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Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature
gradient, are investigated numerically by using a macroscopic equation of convection-diffusion
type. The equation, which was derived systematically from the Bhatnagar–Gross–Krook model of
the Boltzmann equation and diffuse-reflection boundary condition in a previous paper �K. Aoki et
al., “A diffusion model for rarefied flows in curved channels,” Multiscale Model. Simul. 6, 1281
�2008��, is valid irrespective of the degree of gas rarefaction when the channel width is much shorter
than the scale of variations of physical quantities and curvature along the channel. Attention is also
paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the
change of channel curvature and periodic temperature distributions without any help of moving
parts. In the process of analysis, the macroscopic equation is �partially� extended to the case of the
ellipsoidal-statistical model of the Boltzmann equation. © 2010 American Institute of Physics.
�doi:10.1063/1.3496315�

I. INTRODUCTION

Rarefied gas flows in a channel driven by an imposed
pressure gradient in the gas �Poiseuille flow� and by an im-
posed temperature gradient along the channel walls �thermal
transpiration�, which are fundamental problems in kinetic
theory of gases, play important roles in applications related
to micromechanical and vacuum systems. The case when the
gas flows through a straight channel is a classical problem
and has been the subject of many papers �see, e.g., Refs. 1–6
for the Poiseuille flow and Refs. 3–9 for the thermal transpi-
ration between two parallel plates�. In contrast, there are few
studies for the flows through a curved channel �Refs. 10–12
are among the few examples�. In practical applications in
microfluid dynamics and vacuum technology, however, one
encounters various complex channel shapes. In the present
paper, we focus our attention on rarefied gas flows through a
twisty channel.

In order to analyze rarefied gas flows for a wide range of
gas rarefaction, i.e., for arbitrary Knudsen numbers �the ratio
of the mean free path of gas molecules to the characteristic
length of the system�, we need numerical analysis of the
Boltzmann equation. However, when the channel is long and
twisty, it is practically impossible to analyze the flows by the
prevailing numerical methods, such as the direct simulation
Monte Carlo �DSMC� method13,14 and the finite-difference
�or discrete-ordinate� method using model Boltzmann equa-
tions. In contrast, a macroscopic system, consisting of a par-
tial differential equation of convection-diffusion type and its
connection condition, that describes rarefied gas flows in a
two-dimensional �2D� curved channel was proposed
recently.15 With the help of this system, we can obtain the
properties of gas flows through a twisty 2D channel at arbi-
trary Knudsen numbers with a small computational load. The
system is derived from the Boltzmann equation and its
boundary condition by a systematic asymptotic analysis un-

der the assumption that the channel width is small compared
with the length scale of variation of the temperature, the
density, and the channel curvature along the channel. We
should mention that the Bhatnagar–Gross–Krook �BGK�
model16,17 is used in Ref. 15 in place of the original
Boltzmann equation, but the analysis for the latter equation
is essentially the same. It should be emphasized that the mac-
roscopic system is valid for any Knudsen number.

In the present study, we investigate the gas flows through
curved channels of various shapes for a wide range of the
Knudsen number by exploiting the macroscopic system de-
rived in Ref. 15. At the same time, we extend the system,
which was originally derived on the basis of the BGK model,
to the case of the more sophisticated ellipsoidal-statistical
�ES� model.18–20 This paper is organized as follows. The for-
mulation of the problem is given in Sec. II, and the macro-
scopic system derived in Ref. 15 is summarized in Sec. III.
The system is extended to the case of the ES model in Sec.
IV, and its applications are shown in Sec. V. Finally, some
concluding remarks are given in Sec. VI.

II. FORMULATION OF THE PROBLEM

A. Problem, assumptions, and notations

Let us consider a curved 2D channel with constant width
D �Fig. 1�. The temperatures of the channel walls do not
change in time, but their distribution along the channel is
arbitrary, except that they are the same at the normal cross
section of the channel. The pressure �or density� of the gas in
the channel may vary in time and along the channel �the
change is determined depending on individual problems�. We
investigate the behavior of the gas in this situation.

We assume that the 2D channel is on the x̃1x̃2 plane and
the physical quantities do not depend on x̃3, where �x̃1 , x̃2 , x̃3�
is a Cartesian coordinate system in space. Let x̃, x̃c�s̃�, ��s̃�,
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and n�s̃� be the two-dimensional vectors on the x̃1x̃2 plane
�i.e., the vectors with vanishing x̃3 components�, indicating
the position �x̃1 , x̃2 ,0�, the median curve C of the channel, the
unit tangential vector to C, and the unit normal vector to C,
respectively. Here, s̃ is the length along C, ��s̃� is directed in
the direction of increasing s̃, i.e., �=dx̃c�s̃� /ds̃, and n�s̃� is
directed to the right when facing in the direction of increas-
ing s̃. Then, we have the following relation �the Frenet
formula21�:

d�

ds̃
= �̃n,

dn

ds̃
= − �̃� , �1�

where �̃�s̃� is the curvature of the median curve C and is
positive when the center of curvature lies in the side of n.
Then, we introduce the curvilinear coordinate system �s̃ , r̃�
on the x̃1x̃2 plane by expressing the point x̃ in terms of s̃ and
r̃ as

x̃ = x̃c�s̃� + r̃n , �2�

where −D /2� r̃�D /2, and we assume that the center of
curvature of C does not lie inside the channel ���̃��2 /D�.
Since the temperatures of the two walls are common at the
normal cross section �the cross section along n�, we denote

them by T̃w�s̃�. We analyze the behavior of the gas in the
channel under the following assumptions:

�i� The behavior of the gas is described by the BGK
model of the Boltzmann equation �the ES model will
also be employed later�.

�ii� The gas molecules undergo diffuse reflection on the
walls.22,23 That is, the reflected molecules are distrib-
uted according to the half-range Maxwellian with

flow velocity zero and temperature T̃w�s̃�, and there is
no net mass flux across the walls.

