from
Egs.(25) and(26) the Knudsen-layer functions. Ref. 14 is the form of the collision integrals.

In the finite-difference scheme, the unknown function
Ve is solved iteratively. The collision integrals

IV. NUMERICAL ANALYSIS LAa(XaWA, XEW) at the lattice poin(xg),g(lj),gf)k)) at thenth

Following Refs. 39 and 12-14, we solve the boundary—Step of iteration are computed as

O(x)) = X5OA(x,) + X§OB(xy). (26b)

value problem(20)~(22) by the use of the following tech- (T B BTy (i) AD AK)
nique.p 12022 by d LA OGP X509 (x1, 61,8,
. .~ 2N; 2N,

Consider the function?* and the constantsi’ and é. _ B TE-Dul) A AM
defined by —lgNl 2, MG m P08 57)

l’i}a(xl’gl’go) =W(Xy, {1, 8p) + Mfﬁm m@a(n-n(x@,g“?),é,m))]

+ X8 e + ex(M*( 2+ &) - 2) |[E*, (284 4 ~ o
0[ 1 2( 1 p 2)] _ ngﬂ(él])’ggk))q/a(n)(xg-l)'é«g-j),gﬁ)k)), (33)
FEYoE a=0me (28D \hereTa denotesie at thenth step of iteration, ana? is

where ¢ and e, are undetermined constants. The functiona given function defined by E¢A2b). Herer” is regarded as
Tra caticfi " - a function of#; and £, since |¢| =(2+ Y2 The MA¢
Ve satisfies Eq(20) and boundary conditioi21) with * 1 p 17 %p 1 kJm)

and 6 replaced byy? and &, i.e., and Mg(‘ikmm) are universal matrices, which we call the-
~ merical kernel they are independent of the step of iteration
glow => KﬁaLBa(xgﬁ;B,xgﬁra), (29)  and the unknown function®* and ¥ and thus can be pre-

IX1  p=AB pared before the iteration solution process. Since the colli-
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xg
(b)

FIG. 1. Coefficients in the jump conditioil?). (a) y vs Xﬁ, (b) Y*=9P vs Xﬁ, and(c) s vs Xé. Both closed and open circles indicate the present result. The
solid line indicates the present result using the forn{84. The data used to construct the formula are marked with closed circles. The dashed line indicates
the result form®/mA=1.

sion integrals are different from those in Ref. 14, we newlyV. RESULTS AND DISCUSSIONS

construct and store the data of the numerical kernel in the

present work. Several tests are performed to assess the accu-

racy of the computation of the collision integrals. The results  In the present paper, we carry out the computation for

are summarized in Appendix B. m®/mA=2, 4, 5, and 10 and for various valuesXy, restrict-
After a series of accuracy tests parallel to_those pering ourselves to the cas#®/d*=1. Hereinafter, we assume

formed in Refs. 13 and 14, we addi$1,M1) and($4,M1)  that mB/mA=1, because the results for®/m*<1 can be

in Ref. 14 as the standard lattice system; the former is “Segbtained from those fomB/m*>1 by a simple transforma-
for m®/m"=2 and the latter is used fan®/m’=4,5,10. .

Here Sl and$4 are the lattice systems fay space. For the
former, the computation region is limited to <(x;
<24.08(d=24.09 and there are 301 lattice pointdN,
=300. For the latter, the region is 9¥x;=<32.49(d The coefficientsy, y*—+%, and d in the jump condition
=32.49 and there are 341 lattice poir§,=340. M1isthe (17) versus the concentratio, of speciesA are shown in
lattice system fo; and{, spaces. The computation regions Fig. 1. Sincey is negative, the pressure of the mixture at a
are limited to -4.5<ViM*{;<4.5 and G<VM*{,<4.5 for  far distance is lowethighey than that of the saturated mix-
speciesa (Z,=2,=4.5), and there are 101 and 55 lattice yre of vapors if the evaporatioftondensationtakes place

Egirflts, rﬁspectivelzIYNl':fZS a”qu:in- (Sﬁe IRefs. 13 and [gee Eq(173]. The same is true for the temperature of the
or the complete information about the lattice Sysnem'mixture because is also negative. On the contrary, since

The results of the accuracy tests are summarized in Appendix . . : ; .

) i . ) YA—+8 is positive, the concentration of the species with
B. The results shown in the following section are obtained by 1 lecul ie<A in th
the use of the standard lattice systems. smaller molecular masspeciesA in the present parameter

The computation was mainly performed by using a par_settings) at a far distance is highdfower) than that of the
allel code for ten CPUs on the FUJITSU VPPS00 in theSaturated mixture if the evaporatiocondensation takes
Academic Center for Computing and Media Studies ofplace. The coefficients are independent<ffor m?/m’=1
Kyoto University. First the computation was carried out for abecause there is no difference between molecules of different
smaller lattice system with 30473x21 points in  kinds. They are, however, not uniform fon®/m*+ 1 and
(X1,¢1,¢,)-space[system(S1,M7)], and the resulting data become monotonically increasing or decreasing functions of
were transformed into the data for the standard lattice systerr/\. It should be noted that the valuespand s at X5=0 (the
by interpolation and extrapolation. Then, the computation for,55e of pure gaB) are the same as those)tﬁzl (the case

the standard systef$l,M1) or ($4,M1) was performed by ¢ 1 \re gasA) multiplied by \mB/mP. This is easily seen by
using the transformed data as the initial guess in the iterativ simple transformation of the reference velocity

solution process. For each set of parameters . .
The numerical computations are performed for several

