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Abstract. A smart contract is a program executed on a blockchain,
based on which many cryptocurrencies are implemented, and is being
used for automating transactions. Due to the large amount of money that
smart contracts deal with, there is a surging demand for a method that
can statically and formally verify them.
This tool paper describes our type-based static verification tool Helm-
holtz for Michelson, which is a statically typed stack-based language
for writing smart contracts that are executed on the blockchain platform
Tezos. Helmholtz is designed on top of our extension of Michelson’s
type system with refinement types. Helmholtz takes a Michelson pro-
gram annotated with a user-defined specification written in the form
of a refinement type as input; it then typechecks the program against
the specification based on the refinement type system, discharging the
generated verification conditions with the SMT solver Z3. We briefly
introduce our refinement type system for the core calculus Mini-Michel-
son of Michelson, which incorporates the characteristic features such as
compound datatypes (e.g., lists and pairs), higher-order functions, and
invocation of another contract. Helmholtz successfully verifies several
practical Michelson programs, including one that transfers money to an
account and that checks a digital signature.

1 Introduction

A blockchain is a data structure to implement a distributed ledger in a trustless yet
secure way. The idea of blockchains is initially devised for the Bitcoin cryptocur-
rency [12] platform. Many cryptocurrencies are implemented using blockchains,
in which value equivalent to a significant amount of money is exchanged.

Recently, many cryptocurrency platforms allow programs to be executed on a
blockchain. Such programs are called smart contracts [19] (or, simply a contract
in this paper) since they work as a device to enable automated execution of a
contract. In general, a smart contract is a program Pa associated with an account
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a on a blockchain. When the account a receives money from another account b
with a parameter v, the computation defined in Pa is conducted, during which
the state of the account a (e.g., the balance of the account and values that are
stored by the previous invocations of Pa) which is recorded on the blockchain
may be updated. The contract Pa may execute money transactions to another
account (say c), which results in invocations of other contracts (say Pc) during
or after the computation; therefore, contract invocations may be chained.

Although smart contracts’ original motivation was handling simple transac-
tions (e.g., money transfer) among the accounts on a blockchain, recent contracts
are being used for more complicated purposes (e.g., establishing a fund involving
multiple accounts). Following this trend, the languages for writing smart con-
tracts also evolve from those that allow a contract to execute relatively simple
transactions (e.g., Script for Bitcoin) to those that allow a program that is
as complex as one written in standard programming languages (e.g., EVM for
Ethereum and Michelson [1] for Tezos [4]).

Due to a large amount of money they deal with, verification of smart contracts
is imperative. Static verification is especially needed since a smart contract
cannot be fixed once deployed on a blockchain. Attack on a vulnerable contract
indeed happened. For example, the DAO attack, in which the vulnerability
of a fundraising contract was exploited, resulted in the loss of cryptocurrency
equivalent to approximately 150M USD [18].

In this paper, we describe our type-based static verifier Helmholtz3 for
smart contracts written in Michelson. The Michelson language is a statically- and
simply typed stack-based language equipped with rich data types (e.g., lists, maps,
and higher-order functions) and primitives to manipulate them. Although several
high-level languages that compile to Michelson are being developed, Michelson is
most widely used to write a smart contract for Tezos as of writing.

A Michelson program expresses the above computation in a purely functional
style, in which the Michelson program corresponding to Pa is defined as a function.
The function takes a pair of the parameter v and a value s that represents the
current state of the account (called storage) and returns a pair of a list of
operations and the updated storage s′. Here, an operation is a Michelson value
that expresses the computation (e.g., transferring money to an account and
invoking the contract associated with the account) that is to be conducted after
the current computation (i.e., Pa) terminates. After the computation specified
by Pa finishes with a pair of a storage value and an operation list, a blockchain
system invokes the computation specified in the operation list. This purely
functional style admits static verification methods for Michelson programs similar
to those for standard functional languages.

As the theoretical foundation of Helmholtz, we design a refinement type
system for Michelson as an extension of the original simple type system. In
contrast to standard refinement types that refine the types of values, our type

3 Hermann von Helmholtz (1821–1894), a German physicist and physician, was a
doctoral advisor of Albert A. Michelson (1852–1931), whom the Michelson language
is apparently named after.
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system refines the type of stacks. We briefly describe our type system in Section 3;
a detailed explanation is deferred to a future paper.

We show that our tool can verify several practical smart contracts. In addition
to the contracts we wrote ourselves, we apply our tool to the sample Michelson
programs used in Mi-cho-coq [3], a formalization of Michelson in Coq proof
assistant [21]. These contracts consist of practical contracts such as one that
checks a digital signature and one that transfers money.

We note that Helmholtz currently supports approximately 80% of the
whole instructions of the Michelson language. Another limitation of the current
Helmholtz is that it can verify only a single contract, although one often uses
multiple contracts for an application, in which a contract may call another by a
money transfer operation, and their behavior as a whole is of interest. We are
currently extending Helmholtz so that it can deal with more programs.