�iii� The curvature �̃�s̃�, the wall temperature T̃w�s̃�, and
the pressure of the gas change slowly along the chan-
nel; that is, the length scale of variation Ls of these
quantities along the channel is much longer than the
channel width D �Ls�D�.

Before presenting the basic equations, we summarize the
additional notations used in this paper. We first introduce

dimensional quantities: t̃ is the time variable, �̃ is the mo-

lecular velocity, f̃�s̃ , r̃ , �̃ , t̃� is the velocity distribution func-

tion of the gas molecules, �̃ is the density of the gas, ũ is the

flow velocity, T̃ is the temperature, and p̃=R�̃T̃ is the pres-
sure, where R is the gas constant per unit mass, i.e.,
R=k /m with k as the Boltzmann constant and m as the mass

of a gas molecule. In addition, �̃s= �̃ ·�, �̃r= �̃ ·n, and �̃3 are

the components of �̃ in the directions of �, n, and the x̃3 axis,
respectively; ũs= ũ ·�, ũr= ũ ·n, and ũ3�=0� are the compo-
nents of ũ in the corresponding directions.

Let �̃0, T̃0, and p̃0=R�̃0T̃0 be the reference density, tem-
perature, and pressure, respectively, and l0 be the mean free
path of the gas molecules at the reference equilibrium state at

rest with density �̃0 and temperature T̃0. For the BGK model,

l0= �8RT̃0 /��1/2 /ABGK�̃0, where ABGK is a constant such that
ABGK�̃ is the collision frequency of the gas molecules. Then,
we introduce the following dimensionless quantities:

s = s̃/Ls, r = r̃/D ,

x3 = x̃3/D, t = t̃/�Ls
2/D�2RT̃0�1/2� ,

� = �̃/�2RT̃0�1/2, ��s,�r,�3� = ��̃s, �̃r, �̃3�/�2RT̃0�1/2,

f = f̃/��̃0�2RT̃0�−3/2�, � = �̃/�̃0,

�3�
u = ũ/�2RT̃0�1/2, �us,ur,u3� = �ũs, ũr, ũ3�/�2RT̃0�1/2,

T = T̃/T̃0, p = p̃/p̃0,

��s� = �̃�s̃�D, Tw�s� = T̃w�s̃�/T̃0,

Kn = l0/D ,

where Kn is the Knudsen number. Because of assumption
�iii�, � and Tw are assumed to be functions of s. In Eq. �3�,
we have also assumed that f = f�s ,r ,� , t�, so that �, us, ur, T,
and p are functions of �s ,r , t�.

B. Basic equations

The BGK model in the dimensionless form in the
�s ,r ,x3� coordinate system reads as

	2� f

�t
+ 	

1

1 − �r
�s

� f

�s
+ �r

� f

�r
+

�

1 − �r
�r�s

� f

��s

−
�

1 − �r
�s

2 � f

��r
=

1

K0
JBGK�f� , �4a�

JBGK�f� = ��M��,u,T� − f� , �4b�

M��,u,T� =
�

��T�3/2exp�−
�� − u�2

T
� , �4c�

� =	 fd�, u =
1

�
	 �fd�, T =

2

3�
	 �� − u�2fd� ,

�4d�

where

FIG. 1. Curved channel with some notations.
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	 = D/Ls, K0 = �
�/2�Kn = �
�/2��l0/D� . �5�

The boundary condition �diffuse reflection� on the channel
walls �r= 
1 /2� can be written as

f =
�w

��Tw�3/2exp�−
���2

Tw
� for �r � 0 at r = 
 1/2, �6a�

�w = 
 2� �

Tw
�1/2	

�r�0
�rfd� , �6b�

where the upper and lower signs go together. The initial con-
dition is

f = f in�s,r,�� at t = 0, �7�

with an appropriate function f in.
We investigate the behavior of the gas described by Eqs.

�4�, �6�, and �7� when 	1 but K0 is arbitrary.

III. SUMMARY OF MACROSCOPIC SYSTEM

In this section, we summarize the macroscopic system
derived in Ref. 15. It is an extension to curved channels of
the corresponding macroscopic systems for straight channels
or pipes developed in Refs. 24–26.

A. Macroscopic equation

The solution to Eqs. �4�, �6�, and �7� is obtained in the
form of power series in 	, i.e.,

f = f �0� + f �1�	 + f �2�	
2 + ¯ . �8�

Correspondingly, the macroscopic quantities are expanded as

h = h�0� + h�1�	 + h�2�	
2 + ¯ , �9�

where h stands for �, u, T, and p. The coefficients f �m� are
given as

f �0� =
��0��s,t�

��Tw�s��3/2exp�−
���2

Tw�s�
� , �10a�

f �1� = f �0���C�s,t� + �P�r,
�


Tw

;K�0��s,t�,��s��
�

�

�s
ln ��0��s,t� + ��P�r,

�


Tw

;K�0��s,t�,��s��
+ �T�r,

�


Tw

;K�0��s,t�,��s��� d

ds
ln Tw�s�� , �10b�

and so on, where K�0��s , t� is a kind of local Knudsen number
defined by

K�0��s,t� = Tw�s�1/2K0/��0��s,t� , �11�

��0��s , t� and �C�s , t� are functions of s and t �see below�, and
�P and �T are the solutions of the specific boundary-value
problems of the linearized BGK model, which are described
in Sec. II B. It turns out that �P and �T are odd in �s and
even in �z �see Sec. II B�. Thus, the macroscopic quantities
obtained from the above f �0� and f �1� are as follows:

��0� = ��0��s,t�, u�0� = 0, T�0� = Tw�s� , �12a�

��1� = �C�s,t���0��s,t� , �12b�

us�1� = uP�r,s,t�
�

�s
ln ��0��s,t�

+ �uP�r,s,t� + uT�r,s,t��
d

ds
ln Tw�s� , �12c�

ur�1� = 0, T�1� = 0, �12d�

where

uJ =
1

��0�
	 �s�J�r,

�


Tw

;K�0��s,t�,��s�� f �0�d�

= 
Tw	 �s�J�r,�;K�0��s,t�,��s��E�����d� �J = P,T� ,

�13�

� = �/
Tw, E����� = �−3/2 exp�− ���2� . �14�

The dimensionless density of the gas per unit length of s
�linear density� is defined by

�̄�s,t� = 	
−1/2

1/2

��r,s,t��1 − �r�dr . �15�

With Eqs. �9� and �12�, we have

�̄�s,t� = ��0��s,t��1 + �C�s,t�	� + O�	2� . �16�

If we admit the error of O�	2� in �̄�s , t�, it is described by the
following equation:

�

�t
�̄�s,t� +

�

�s
M�s,t� = 0, �17a�

M�s,t� = 
Tw�s�MP�K�s,t�, ���s���
�

�s
�̄�s,t�

+
�̄�s,t�

Tw�s�

MP�K�s,t�, ���s���

+ MT�K�s,t�, ���s����
d

ds
Tw�s� , �17b�

where

K�s,t� = Tw�s�1/2K0/�̄�s,t� �K0 = �
�/2�Kn� , �18�

which corresponds to the local Knudsen number, and
MP�K , ���� and MT�K , ���� are the functions of two variables
obtained numerically in Ref. 15. Equation �17� is solvable
numerically with the database15 of MP and MT. Since the
unknown �̄�s , t� is contained in K�s , t�, Eq. �17� is a nonlin-
ear equation of diffusion type. Note that �̄=� within the
present approximation.

We note here that MP and MT are, respectively, ex-
pressed in terms of �P and �T as
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MJ�K, ���� = 	
−1/2

1/2 	 �s�J�r,�;K,��E�����d�dr �J = P,T� .

�19�

Equation �17� is the consequence of the solvability condi-
tions for f �2� and f �3� incorporated suitably. Therefore, in or-
der to derive Eq. �17�, we need to proceed to f �3�. However,
the essential information is contained in the first-order solu-
tion f �1�.

Equation �17� describes the mass conservation, and M
indicates the mass-flow rate of the gas. More precisely, if we

denote by M̃�s̃ , t̃� the �dimensional� mass flow of the gas �per
unit time and per unit thickness in the x̃3 direction� in the
direction of � through the normal cross section at position s̃
and at time t̃, then it is related to M as

M̃�s̃, t̃� = �0�2RT0�1/2D�M�s,t� + O�	2��	 . �20�

As seen from Eq. �12�, T is equal to Tw except for the error
of O�	2�.

It should be mentioned that macroscopic models like Eq.
�17�, based on the assumption that the width of a channel is
much shorter than its length, have a long history; see, e.g.,
Refs. 27–29 in addition to Refs. 24–26 for applications and
Refs. 30–33 for rigorous mathematical study.

B. Connection condition

When the curvature ��s� of the median curve of the
channel changes discontinuously, Eq. �17� is, in general, not
applicable to the vicinity of the point. However, if we use
suitable connection conditions there, Eq. �17� can be ex-
tended to the whole channel in such a way that it describes
the correct behavior of the gas except in the neighborhood of
the point where the curvature changes discontinuously.

Let s=s0 be the point at which the curvature ��s�
changes discontinuously. We assume that the wall tempera-
ture Tw�s� is continuous there, although its derivative dTw /ds
may be discontinuous. Then, the following connection con-
dition is imposed at s=s0:

��̄�+ = ��̄�−�1 + d	�, M+ = M−, �21�

where the superscripts + and � indicate the limiting values
at s=s0+0 and s=s0−0, respectively. It should be noted that
there arises a jump of O�	� in �̄. The coefficient for the jump
d depends on the limiting values of K�s , t�, ��s�, Tw�s�, the
unknown ��s , t�, and so on. Condition �21�, including the
jump coefficient d, is obtained by analyzing the original
BGK system in the vicinity of s=s0 �see Ref. 15 for details�.

In the present paper, when we apply the connection con-
dition �21�, we use ��̄�+= ��̄�−, neglecting the terms of O�	�.
Therefore, the result contains the error of the order of 	.

Equations �17� and �21� can be solved numerically with
appropriate boundary conditions and initial condition.

IV. EXTENSION TO THE ES MODEL

The macroscopic system summarized in Sec. III A is
based on the BGK model. In this section, we try to extend it
�partially� for the ES model.

A. ES model

The ES model in the dimensionless form is given by
Eq. �4a� with JBGK�f� replaced by the following JES�f�:18–20

JES�f� = ��G��,u,T� − f� , �22a�

G��,u,T� =
�

�3/2�T �1/2exp�− �� − u�tT −1�� − u�� , �22b�

� =	 fd�, u =
1

�
	 �fd�, T =

2

3�
	 �� − u�2fd� , �22c�

T = �1 − ��TI + ��p/�� , �22d�

p = 2	 �� − u��� − u�t fd� , �22e�

where T and p are the 3�3 symmetric matrices, I is the
3�3 identity matrix, �T � and T −1 are the determinant and
the inverse matrix of T, respectively, the superscript t indi-
cates the transpose operation, and �� �−1 /2,1� is the param-
eter to adjust the Prandtl number. p is the dimensionless
stress tensor, whose dimensional counterpart is p̃= p̃0p. The
mean free path l0 in Eq. �5� is defined, as in the case of the

BGK model, by l0= �8RT̃0 /��1/2 /AES�̃0, where AES is a con-
stant such that AES�̃ is the collision frequency of the gas
molecules. This model leads to the following expressions of
the viscosity �, the thermal conductivity �, and the Prandtl
number Pr:

� =
1

1 − �

p̃

AES�̃
, � =

5R

2

p̃

AES�̃
, Pr =

5R

2

�

�
=

1

1 − �
. �23�

For the BGK model �, �, and Pr are given by Eq. �23� with
�=0 and AES replaced by ABGK.