(mB/m?,dB/d”,X5), it takes about half an hour for the A : o
smaller system, 3 h for syste8L,M1), and 3.5 h for sys- values ofXj, the results of which are indicated by closed or

tem (S4,M1). The computing time does not depend much on®Pen circles in Fig. 1. From the data shown by closed circles,
the values of the parameters. Auxiliary computations werdollowing Ref. 13, we constructed the formulas ¢, %,
carried out on the FUJITSU VPP800 in the Center for Planand é for arbitrary values oKy by the use of the Chebyshev
ning and Information Systems of the Japan Aerospace Explgaolynomial approximatioriRef. 40. The formulas are writ-
ration Agency. ten as

A. Coefficients in the jump condition
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TABLE I. Data of YA (n=0,... N) in Eq. (34).

me/m?
n 2 (N=8) 4 (N=8) 5 (N=8) 10(N=12
0 -2.169 57 -2.21235 -2.22951 -2.294 26
1 3.272 90-2) 8.992 91-2) 1.141 49-1) 2.090 38-1)
2 -4.57178-3) -2.106 28-2) -2.947 27-2) -6.718 39-2)
3 2.908 38-4) 2.45173-3) 3.938 6%-3) 1.288 72-2)
4 -2.037 58-7) -6.921 72-5) -1.923 33-4) -1.754 17-3)
5 -1.939 31-6) -3.199 94-5) -4.275 62-5) 1.501 21-4)
6 1.738 91-7) 6.059 70-6) 1.076 90-5) -2.670 5%-6)
7 5.165 64-10) -1.767 19-7) -6.060 30-7) -8.501 90-7)
8 -1.639 32-9) -1.150 97-7) -1.994 79-7) -1.518 00-7)
10 -3.244 54-8)
11 5.638 43-9)
12 -8.125 5%-11)
*Read as 3.272 90102
N noncondensable gases instead of that of vapors was mainly
h=2> hT,(2X5 - 1), (34) treated in the literatur€. The available data are limited. Here
n=0 we make a comparison, in Table V, with the data in Refs. 25

with h=A, 9B, and 5, where T,(x) (n=0,1,2,..) is the and 26 Their data are obtained by an approximation
Chebyshev p0|yn0mia| of degreedeﬁned for=9< by method that they call thenodification of Maxwell's method

the relation or the Maxwell-Loyalka methadTheir method is based on
an arbitrary assumption. Nevertheless both results agree with
Tn(cos ) = cosné. (39 the present one within 3% for the coefficientsy*-»?, and
The data oy, ¥80 and&™ are listed in Tables I-Ill. The . On the contrary, the agreement is poorer if one observes

solid line in Fig. 1 is drawn by using E434). The accuracy the coefficientsy* and y® separately. The data of* in Ref.

of this formula is checked by comparing with the data showr5 differs from the present one by about 8% at worst. Inci-

by open circles in the figure. The results are summarized atentally, the formulas of in Refs. 25 and 26 are common to

the end of Appendix B. Some of the valuesypfy*-+8, and  each other.

6 obtained by Eq(34) are shown in Table IV. As is stressed in the Introduction, the linearized problem
In the case of gas mixtures, compared to the jump pheitself has a physical significance, independent of the nonlin-

nomenon caused by the gradients of temperature and concezar problem. Nevertheless one may still have an interest in

tration, much less attention has been paid to the present protiie range of “validity” of the solution of the linearized prob-

lem. This is probably due to that a mixture of lem when regarded as an approximation for the nonlinear

TABLE Il. Data of 4™ (n=0, ... N) in Eq. (34).

mé/m?

n 2 (N=8) 4 (N=8) 5 (N=8) 10 (N=12)
0 -3.002 35 -4.221 32 -4.712 49 -6.638 85
1 2.135 60-2)* 4.202 06-2) 4.912 84-2) 7.508 82-2)
2 -3.983 24-3) -1.622 20-2) -2.189 57-2) -4.496 30-2)
3 3.134 06-4) 2.494 54-3) 3.813 69-3) 1.002 26-2)
4 -8.255 18-6) -1.985 29-4) -3.802 38-4) -1.678 59-3)
5 -1.211 69-6) -7.711 30-6) 6.03101-7) 2.032 04-4)
6 1.612 22-7) 4.473 15-6) 6.824 65-6) -1.572 12-5)
7 -4.002 06-9) -4.393 04-7) -9.504 70-7) 4.867 96-7)
8 -1.112 97-9) -3.668 51-8) -4.137 97-8) -6.612 65-9)
9 6.195 92-8)
10 -2.215 63-9)
11 5.026 4§-9)
12 -2.024 69-10)

*Read as 2.135 601072,
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TABLE IlI. Data of §” (n=0,... N) in Eq. (34).

