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ABSTRACT

A binary mixture of a vapor and a noncondensable gas around arbitrarily
shaped condensed phases of the vapor is considered. Its steady behavior in the
continuum limit (the limit where the Knudsen number vanishes) is investigated on
the basis of kinetic theory in the case where the condensed phases are at rest, and
the mixture is in a state at rest with a uniform pressure at infinity when an infinite
domain is considered. A systematic asymptotic analysis of the Boltzmann equation
with kinetic boundary condition is carried out for small Knudsen numbers, and the
system of fluid-dynamic type equations and their appropriate boundary conditions
that describes the behavior in the continuum limit is derived. The system shows
that the flow of the mixture vanishes in the continuum limit, but the vanishing flow
gives a finite effect on the behavior of the mixture in this limit. This is an example
of the ghost effect discovered recently by Sone and coworkers [e.g., Y. Sone et al.,
Phys. Fluids 8, 628 and 3403 (1996); Y. Sone, in Rarefied Gas Dynamics, edited by
C. Shen (Peking University Press, Beijing, 1997), p. 3]. It is shown that there are
several new source factors of the ghost effect that are peculiar to a gas mixture, i.e.,
that originate from the nonuniformity of the concentration.

1 INTRODUCTION

The Navier–Stokes system (the conservation equations for the mass, momen-

tum, and energy with Newton’s law of stress and Fourier’s law of heat flow and



their boundary conditions of nonslip or nonjump type) is commonly accepted as

the correct system for describing the behavior of a gas under ordinary conditions

or in the continuum limit (i.e., the limit where the Knudsen number, the mean

free path of the gas molecules divided by the characteristic length of the system,

vanishes). According to the system, the temperature field in a gas at rest with a

uniform pressure (e.g., the gas in a resting vessel with a steady but arbitrary tem-

perature distribution in the absence of external forces) is determined by the steady

heat-conduction equation with the nonjump condition on the boundary. However,

recent study1 based on kinetic theory revealed that the heat-conduction equation

(thus, the Navier–Stokes system) does not give the correct temperature field in the

gas even in the continuum limit. In this study, a systematic asymptotic analysis of

the Boltzmann equation and its boundary condition was carried out, and the system

of fluid-dynamic type equations and their boundary conditions that gives the correct

temperature field in a gas at rest in the continuum limit was derived. On the basis

of the system, the cause of the invalidity of the Navier–Stokes system was clarified.

These findings gave kinetic theory a new important role of checking the validity of

the classical fluid dynamics (for a gas) in the continuum limit.

The invalidity of the heat-conduction equation is due to the fact that the flows

caused by the effect of gas rarefaction (or more precisely, the gas flows of the order

of the Knudsen number2) give a finite effect on the temperature field even in the

continuum limit where the flows themselves vanish. This effect was termed the ghost

effect3 because it is an effect of nonexisting flows in the world of continuum fluid

dynamics (see also Ref. 4). In a certain situation, the ghost effect also appears in

the velocity field as well as the temperature field. Such an example is shown in the

cylindrical Couette flow of a vapor between two coaxial circular cylinders consisting

of its condensed phase.5

In a single-component gas, as was clarified in Ref. 1, the flow of the order of

the Knudsen number, which is the source of the ghost effect, generally consists of the

following three types of flow: the flow caused by the temperature gradient along the

boundary (thermal creep flow),6–9 that by the thermal stress in the gas (nonlinear

thermal stress flow),10,11,1 and that by the boundary motion (in its surface)12 with a



speed of the order of the Knudsen number.13 In a mixture of gases, there seem to be

other types of flow that can cause the ghost effect naturally in the continuum limit,

such as the flows due to the diffusion, concentration stress,14,11 and concentration

gradient along the boundary (diffusion slip),15–18 in addition to the three types of

flow mentioned above. Therefore, the ghost effect is expected to manifest itself in a

wider class of problems. In fact, we have demonstrated the effect in a simple one-

dimensional problem19,20 where it is absent for a single-component gas.21 To be more

specific, we have considered the behavior of a mixture of vapors and noncondensable

gases between two parallel condensed phases. In this problem, the flow caused by

evaporation and condensation vanishes in the continuum limit. Nevertheless, it gives

a finite effect on the motion of the mixture along the condensed phases (when one

of the condensed phases is moving in its surface) as well as on the temperature of

the total mixture in the limit.