B. Macroscopic system

By repeating the same asymptotic analysis as in Ref. 15
on the basis of the ES model, we can derive the macroscopic
system corresponding to Eqs. �17� and �21�. Here, we have
carried out the analysis up to one order less than that in Ref.
15. According to the result, f �0� is the same as in Eq. �10a�,
and f �1� is of the same form as in Eq. �10b�, with �P and �T

being the solutions of the specific boundary-value problems
of the linearized ES model �see Sec. II B�. In addition, if we
admit the error of O�	� in the linear density �̄�s , t� �Eq. �15��
as

�̄�s,t� = ��0��s,t� + O�	� , �24�

instead of Eq. �16�, then the equation for �̄�s , t� is of the
same form as Eq. �17�. The difference between the BGK
model and the ES model arises only in the functions
MP�K , ���� and MT�K , ����. Corresponding to Eq. �24�, we
need to replace Eq. �20� by

M̃�s̃, t̃� = �0�2RT0�1/2D�M�s,t� + O�	��	 , �25�

and the connection condition �21� by
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��̄�+ = ��̄�−, M+ = M−. �26�

C. Basic problems and MP and MT

The functions �P�r ,� ;K ,�� and �T�r ,� ;K ,�� occur-
ring in Eqs. �10b�, �13�, and �19� are given by the solutions
of the auxiliary boundary-value problems of the linearized
BGK or ES model �see Sec. 2.2.2 of Ref. 15�. To be more
specific, the problem for �P corresponds to a circulating flow
between two coaxial circular cylinders driven by a constant
�small� pressure gradient in the circumferential direction, and
that for �T corresponds to a circulating flow in the same
geometry driven by a constant �small� gradient of the surface
temperature of each cylinder in the circumferential direction.
As stated in Ref. 15, such flows are physically unrealistic
because the pressure of the gas or the temperature of the

cylinders becomes multivalued. However, the problems for
�P and �T themselves make sense mathematically, and MP

and MT in Eq. �19� are interpreted as the mass-flow rates of
the artificial Poiseuille flow and thermal transpiration in-
duced in the circumferential direction between two coaxial
circular cylinders.

The solutions �P and �T can be obtained consistently by
assuming that they are odd in �s and even in �z. With this
assumption, the equation becomes

D�J = �1/K�L��J� − IJ �J = P,T� , �27a�

D = �r
�

�r
+

�

1 − �r
�r�s

�

��s
−

�

1 − �r
�s

2 �

��r
, �27b�

IP = �1 − �r�−1�s, IT = �1 − �r�−1�s����2 − 5
2� , �27c�

L��J� = �LBGK��J� = 2Us��J��s − �J �for BGK model�
LES��J� = 2Us��J��s + 2��s�rPsr��J� − �J �for ES model� ,

� �27d�

Us��J� =	 �s�JE�����d�, �27e�

Psr��J� = 2	 �s�r�JE�����d� , �27f�

and the boundary condition reduces to

�J = 0 for �r � 0 at r = 
 1/2. �28�

Now we derive the relation between the solution of Eqs.
�27� and �28� for the BGK model and that for the ES model.
Let us denote the former solution by �J

BGK and the latter by
�J

ES. Suppose that we have a function CJ�r� that satisfies

D��sCJ� = �2�/K��r�sPsr��J
BGK� , �29�

and vanishes at r= 
1 /2. If we let

�J = �J
BGK + �sCJ, �30�

then we have

Us��J� = Us��J
BGK� + �1/2�CJ, Psr��J� = Psr��J

BGK� .

�31�

Therefore, it follows from Eq. �27� that

D�J = D�J
BGK + D��sCJ�

= �1/K��2Us��J
BGK��s − �J

BGK�

+ �2�/K��r�sPsr��J
BGK� − IJ

= �1/K��2Us��J��s − �J� + �2�/K��r�sPsr��� − IJ

= �1/K�LES��J� − IJ, �32�

and from Eq. �28� that

�J = 0 for �r � 0 at r = 
 1/2. �33�

Equations �32� and �33� mean that �J is the solution of Eqs.
�27� and �28� for the ES model, i.e., �J=�J

ES.
Then, the problem is to find CJ�r�. Equation �29� gives

dCJ�r�
dr

+
�

1 − �r
CJ�r� =

2�

K
Psr��J

BGK� . �34�

On the other hand, by integrating Eq. �27� �for the BGK
model� multiplied by �sE over the whole molecular velocity
space, we have

d

dr
�1 − �r�2Psr��J

BGK�� = − �1 − �r��J, �35�

where �P=1 and �T=0. If we eliminate Psr��J
BGK� from Eqs.

�34� and �35�, we obtain the second-order ordinary differen-
tial equation for CJ�r�, which can be solved analytically un-
der the condition CJ�
1 /2�=0. To summarize, �J

ES is ex-
pressed in terms of �J

BGK as follows:

�J
ES = �J

BGK + �sCJ�r� �J = P,T� , �36�

where

CP�r� = − ��/�2K���1 − �r�ln�1 − �r� + c0�1 − �r�−1

+ c1�1 − �r�� , �37a�

c0 =
1

2�
�1 − �2/4�2�ln�1 + �/2� − ln�1 − �/2�� , �37b�
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c1 = −
1

2�
��1 + �/2�2ln�1 + �/2� − �1 − �/2�2ln�1 − �/2�� ,

�37c�

and

CT�r� = 0. �38�

Note that concerning �T, the ES model gives the same solu-
tion as the BGK model.