mB/m?

n 2 (N=9) 4 (N=8) 5 (N=9) 10 (N=12)
0 -5.423 40-1) -6.485 14-1) -6.880 32-1) -8.317 95-1)
1 9.412 08-2) 2.251 63-1) 2.769 64-1) 4.73893-1)
2 -7.630 18-3) -3.501 37-2) -4.920 31-2) -1.142 98-1)
3 2.384 17-4) 2.696 31-3) 4.703 25-3) 1.855 08-2)
4 2.503 36-5) 1.386 91-4) 6.520 90-5) -2.057 33-3)
5 -3.579 18-6) -6.593 03-5) -9.838 94-5) 1.114 54-4)
6 9.504 5%-8) 6.373 86-6) 1.315 56-5) 7.317 05-6)
7 2.543 76-9) 6.754 26-7) 6.380 40-7) -9.832 02-7)
8 ~3.700 56-9) -2.811 32-7) -5.162 62-7) -5.328 45-7)
9 2.241 87-7)
10 -4.707 31-9)
11 6.218 3§-9)
12 1.185 42-10)

®Read as -5.423 4010 L.

problem. Figure 2 shows a comparison with the results of thé?2 to the present results as decreases is observed. In the
nonlinear problem taken from Ref. 42 in the case of evapoease of condensation, the nonlinear problem concludes a
ration, where numerical simulation is carried out by the di-jump condition of different form from Eq(17), however
rect simulation Monte Carlo method. In the figue,/po, small the flow Mach number might béSee the second para-
T../To, and X% are plotted as a function of the flow velocity graph from the end of the Introduction. There is a qualitative
v.. [see Eq(17)]. The smooth transition of the results in Ref. difference of the condition between the evaporation and con-

TABLE IV. The values ofy, y*-+%, and 8 by the formula(34).

—Y

XE\mB/ mA 2 4 5 10
0 3.0280 4.2822 4.7877 6.7708
0.1 2.9381 4.0615 45134 6.2831
0.3 2.7593 3.6268 3.9749 5.3362
0.5 2.5817 3.1983 3.4456 4.4122
0.7 2.4050 2.7738 2.9217 3.5000
0.9 2.2289 2.3517 2.4009 2.5935
1 2.1411 2.1411 2.1411 2.1411

V-9

X\mB/ mA 2 4 5 10
0 0.8208 1.9564 2.4105 4.1856
0.1 0.8235 1.9691 2.4287 4.2322
0.3 0.8286 1.9931 2.4623 4.3089
0.5 0.8334 2.0139 2.4907 4.3667
0.7 0.8377 2.0314 2.5140 4.4106
0.9 0.8417 2.0459 2.5327 4.4446
1 0.8435 2.0521 2.5407 4.4591

-5

XE\mB/mA 2 4 5 10
0 0.6443 0.9112 1.0187 1.4407
0.1 0.6197 0.8377 0.9219 1.2345
0.3 0.5746 0.7122 0.7608 0.9261
0.5 0.5347 0.6134 0.6388 0.7196
0.7 0.4997 0.5372 0.5483 0.5818
0.9 0.4693 0.4792 0.4819 0.4896

1 0.4556 0.4556 0.4556 0.4556
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TABLE V. A comparison with the previous results of the coefficieptsy”- %, and & in the jump condition

17).
X$=0.1
=P
mB/m* Present result Refs. 25 and 26 Present result Ref. 25 Ref. 26 Present result Ref. 25 Ref. 26
2 2.9381 2.9161 0.8235 0.8345 0.8192 0.6197 0.6085 0.6085
4 4.0615 4.0292 1.9691 2.0146 1.9437 0.8377 0.8226 0.8226
5 45134 4.4762 2.4287 2.4902 2.3989 0.9219 0.9050 0.9051
10 6.2831 6.2232 4.2322 4.3561 4.1863 1.2345 1.2081 1.2084
X4=0.5
P
mB/m® Present result Refs. 25 and 26 Present result Ref. 25 Ref. 26 Present result Ref. 25 Ref. 26
2 2.5817 2.5616 0.8334 0.8345 0.8130 0.5347 0.5253 0.5253
4 3.1983 3.1696 2.0139 2.0146 1.9753 0.6134 0.6038 0.6040
5 3.4456 3.4128 2.4907 2.4902 2.4417 0.6388 0.6293 0.6295
10 4.4122 4.3610 4.3667 4.3561 4.2732 0.7196 0.7099 0.7106
X5=0.9
=P
mB/m® Present result Refs. 25 and 26 Present result Ref. 25 Ref. 26 Present result Ref. 25 Ref. 26
2 2.2289 2.2122 0.8417 0.8345 0.8246 0.4693 0.4608 0.4608
4 2.3517 2.3327 2.0459 2.0146 1.9999 0.4792 0.4707 0.4707
5 2.4009 2.3809 2.5327 2.4902 2.4744 0.4819 0.4733 0.4733
10 2.5935 2.5691 4.4446 4.3561 4.3362 0.4896 0.4809 0.4810

densation casesln this sense, the comparison would be
meaningless and is not made here. Incidentally, the qualita-
tive difference of the jump condition between the evapora-
tion and condensation was studied recently in Ref. 24 in the
case of a binary mixture of vapors by an asymptotic analysis
of the nonlinear problem for small Mach numbers.

