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Abstract 17 

C1-microorganisms that can utilize C1-compounds, such as methane and methanol, are 18 

ubiquitous in nature, and contribute to drive the global carbon cycle between two major 19 

greenhouse gases, CO2 and methane. Plants emit C1-compounds from their leaves and 20 

provide habitats for C1-microorganisms. Among C1-microorganisms, 21 

Methylobacterium spp., representative of methanol-utilizing methylotrophic bacteria, 22 

predominantly colonize the phyllosphere and are known to promote the plant growth. 23 

This review summarizes the interactions between C1-mircroorganisms and plants that 24 

affect not only the fixation of C1-compounds produced by plants but also CO2 fixation 25 

by plants. We also describe our recent understanding of the survival strategy of C1-26 

microorganisms in the phyllosphere and the application of Methylobacterium spp. to 27 

improve rice crop yield. 28 
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1. Introduction 33 

Among compounds that have no carbon-carbon bond, the most oxidized compound CO2 34 

and the most reduced compound methane are two major greenhouse gases. Methane is 35 

the second most abundant greenhouse gas after CO2, and contributes approximately 36 

20% to global warming induced by long-lived greenhouse gases since pre-industrial 37 

times (Kirschke et al. 2013). The global carbon cycling between these two gases is 38 

called methane cycle (Fig. 1). According to several reports regarding the global methane 39 

budget, annual emission and sink of methane are estimated to be 560 Tg and 550 Tg, 40 

respectively (Kirschke et al. 2013; Saunois et al. 2016). Methane is produced by 41 

methanogenic archaea in anaerobic environments including those of anthropogenic 42 

origins, such as paddy fields. Most of the atmospheric methane (more than 80%) is 43 

oxidized by the hydroxy radical in the troposphere (Guenther 2002). In the methane 44 

cycle, biological oxidation of methane to CO2 is conducted by a group of 45 

microorganisms called C1-microorganisms (methylotrophs) that can utilize reduced C1-46 

compounds, including methane and methanol, as the sole source of carbon and energy. 47 

Primary oxidation of methane is performed not only by aerobic methanotrophic bacteria 48 

that are methane-utilizing methylotrophs, but also by anaerobic methanotrophic 49 

(ANME) archaea (Knief 2019). Methanotrophic bacteria oxidize methane generated in 50 

anoxic environments before it reaches the atmosphere as well as the atmospheric 51 

methane (Aronson, Allison and Helliker 2013).  52 

  C1-microorganisms inhabit various natural environments. Recently much attention 53 

has been paid to the above-ground part of plants called phyllosphere as major habitats 54 

for C1-microoganisms, since it has been reported that huge amount of methane and 55 

methanol are emitted from living plants (Fall and Benson 1996; Keppler et al. 2006; 56 

Nemecek-Marshall et al. 1995). Among microorganisms living in the phyllosphere, 57 

methanol-utilizing methylotrophic bacteria, Methylobacterium spp., also known as pink-58 

pigmented facultative methylotrophs (PPFMs), are dominant colonizers and some of 59 
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them are known to promote the plant growth (Dourado et al. 2015; Knief et al. 2012; 60 

Knief et al. 2010; Kumar et al. 2016). While plant-rhizobia and plant-mycorrhizae 61 

interactions in the root environments (rhizosphere) have been investigated for a long 62 

time, interactions between PPFMs and plants in the phyllosphere have come to be 63 

investigated in the last two decades. Furthermore, recently PPFMs are considered to 64 

contribute not only to the oxidation process from methane to CO2 in the global carbon 65 

cycle but also to CO2 fixation by plants (Fig. 1). 66 

  In this minireview, we summarize the carbon cycle mediated by C1-microorganisms 67 

and plants and describe the current understanding of survival strategies of PPFMs in the 68 

phyllosphere. Finally, we also discuss the application of PPFMs to improve rice crop 69 

yield. 70 

 71 

2. Emission of C1-compounds from plants and plant colonization of C1-72 

microorganisms 73 

  Methanol that originates from methylesters in the plant cell wall constituent pectin is 74 

emitted from plant leaves and its annual emission is estimated to be 100 Tg (Fall and 75 