In the present paper, we try to extend the study in Refs. 19 and 20 to the

general geometry. That is, we consider a mixture of a vapor and a noncondensable

gas around condensed phases of the vapor of arbitrary shapes and investigate the

steady behavior of the mixture in the continuum limit on the basis of kinetic theory

in the following situation: the condensed phases are at rest, the noncondensable gas

is present everywhere in the domain, and the mixture is in a state at rest with a

uniform pressure at infinity when an infinite domain is considered. As will be seen,

the flow of the mixture vanishes and the ghost effect appears in this situation. The

aim of the present study is to obtain the whole picture of the ghost effect in the

mixture. But in the course of the study, the gas flows caused by the effect of gas

rarefaction will also be clarified. The problem considered here is also an extension

of the problem of Ref. 1 to a mixture. The natural extension of Ref. 1 would be a

mixture of noncondensable gases, not the mixture of a vapor and a noncondensable

gas. The reason why we choose the latter is that in this case the nonuniformity of

the concentrations of the components and thus the ghost effect peculiar to a mixture

appears more clearly. We will also discuss the former case briefly.

The paper is organized as follows. After the statement of the problem and its

formulation in Sec. 2, we carry out a systematic asymptotic analysis of the Boltz-



mann equation for small Knudsen numbers in Sec. 3, where we derive the fluid-

dynamic type equations and their boundary conditions for the distributions of the

temperature and number densities in the continuum limit as well as the flow of the

mixture of the order of the Knudsen number. Then, in Sec. 4, we discuss the features

of the flow and the ghost effect in the continuum limit. Some special situations as

well as extensions to more general cases are also discussed in Secs. 5–7.

2 PROBLEM AND BASIC EQUATIONS

Consider a binary mixture of a vapor (say, A–component) and a noncondens-

able gas (say, B–component) around condensed phases of the vapor of arbitrary but

smooth shapes (therefore, evaporation and condensation of the A–component may

take place on the surfaces of the condensed phases). There is no external force in the

system. Clarify the steady behavior of the mixture in the continuum limit, where

the Knudsen number tends to zero, on the basis of kinetic theory in the following

situation: (i) the condensed phases are at rest; (ii) the noncondensable gas is present

everywhere in the domain; and (iii) the mixture is in a state at rest with a uniform

pressure at infinity when an infinite domain is considered.

To answer this question, we will investigate the steady behavior of the mixture

for small Knudsen numbers on the basis of the Boltzmann equation for hard-sphere

molecules assuming the complete condensation condition for the vapor molecules and

the diffuse reflection condition for the noncondensable-gas molecules on the surfaces

of the condensed phases [see the sentences below Eq. (2.6b) for the details of the

boundary conditions].

We first introduce some reference quantities: L is the reference length of the

system, T0 the reference temperature, n0 the reference number density, and p0 =

kn0T0 the reference pressure, where k is the Boltzmann constant. Further, mα and

dα represent the mass and the diameter of a molecule of α–component (α = A, B),

respectively.

Let us denote the rectangular space coordinates by xiL, the molecular ve-

locity by ζi(2kT0/m
A)1/2, and the velocity distribution function of α–component



by n0(2kT0/m
A)−3/2fα (α = A,B). Then the Boltzmann equation for a binary

mixture in the present steady case is written as22–24

ζi
∂fα

∂xi
=

2√
π

1

Kn

∑
β=A,B

KβαĴβα(fβ, fα), (α = A,B), (2.1)

Ĵβα(f, g) =
1

4
√

2π

∫
[f(ζ ′∗i)g(ζ ′i)− f(ζ∗i)g(ζi)]|aj V̂j |dΩ(ai)dζ∗, (2.2)

ζ ′i = ζi +
µ̂βα

m̂α
(aj V̂j)ai, ζ ′∗i = ζ∗i −

µ̂βα

m̂β
(aj V̂j)ai, (2.3a)

V̂i = ζ∗i − ζi, dζ∗ = dζ∗1dζ∗2dζ∗3, (2.3b)

Kβα = (d̂βα)2, d̂βα =
d̂α + d̂β

2
, µ̂βα =

2m̂αm̂β

m̂α + m̂β
, (2.3c)

Kn =
`0
L
, `0 =

1√
2π(dA)2n0

, (2.3d)

m̂α = mα/mA, d̂α = dα/dA, (2.3e)

where ai is a unit vector, ζ∗i the variable of integration corresponding to ζi, and

dΩ(ai) the solid angle element in the direction of ai. The domain of integration in

Eq. (2.2) is the whole space of ζ∗i and all directions of ai. In Eq. (2.3d), `0 is the

mean free path of a molecule of A–component when it is in the equilibrium state

at rest with molecular number density n0, and Kn is the corresponding Knudsen

number, which represents the degree of rarefaction of the system. Here and in what

follows (except APPENDIX C), the Greek letters α and β are used to represent the

labels A and B of the components. Since no confusion is expected, the notes such

as α = A,B in Eq. (2.1) will mostly be omitted below.