Our contribution is summarized as follows: (1) Definition of the core calculus
Mini-Michelson and its refinement type system; (2) Automated verification tool
Helmholtz for Michelson contracts implemented based on the type system
of Mini-Michelson; the interface to the implementation can be found at https:
//www.fos.kuis.kyoto-u.ac.jp/trylang/Helmholtz; and (3) Evaluation of Helm-
holtz with various Michelson contracts, including practical ones.

The rest of this paper is organized as follows. Before introducing the technical
details, we present an overview of the verifier Helmholtz in Section 2 using a
simple example of a Michelson contract. Section 3 introduces the core calculus
Mini-Michelson and its refinement type system. Section 4 describes the verifier
Helmholtz, a case study, and experimental results. After discussing related
work in Section 5, we conclude in Section 6.

2 Overview of Helmholtz and Michelson

We overview our tool Helmholtz in this section before presenting its technical
details. We also explain Michelson by example (Section 2.2) and user-written
annotation added to a Michelson program for verification purposes (Section 2.3).

2.1 Helmholtz

As input, Helmholtz takes a Michelson program annotated with (1) its specifi-
cation expressed in a refinement type and (2) additional user annotations such
as loop invariants. It typechecks the annotated program against the specification
using our refinement type system; the verification conditions generated during
the typechecking is discharged by the SMT solver Z3 [11]. If the code successfully
typechecks, then the program is guaranteed to satisfy the specification.

Helmholtz is implemented as a subcommand of tezos-client, the client
program of the Tezos blockchain. For example, to verify boomerang.tz in Figure 1,
we run tezos-client refinement boomerang.tz. If the verification succeeds,
the command outputs VERIFIED to the terminal screen (with a few log messages);
otherwise, it outputs UNVERIFIED.

https://www.fos.kuis.kyoto-u.ac.jp/trylang/Helmholtz
https://www.fos.kuis.kyoto-u.ac.jp/trylang/Helmholtz
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Fig. 1. boomerang.tz. The comment inside /* */ describes the stack at the program
point.

2.2 An Example Contract in Michelson

Figure 1 shows an example of a Michelson program called boomerang. A Michelson
program is associated with an account on the Tezos blockchain; the program is
invoked by transferring money to this account. This artificial program in Figure 1,
when it is invoked, is supposed to transfer the received money back to the account
that initiated the transaction.

A Michelson program starts with type declarations of its parameter, whose
value is given by contract invocation, and storage, which is the state that the
contract account stores. Lines 1–2 declare that the types of both are unit, the
type inhabited by the only value Unit. Lines 3–6 surrounded by << and >> are a
user-written annotation used by Helmholtz for verification; we will explain this
annotation later. The code section in Lines 8–24 is the body of this program.

Let us take a look at the code section of the program. In the following
explanation of each instruction, we describe the state of the stack after each
instruction as comments; stack elements are delimited by �.

– Execution of a Michelson program starts with a stack with one value, which
is a pair (param, st) of a parameter param and a storage value storage.

– CDR pops the pair at the top of the stack and pushes the second value of the
popped pair; therefore, after executing the instruction, the stack contains the
single value st.

– NIL pushes the empty list [] to the stack; the instruction is accompanied by
the type operation of the list elements for typechecking purposes.
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– AMOUNT pushes the nonnegative amount of the money sent to the account to
which this program is associated.

– PUSH mutez 0 pushes the value 0. The type mutez represents a unit of money
used in Tezos.

– IFCMPEQ b1 b2, if the state of the stack before executing the instruction
is v1 � v2 � tl, (1) pops v1 and v2 and (2) executes the then-branch b1

(resp., the else-branch b2) if v2 = v1 (resp., v2 �= v1). In boomerang, this
instruction does nothing if amount = 0; otherwise, the instructions in the
else-branch are executed.

– SOURCE at the beginning of the else-branch pushes the address src of the
source account, which initiated the chain of contract invocations that the
current contract belongs to, resulting in the stack src � [] � st.

– CONTRACT T pops an address addr from the stack and typechecks whether the
contract associated with addr takes an argument of type T . If the typechecking
succeeds, then Some (Contract addr) is pushed; otherwise, None is pushed.
The constructor Contract creates an object that represents a typechecked
contract at the given address. In Tezos, the source account is always a contract
that takes the value Unit as a parameter; thus, Some (Contract src) will
always be pushed onto the stack.

– ASSERT_SOME pops a value v from the stack and pushes v’ if v is Some v’;
otherwise, it raises an exception.

– UNIT pushes the unit value Unit to the stack.
– TRANSFER_TOKENS, if the stack is of the shape varg � vamt � vcontr �

tl, pops varg, vamt, and vcontr from the stack and pushes (Transfer

varg vamt vcontr) onto tl. The value Transfer varg vamt vcontr is an
operation object expressing that money (of amount vamt) shall be sent to
the account vcontr with the argument varg after this program finishes
without raising an exception. Therefore, the program associated with vcontr

is invoked after this program finishes.
– CONS with the stack v1 � v2 � tl pops v1 and v2, and pushes a cons list
v1::v2 onto the stack. (We use the list notation in OCaml here.)