From Eqs. �13�, �19�, �36�, �37a�–�37c�, and �38�, we
obtain

uP
ES = uP

BGK + �
Tw/2�CP�r� , �39a�

MP
ES = MP

BGK +
1

2
	

−1/2

1/2

CP�r�dr

= MP
BGK +

�

4�2K

��1 −
1

�2��1 − �2/4�ln�1 + �/2
1 − �/2��2� , �39b�

and

uT
ES = uT

BGK, MT
ES = MT

BGK, �40�

where uJ
ES and MJ

ES indicate uJ and MJ obtained with �J

=�J
ES, and uJ

BGK and MJ
BGK those obtained with �J=�J

BGK.
Thus, we can obtain the numerical data of MP�K , ���� and
MT�K , ���� for the ES model immediately from those for the
BGK model.15

In summary, if one admits the error of O�	�, the macro-
scopic equation �17� and the connection condition �21� �or
Eq. �26�� have been extended to the ES model.

V. APPLICATIONS OF MACROSCOPIC SYSTEM

In this section, we show some examples of the applica-
tion of the macroscopic system summarized in Sec. III. Un-
der appropriate initial and boundary conditions, the system
consisting of Eqs. �17� and �21� describes the time evolution
of the density distribution and mass-flow rate along a curved
channel. Here, we consider two types of boundary condition
at the end of the channel.

�i� Open end: the gas flows through the end.
�ii� Closed end: the mass flow vanishes at the end.

The results that will be shown in Sec. V A are based on
the BGK model, and the comparison between the BGK
model and the ES model will be given in Sec. V B.

A. Flow caused by pressure difference or temperature
gradient

We first consider a twisty channel with length Ls and
width D. Both ends are open, and the pressure at one
end �s̃=0� is kept at p̃0, whereas that at the other end
�s̃=Ls� is kept at p̃1. The temperature of the channel walls

changes from T̃0 to T̃1 linearly in s̃, so that T̃w�s̃�= T̃0

+ ��T̃1− T̃0� /Ls�s̃. Therefore, the density at s̃=0 and that at

s̃=Ls are p̃0 /RT̃0 and p̃1 /RT̃1, respectively. We investigate a
steady flow through the channel in this situation with interest
in the effect of curvature of the channel. The flow caused
by the pressure difference is the Poiseuille-type flow, and
that caused by the temperature gradient is the thermal
transpiration.

Since ��̄ /�t=0 for steady flows, Eq. �17� reduces to an
ordinary differential equation, which is described, together
with the end conditions, as follows:

dM/ds = 0 �0 � s � 1� , �41a�

M = 
Tw�s�MP�K�s�, ���s���
d�̄�s�

ds

+
�̄�s�


Tw�s�
MP�K�s�, ���s��� + MT�K�s�, ���s����

d

ds
Tw�s� ,

�41b�

K�s� = K0

Tw�s�/�̄�s� �K0 = �
�/2�Kn� , �41c�

Tw�s� = 1 + �T̃1/T̃0 − 1�s , �41d�

and

�̄ = 1 at s = 0, �42a�

�̄ = �p̃1/p̃0��T̃0/T̃1� at s = 1. �42b�

Here, Kn is the Knudsen number at temperature T̃0 and pres-
sure p̃0.

1. Archimedes’ spiral

As the first example, let us consider a channel, whose
median curve is a segment of Archimedes’ spiral, which is
expressed by

r̃ = a� �0 � � � �max� , �43�

where �r̃ ,�� is a polar coordinate system in the x̃1x̃2 plane,
and a and �max are constants. Then, the curve length s̃ and
the curvature �̃ are expressed in terms of � as follows:

s̃��� =
a

2
��
�2 + 1 + log�� + 
�2 + 1�� , �44a�

FIG. 2. Channel of Archimedes’ spiral shape ��max=8��.
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�̃��� = −
�2 + 2

a��2 + 1�3/2 . �44b�

We consider four different channels given by �max=2�, 4�,
8�, and 10� and suppose that they are of the same length Ls.
The channel with �max=8� is shown in Fig. 2. For all these
channels, we adjust the parameter a in such a way that the
length to width ratio Ls /D is the same and is 636.08 �i.e.,
	=D /Ls=0.001 572 1�. The value of a /D for each channel is
as follows: a /D=14.96 ��max=2��, 3.935 ��max=4��, 1.000
��max=8��, and 0.6415 ��max=10��.

Figure 3 shows the steady mass-flow rate when only the

pressure difference is applied �T̃1 / T̃0=1�, whereas Fig. 4
shows that when only the temperature gradient is applied
�p̃1 / p̃0=1�. Figures 3�a� and 3�b� show the results for
p̃1 / p̃0=1.5 and 3, respectively; Figs. 4�a� and 4�b� those for

T̃1 / T̃0=1.5 and 3, respectively. In each figure, the dimension-
less mass-flow rate M �Eq. �20�� is shown as a function of
the Knudsen number Kn. The dashed line indicates the result
for the straight channel. The values of M for the free-
molecular flow �Kn=�� corresponding to Figs. 3 and 4 are
shown in Tables I and II, respectively. In the Poiseuille-type
flow �Fig. 3�, the effect of curvature manifests itself for Kn
greater than around 2–3. The reduction of the mass-flow rate
is more eminent for larger �max because the channel has more
turns. One observes the minimum of the magnitude of the

mass-flow rate at an intermediate Knudsen number �the so-
called Knudsen minimum� also for spiral channels. In
Table III, we show the dimensionless mass-flow rate of the

Poiseuille-type flow �T̃1 / T̃0=1� through the channel with
�max=8�, together with that through the straight channel, for
Kn=2, 5, and 10 and for some different values of p̃1 / p̃0. In
the thermal transpiration �Fig. 4�, the effect of curvature is
well visible only for Kn greater than around 6–8. It should
be noted, however, that the mass-flow rate for the curved
channels is slightly larger than that for the straight channel
for a range of Kn, 2�Kn�10, and the smaller the �max, the
wider the range. In both the Poiseuille-type flow and the
thermal transpiration, the magnitude of the dimensionless
mass-flow rate becomes infinite as Kn tends to infinity �the
free-molecular limit� for the 2D straight channel, whereas it
remains finite for the spiral channels �see Tables I and II�.
Because of this difference at the free-molecular limit, the
effect of the curvature is more significant for larger Kn.