B. Knudsen-layer functions and velocity distribution
functions

The Knudsen-layer function®*/X5, QB/X5, ©*, and
OB are shown in Figs. 3 and 4 and in Tables VI and VII.
They decay rapidly to zero as the distance from the wall
increaseqthe variations are not always monotonidheir
dependence oX} is larger for largem®/m?. The functions
QA/XE and®” (or OB/ X5 and®B) do not vanish axy=0 (or
X’S: 1) because they are the quantities normalized by the
reference concentration. The Knudsen-layer funct@rend
0 for the mixture, which are linear combinations of the func-
tions above, are shown in Fig. 5. Corresponding to the rela-
tion between(s,y) at X3=0 and that aX=1 (see the first
paragraph in Sec. V Athe profiles forxé\:o are the same as
those forXg=1 multiplied by ym®/m". The functions) and

(a)

poo/pO: Too/TO

2k Ty /m™) 1 2ys
(b)

at Xg=1, which can be considered as the correspondingc. 2. comparison of the jump conditid7) with the counterpart of the
functions for a single-species vapor, are shown in Table Vlllnonlinear problem in the case of evaporati¢ky=0.5. (a) X{ vs

They have already been obtained in Ref. 39 by the sam
numerical method, i.e., the combination of the finite-

KTo/m) Y2, (b) p./py and T../Ty vs (2kTo/m) Y%, The solid,
ashed, and dot-dashed lines indicate the present réBo#ar problem,
while the symbold, ¢, andO connected with a dotted line the results in

difference and the numerical kernel methods. In the preserref. 42(nonlinear problem The mass ratio is shown in the figure.
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04— T T T /L e e B B

FIG. 3. Knudsen-layer functions
QAIXS) and QB/XE. (a) X4=0.25, (b)
X4=0.5, and(c) X§=0.75.

work, they are obtained with a higher accuracy. The differ-  In Fig. 7(a), the distribution of outgoing molecules of
ence is, at most, 77107° for O and 2.7<10°° for ®. The  speciesA from the condensed phasg > 0) is rather flat in
Knudsen-layer function§} andH* are also shown in Fig. 6 ¢, for small |¢]. This feature is not always true. Figure 9

and Table IX. The function§® andH® are readily obtained shows, as an example, the functigi at x,=0 for different
from the figure and the table by the relati@v). Note that values ofXé for mB/m*=5. The variation of the function in

A B H A_
SIS, H*, andH? all vanish ax=0 and 1. ¢, for small || depends much oiy. This is a reflection of

The results forXg=0.25 and 0.75 in the figures and : : 5 A
tables in this section are obtained by the use of Chebyshel?® dependence of magnitude ®felative to -y*+35 on X,

polynomial approximation from the data 6F/X%, QB/XE‘, because the velocity distribution of outgoing molecules is

O”, OB, S/XA, S£IXB, HAIXA, andHB/XE at the values of ~ diven by Eq.(21) with a=A. WhenXg=0.9, -5 is about half

XA indicated by closed circles in Fig. 1. TeRTRAN code  Of =Y +345, so that the term of? in the parentheses in Eq.

generating the Knudsen-layer functions for an arbitrary valug¢21) is not appreciable in the figure. On the other hand, when

of X’g is available from the authors. XQ:O.S and 0.1, d is comparable or much superior to/
The reduced velocity distribution function” and¥® 425 and the term o> becomes significant and its feature is

and their contour plots in the case off/m=5 and Xy readily seen in the figure. For speciBs according to the

=0.5 are shown in Figs. 7 and 8. There is a discontinuity a}, , nerical results, & is always smaller than half of 8

g;gnﬂ& thdeis\/;a”(;(;rzso)m[]srﬁg d'i:aII?:I. G‘iar)]sﬁlgg g]?é%ﬂitdig +25, and thus the feature of the teﬁn‘?gﬁ iS not appreciable
y bp y in the figure. The distribution of outgoing molecules of spe-

trace remains as a steep gradient arogywl0 near the wall . o A o
[see Figs. ) and 8b)]. As the distance from the wall in- C€S B is always similar to that in Fig. (8 in its shape.

creases¥* decays to zero with keeping the distinct differ- Incidentally, the®*/Xg for Xg=0.1 and 0.9 in Fig. 9 is the
ence in the shape between the positive and the negative réne obtained by the use of Chebyshev polynomial approxi-
gions of, [see the transition of the contour plots from Fig. mation from its data at the values Xf indicated by closed
7(a) to Fig. 7d) and from Fig. 8a) to Fig. 8d)]. circles in Fig. 1.
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FIG. 4. Knudsen-layer function®”
and®B. (a) X5=0.25,(b) X4=0.5, and

(c) X5=0.75.
TABLE VI. Knudsen-layer function*/X4, QB/XE, ®*, and®® in the case ofn®/m*=2.
QAIXA QB/x8 or 08