– After executing one of the branches associated with IFCMPEQ in this program,
the shape of the stack should be ops � storage, where ops is [] if amount
= 0 or [Transfer varg vamt vcontr] if amount > 0. The instruction PAIR

pops ops and storage, and pushes (ops,storage).

A Michelson program is supposed to finish its execution with a singleton stack
whose unique element is a pair of (1) a list of operations to be executed after the
current execution of the contract finishes and (2) the new value for the storage.

Michelson is a statically typed language. Each instruction is associated with a
typing rule that specifies the shapes of stacks before and after it by a sequence of
simple types such as int and int list. For example, CONS requires the type of
top element to be T and that of the second to be T list (for any T ); it ensures
the top element after it has type T list.

Other notable features of Michelson include first-class functions, hashing,
instructions related to cryptography such as signature verification, and manipu-
lation of a blockchain using operations.
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2.3 Specification

A user can specify the behavior of a program by a ContractAnnot annotation,
which is a part of the augmented syntax of our verification tool. A ContractAnnot

annotation gives a specification of a Michelson program by the following no-
tation inspired by the refinement types: {(param,st) | pre} -> {(ops,st’)
| post} & {exc | abpost} where pre, post, and abpost are predicates. This
specification reads as follows: if this program is invoked with a parameter param
and storage st that satisfies the property pre, then (1) if the execution of this pro-
gram succeeds, then it returns a list of operations ops and new storage storage’
that satisfy the property post; (2) if this program raises an exception with value
exc, then exc satisfies abpost. The specification language is expressive enough
to cover the specifications for practical contracts, including the ones we used in
the experiments in Section 4.3. In the predicates, one can use several keywords
such as amount for the amount of the money sent to this program when it is
invoked and source for the source account’s address.

The ContractAnnot annotation in Figure 1 (Lines 3–6) formalizes this pro-
gram’s specification as follows. This program can take any parameter and storage
(Line 3). Successful execution of this program results in a pair (ops,st’) that
satisfies the condition in Lines 4–5 that expresses (1) if amount = 0, then ops is
empty, that is, no operation will be issued; (2) if amount > 0, then ops is a list of
a single element Transfer Unit amount (Contract source), which expresses
transfer of money of the amount amount to the account at source with the unit
argument.4 In the specification language, source and amount are keywords that
stand for the source account and the amount of money sent to this program,
respectively. The part & { _ | False } expresses that this program does not
raise an exception. This specification correctly formalizes the intended behavior
of this program.

3 Refinement Type System for Mini-Michelson

In this section, we formalize Mini-Michelson, a core subset of Michelson with its
syntax, operational semantics, and refinement type system. We also state that
the type system is sound. We omit many features from the full language in favor
of conciseness but includes language constructs—such as higher-order functions
and iterations—that make verification difficult.

Figure 2 shows the syntax of Mini-Michelson. Values, ranged over by V ,
consist of integers i; addresses a; operations transaction (V, i, a) to invoke a
contract at a by sending money of amount i and an argument V ; pairs (V1, V2)
of values; the empty list [ ]; cons V1 :: V2; and code 〈IS 〉 of first-class functions.5

4 As we mentioned in Section 1, Helmholtz can currently verify the behavior of a
single contract, although there will be an invocation of the contract associated with
source after the termination of boomerang. An operation is treated as an opaque
data structure, from which one cannot extract values.

5 Closures are not needed because functions in Michelson can access only arguments.
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V ::= i | a | transaction (V, i, a) | (V1, V2) | [ ] | V1 :: V2 | 〈IS〉
T ::= int | address | operation | T1 × T2 | T list | T1 → T2

IS ::= {I1; ... ; In}
I ::= IS | DIP IS | DROP | DUP | SWAP | PUSHT V | NOT | ADD | IF IS1 IS2 |

LOOP IS | PAIR | CAR | CDR | NILT | CONS | IF_CONS IS 1 IS2 | ITER IS |
LAMBDAT1 T2 IS | EXEC | TRANSFER_TOKENST

Fig. 2. Syntax of Mini-Michelson

Unlike Michelson, we use integers as a substitute for Boolean values so that 0
means false and the others mean true. Simple types, ranged over by T , consist of
base types (int, address, and operation, which are self-explanatory), pair types
T1 × T2, list types T list, and function types T1 → T2. Instruction sequences,
ranged over by IS , are a sequence of instructions, ranged over by I, enclosed by
curly braces. A Mini-Michelson program is an instruction sequence.