2. Channels of complex shape

Next, giving a formula of the curvature, we try to recon-
struct channels of complex shape. Let us consider the curva-
ture �̃�s̃� defined by the following equation:

FIG. 3. Mass-flow rate of the flow
through a channel of Archimedes’ spi-
ral shape ��max=2�, 4�, 8�, and 10��
induced by the pressure difference

�T̃1 / T̃0=1�: �a� p̃1 / p̃0=1.5 and �b�
p̃1 / p̃0=3. The dimensionless mass-
flow rate M �cf. Eq. �20�� is plotted vs
Kn. The dashed line indicates the re-
sult for the straight channel.

FIG. 4. Mass-flow rate of the flow
through a channel of Archimedes’ spi-
ral shape ��max=2�, 4�, 8�, and 10��
induced by the temperature gradient

�p̃1 / p̃0=1�: �a� T̃1 / T̃0=1.5 and �b�
T̃1 / T̃0=3. The dimensionless mass-
flow rate M �cf. Eq. �20�� is plotted vs
Kn. The dashed line indicates the re-
sult for the straight channel.
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�̃�s̃� = − �b/2��sin�10�s̃/Ls� + 1� �0 � s̃ � Ls� . �45�

If we let Ls /D=200 �i.e., 	=0.005� and take bD=0.5, 1.0,
and 1.5, then we have the channels shown in Figs. 5�a�–5�c�.
These channels intersect themselves, but we assume that the
intersections are fictitious two-level crossings, that is, the
flow is unidirectional at each intersection and forbidden to go
into the crossing channel. This setting is not realistic for 2D
channels. Nevertheless, we consider such geometries as an
example that demonstrates the powerfulness and usefulness
of the macroscopic equation �17� for channels of complex
shape. These geometries become realistic as soon as the mac-
roscopic system is extended to a curved pipe in the three-
dimensional space.

The steady mass-flow rate through the channels in
Fig. 5 is shown in Fig. 6. More specifically, the mass-flow
rate when only the pressure difference is imposed

�p̃1 / p̃0=1.5, T̃1 / T̃0=1� is shown in Fig. 6�a�, whereas
that when only the temperature gradient is imposed

�p̃1 / p̃0=1 , T̃1 / T̃0=1.5� is shown in Fig. 6�b�. In each figure,
the dimensionless mass-flow rate M �Eq. �20�� is shown as a
function of the Knudsen number Kn, and the dashed line
indicates the result for the straight channel.

As in the case of the channels of Archimedes’ spiral
shape, the effect of curvature of the channel is more signifi-
cant for large Knudsen numbers. However, the effect is vis-
ible for smaller Knudsen numbers in the present case, and it
is more significant on the whole. In particular, in the
Poiseuille-type flow �Fig. 6�, the effect is quite visible even
for small Knudsen numbers. In contrast to Fig. 3 for
Archimedes’ spiral, the minimum of the magnitude of the
mass-flow rate at an intermediate Knudsen number is not
clear in Fig. 6.

The Poiseuille-type flow is subject to a resistance ex-
erted by the channel wall. One expects a larger resistance for
curved channels intuitively, and it is true as seen from Figs. 3
and 6. However, in the case of thermal transpiration, the
effect of the bend of the channel walls is not clear because
the flow is induced by the walls themselves. In fact, the
reduction of the magnitude of the mass-flow rate caused by

the bend appears at higher Knudsen numbers than in the case
of the Poiseuille-type flow, as seen from Figs. 3, 4, 6, and 7.
In general, by using the thermal transpiration, one can trans-
port the gas from a lower-pressure reservoir to a higher-
pressure one against a pressure gradient. The present results
indicate that when the Knudsen number is not very small, the
transportation can be more efficient if a curved or twisty
channel is used instead of a straight channel.

B. Knudsen pump using the effect of curvature

If two reservoirs containing a rarefied gas are connected
by a channel with a temperature gradient, the gas is trans-
ported by the thermal transpiration. As the final steady state,
one can sustain the pressure difference between the two res-
ervoirs by the channel. In other words, the channel acts as a
pump or a compressor without any moving parts. However,
if we want to pump the gas against a large pressure differ-
ence or to sustain a large pressure difference, we need to
impose a very large temperature difference between both
ends of the channel, which is not practical. This difficulty
can be overcome by using a periodic temperature distribution
and a periodic change of the channel width. Such a device
has long been known and is called the Knudsen pump or
compressor.34,35 In recent years, it has been revived as a non-

TABLE I. Dimensionless mass-flow rate M �cf. Eq. �20�� through a channel
of Archimedes’ spiral shape at Kn=� �free-molecular flow�: flow induced

by the pressure difference �T̃1 / T̃0=1�.

p̃1 / p̃0 �max=2� �max=4� �max=8� �max=10� Straight

1.5 �0.575 �0.533 �0.485 �0.469 −�

3 �2.301 �2.133 �1.942 �1.878 −�

TABLE II. Dimensionless mass-flow rate M �cf. Eq. �20�� through a channel
of Archimedes’ spiral shape at Kn=� �free-molecular flow�: flow induced
by the temperature gradient �p̃1 / p̃0=1�.

T̃1 / T̃0 �max=2� �max=4� �max=8� �max=10� Straight

1.5 0.211 0.196 0.178 0.172 �

3 0.486 0.451 0.414 0.397 �

TABLE III. Dimensionless mass-flow rate M �cf. Eq. �20�� through a chan-
nel of Archimedes’ spiral shape for the Poiseuille-type flow at Kn=2, 5,
and 10.