We now denote the temperature of the surfaces of the condensed phases by

T0T̂w, their velocity by uwi(2kT0/m
A)1/2, and the saturation pressure of the vapor at

temperature T0T̂w by p0p̂
A
w. Since we are considering the case where the condensed

phases are at rest in the continuum limit Kn→ 0, we assume that

uwi = O(Kn). (2.4)

Further, since the problem is steady, uwini = 0 is assumed, where ni is the unit

vector normal to the boundary pointing to the gas region. Then the boundary



conditions are written as

fα = σαwT̂
−3/2
w

(
m̂α

π

)3/2

exp

(
−m̂

α(ζi − uwi)2

T̂w

)
, ζini > 0, (2.5)

with

σAw = p̂Aw/T̂w, (2.6a)

σBw = −2

(
πm̂B

T̂w

)1/2 ∫
ζini<0

ζinif
Bdζ, (2.6b)

where dζ = dζ1dζ2dζ3. Equation (2.5) with α = A means that the vapor molecules

leaving the surfaces obey the corresponding part of the Maxwellian distribution

characterized by T̂w, uwi, and p̂Aw (complete condensation condition). On the other

hand, Eq. (2.5) with α = B means that the noncondensable gas molecules reflected

by the surfaces obey the corresponding part of the Maxwellian distribution charac-

terized by T̂w and uwi and that there is no net mass flow of this component across

the surfaces (diffuse reflection).

Next, we introduce macroscopic variables as the moments of the velocity distri-

bution functions. For each component, we define its number density n0n̂
α, density

n0m
Aρ̂α, flow velocity uαi (2kT0/m

A)1/2, temperature T0T̂
α, partial pressure p0p̂

α,

stress tensor p0p̂
α
ij , and heat-flow vector p0(2kT0/m

A)1/2q̂αi by25

n̂α =

∫
fαdζ, ρ̂α = m̂α

∫
fαdζ(= m̂αn̂α),

uαi =
1

n̂α

∫
ζif

αdζ, T̂α =
2

3

m̂α

n̂α

∫
(ζi − uαi )2fαdζ,

p̂α =
2

3
m̂α

∫
(ζi − uαi )2fαdζ(= n̂αT̂α),

p̂αij = 2m̂α

∫
(ζi − uαi )(ζj − uαj )fαdζ,

q̂αi = m̂α

∫
(ζi − uαi )(ζj − uαj )2fαdζ.

(2.7)

Here and in what follows, the domain of integration with respect to ζi is its whole

space, unless otherwise stated. On the other hand, for the total mixture, the num-

ber density n0n̂, density n0m
Aρ̂, flow velocity ui(2kT0/m

A)1/2, temperature T0T̂ ,

pressure p0p̂, stress tensor p0p̂ij , and heat-flow vector p0(2kT0/m
A)1/2q̂i are defined



by

n̂ =

∫ ∑
β=A,B

fβdζ, ρ̂ =

∫ ∑
β=A,B

m̂βfβdζ,

ui =
1

ρ̂

∫
ζi
∑

β=A,B

m̂βfβdζ, T̂ =
2

3n̂

∫
(ζi − ui)2

∑
β=A,B

m̂βfβdζ,

p̂ =
2

3

∫
(ζi − ui)2

∑
β=A,B

m̂βfβdζ(= n̂T̂ ),

p̂ij = 2

∫
(ζi − ui)(ζj − uj)

∑
β=A,B

m̂βfβdζ,

q̂i =

∫
(ζi − ui)(ζj − uj)2

∑
β=A,B

m̂βfβdζ.