Xl\Xé 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0.0000 0.3133 0.3367 0.3584 0.5667 0.5973 0.6258 0.1291 0.0989 0.0733 0.0397 0.0099 -0.0155
0.0271 0.2742 0.2957 0.3157 0.5006 0.5279 0.5532 0.1192 0.0909 0.0671 0.0365 0.0098 -0.0128
0.0988 0.2218 0.2409 0.2585 0.4125 0.4359 0.4575 0.1038 0.0787 0.0576 0.0311 0.0085 -0.0104
0.2011 0.1770 0.1937 0.2093 0.3366 0.3567 0.3753 0.0890 0.0669 0.0485 0.0257 0.0067 —-0.0089
0.3838 0.1281 0.1419 0.1549 0.2522 0.2686 0.2838 0.0707 0.0526 0.0375 0.0189 0.0043 -0.0078
0.5833 0.0950 0.1066 0.1175 0.1937 0.2072 0.2199 0.0567 0.0417 0.0292 0.0138 0.0023 -0.0072
0.7967 0.0713 0.0811 0.0903 0.1507 0.1620 0.1728 0.0457 0.0332 0.0228 0.0100 0.0008 —-0.0068
1.1424 0.0470 0.0544 0.0616 0.1047 0.1133 0.1217 0.0330 0.0236 0.0156 0.0058 -0.0008 -0.0063
1.6669 0.0266 0.0316 0.0367 0.0639 0.0698 0.0757 0.0208 0.0145 0.0090 0.0022 -0.0020 -0.0055
2.4139 0.0128 0.0158 0.0190 0.0340 0.0376 0.0413 0.0111 0.0075 0.0041 -0.0001 -0.0024 —-0.0044
3.3368 0.0057 0.0073 0.0091 0.0167 0.0187 0.0208 0.0052 0.0033 0.0015 -0.0010 -0.0021 —-0.0032
4.7525 0.0019 0.0025 0.0033 0.0062 0.0070 0.0079 0.0016 0.0009 0.0001 -0.0010 -0.0013 -0.0018
7.6134 0.0003 0.0004 0.0006 0.0010 0.0012 0.0013 0.0001 0.0000 —-0.0002 —-0.0004 —-0.0004 —-0.0005
11.4643 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0000 0.0000 —-0.0001 —-0.0001 —-0.0001 —-0.0001
15.3020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE VII. Knudsen-layer function€2*/Xg, QB/XE, ®*, and®® in the case ofm®/m*=5.

QAIXE 0B/ or 08

X\ X4 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
0.0000 0.2166 0.2832  0.3365 09696 10789 11681 02728 0.1678 00975 -0.0157 -0.1137  -0.1810
0.0271 0.1818 0.2448 02950  0.8578 09558 10348 02572 01567 0.0901 -0.0140 -0.1019  —0.1604
0.0988 0.1358 0.1936  0.2394 07108 07966  0.8654 02324 01396 00786 -0.0133 -0.0880  —0.1356
0.2011 0.0975 0.1501  0.1917 05845 06605 07216 02076 0.1229 00677 -0.0134 -0.0765 —0.1152
0.3838 0.0573 0.1031  0.1394 04436 05086 05611  0.1757 01019 00542 -0.0139  -0.0638  —0.0930
0.5833 0.0319 0.0719  0.1037  0.3451  0.4015 04474 01499 00855 00440 -0.0141 -0.0545 —0.0774
0.7967 0.0152 0.0502  0.0780 02721 03213 03617 01284 00722 00360 -0.0140 -0.0472  —0.0654
1.1424 -0.0001  0.0285 00513 01928 02329 02663 01019 00562 00267 -0.0134 -0.0383  -0.0517
1.6669 -0.0097 00115 00287 01209 01509 01763 00737 00397 00177 -0.0118 -0.0288  -0.0378
2.4139 -0.0126  0.0015 00133 00666 00868  0.1044 00481 00253 00103 -0.0092 -0.0198  -0.0253
3.3368 -0.0108  -0.0021  0.0053  0.0340  0.0467  0.0579  0.0292 00151 00056 -0.0064 -0.0126  —0.0160
4.7525 -0.0067 -0.0025 0.0013  0.0132 0.0194 0.0252 00141 00072 00024 -0.0034  -0.0064  —0.0081
7.6134 -0.0020  -0.0010  0.0000  0.0023  0.0039  0.0054  0.0035 0.0018  0.0005 -0.0009  -0.0016  —0.0021
11.4643  -0.0004  -0.0002  0.0000  0.0003  0.0005  0.0008  0.0006  0.0003  0.0001  -0.0001  -0.0003  —0.0004
153020  -0.0001  0.0000  0.0000  0.0000  0.0001  0.0001  0.0001  0.0001  0.0000  0.0000 0.0000  -0.0001
VI. CONCLUDING REMARKS tion. The hard-sphere molecular model, which is the most

In the present paper, we have investigated the half-spadéndamental model in kinetic theory, is adopted, and an ac-
problem of evaporation and condensation for a binary mixcurate numerical solution is established at the level of the
ture of vapors on the basis of the linearized Boltzmann equavelocity distribution function as well as the macroscopic

— X =0
——0.95
L ————e :0.5
ot ----:0.75

—1

0.5 b

(=]

1

—Xg =0
e 0,25
e :0.5

c | ""30'75 FIG. 5. Knudsen-layer functiong)

y and ©. (a) m®/m*=2, (b) mB/m*=5,
and(c) m&/m*=10.
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guantities. The obtained jump coefficients would serve as the
standard to assess the validity of approximate solution meth-
ods aiming at practical purposes.