Kn p̃1 / p̃0 Archimedes ��max=8�� Straight

2 1.1 −7.7701�10−2 −7.8795�10−2

2 1.5 −3.8487�10−1 −3.8956�10−1

2 2.0 −7.6620�10−1 −7.7446�10−1

2 3.0 �1.5352 �1.5493

2 5.0 �3.1485 �3.1725

5 1.1 −8.3576�10−2 −8.8084�10−2

5 1.5 −4.1108�10−1 −4.2991�10−1

5 2.0 −8.0951�10−1 −8.4122�10−1

5 3.0 �1.5837 �1.6337

5 5.0 �3.1018 �3.1773

10 1.1 −8.8235�10−2 −9.8669�10−2

10 1.5 −4.3500�10−1 −4.7928�10−1

10 2.0 −8.5699�10−1 −9.3280�10−1

10 3.0 �1.6734 �1.7926

10 5.0 �3.2411 �3.4152

FIG. 5. Channels given by Eq. �45�: �a� bD=0.5, �b� bD=1.0, and �c�
bD=1.5.
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mechanical pump in the fields of microfluidics and vacuum
technology �see Ref. 23�. We consider this problem in this
subsection.

We start with the case of a single unit, that is, an
S-shaped channel with one end closed and the other end
open, where the pressure is kept at p̃0 �Fig. 8�a��. The chan-
nel consists of two semicircular channels, the median curves
of which have the curvatures �̃1=1 /R1 and �̃2=−1 /R2 �thus,
the radii R1 and R2�, respectively, so that the channel length

is Ls=��R1+R2�. The temperature of the channel walls is T̃0

at the open end �s̃=0� as well as at the closed end �s̃=Ls� but

T̃1 at the junction �s̃=�R1�, and it changes linearly in s̃
�Fig. 8�b��. We assume that the channel width is much
shorter than the length of each channel �D /�R1

1, D /�R21�. We investigate the steady pressure distri-
bution along the channel with the help of the macroscopic
equation �17� and the connection condition �26� �we consider
�̄ up to O�1�, neglecting the terms of O�	� in this subsec-
tion�. More specifically, the equation is given by Eqs.
�41a�–�41c� in the ranges of 0�s�s� and s��s�1 with

Tw�s� =�1 + �T̃1/T̃0 − 1��s/s�� �0 � s � s��

T̃1/T̃0 − �T̃1/T̃0 − 1��s − s��/�1 − s�� �s� � s � 1� ,
�

�46a�

��s� = �D/R1 �0 � s � s��
− D/R2 �s� � s � 1� ,

� �46b�

where s�= �R2 /R1+1�−1, and s=s� indicates the junction; the
boundary and connection conditions are as follows:

�̄ = 1 at s = 0, �47a�

��̄�+ = ��̄�−, M+ = M− at s = s�, �47b�

M = 0 at s = 1, �47c�

where the superscripts 
 indicate the values at s=s�
0.
From the condition at s=1, the mass flow M vanishes
identically.

The pressure distribution along the channel obtained
by solving the system summarized in the preceding para-
graph is shown in Fig. 9, i.e., the dimensionless pressure
p̃ / p̃0�=�̄Tw� is plotted versus the dimensionless channel
length s̃ /Ls. Figure 9�a� shows the results for R1 /D=1, 2,

and 5 in the case of Kn=1, T̃1 / T̃0=1.5, and R2 /R1=2; Fig.
9�b� shows those for R2 /R1=1, 2, and 5 in the case of

Kn=1, T̃1 / T̃0=1.5, and R1 /D=2; Fig. 9�c� shows those for

T̃1 / T̃0=1.5, 2, 3, and 5 in the case of Kn=1, R2 /R1=2, and
R1 /D=2; and Fig. 9�d� shows those for Kn=0.1, 0.5, 1, and

FIG. 6. Mass-flow rate of the flow
through a channel of Fig. 5 �Eq. �45��
induced by the pressure difference

�T̃1 / T̃0=1�: �a� p̃1 / p̃0=1.5 and �b�
p̃1 / p̃0=3. The dimensionless mass-
flow rate M �cf. Eq. �20�� is plotted vs
Kn. The dashed line indicates the re-
sult for the straight channel.

FIG. 7. Mass-flow rate of the flow
through a channel of Fig. 5 �Eq. �45��
induced by the temperature gradient

�p̃1 / p̃0=1�: �a� T̃1 / T̃0=1.5 and �b�
T̃1 / T̃0=3. The dimensionless mass-
flow rate M �cf. Eq. �20�� is plotted vs
Kn. The dashed line indicates the re-
sult for the straight channel.
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10 in the case of T̃1 / T̃0=1.5, R2 /R1=2, and R1 /D=2. The
solid line indicates the results based on the BGK model, and
the dashed line those based on the ES model with the Prandtl
number Pr=2 /3 �see Eq. �23��. Figure 9 shows that when the
radius of the second semicircular channel is larger than that
of the first one, there arises a pressure rise at the closed end,
i.e., the pressure there is higher than that at the open end. The
pressure rise is larger for larger radius of the second channel
�Fig. 9�b��. For a fixed ratio of two radii �say R2 /R1=2�, the
pressure rise becomes smaller for a longer channel �i.e.,
larger R1 /D; Fig. 9�a��. Here, we should admit that the cases
of R1 /D=1 and 2 are not well compatible with the assump-
tion D /�R11. However, we may expect reasonable results
even for these cases �see the last paragraph in Sec. V B�.