(2.8)

Thus the macroscopic variables for the total mixture are expressed in terms of those

for individual components as follows:

n̂ =
∑

β=A,B

n̂β, ρ̂ =
∑

β=A,B

ρ̂β, ρ̂ui =
∑

β=A,B

ρ̂βuβi ,

p̂ =
∑

β=A,B

[
p̂β +

2

3
ρ̂β(uβi − ui)

2

]
,

p̂ij =
∑

β=A,B

[
p̂βij + 2ρ̂β(uβi − ui)(u

β
j − uj)

]
,

q̂i =
∑

β=A,B

[
q̂βi + p̂βij(u

β
j − uj) +

3

2
p̂β(uβi − ui) + ρ̂β(uβi − ui)(u

β
j − uj)

2

]
.

(2.9)

3 ASYMPTOTIC ANALYSIS

In this section, we carry out asymptotic analysis of the boundary-value prob-

lem (2.1)–(2.6) for small Knudsen numbers in the situation consistent with the con-

tinuum limit described in the first paragraph of Sec. 2. Following Refs. 26–30 and

20 as a guideline, we derive the fluid-dynamic type equations and their appropriate

boundary conditions. For convenience, we use the following small parameter ε:

ε =

√
π

2
Kn, (3.1)

instead of the Knudsen number Kn in the analysis.



3.1 Hilbert Solution

Let us first seek the moderately varying solutions fαH [∂fαH/∂xi = O(fαH)] of

the Boltzmann equation (2.1) in a power series of ε:

fαH = fαH0 + fαH1ε+ fαH2ε
2 + · · · . (3.2)

Correspondingly, the macroscopic variables are expanded as

hαH = hαH0 + hαH1ε+ hαH2ε
2 + · · · ,

hH = hH0 + hH1ε+ hH2ε
2 + · · · ,

(h = n̂, p̂, ρ̂, T̂ , ui, p̂ij , or q̂i),

(3.3)

where hαH and hH are defined by Eqs. (2.7) and (2.8) with fα replaced by fαH , and

expansion coefficients hαHm and hHm are obtained by substituting the expansions

(3.2) and (3.3) into the definitions of hαH and hH . This solution (or expansion) is

called the Hilbert solution (or expansion). Substituting Eq. (3.2) into Eq. (2.1), we

obtain the following series of integral equations:∑
β=A,B

KβαĴβα(fβH0, f
α
H0) = 0, (3.4)

∑
β=A,B

Kβα[Ĵβα(fβHm, f
α
H0) + Ĵβα(fβH0, f

α
Hm)]

= ζi
∂fαHm−1
∂xi

−
∑

β=A,B

Kβα
m−1∑
n=1

Ĵβα(fβHm−n, f
α
Hn), (3.5)

where m = 1, 2, . . . and
∑0

1 = 0 in Eq. (3.5) with m = 1. Equation (3.4) is the

system of nonlinear integral equations for fαH0, while Eq. (3.5) is that of inhomoge-

neous linear integral equations for fαHm. The series of equations can, in principle,

be solved successively from the lowest order.

The solution of Eq. (3.4) is given by local equilibrium distributions,23 which

can be expressed as

fαH0 = n̂αH0T̂
−3/2
H0

(
m̂α

π

)3/2

exp

(
−m̂

α(ζi − uiH0)
2

T̂H0

)
, (3.6)

by the use of the leading-order terms n̂αH0, uiH0, and T̂H0 of the expansions (3.3).

For this distribution, the flow velocity and the temperature of each component are



the same as those of the total mixture:

uαiH0 = uiH0, (3.7a)

T̂αH0 = T̂H0. (3.7b)

In addition, the following relations hold:

p̂αijH0 = p̂αH0δij , q̂αiH0 = 0, (3.8a)

p̂ijH0 = p̂H0δij , q̂iH0 = 0. (3.8b)

The homogeneous system corresponding to Eq. (3.5) has nontrivial solutions

(fAH0, cf
B
H0) (c: arbitrary constant), (m̂Aζif

A
H0, m̂

Bζif
B
H0), and (m̂Aζ2j f

A
H0, m̂

Bζ2j f
B
H0).