Benson 1996; Galbally and Kirstine 2002; Henrot et al. 2017). The concentration of 76 

methanol emitted from plants to the air phase has been reported to fluctuate depending 77 

on the opening and closing of stomata (Nemecek-Marshall et al. 1995). But we reported 78 

that the concentration of methanol available for microorganisms on the surface of 79 

Arabidopsis thaliana leaves oscillates during the daily light–dark cycle (Kawaguchi et 80 

al. 2011). By using a cell-based methanol sensor of the methylotrophic yeast Candida 81 

boidinii in which the fluorescent protein is expressed under the methanol-induced gene 82 

promoter, we showed that the methanol concentration in the phyllosphere was higher in 83 

the dark period and lower in the light period, which was opposite to that of atmospheric 84 

methanol. We think that methanol, which is accumulated in the spongy parenchyma of 85 

the leaf during stomatal closing in the dark period, diffuses to the surface of the leaf. 86 
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  The global leaf area is estimated to be twice as large as the surface of the earth and 87 

provides habitats for bacterial populations of 1026–1027 cells, as well as for lower 88 

numbers of archaea and fungi (Lindow and Brandl 2003). On such huge phyllospheric 89 

environment, methanol-utilizing Methylobacterium is a major genus among 90 

phyllospheric bacteria; for example, this genus has been shown to be the most dominant 91 

in both dicots and monocots, such as soybean, clover, and rice (Delmotte et al. 2009; 92 

Knief et al. 2012).  93 

  Methane emission from plants was firstly reported in 2006 (Keppler et al. 2006). In 94 

addition to the methane emitted via aerenchyma from soil environments, some plants 95 

aerobically produce methane, which is assumed to be formed during the synthesis of 96 

pectin methyl ester groups along with photosynthesis (Aulakh et al. 2000; Bruhn et al. 97 

2012). Annual emission of methane from plants is estimated to be 10-69 Tg (Butenhoff 98 

and Khalil 2007; Kirschbaum et al. 2006; Parsons et al. 2006). According to some 99 

previous reports, metagenomic and metaproteomic analyses did not detect 100 

methanotrophs on leaves of soybean, clover, A. thaliana, and so on (Delmotte et al. 101 

2009; Yang et al. 2001), but other studies detected small populations on leaves of rice, 102 

soybean, and so on (Finkel et al. 2011; Ikeda et al. 2011; Knief et al. 2012). Recently 103 

we demonstrated that methanotrophs could be cultivated from 12% of the phyllosphere 104 

samples (Iguchi et al. 2012). Furthermore, we found that both submerged and floating 105 

aquatic plants serve as a niche for methanotrophs and that these hydrophytes associated 106 

with methanotrophs have higher methane oxidation activity than emergent parts of 107 

plants (Iguchi et al. 2019; Yoshida et al. 2014). 108 

 109 

3. Distribution of PPFMs in the phyllosphere and species level specificity between 110 

PPFMs and plants 111 

  Although a number of PPFM strains have been isolated from plant-related materials, 112 

the species-level distribution of PPFMs in the phyllosphere and the species-level 113 



6 

 

specificity between PPFMs and plants have not been well-understood until recently. We 114 

investigated the distribution of PPFMs on the leaves of various vegetables, and revealed 115 

that the number of PPFMs on the leaves differed among the plants although they were 116 

grown at the same farm (ca. 100 m2) (Mizuno et al. 2012). Thus, the plant species 117 

affects the population size of PPFMs on leaves. Furthermore, we found that PPFMs 118 

were highly abundant on leaves of green perilla (Perilla frutescens viridis (Makino) 119 

Makino) and red perilla (Perilla frutescens crispa (Thunb.) Makino). The PPFMs 120 

isolated from red perilla seeds harvested in different years and those isolated from red 121 

perilla leaves planted at four geographically different places in Japan had 16S rRNA 122 

sequences identical to that of the representative strain Methylobacterium sp. OR01 123 

isolated from red perilla seeds (Mizuno et al. 2013). These results indicate the 124 

geographically independent species-level specific PPFM-perilla plant associations. We 125 

also confirmed the direct transmission of Methylobacterium sp. OR01 from red perilla 126 

seeds to their leaves by using the antibiotics-resistant strain OR01 (Mizuno et al. 2013).  127 