In the case of a single-species vapor, according to Refs.
9 and 10, when the evaporation and condensation take place
rather weakly, the vapor flow under the ordinary pressure can
be described by the Navier—Stokésr Stoke$ equations
equipped with the nonslip tangential velocity and the coun-
terpart of the jump conditiofil7) as the boundary condition
on the surface of the condensed phase. This is concluded by
a systematic asymptotic analysis of the Boltzmann equation.
It is possible by the parallel analysis to show that the same is
true in the case of a mixture of vapors. That is, the Navier—
Stokes(or Stoke$ equations for gas mixtures equipped with
the condition(17) and the nonslip tangential velocity at the
surface of the condensed phase can describe the behavior of
the vapors with the phase change at the surface under the
ordinary pressure; consequently they would have a large po-
tential application field, typically in chemical engineering
processes such as distillation.

Further, recently, one of the authors demonstrated in the
simple two-surface problem that the analysis of the present
problem, together with the jump problems related to the tem-
perature and concentration gradients, is inevitable to under-
stand a certain singular behavior of a mixture of two species

X1 Q (C]
0.0000 0.3782 0.0520
0.0271 0.3338 0.0475
0.0988 0.2745 0.0404
0.2011 0.2234 0.0336
0.3838 0.1667 0.0252
0.5833 0.1275 0.0191
0.7967 0.0988 0.0143
1.1424 0.0683 0.0091
1.6669 0.0415 0.0045
2.4139 0.0220 0.0013
3.3368 0.0109 —-0.0002
4.7525 0.0041 —-0.0007
7.6134 0.0008 —0.0004
11.4643 0.0001 —-0.0001
15.3020 0.0000 0.0000

T T T T 0.06 1
0.03 s\.\' - mB/mA _ -

—mB/mi =2

0.03F

0.06

0.04f

FIG. 6. Knudsen-layer function$}
andHA. (a) X5=0.25,(b) X4=0.5, and
(c) X5=0.75.

0.03F

() XA =075
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TABLE IX. Knudsen-layer functions} andHA.

g i

mB/mh=2 mB/mh=5 mB/mh=2 mB/mA=5

X\ X 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0000 0.0039 0.0039 0.0021 0.0159 0.0122 0.0044 0.0155 0.0190 0.0131 0.0363 0.0404 0.0256
0.0271 0.0039 0.0038 0.0020 0.0157 0.0120 0.0044 0.0152 0.0185 0.0127 0.0357 0.0396 0.0250
0.0988 0.0037 0.0036 0.0019 0.0151 0.0116 0.0042 0.0143 0.0174 0.0119 0.0341 0.0376 0.0236
0.2011 0.0034 0.0034 0.0018 0.0143 0.0109 0.0040 0.0132 0.0160 0.0109 0.0321 0.0351 0.0219
0.3838 0.0031 0.0030 0.0016 0.0130 0.0099 0.0036 0.0116 0.0139 0.0094 0.0289 0.0314 0.0193
0.5833 0.0027 0.0026 0.0014 0.0117 0.0090 0.0032 0.0101 0.0121 0.0081 0.0259 0.0279 0.0170
0.7967 0.0023 0.0023 0.0012 0.0105 0.0080 0.0029 0.0087 0.0104 0.0070 0.0231 0.0247 0.0149
1.1424 0.0019 0.0018 0.0010 0.0089 0.0067 0.0024 0.0070 0.0083 0.0055 0.0192 0.0204 0.0122
1.6669 0.0013 0.0013 0.0007 0.0068 0.0052 0.0019 0.0050 0.0059 0.0039 0.0147 0.0155 0.0092
2.4139 0.0008 0.0008 0.0004 0.0047 0.0036 0.0013 0.0031 0.0037 0.0024 0.0101 0.0106 0.0062
3.3368 0.0005 0.0005 0.0002 0.0030 0.0023 0.0008 0.0018 0.0021 0.0014 0.0064 0.0067 0.0039
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15.3020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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FIG. 7. Reduced velocity distribution
function WA/X{ of speciesA and its
contour plots form®/m*=5 and X4
=0.5. (@) x;=0, (b) x;=0.052,(c) X,
=0.384, andd) x;=1.964. In the con-
tour plots the curves are drawn with
the interval of 0.01. The contour of
positive values ofP” is indicated by a
solid line and that of negative values
of WA by a dashed line.

(c) 21 =0.384 (d) z;=1.964
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FIG. 8. Reduced velocity distribution
function WB/X5(mP)%2 of speciesB
and its contour plots fom®/m*=5 and
X$=0.5. (@ x,=0, (b) x,=0.052, (c)
x;=0.384, and(d) x;=1.964. In the
contour plots the curves are drawn
with the interval of 0.02. The contour
of positive values of¥® is indicated
by a solid line and that of negative val-
ues of B by a dashed line.