Instructions include those for stack manipulation (to DROP, DUPlicate, SWAP,
and PUSH values); NOT and ADD for manipulating integers; PAIR, CAR, and CDR for
pairs; NIL and CONS for constructing lists; and TRANSFER_TOKENS to create an
operation that expresses a money transfer after the current contract execution.
The instruction IF branches depending on whether the stack top is 0 or not;
IF_CONS branches on whether the stack top is a cons or not. The instruction
LOOP IS repeats IS as long as the stack top is a nonzero integer at the loop
entry; ITER IS is for iterating the list at the stack top. LAMBDA pushes a function
(described by its operand IS ) onto the stack, and EXEC calls a function. Perhaps
unfamiliar is DIP IS , which pops and saves the stack top somewhere else, executes
IS , and then pushes the saved value back.

We also use a few kinds of stacks in the following definitions: value stacks,
ranged over by S, type stacks, ranged over by T̄ , and type binding stacks, ranged
over by Υ , of the form x1 : T1 � .. � xn : Tn. The empty stack is denoted by ‡,
and push is by �. We often omit the empty stack and write, for example, V1 � V2

for V1 � V2 � ‡. Intuitively, T1 � .. � Tn and x1 : T1 � .. � xn : Tn describe stacks
V1 � .. � Vn where each value Vi is of type Ti. We will use variables to name stack
elements in the refinement type system.

Mini-Michelson (as well as Michelson) is equipped with a simple type system.
The type judgment for instructions is written T̄ & I ⇒ T̄ ′, which means that
instruction I transforms a stack of type T̄ into another stack of type T̄ ′. The
type judgment for values is written V : T , which means that V is given simple
type T . We omit typing rules as they are fairly straightforward.

3.1 Operational Semantics

We give a big-step operational semantics of Mini-Michelson by defining the
judgment S & I ⇓ S′, which means that executing the instruction I under the
stack S results in the stack S′, (and also S & IS ⇓ S′). Most rules for S & I ⇓ S′

are straightforward. We show rules for DIP and LOOP below and omit other rules.
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S � IS ⇓ S′

V � S � DIP IS ⇓ V � S′
S � IS ⇓ S′ S′ � LOOP IS ⇓ S′′ (i �= 0)

i � S � LOOP IS ⇓ S′′ 0 � S � LOOP IS ⇓ S

The first rule means that the body IS is executed with the stack S obtained by
removing the top element V , which is pushed back onto the resulting stack S′.
There are two rules for LOOP: the first rule means that if the stack top is nonzero,
then the body is executed, and then the execution of LOOP IS is repeated; the
second rule means that, if the stack top is zero, then the loop acts as a no-op.

3.2 Refinement Type System

In the refinement type system, a simple stack type T1 � .. � Tn is augmented
with a formula ϕ of first-order logic to describe the relationship among stack
elements. We introduce refinement stack types, ranged over by Φ, of the form
{x1 : T1 � ... � xn : Tn | ϕ(x1, ... , xn)}, which denotes stacks V1 � .. � Vn such
that V1 : T1, . . . , Vn : Tn and ϕ(V1, ... , Vn) hold.

We show (part of) the syntax of terms and formulae of the first-order logic:

t ::= x | V | transaction (t1, t2, t3) | t1 :: t2 | (t1, t2) | t1 + t2 | · · ·
ϕ ::= t1 = t2 | call (t1, t2) = t3 | ϕ1 ∨ ϕ2 | ¬ϕ | ∃x : T.ϕ | · · ·

The language for predicates is multi-sorted, where a sort is a simple type of
Michelson. The sorting rules for term constructors and relation symbols are
standard. For example, in t1 + t2, both t1 and t2 have to be of sorts int; and in
t1 = t2, the sorts of t1 and t2 must be the same, and so on. The only relation
symbol worth explaining is call (t1, t2) = t3, which informally means that calling
function t1 with argument t2 (as the only element of the input stack) yields a
stack consisting only of t3 as a result. We use other predicates, connectives, and
quantifiers such as t1 �= t2, ϕ1 ∧ ϕ12, ϕ1 =⇒ ϕ2, and ∀x : T.ϕ, which can be
considered as derived forms.

We define the semantics of the formulae in a standard manner. Let σ be a value
assignment, i.e., a sort-respecting finite map from variables to values. We define
the interpretation [[t]]σ of t under σ and valid formulae under a value assignment,
denoted by σ |= ϕ; for call (t1, t2) = t3, we define σ |= call (t1, t2) = t3 iff
[[t2]]σ � ‡ & [[t1]]σ ⇓ [[t3]]σ � ‡. Equality on instruction sequences is intensional:
formula 〈IS 〉 = 〈IS ′〉 is valid only if IS and IS ′ are syntactically equal.

For a finite mapping Γ (called a type environment) from variables to sorts,
Γ |= σ and Γ |= ϕ are defined as usual: Γ |= σ iff dom (σ) = dom (Γ ) and
σ(x) : Γ (x) for any x ∈ dom (σ); Γ |= ϕ iff σ |= ϕ for any value assignment σ
such that Γ |= σ.