 128 

4. Nutrient sources for PPFMs in the phyllosphere 129 

  In the phyllosphere, PPFMs utilize compounds supplied by plants as their nutrient 130 

sources for growth and survival (Fig. 2). The ability of PPFMs to utilize methanol is 131 

thought to be one of the reasons why these are the dominant bacteria colonizing the 132 

phyllosphere. In previous studies using the representative model strain 133 

Methylobacterium extorquens AM1, (which has recently been re-classified as 134 

Methylorubrum extorquens (Green and Ardley 2018)), mutant strains lacking mxaF or 135 

xoxF, which encode the large subunit of Ca2+-dependent methanol dehydrogenase 136 

(MDH) or a lanthanides-dependent MDH, respectively, were shown to be less 137 

competitive than the wild-type strain for colonizing plant leaves (Schmidt et al. 2010; 138 

Sy et al. 2005). These results suggest that the ability to utilize methanol as a carbon 139 

source is advantageous for PPFMs for growth and survival in the phyllosphere. On the 140 
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other hand, these mutant strains were still able to colonize plant leaves, indicating that 141 

PPFMs utilize other carbon sources besides methanol in the phyllosphere. Indeed, the 142 

presence of sugar compounds including glucose on the leaf surface has been reported 143 

(Mercier and Lindow 2000).  144 

  Some trace cofactors such as vitamins have also been reported to be present on the 145 

leaf surface (Gargallo-Garriga et al. 2016), and can be utilized by PPFMs in the 146 

phyllosphere (Rodionov et al. 2009). Recently, a number of PPFMs isolated from living 147 

plant samples, including Methylobacterium sp. OR01, were found to require B vitamins 148 

for their growth on a minimal medium, and most B vitamin-auxotrophic PPFMs 149 

required pantothenate (vitamin B5) (Yoshida et al. 2019). Further analysis revealed that 150 

Methylobacterium sp. OR01 could not synthesize β-alanine, which is one of the 151 

precursors of pantothenate biosynthesis. β-Alanine and its biosynthetic precursors, 152 

spermine, spermidine, 5,6-dihydrouracil, N-carbamoyl-β-alanine, and 3-153 

hydroxypropanoate, restored the growth of Methylobacterium sp. OR01 in minimal 154 

medium. This strain could colonize leaves of A. thaliana cultivated on a plant medium 155 

without pantothenate or its precursors, and furthermore, pantothenate, β-alanine and 156 

several precursor compounds were detected in the slight wash solution of A. thaliana 157 

leaves. These results suggest that pantothenate-auxotrophic PPFMs colonize the 158 

phyllosphere by utilizing not only pantothenate, but also β-alanine and some other 159 

precursors produced by the host plants. 160 

  When the plant colonization ability between the pantothenate auxotrophic 161 

Methylobacterium sp. OR01 and M. extorquens AM1, which is prototrophic for not only 162 

pantothenate but also other B vitamins, were compared, Methylobacterium sp. OR01 163 

was found to dominate over the non-auxotrophic strain AM1 on A. thaliana leaves 164 

(Yoshida et al. 2019). The auxotrophic Methylobacterium sp. OR01 can save the energy 165 

costs of the biosynthesis of pantothenate or β-alanine. Thus, the fitness advantage of the 166 

auxotrophic strain increased more than that of the prototrophic strain. This hypothesis is 167 
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supported by the recent report that half of the bacterial strains isolated from A. thaliana 168 

leaves had auxotrophic requirements for biotin, niacin, pantothenate, and/or thiamine 169 

(Ryback, Bortfeld-Miller and Vorholt 2022). 170 

 171 

5. Survival strategies of PPFMs to adapt to phyllosphere environments 172 

  The phyllosphere is thought to be a harsh environment and PPFMs in the 173 

phyllosphere are exposed to various kinds of environmental factors, such as diurnal 174 

temperature change, UV radiation, drought, osmotic pressure, reactive oxygen species 175 

(ROS), and low nutrients. As described above, methanol concentration on the leaf 176 

surface oscillates diurnally. Therefore, PPFMs must have some survival strategies to 177 

adapt to these diurnally changing environmental factors (Fig. 2). One such strategy is to 178 

regulate stress-response genes. It was reported that PhyR, which is a general stress 179 

response regulator, is involved in plant colonization of M. extorquens AM1 and other a-180 

proteobacteria (Gourion, Francez-Charlot and Vorholt 2008; Gourion, Rossignol and 181 