Therefore, in order that the system (3.5) has a solution, its inhomogeneous terms

should satisfy the compatibility conditions:∫
[R.H.S. of Eq. (3.5)]dζ = 0, (3.9a)∑

α=A,B

∫
m̂α

(
ζj
ζ2k

)
[R.H.S. of Eq. (3.5)]dζ = 0, (3.9b)

which are reduced to

∂

∂xi

∫
ζif

α
Hm−1dζ = 0, (3.10a)

∂

∂xi

∑
β=A,B

m̂β

∫
ζiζjf

β
Hm−1dζ = 0, (3.10b)

∂

∂xi

∑
β=A,B

m̂β

∫
ζiζ

2
kf

β
Hm−1dζ = 0, (3.10c)

where m = 1, 2, . . . . Then, the solution to Eq. (3.5) can be expressed by the sum of

the solution of their homogeneous equations (the linear combination of the nontrivial

solutions), which contains n̂αHm, uiHm, and T̂Hm as well as n̂αHn, uiHn, and T̂Hn

(n < m), and a particular solution, which contains derivatives of n̂αHn, uiHn, and

T̂Hn (n < m). The substitution of the explicit form of fαHm into Eq. (3.10) for

m = 1, 2, . . . gives a set of partial differential equations for the macroscopic variables

[more precisely, that for coefficient functions in the Hilbert expansion (3.3) of the

macroscopic variables]. This is the set of fluid-dynamic type equations.



In the present analysis, we further assume that

uBiH0 ≡ 0. (3.11)

Since the situation (ii) in the first paragraph of Sec. 2 corresponds to the assumption

that n̂BH0 6= 0 everywhere, Eqs. (3.7a) and (3.11) lead to

uiH0 = uAiH0 ≡ 0, (3.12)

everywhere. [If there is a region where n̂BH0 ≡ 0, uBiH0 does not have a sense and thus

uAiH0 in general does not vanish there.31 Such a region may exist. In the present

study, however, we only consider the case without such a region.] In this situation,

the analysis for the Hilbert expansion can be carried out consistently, and the result

is also consistent with the situation (iii) in the first paragraph of Sec. 2. [As will

be seen in Sec. 3.2, the matching with the boundary condition can also be made

consistently under the condition (2.4).]

We here summarize the explicit form of the fluid-dynamic type equations that

are necessary to determine the leading-order solution fαH0 under the condition (3.11)

and (3.12):

∂p̂H0

∂xi
= 0, (3.13)

∂p̂H1

∂xi
= 0, (3.14)

∂

∂xi
(n̂αH0u

α
iH1) = 0, (3.15)

ρ̂H0uiH1
∂ujH1

∂xi
= −1

2

∂p̂ijH2

∂xi
, (3.16)

∂

∂xi
(p̂H0uiH1) = −2

5

∂q̂iH1

∂xi
, (3.17)

where

uAiH1 − uBiH1 = −
T̂
1/2
H0

n̂H0

D̂AB

XA
H0X

B
H0

(
∂XA

H0

∂xi
+ kT

∂ ln T̂H0

∂xi

)
, (3.18)



p̂ijH2 = p̂H2δij − µ̂T̂
1/2
H0

∂uiH1

∂xj
+

Υ̂1

p̂H0

∂T̂H0

∂xi

∂T̂H0

∂xj
+

1

n̂H0

∂

∂xi

(
Υ̂2

∂T̂H0

∂xj

)

+
T̂H0

n̂H0
Υ̂3

∂XA
H0

∂xi

∂XA
H0

∂xj
+

1

n̂H0
Υ̂4

∂XA
H0

∂xi

∂T̂H0

∂xj

+
T̂H0

n̂H0

∂

∂xi

(
Υ̂5

∂XA
H0

∂xj

)
, (3.19)

q̂iH1 = −T̂ 3/2
H0

(
D̂T

XA
H0X

B
H0

∂XA
H0

∂xi
+ λ̂′

∂ ln T̂H0

∂xi

)
+

5

2

∑
β=A,B

p̂βH0(u
β
iH1 − uiH1)

= −λ̂T̂ 1/2
H0

∂T̂H0

∂xi
+ kT p̂H0(u

A
iH1 − uBiH1) +

5

2

∑
β=A,B

p̂βH0(u
β
iH1 − uiH1)

= −λ̂T̂ 1/2
H0

∂T̂H0

∂xi
+ [kT p̂H0 +

5

2
ρ̂−1H0(p̂

A
H0ρ̂

B
H0 − ρ̂AH0p̂

B
H0)](u

A
iH1 − uBiH1), (3.20)

and the bar indicates

Aij = Aij +Aji − (2/3)Akkδij .