The type system is equipped with subtyping whose judgment is of the form
Γ & Φ1 <: Φ2, which means stack type Φ1 is a subtype of Φ2 under Γ . The type
judgment for instructions (resp. instruction sequences) is of the form Γ & Φ1 I Φ2

(resp. Γ & Φ1 IS Φ2), which means that, under Γ , if I (resp. IS ) is executed
under a stack satisfying Φ1, the resulting stack (if the execution terminates)
satisfies Φ2. We often call Φ1 pre-condition and Φ2 post-condition.

We show representative typing rules in Figure 3.
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Γ, x : T � {Υ | ϕ} IS {Υ ′ | ϕ′}
Γ � {x : T � Υ | ϕ} DIP IS {x : T � Υ ′ | ϕ′} (RT-Dip)

Γ � {Υ | ∃ x : int.ϕ ∧ x �= 0} IS1 Φ Γ � {Υ | ∃ x : int.ϕ ∧ x = 0} IS2 Φ

Γ � {x : int � Υ | ϕ} IF IS1 IS2 Φ
(RT-If)

Γ � {Υ | ∃ x : int.ϕ ∧ x �= 0} IS {x : int � Υ | ϕ}
Γ � {x : int � Υ | ϕ} LOOP IS {Υ | ∃ x : int.ϕ ∧ x = 0} (RT-Loop)

y′
1 : T1 � {y1 : T1 | y′

1 = y1 ∧ ϕ1} IS {y2 : T2 | ϕ2}
Γ � {Υ | ϕ} LAMBDAT1 T2 IS

{x : T1 → T2 � Υ | ϕ ∧ ∀ y′
1 : T1, y2 : T2.ϕ1[y1 := y′

1] ∧ call (x, y′
1) = y2 =⇒ ϕ2}

(RT-Lambda)

Γ � {x1 : T1 �x2 : T1 → T2 �Υ | ϕ} EXEC {x3 : T2 �Υ | ∃ x1 : T1, x2 : T1 → T2.ϕ∧call (x2, x1) = x3}
(RT-Exec)

Γ � Φ1 <: Φ′
1 Γ � Φ′

1 I Φ′
2 Γ � Φ′

2 <: Φ2

Γ � Φ1 I Φ2
(RT-Sub)

Fig. 3. Typing rules (excerpt)

– (RT-Dip) means that DIP IS is well typed if the body IS is typed under the
stack type obtained by removing the top element. The popped value named
x is moved to the type environment part so that it can be referred to in the
refinement predicate ϕ in the pre-condition.

– (RT-If) means that the instruction is well typed if both branches have the
same post-condition; the pre-conditions of the branches are strengthened by
the assumptions that the top of the input stack is true (x �= 0) and false
(x = 0). The variable x is existentially quantified because the top element
will be removed before the execution of either branch.

– (RT-Loop) is similar to the proof rule for while-loops in Hoare logic. The
formula ϕ is a loop invariant. Since the body of LOOP is executed while the
stack top is nonzero, the pre-condition for the body IS is strengthened by
x �= 0, whereas the post-condition of LOOP IS is strengthened by x = 0.

– (RT-Lambda) is for the instruction to push a first-class function onto the
operand stack. The premise of the rule means that the body IS takes a
value (named y1) of type T1 that satisfies ϕ1 and outputs a value (named
y2) of type T2 that satisfies ϕ2 (if it terminates). The post-condition in the
conclusion expresses, by using call, that the function x has the property
above. The extra variable y′1 in the type environment of the premise is an
alias of y1; being a variable declared in the type environment y′1 can appear
in both ϕ1 and ϕ2

6 and can describe the relationship between the input and
output of the function.

– (RT-Exec) adds call (x2, x1) = x3 to the post-condition, meaning that the
result of a call to the function x2 with x1 as an argument yields x3. It may
look simpler than expected; the crux here is that ϕ is expected to imply
∀x1 : T1, x3 : T2.ϕ1 ∧ call (x2, x1) = x3 =⇒ ϕ2, where ϕ1 and ϕ2 represent

6 The scope of a variable in a refinement stack type is its predicate part and so y1
cannot appear in the post-condition.
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the pre- and post-conditions, respectively, of function x2. If x1 satisfies ϕ1,
then we can derive that ϕ2 holds.

– (RT-Sub) is the rule for subsumption to strengthening the pre-condition
and weakening the post-condition. In our type system, subtyping is defined
semantically: A subtyping judgment Γ & {Υ | ϕ1} <: {Υ | ϕ2} holds if for any
σ such that ∀x ∈ dom (Γ, Υ ).σ(x) : (Γ, Υ )(x), σ |= ϕ1 =⇒ ϕ2 is valid. (Here,
by abuse of notation, the type binding stack Υ is regarded as a mapping from
variables to sorts.)