Vorholt 2006; Gourion et al. 2009). PhyR was first identified as a more abundantly 182 

produced protein by the proteome analysis of M. extorquens AM1 in the phyllosphere 183 

than in the rhizosphere. The phyR mutant strain was shown to be deficient in its plant 184 

colonization ability and was also shown to increase sensitivity to various stresses, such 185 

as heat, UV light, osmolarity, and ROS (Gourion, Francez-Charlot and Vorholt 2008; 186 

Gourion, Rossignol and Vorholt 2006). Thus, PhyR appears to be essential for plant 187 

colonization and the general stress response system regulated by PhyR might contribute 188 

to enhanced fitness in phyllosphere environments. We also revealed that PhyR was 189 

involved in resistance to heat shock and UV light in a methanotroph, Methylosinus sp. 190 

B4S isolated from a plant leaf (Iguchi et al. 2013). 191 

  Not only nutrients available for PPFMs, but also environmental conditions such as 192 

temperature and sun light diurnally change in the phyllosphere. We have investigated 193 

the physiological role of M. extorquens AM1 KaiC proteins, which are homologues of 194 



9 

 

the component of circadian clock generator in cyanobacteria (Iguchi et al. 2018). KaiC 195 

proteins in cyanobacteria have both autokinase and autophosphatase activities and the 196 

phosphorylation level of KaiC exhibits an environment-independent oscillation with a 197 

24 h period (Johnson, Mori and Xu 2008; Johnson et al. 2017). The Kai protein 198 

complex (KaiA, KaiB, and KaiC) regulates global gene expression through downstream 199 

regulators such as LabA. M. extorquens AM1 has two KaiC homologues, KaiC1 and 200 

KaiC2, in which serine residues corresponding to the phosphorylation sites of the 201 

cyanobacterial KaiC are conserved. We tested competitive colonization between the 202 

wild-type and gene-disrupted strains on A. thaliana and revealed that KaiC2 and LabA 203 

are necessary for optimal colonization of M. extorquens AM1 in the phyllosphere 204 

(Iguchi et al. 2018). In addition, the phosphorylation-defective mutant KaiC2m was 205 

unable to restore the colonization ability of the ∆kaiC2 strain, indicating that 206 

phosphoregulation of KaiC2 is important for colonization on plants.  207 

  M. extorquens AM1 exhibits temperature-dependent UV resistance (TDR). The 208 

survival ratio of the wild-type strain after UV treatment has been shown to increase with 209 

increasing growth temperatures (24–32 °C) (Iguchi et al. 2018). Further analyses 210 

revealed that the TDR phenotype was positively regulated by KaiC1 and negatively 211 

regulated by KaiC2. Based on the analyses of KaiC1 and KaiC2 protein levels and their 212 

phosphorylation status at different temperatures, we concluded that the amount of KaiC 213 

proteins and the phosphorylation state of KaiC2 control the UV resistance pathway in 214 

an integrated manner according to the growth temperature, thus allowing cells to adapt 215 

to changing environmental conditions. 216 

 217 

6. Positive interaction between plant and PPFMs: Improvement of rice crop yield 218 

in paddy fields 219 

  Some PPFMs are known to enhance seedling growth and total biomass of various 220 

plants. Plant growth promotion by PPFMs is thought to be achieved by the following 221 
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characteristics of PPFMs (Fig. 2) (Dourado et al. 2015; Yurimoto, Shiraishi and Sakai 222 

2021); i) they produce phytohormones, such as auxins and cytokinins, and the inhibitor 223 

of ethylene biosynthesis (i.e., 1-aminocyclopropane-1-carboxylate (ACC) deaminase) 224 

(Ortiz-Castro et al. 2009). ii) they induce systemic plant resistance against pathogens 225 

and diseases (Madhaiyan et al. 2004). iii) they also facilitate improvements in uptake of 226 

plant nutrients with their involvement in functions such as siderophore production, 227 

phosphate solubilization, and N2 fixation (Kumar et al. 2019). There have been 228 

scattered reports on improvement on yield by treatment with PPFMs (via seed 229 

inoculation or foliar spraying) under laboratory conditions or pot-scale cultivation, 230 

particularly for vegetables (Abanda-Nkpwatt et al. 2006; Ryu et al. 2006; Madhaiyan et 231 

al. 2006; Meena et al. 2012). However, improvement of crop yields by inoculation of 232 