Here, the following relations also hold:

p̂αH0 = n̂αH0T̂H0, ρ̂αH0 = m̂αn̂αH0,

n̂H0 =
∑

β=A,B

n̂βH0, p̂H0 =
∑

β=A,B

p̂βH0,

ρ̂H0 =
∑

β=A,B

ρ̂βH0, ρ̂H0uiH1 =
∑

β=A,B

ρ̂βH0u
β
iH1,

(3.21)

and Xα
H0, which is the concentration of each component based on n̂αH0, is defined by

Xα
H0 = n̂αH0/n̂H0, (

∑
β=A,B

Xβ
H0 = 1). (3.22)

The D̂AB, D̂T , λ̂′, λ̂, kT , µ̂, Υ̂1, Υ̂2, Υ̂3, Υ̂4, and Υ̂5 in Eqs. (3.18)–(3.20) are func-

tions of XA
H0 (or XB

H0); and µ̂, λ̂, D̂AB, D̂T , and kT correspond to the viscosity,

thermal conductivity, mutual diffusion coefficient, thermal diffusion coefficient, and

thermal-diffusion ratio, respectively (see APPENDIX A for their definitions). Equa-

tions (3.13) and (3.14) indicate that p̂H0 and p̂H1 are constant (these constants are

determined by conditions proper to concrete problems). We can, in principle, ex-

press uAiH1, u
B
iH1, and q̂iH1 in terms of n̂AH0, n̂

B
H0, T̂H0, and uiH1 by using Eqs. (3.18)

and (3.20)–(3.22) and express p̂ijH2 in terms of n̂AH0, n̂
B
H0, T̂H0, uiH1, and p̂H2 by



using Eqs. (3.19), (3.21), and (3.22). Substituting these expressions into Eqs. (3.15)–

(3.17), using ρ̂H0 = m̂An̂AH0 + m̂Bn̂BH0, and noting that n̂BH0 is expressed in terms of

n̂AH0 and T̂H0 [i.e., (n̂AH0 + n̂BH0)T̂H0 = p̂H0 = const], we find that Eqs. (3.15)–(3.17)

give six equations for six unknown functions n̂AH0, T̂H0, uiH1, and p̂H2. But we retain

the form of Eqs. (3.15)–(3.20) for convenience in comparing the equations with the

classical fluid-dynamic equations. It is noted here that the explicit expressions of

p̂ijH1, p̂ijH2, and q̂iH1 are p̂ijH1 = p̂H1δij , Eq. (3.19), and Eq. (3.20), respectively.

Equation (3.21) is derived from the definition of hαH0, hH0, etc. [Eq. (3.3)]

with Eqs. (3.7b), (3.11), and (3.12). Equation (3.13) follows from Eq. (3.10b) with

m = 1 [Eqs. (3.10a) and (3.10c) with m = 1 are satisfied automatically]; Eqs. (3.15)

(with uαiH1 having been eliminated in the way mentioned above), (3.14), and (3.17)

(with q̂iH1 having been eliminated) follow from Eqs. (3.10a), (3.10b), and (3.10c)

with m = 2, respectively; Eq. (3.16) (with p̂ijH2 having been eliminated) follows

from Eq. (3.10b) with m = 3. The explicit form of fαH1, which has been used in

deriving these equations [except Eq. (3.13)], is given in APPENDIX A [Eq. (A1)].32

Equations (3.13)–(3.22) formally form a closed set of partial differential equa-

tions, from which some important information can be obtained. However, the func-

tional forms of the coefficients D̂AB, D̂T , etc. with respect to XA
H0, which are

essentially determined by Eqs. (A2), (A3), etc., are not explicit. In order to apply

the set (with its boundary condition derived in Sec. 3.2) to practical problems, we

need to obtain the functional forms approximately or numerically. The approximate

results for the coefficients corresponding to µ̂, λ̂, D̂AB, and D̂T , based on the first

term or the first few terms of polynomial expansions of the solutions of Eqs. (A2),

(A3), etc., are given in, e.g., Refs. 23 and 33. In the meantime, a database that gives

accurate numerical values of µ̂, λ̂, D̂AB, and D̂T immediately for arbitrary XA
H0 was

constructed recently.34

3.2 Knudsen-Layer Correction and Slip Boundary Condition

In the previous subsection, we obtained the Hilbert solution putting the

boundary condition aside. In this subsection we try to obtain the solution sat-



isfying the boundary condition. In accordance with Eq. (2.4), let us assume the

following form for the dimensionless velocity uwi of the surfaces of the condensed

phases (or the boundary, for short):

uwi = Uiε. (3.23)

Then, the boundary condition (2.5) can be written as

fα = σαwT̂
−3/2
w

(
m̂α

π

)3/2

exp

(
−m̂

αζ2i
T̂w

)(
1 +

2m̂αζiUi

T̂w
ε+ · · ·

)
, ζini > 0.