We state that our type system is sound : For a well-typed instruction, if we
execute the instruction under a stack that satisfies the pre-condition of the typing,
then (if the execution halts) the resulting stack satisfies the post-condition of the
typing. To state the soundness theorem, we define an auxiliary relation Γ |= S : Φ,
which means “stack S satisfies stack refinement type Φ under environment Γ”,
by: Γ |= V1 � .. � Vm : {y1 : T ′

1 � .. � ym : T ′
m | ϕ} ⇐⇒ V1 : T ′

1, . . . , Vm :
T ′
m and σ[y1 �→ V1, .. , ym �→ Vm] |= ϕ for any σ such that Γ |= σ.
Then, the soundness theorem, whose proof will appear in a forthcoming full

version, is stated as follows:

Theorem 1 (Soundness). If Γ & Φ1 IS Φ2, Γ |= S : Φ1, and S & IS ⇓ S′,
then Γ |= S′ : Φ2.

Sketch of Typechecking We implement a typechecking algorithm as follows.
Given a type environment, a pre-condition, and a post-condition, our algorithm
computes the strongest post-condition of the code starting from the given pre-
condition. This computation is conducted according to the syntax-directed version
of the typing rules created essentially in the same way as a type system with
subtyping (e.g., one described in [15]). An application of the subtyping generates
verification conditions. The accumulated verification conditions are fed to Z3;
the typechecking succeeds if they are successfully discharged.

3.3 Extensions

The implementation supports a few extensions of the formalization explained
above, which are explained below.

The type system implemented in Helmholtz is extended with refinements for
values thrown by raising exceptions. For example, the typing rule for instruction
FAILWITH, which raises an exception with the value at the stack top, is given as
follows:

Γ & {x : T � Υ | ϕ} FAILWITH {Υ | ⊥}&{err | ∃x : T, Υ.ϕ ∧ x = err}.

The rule expresses that, if FAILWITH is executed under a non-empty stack that
satisfies ϕ, then the program point just after the instruction is not reachable
(hence, {Υ | ⊥}). The refinement ∃x : T, Υ.ϕ ∧ x = err for the exception case
states that ϕ in the pre-condition with the top element x is equal to the raised
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value err; since x is not in the scope in the exception refinement, x is bound
by an existential quantifier. The typing rules for the other instructions can be
extended with the “&” part easily.

Helmholtz deals with measure functions introduced by Kawaguchi et al. [9]
and supported by Liquid Haskell [23]. If a measure function is defined by a
Measure annotation, Helmholtz “weaves” the function definition into relevant
typing rules. For instance, given the annotation Measure len : list int ->

int where [] = 0 | h :: t = (1 + len t), Helmholtz assumes an unin-
terpreted function symbol len and augments (RT-Nil) and (RT-Cons) as
follows, where the last equality in each post-condition comes from the definition
of len.

Γ � {Υ | ϕ} NILT {x : T list � Υ | ϕ ∧ x = [ ] ∧ len [ ] = 0}
Γ � {x1 : T � x2 : T list � Υ | ϕ} CONS {x3 : T list � Υ | ∃x1 : T, x2 : T list.ϕ ∧ x1 ::

x2 = x3 ∧ len (x1 :: x2) = 1 + lenx2}

4 Tool Implementation

In this section, we discuss annotations in detail, show a case study of contract
verification, and present verification experiments.

4.1 Annotations

Helmholtz supports several forms of annotations (surrounded by << and >> in
the source code), other than ContractAnnot explained in Section 2.

Assert Φ and Assume Φ can appear before or after an instruction. The former
asserts that the stack at the annotated program location satisfies the type Φ; the
assertion is verified by Helmholtz. If there is an annotation Assume Φ, Helm-
holtz assumes that the stack satisfies the type Φ at the annotated program
location. A user can give a hint to Helmholtz by using Assume Φ. The user
has to make sure that it is correct; if an Assume annotation is incorrect, the
verification result may be incorrect.

LoopInv Φ asserts the loop invariant of a loop instruction (e.g., LOOP and
ITER). In the current implementation, annotating a loop invariant using LoopInv

Φ is mandatory. Helmholtz checks that Φ is indeed a loop invariant and uses it
to verify the rest of the program.

In the current implementation, a LAMBDA instruction, which pushes a function
on the top of the stack, must be accompanied by the LambdaAnnot annotation,
where Φpre → Φpost & Φabpost is a specification of the pushed function and the
bindings (x1 : T1, . . . , xn : Tn) introduce the ghost variables that can be used in
the annotations in the body of the annotated LAMBDA instruction;7 one can omit
the declaration of ghost variables if it is empty. The first contract in Figure 4,
which pushes a function that takes a pair of integers and returns the sum of them,
presents an example of LambdaAnnot. The annotated type of the function (Line 5)

7 ContractAnnot also allows declarations of ghost variable used in the code section.
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Fig. 4. lambda.tz, which uses higher-order functions, and length.tz, which uses a
measure function in the contract annotation.

expresses that it returns 4 if it is fed with a pair (3, 1). The ghost variables a and
b are used in the annotations Assume (Line 8) and Assert (Line 10) in the body
to denote the first and the second arguments of the pair passed to this function.