We next consider the case of multiple units. Let us con-
sider the S-shaped channel with both ends open and call it a
unit �Fig. 10�a��. We connect many units as in Fig. 10�b� to
form a single and long twisty channel. If we join one end to
the reservoir with pressure p̃0 and close the other end of the
long channel, we can obtain a larger pressure rise at the
closed end. As an example, we show the steady pressure
distribution along the channel. That is, p̃ / p̃0 versus s̃ /Ls,
where Ls is the length of the unit, is shown in Fig. 11 in the

case of T̃1 / T̃0=1.5, Kn=1, R2 /R1=2, and R1 /D=2. Figure
11�a� is the result for 10 units, and Fig. 11�b� that for 100
units. In the figure, the result is shown for both the BGK
model and the ES model with Pr=2 /3. For the BGK model,

tank

FIG. 8. An S-shaped channel: �a� configuration and �b� distribution of the
wall temperature.

FIG. 9. Pressure distribution along the channel �single unit�. �a� Different

channel lengths: R1 /D=1, 2, and 5 �Kn=1, T̃1 / T̃0=1.5, and R2 /R1=2�. �b�
Different ratios of channel radii: R2 /R1=1, 2, and 5 �Kn=1, T̃1 / T̃0=1.5, and

R1 /D=2�. �c� Different temperature ratios: T̃1 / T̃0=1.5, 2, 3, and 5 �Kn=1,
R2 /R1=2, and R1 /D=2�. �d� Different Knudsen numbers: Kn=0.1, 0.5, 1,

and 10 �T̃1 / T̃0=1.5, R2 /R1=2, and R1 /D=2�. The solid line indicates the
results based on the BGK model, and the dashed line those based on the ES
model.

One unit

FIG. 10. The channel composed of S-shaped units: �a�
unit and �b� channel composed of S-shaped units.

FIG. 11. Pressure distribution along the channel �multiple units� for

T̃1 / T̃0=1.5, Kn=1, R2 /R1=2, and R1 /D=2: �a� 10 units and �b� 100 units.
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the pressure ratio p̃ / p̃0 at the closed end becomes 1.123
for 10 units and 2.454 for 100 units; for the ES model, that
becomes 1.135 for 10 units and 2.664 for 100 units. That is,
the ES model shows a compression ratio 8.6% higher than
that of the BGK model for 100 units. The present channel is
a variant of the Knudsen compressor composed of semicir-
cular and straight channels proposed in Refs. 10–12 and 15.

Finally, we give some miscellaneous comments. In the
comparison between the BGK and the ES models in Figs. 9
and 11, the mean free path for both models are assumed to be
the same, i.e., ABGK=AES. This means that the thermal con-
ductivity for the ES model is the same as that for the BGK
model �see Eq. �23� and the following sentence�. As men-
tioned at the end of the third sentence in Sec. V B, the cases
of R1 /D=1 and R1 /D=2 do not meet the condition D /�R1

1. In Ref. 15, however, some comparisons are made be-
tween the results based on the present macroscopic system
and those based on the direct numerical solution of the BGK
model, in the case of the Knudsen compressor composed of
semicircular and straight channels with both ends closed
�Figs. 9 and 10 in Ref. 15�. These comparisons indicate that
the macroscopic system is expected to give reasonably good
results even for the cases of R1 /D=1 and R1 /D=2. Another
important issue is to assess the validity of the BGK and ES
models in comparison with the Boltzmann equation. How-
ever, the open-end condition with a specified pressure em-
ployed in the examples in Sec. V is an idealized condition,
with the end effect being neglected. The open-end condition
should be a good approximation when an open end of a long
channel is connected to a very large reservoir. In this situa-
tion, however, it is hard to carry out a DSMC computation
with acceptable accuracy even in the single-unit case of the
present example shown in Fig. 9�a�. In this connection, it
should be mentioned that for the Knudsen compressor com-
posed of semicircular and straight channels with both ends
closed,12 the direct numerical solution of the BGK model
shows a good agreement with the DSMC result when the
number of unit �consisting of a semicircular and a straight
channel� is 2, 4, and 8 �see Fig. 15 in Ref. 12�.

VI. CONCLUDING REMARKS

In the present study, we have investigated rarefied gas
flows caused by a pressure gradient and/or by a wall-
temperature gradient through a two-dimensional channel of
various curved shapes numerically on the basis of the mac-
roscopic system derived in Ref. 15. The principal aim is to
investigate the effect of the curvature of the channel on these
flows, which has not been studied much in spite of its prac-
tical importance. In the process of the analysis, we have ex-
tended the macroscopic system, which was originally de-
rived using the BGK model, to the case of the ES model.
With this extension, the macroscopic equation does not
change its shape, whereas the two coefficients contained in it
need to be modified. In order to obtain the modified coeffi-
cients, we have to solve the two auxiliary problems, the cir-
culating flow in a two-dimensional ring caused by a pressure
gradient and that by a wall-temperature gradient, using the
ES model. However, we have shown that one of the coeffi-

cients is the same as the corresponding coefficient for the
BGK model, and that the other could be obtained from the
numerical data of the corresponding coefficient for the BGK
model by a simple conversion formula. Thus, we have just
exploited the database for the BGK model in Ref. 15 without
the reconstruction of the database for the ES model. Then,
the macroscopic system was applied to the Poiseuille-type
flow, the flow caused by the pressure difference between
both ends, and thermal transpiration, the flow caused by the
temperature gradient along the channel wall, through curved
channels of various shapes �Sec. V A�. We have also demon-
strated the possibility of making a variant of the Knudsen
compressor by imposing a periodic temperature distribution
on the channel of a periodic structure consisting of alter-
nately arranged large- and small-curvature channels
�Sec. V B�.

It should be emphasized that it is very hard �or practi-
cally impossible� to analyze the examples shown in the
present paper by the usual direct numerical simulation using
the Boltzmann equation and its model equations. We have
confirmed that the macroscopic system proposed in Ref. 15
is a very powerful tool to analyze rarefied gas flows through
a curved channel or gas flows through a curved micro-
channel.
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