(3.24)

Now let us assume that n̂AH0 and T̂H0 take the following values on the boundary:

n̂AH0 =p̂Aw/T̂w, (3.25a)

T̂H0 =T̂w. (3.25b)

Then we find that fαH0 given by Eq. (3.6) with Eq. (3.12) satisfies the boundary

condition (3.24) at the leading order.

However, at higher orders of ε, the Hilbert solution cannot generally be made

to satisfy the boundary condition for the same reason as in the case of a single com-

ponent gas (see e.g., Refs. 1, 5, and 30). Therefore, we seek the solution satisfying

the boundary condition in the following form:

fα = fαH + fαK , (3.26)

where fαK , which is called the Knudsen-layer correction, is a correction term to the

Hilbert solution near the boundary. More precisely, fαK is assumed to have the

length scale of variation of the order of ε (or the mean free path in the physical

space) in the direction normal to the boundary, i.e., nj∂f
α
K/∂xj = O(fαK/ε), and to

be appreciable only in the thin layer with thickness of the order of ε adjacent to the

boundary. We now introduce the new coordinate system (η, s1, s2) defined by

xi = εηni(s1, s2) + xwi(s1, s2), (3.27)

where xwi represents the boundary (the surfaces of the condensed phases), η is the

stretched coordinate normal to the boundary, and s1 and s2 are the coordinates on



the boundary, and consider fαK to be a function of η, s1, and s2 [∂fαK/∂η = O(fαK)],

as well as ζi, vanishing rapidly as η →∞. We further expand fαK in a power series

of ε as

fαK = fαK1ε+ fαK2ε
2 + · · · , (3.28)

where the expansion is assumed to start from the first order because fαH0 satisfies

the boundary condition at the zeroth order. Substituting Eq. (3.26) with Eq. (3.28)

into Eqs. (2.1)–(2.6) and taking into account the properties of fαH as well as fαK , we

obtain the equations and boundary conditions for fαKm (m = 1, 2, ...). Here we only

give those for fαK1:

ζini
∂fαK1

∂η
=
∑

β=A,B

Kβα

(
Ĵβα([fβH0]w, f

α
K1) + Ĵβα(fβK1, [f

α
H0]w)

)
, (3.29)

fαK1 =fαH0

(
καw + 2m̂αζ̄i(Ui − uiH1)T̂

−1/2
w − (m̂αζ̄2 − 5

2
)T̂H1/T̂w

+ζ̄iA
α(ζ̄)

1

p̂H0

∂T̂H0

∂xi
+
∑

β=A,B

ζ̄iD
(β)α(ζ̄)

1

n̂H0

∂Xβ
H0

∂xi

)
,

ζini > 0, at η = 0, (3.30a)

fαK1 →0, η →∞, (3.30b)

with

κAw =− p̂AH1/p̂
A
w, (3.31a)

κBw =− (πm̂B)1/2(uiH1ni)T̂
−1/2
w − 1

2
T̂H1/T̂w

+ (πm̂B)1/2
∑

β=A,B

∆̂Bβ
1

n̂H0

∂Xβ
H0

∂xi
ni

+ (πm̂B)1/2D̂TB
1

p̂H0

∂T̂H0

∂xi
ni

− 2(πm̂B)1/2T̂−1/2w

∫
ζini<0

ζini(n̂
B
H0)
−1fBK1dζ. (3.31b)

Here, [ ]w represents the value of the function in the square brackets on the boundary

(i.e., at η = 0); ζ̄i = ζi/T̂
1/2
w and ζ̄ = (ζ̄2j )1/2; ∆̂Bβ and D̂TB are defined in Eq. (A5b).

The condition (3.25) has been used in Eqs. (3.30) and (3.31). Integrating both sides

of Eq. (3.29) over the whole ζi space and taking Eq. (3.30b) into account, we have



uαiK1ni = 0, where uαiK1 = (1/[n̂αH0]w)
∫
ζif

α
K1dζ is the contribution of the Knudsen-

layer part to the ε-order velocity [i.e., uαi = (uαiH1 + uαiK1)ε+ · · · ]; therefore, for the

B–component, we have

uBiH1ni = 0, (3.32)

on the boundary (note that uBi ni = 0 on the boundary because of the diffuse reflec-

tion and that uBiH0 ≡ 0).