Helmholtz allows user-defined (recursive) functions to be used in annotations;
these functions are called measure functions following the terminology of Liquid-
Haskell [9]. The annotation Measure x : T1 → T2 where p1 = e1 | · · · | pn = en
defines a recursive function x that takes a value of type T1, destructs it by
the pattern matching, and returns a value of type T2. Metavariables p and e
represent ML-like patterns and expressions. The second contract in Figure 4,
which computes the length of the list passed as a parameter, exemplifies the
usage of the Measure annotation. This contract defines a measure function len

that takes a list of integers and returns its type; it is used in ContractAnnot and
LoopInv.

4.2 Case Study: Contract with Signature Verification

Figure 5 presents the code of the contract checksig.tz, which verifies that
a sender indeed signed certain data using her private key. This contract uses
instruction CHECK_SIGNATURE, which is supposed to be executed under a stack of
the form key � sig � bytes � tl, where key is a public key, sig is a signature,
and bytes is some data. CHECK_SIGNATURE pops these three values from the
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Fig. 5. checksig.tz, which involves signature verification.

stack and pushes true if sig is the valid signature for bytes with the private
key corresponding to key.

The intended behavior of checksig.tz is as follows. It stores a pair of
an address addr, which is the address of a contract that takes a string pa-
rameter, and a public key key in its storage. It takes a pair (sig,s) of type
pair signature string as a parameter where signature is the primitive
Michelson type for signatures. This contract terminates without exception if sig
is created from the serialized (packed) representation of s and signed by the
private key corresponding to key. In a normal termination, this contract transfers
1 mutez to the contract with address addr. If this signature verification fails,
then an exception is raised.

This behavior is expressed as a specification in the ContractAnnot annotation
in checksig.tz as follows.

– The refinement of its pre-condition part expresses that the address stored
in the first element store.first of the storage store is an address of
a contract that takes a value of type string as a parameter. This is ex-
pressed by the pattern-matching of Contract store.first, which represents
the contract stored at the address store.first, to the pattern expression
Contract<string> _, which matches a contract that takes a string value.

– The refinement of the post-condition forces the following three conditions:
(1) the store is not updated by this contract (store = new_store); (2)
param.first is the signature created from the packed string Pack param.

second of the string in the second element of the parameter and signed by the
private key corresponding to the second element store.second of the store
(sig store.second param.first (Pack param.second)); and (3) the op-
erations ops returned by this contract is [ Transfer param.second 1
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(Contract store.first) ], which represents an operation of transferring
1 mutez to the contract Contract store.first with the parameter param.
second. The predicate sig and the constructor Pack are primitives of Helm-
holtz that can be used in an annotation.

– The refinement in the exception part expresses that if an exception is raised,
then the signature verification should have failed (not (sig store.second

param.first (Pack param.second))).

Helmholtz successfully verifies checksig.tz without any additional anno-
tation in the code section. If we change the instruction ASSERT in Line 12 to
DROP to let the contract drop the result of the signature verification (hence, an
exception is not raised even if the signature verification fails), the verification
fails as intended.

4.3 Experiments

We applied Helmholtz to various contracts; Table 1 is an excerpt of the result,
in which we show (1) the number of the instructions in each contract (column
#instr.) and (2) time (ms) spent to verify each contract. The experiments are
conducted on MacOS Catalina 10.15.7 with Dual-Core Intel Core i5 (1.8 GHz), 8
GB RAM. We used Z3 version 4.8.8. The contracts boomerang.tz, deposit.tz,
manager.tz, vote.tz, and reservoir.tz are taken from the benchmark of Mi-
cho-coq [3]. checksig.tz is derived from weather_insurance.tz of the official
Tezos test suite.8 vote_for_delegate.tz and xcat.tz are taken from the official
test suite; xcat.tz is simplified from the original. triangular_num.tz is a simple
test case that we made as an example of using LOOP. The source code of these
contracts can be found at the Web interface of Helmholtz. Each contract is
supposed to work as follows.

– boomerang.tz: Transfers the received amount of money to the source account.
– deposit.tz: Transfers money to the sender if the address of the sender is

identical to that is stored in the storage.
– manager.tz: Calls the passed function if the address of the caller matches

the address stored in the storage.
– vote.tz: Accepts a vote to a candidate if the voter transfers enough voting

fee, and stores the tally.
– checksig.tz: The one explained in Section 4.2.
– vote_for_delegate.tz: Delegates one’s ballot in voting by stakeholders,

which is one of the fundamental features of Tezos, to another using a primitive
operation of Tezos.

– xcat.tz: Transfers all stored money to one of the two accounts specified
beforehand if called with the correct password. The account that gets money
is decided based on whether the contract is called before or after a deadline.