(c) £1=0.384
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APPENDIX A: COLLISION INTEGRALS -
Ba _ _ Ba
The collision integrald.#* can be written in the form Ji= fo dog &= QT (1 € e (1, ), (A43)
LA2(f,g) = LE(F) + LE“(@) - L§*(F) - (| &g, (A1)
g 1
Where Jgu:f d‘PgH|ga(§11§pa¢’§ygly§p)y (A4b)
0

Lga(f) = EaJ dgpf dglKéga(gligplglrgp)f(gllgp)
0 —00

1
|Ber = gral™ J dt cosi- a#*t)

(‘]:1!2131 (AZa) 0
72 _
v“(g):{{;exq— o) xfo dscoshb?*\1 -t%sins), (Adc)
V2 Vym®
1 Vi ~B ([ ~a 2 2\2
] N N CCU I A L AL -
( m g 0 |2 ex 4 ﬁ_}B'g §| + |§_ §| ’ (A4d)
The integral kernel&5* are of the following form: and
\/E(,}éa>2§ (&, &,0,8,) if M*# P 2 2
KBa = r\ ) SPLSLSmebsy ’ aﬁ“:(ﬁ'f‘”)z('gja*'{'_?ﬁf) (Aba)
KEe it = i, 2 2P
A3a
A bfe= - pfEx g, (A5b)

T 1/2 R 2
o= Zierne) oo 2 e 08,

L onar
ple =

(A3b) . for M #me, (A5c)
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FIG. 9. Reduced velocity distribution functiohA/XQ of speciesA and its
contour plots at the surface of the condensed pkas@ for m®/m*=5. (a)
X§=0.1, (b) X5=0.5, and(c) X§=0.9. See the caption of Fig. 7.
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— 4§p§p
(&= L)%+ (& + §p)2.

(A5d)

The functionE in Eq. (A3c) is the complete elliptic integral
of the second kint defined by

w2
E(k) = f (1 -k sir? 6)Y2de. (AB)
0

In the above expressions, the absolute values of vectors and
the inner product of and{ are expressed in terms ¢f, £,
&, €, and ¢, as follows:

£- ¢l = (& + g - 2¢- 9™, (A7a)
& d=[1&LP - (- 071, (A7)
P=g+8, |dP=a+, (A7c)
£-L= 60+ ELC08 0. (A7d)

APPENDIX B: DATA OF COMPUTATION

(i)

(ii)

We summarize the data of computation in this appendix.

In the present paper, we use the lattice systems gener-
ated by Eq.(34) in Ref. 14 forx; and by Eq.(53) in
Ref. 13 for{,;{, plane. To be specific, in addition to the
systemﬁ—s_él for x;, and M1-M8 for {1, plane in
the references, we use one systemxfomwhich we call

5, and two systems faf; £, plane, which we calM9
andM10. The systen$5 is defined by Eq(34) in Ref.

14 with N,=N,=800. The systenv9 is defined by Eq.
(53) in Ref. 13 withz;=7,=4.5,N,=25,N,=18, N;
=26, andN,=21. The systenM10 is defined by the
same equation witlZ,=7,=4.5, N;=28, N,=30, N;
=28, andN,=30.

Comparisons among the results for different lattice sys-
tems were made fanf/m*=2. A part of the results are
shown in Table X. Here we summarize the main infor-
mation about the lattice systems. F&t, S2, and S5,

the x; space is commonly truncated &t=24.08(d
=24.08, and there are 301, 601, and 801 points, re-
spectively. Systen®4 is the same aSl in the region

TABLE X. Comparisons of the coefficientg®, 2, and 6 among different lattice systems fon®/m?=2.

Comparisons were made ¥§=0, 0.3, 0.7, and 1.

Maximum relative error

Lattice systems A ¥B P
(SL,M8) vs (4,M8) 7.4%x 1077 4.8x107 1.7x 1076
(SL,M8) vs (S1,M9) 5.6X 107 4.8x107 2.5% 1078
(SL,M8) vs (2,M8) 1.7x10° 2.7%x10°8 1.9x10°®
(SL,M8) vs (S1,M5) 1.8x10°® 1.8x10° 8.1x 10°®
(SL,M8) vs (S1,M3) 3.7x10°8 4.1x10° 3.6X 105
(SL,M1) vs (SL,M3) 1.1x 107 1.2x 107 5.8x 1078
(SL,M1) vs (S1,M2) 2.0x10°6 2.1x10°® 6.2x10°®
(SL,M1) vs (S5,M10)? 8.3x 1077 1.5X 1076 2.8x 108

®A comparison was made X§=0.3, 0.7, and 1 for this case.
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(iii)

0=x;=24.08 and covers a wider regiof0=<x;
=<32.49 with 341 points. FoM1-M3, M5, M8, and
M10, the velocity space is commonly truncated at
rél =§p=4.5/\s“'ﬁ1“ (2,=2,=4.9, and there are 101