PPFMs at the field level has not been well investigated. Recently, foliar spraying of 233 

PPFMs was found to improve rice crop yields in a commercial paddy field (Yurimoto et 234 

al. 2021). The crop yield of the sake-brewing rice cultivar Hakutsurunishiki was 235 

improved by foliar spraying of PPFMs in a commercial paddy field for over a five-year 236 

period. Interestingly, foliar spraying of not only living cells but also killed cells or a cell 237 

wall polysaccharide fraction gave positive effects on the rice crop yield (Fig. 3a). After 238 

optimization of the timing of PPFM inoculation, a one-time foliar spray of killed PPFM 239 

cells after the heading date was found to be effective in increasing the rate of ripening 240 

(Fig. 3b) and crop yield (16% increase in the unit yield, Fig. 3c). We also observed the 241 

greenization of rice seedling leaves by PPFM spraying, possibly due to the increase in 242 

plant chlorophyll content leading to an enhancement in photosynthetic activity. The 243 

mechanism of how PPFMs affect the rice crop yield after the heading date is still 244 

unclear; however, we speculate that a direct interaction of PPFM cell wall components 245 

with the plant might stimulate the plant cells to enhance photosynthetic activity during 246 

the translocation stage of rice growth (Yurimoto et al. 2021). 247 

 248 



11 

 

7. Conclusion and future perspectives 249 

  In this review, we described our recent understanding of the interaction between C1-250 

microorganisms and plants, particularly on the survival strategies of PPFMs in the 251 

phyllosphere and improvement of rice crop yield by them. Positive interactions between 252 

PPFMs and plants affect the global carbon cycle both through fixation of C1-253 

compounds produced by plants and CO2 fixation by plant photosynthesis (Fig. 1). We 254 

still need to better understand the basis of symbiotic interactions between methylotrophs 255 

and plants at the molecular level. 256 

  The practical use of the positive interactions between PPFMs and plants will lead to 257 

development of new technologies both in agriculture and in environmental 258 

sustainability. Since PPFM cells can be cultivated at high-cell density with methanol as 259 

a carbon source (Schrader et al. 2009), which can be derived from methane or 260 

renewable biomass, it is easy to prepare large amounts of cells for use in the field. 261 

Application of PPFMs to agriculture has the potential to reduce CO2 emission. Thus, the 262 

prospects of C1-microorganisms playing extremely important roles in the global carbon 263 

cycle are high.  264 
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Figure legends 446 

Figure 1. The global carbon cycle mediated by C1-miroorganisms and plants. Methane is 447 

generated from CO2 by methanogens and C1-microorganisms including methanotrophs 448 

and methanol-utilizing methylotrophs oxidize methane and other C1 compounds to 449 

CO2. This cycle is known as methane cycle. Recently, C1-microorganisms in the 450 

phyllosphere were found to utilize methane and methanol produced by plants. Positive 451 

interactions between PPFMs and plants enhance CO2 fixation and increase plant 452 

biomass (yield increase).  453 

 454 

Figure 2. Interactions between PPFMs and plants in the phyllosphere. PPFMs utilize 455 

nutrients such as methanol as a carbon source and other cofactors such as vitamins. 456 

PPFMs provide benefit to plants by producing plant hormones, enhancing nutrient 457 

uptake of plants, and inducing resistance to pathogens. PPFMs have various cellular 458 

functions for adapting to diurnally changing environmental factors in the phyllosphere.  459 

 460 

Figure 3. Summary of the effects of PPFM treatment on rice crop yields (cultivar 461 

Hakutsurunishiki). Graphs were replotted from the previously reported data (Yurimoto 462 

et al. 2021). (a) The weight of brown rice in a commercial paddy field in 2017 463 

following the indicated treatments. (b and c) The rate of ripening (b) and the unit yield 464 

(c) in 2018 after the indicated treatments.  465 
  466 
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