8 https://gitlab.com/tezos/tezos/-/tree/ee2f75bb941522acbcf6d5065a9f3b2/
tests python/contracts/mini scenarios

https://gitlab.com/tezos/tezos/-/tree/ee2f75bb941522acbcf6d5065a9f3b2/tests_python/contracts/mini_scenarios
https://gitlab.com/tezos/tezos/-/tree/ee2f75bb941522acbcf6d5065a9f3b2/tests_python/contracts/mini_scenarios
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– reservoir.tz: Sends a certain amount of money to either a contract or
another depending on whether the contract is executed before or after the
deadline.

– triangular_num.tz: Calculates the sum from 1 to n, which is the passed
parameter.

In the experiments, we verified that each contract indeed works according to
the intention explained above. triangular_num.tz was the only contract that
required a manual annotation for verification in the code section; we needed to
specify a loop invariant in this contract.

Table 1. Benchmark result

Filename #instr. time (ms) Filename #instr. time (ms)

boomerang.tz 17 35 checksig_unverified.tz 36 62
deposit.tz 24 54 vote_for_delegate.tz 87 143
manager.tz 29 60 xcat.tz 64 188
vote.tz 24 62 reservoir.tz 45 87
checksig.tz 38 65 triangular_num.tz 16 35

Although the numbers of instructions in these contracts are not large, they cap-
ture essential features of smart contracts; everyone except triangular_num.tz
executes transactions; deposit.tz and manager.tz check the identity of the
caller; and checksig.tz conducts signature verification. The time spent on
verification is small.

5 Related Work

There are several publications on the formalization of programming languages for
writing smart contracts. Hirai [7] formalizes EVM, a low-level smart contract lan-
guage of Ethereum and its implementation, using Lem [13], a language to specify
semantic definitions; definitions written in Lem can be compiled into definitions
in Coq, HOL4, and Isabelle/HOL. Based on the generated definition, he verifies
several properties of Ethereum smart contracts using Isabelle/HOL. Bernardo et
al. [3] implemented Mi-Cho-Coq, a formalization of the semantics of Michelson
using the Coq proof assistant. They also verified several Michelson contracts.
Compared to their approach, we aim to develop an automated verification tool
for smart contracts. Park et al. [14] developed a formal verification tool for EVM
by using the K-framework [17], which can be used to derive a symbolic model
checker from a formally specified language semantics (in this case, formalized
EVM semantics [6]), and successfully applied the derived model checker to a few
EVM contracts. It would be interesting to formalize the semantics of Michelson
in the K-framework to compare Helmholtz with the derived model checker.

The DAO attack [18], mentioned in Section 1, is one of the notorious attacks
on a smart contract. It exploits a vulnerability of a smart contract that is related
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to a callback. Grossman et al. [5] proposed a type-based technique to verify
that execution of a smart contract that may contain callbacks is equivalent to
another execution without any callback. This property, called effectively callback
freedom, can be seen as one of the criteria for execution of a smart contract not
to be vulnerable to the DAO-like attack. Their type system focuses on verifying
the ECF property of execution of a smart contract, whereas ours concerns the
verification of generic functional properties of a smart contract.

Benton proposes a program logic for a minimal stack-based programming
language [2]. His program logic can give an assertion to a stack as our stack
refinement types do. However, his language does not support first-class functions
nor instructions for dealing with smart contracts (e.g., signature verification).

Our type system is an extension of the Michelson type system with re-
finement types, which have been successfully applied to various programming
languages [16,22,9,10,20,26,23,24,25]. DTAL [25] is a notable example of an ap-
plication of refinement types to an assembly language, a low-level language like
Michelson. A DTAL program defines a computation using registers; we are not
aware of refinement types for stack-based languages like Michelson.

We notice the resemblance between our type system and a program logic for
PCF proposed by Honda and Yoshida [8], although the targets of verification are
different. Their logic supports a judgment of the form A & e :u B, where e is a
PCF program, A is a pre-condition assertion, B is a post-condition assertion, and
u represents the value that e evaluates to and can be used in B, which resembles
our type judgment in the formalization in Section 3. Their assertion language also
incorporates a term expression f •x, which expresses the value resulting from the
application of f to x; this expression resembles the formula call (t1, t2) = t3 used
in a refinement predicate. We have not noticed an automated verifier implemented
based on their logic. Further comparison is interesting future work.

6 Conclusion

We described our automated verification tool Helmholtz for the smart contract
language Michelson based on the refinement type system for Mini-Michelson.
Helmholtz verifies whether a Michelson program follows a specification given in
the form of a refinement type. We also demonstrated that Helmholtz successfully
verifies various practical Michelson contracts.

Currently, Helmholtz supports approximately 80% of the whole instructions
of the Michelson language. The definition of a measure function is limited in the
sense that, for example, it can define only a function with one argument. We are
currently extending Helmholtz so that it can deal with more programs.

Helmholtz currently verifies the behavior of a single contract, although
a blockchain application often consists of multiple contracts in which contract
calls are chained. To verify such an application as a whole, we plan to extend
Helmholtz so that it can verify an inter-contract behavior compositionally by
combining the verification results of each contract.
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