X 55, 101x73, 101x49, 113x37, 101x37, and
113X 61 points, respectively. SysteM9 is the same

as M8 in the region -4.5 \r’ﬁ’§1<4.5 and O
sy'}h_cvgp<4.5 and covers a wider regiori-5.06
<\M*;=<5.06 and G< M, <5.25 with 105X 43
points. The comparisons in the table are made to assess
the appropriate size of the lattice intervals and that of
the truncation region. For example, the comparison be-
tween(S1,M8) and ($4,M8) is made for an estimate

of the appropriate value af. Similarly the comparison
between(S1,M8) and(S1,M9) is made for an estimate

of the appropriate values @ andZ,. The comparison
between(S1,M8) and(S2,M8) is for determining the
number of lattice points in;. The comparisons among
(SL,M1), (SL,M2), (SL,M3), (SL,M5), and(S1,M8)

are for determining the number of pointsggy, plane.
After such a series of tests, the syst¢B8i,M1) is
chosen formB/m*=2 and ($4,M1) is chosen for
m®/m*=4, 5, and 10 as the standard lattice system. The
comparison between the standard syst&inM1) and

the finest systeniS5,M10) are also shown for refer-
ence in Table X.

Since we newly constructed the numerical kernel in the
present work, we carried out several tests to assess the
accuracy of the computation of the collision integrals.
Here we show the results for the standard lattice system
M1. First, we check the fundamental properties of the
linearized collision integrals for the collision invari-
ants: LAY(gPEP,g*E®) =0 for g*=1,m*¢;,m*| ¢ The
computed|L#4(gPEF,g*E%)| is not exactly zero be-
cause the error comes from the piaft +L5%-L5* [see

Eg. (Al); »# can be computed exactly because the in-
tegral in Eq.(A2b) is the error functioh The maxi- )
mum value of|LA*(gPE#,g*E®)| relative to the maxi- (V)
mum of |g*E*1#| is bounded by 2.5 107° for g*=1,
5.1x10°° for g*=m*¢;, and 7.1x 10°° for g*=m?| /|%,
except for the casen®/m*=10 with «=A and 8=B.

For this case, the maximum is bounded by B0,
9.3x10°°, and 1.3x 10 for g*=1, M*{,;, andm®| g2,
respectively.

Second, we consider functions*(|¢|), B*(|¢|), and
D®=(¢|) that are the solutions for the following inte- ()
gral equations:

> KEXELA (G APER, (AE®) + 4 (P2 - 3)E®
B=AB

=0, (B1)

> KPaxBLA(£,,BPEP, £1;,BE") + 2"(,E*= 0,
B=AB

(B2)

Phys. Fluids 17, 047105 (2005)

> KPOXEXSLA((,DWPEP, (,DDEY) + ¢4 8,
B=AB

fexg

S K

B=AB

E*=0, (B3)

with subsidiary conditions

> Pxg f CAP(QEP(OdE =0,
0

B=AB

> Pxg f ) IDWB(QEP(OAL =0,
0

B=AB

where{11=3- 3|82 Saa= =1, Spe=0a=0, anda
and y run from A to B. It is seen from the third equa-
tion thatD*=D®*-D®« gatisfies the relation

> KPOXEXALPY((,DPEP, (iDE®) + {1(S,n— Oap) E®
B=AB

=0. (B4)

We computed the quantity on the left-hand side of Egs.
(B1), (B2), and(B4), which is theoretically zero, by the
use of highly accurate data of the functioi§ B¢, and
D« obtained in Ref. 49. We denote these quantities
by LB1, LB2, andLB4, respectively. The maximum of
ILB1|, |LB2|, and|LB4| relative to the maximum of the
absolute value of the second term in the same equation,
|G4(e] 2= 3)E, [2/r 0,7, and|{y(S,4— 8.)E7], is
bounded by 8. 10°°, 1.2x 1074, and 2.1X 1074, re-
spectively, form®/m*=2, 4, and 5. Fom®/m*=10, it

is bounded by 1.8 104 4.0x 104 and 4.6<x107%,
respectively.

As mentioned in Sec. lll B, Eq27) provides another
measure of accuracy. For the standard lattice systems,
the values ofS'+S7| and|HA+HB|, which are theoreti-
cally zero, are computed for the vaIues)(‘Sfindicated

by a closed circle in Fig. 1. They are bounded|&s
+SP| <5.9x10°° and |HA+HB| <4.8x 1078, See Fig.

6 and Table IX for the magnitude of the functio8$
andHA,

For the same values O(Q as (iv), we compared the
maximum values of¥*(d, -, )|, [¥4(-, £Z{, )|, and
[w(-, - Z3)| to the maximum value of¥|, where

Zfzzllvﬁ“ andz;=2,/ Ve, The former three values
should be negligible in order that the computation in
the finite region of(x,,{;,¢,) is justified. The results
are

|\PA(d,-,-)|< 35x10°% (mf/m*=2,10,
maX WA 1.9x 107 (mPimi=4,5),

|\IfB(d,-,-)|< 49x 107 (mPm*=2,10,
max | 3.2x10% (mPmt*=4,5),
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