Equations (3.29)–(3.31) form a half-space boundary-value problem of the lin-

earized Boltzmann equation for a binary mixture (see APPENDIX B). The bound-

ary condition (3.30a) contains the boundary values of the Hilbert parts (the part

corresponding to the Hilbert solution) of the macroscopic variables and those of

their derivatives. As in the case of a single-component gas, the solution fαK1 exists

only when these boundary values satisfy certain relations (see APPENDIX B for the

details of this point). Part of these relations, together with Eqs. (3.25) and (3.32),

give the boundary conditions for the fluid-dynamic type equations (3.15)–(3.22).

More specifically, the solution to Eqs. (3.29)–(3.31) can be obtained as the sum of

the solutions of five fundamental half-space problems of the linearized Boltzmann

equation for a binary mixture, that is, the problems of (i) evaporation and con-

densation,35 (ii) temperature jump,36,37 (iii) partial pressure jump,36 (iv) thermal

creep,17,38 and (v) diffusion slip.15–18 The (iii) and (v) are peculiar to a mixture,

whereas the (i), (ii), and (iv) are well-known problems for a single-component gas

[see, e.g., Refs. 39 and 40 for (i), Ref. 41 for (ii), and Refs. 6–8 for (iv)]. Corre-

sponding to this separation of the problem, the relation among the boundary values

mentioned above can be obtained separately. Here, we note that only the relations

associated with the problems (iv) and (v) play the role of the boundary condition for

Eqs. (3.15)–(3.22) and that the others are related to the higher-order fluid-dynamic

type equations which are not obtained in this paper. The relations associated with

the problems (iv) and (v) give the velocity slip for uiH1 of the following form:

(uiH1 − Ui)ti = −T̂ 1/2
H0

(
b7

1

p̂H0

∂T̂H0

∂xi
ti + b9

1

n̂H0

∂XA
H0

∂xi
ti

)
, (3.33)

on the boundary. Here, ti is a unit vector tangential to the boundary. The b7 and

b9, the coefficient of thermal creep and that of diffusion slip, respectively, are the



functions of XA
H0 (or XB

H0) on the boundary.

To summarize, Eqs. (3.25), (3.32), and (3.33) form the boundary conditions

for the fluid-dynamic type equations (3.15)–(3.22).42 By solving this system, we

obtain the overall flow uiH1 (of the order of ε or Kn) induced in the gas (note that it

is subject to the Knudsen-layer correction near the boundary) as well as the number

densities n̂αH0 and the temperature T̂H0 required to determine the ε0-order Hilbert

solution, Eq. (3.6) with uiH0 ≡ 0.

When the region of the mixture extends to infinity, we have to impose the

conditions at infinity that are consistent with the fluid-dynamic type equations. It

follows from Eqs. (3.11)–(3.14) that uαiH0 = uiH0 ≡ 0, p̂H0 = const, and p̂H1 = const

should hold at infinity. This restriction is consistent with the situation (iii) in the

first paragraph of Sec. 2.

4 FLOW INDUCED IN THE GAS AND THE GHOST EFFECT
IN THE CONTINUUM LIMIT

In the previous section, we were able to carry out the asymptotic analysis

consistently under the assumptions (2.4) [or (3.23)] and (3.11)43 and derived the

fluid-dynamic type system for the ε-order flow as well as the number densities and

temperature of the ε0 order. On the basis of the system, we first discuss the cause

of the flow (Sec. 4.1) and then the behavior of the mixture (i.e., the ghost effect) in

the continuum limit (Sec. 4.2).

4.1 Flow Induced in the Mixture

It is obvious that the boundary condition (3.33) causes the ε-order flow, uiH1

and thus uαiH1. If the boundary is moving in its surface [with a speed of O(ε)],

i.e., Ui 6= 0, then there is a motion of the gas mixture along the boundary. Next,

if the temperature of the boundary varies along it, then the temperature gradient

(∂T̂H0/∂xi)ti takes a nonzero value on the boundary because of Eq. (3.25b), and

therefore a flow is induced along it [the first term on the R.H.S. of Eq. (3.33)]. This



phenomenon, which is called the thermal creep, has extensively been studied for a

single-component gas.6–9 Finally, if the saturation vapor pressure p̂Aw varies along the

boundary, then the concentration XA
H0 of the vapor is not uniform along it because

of Eq. (3.25) and the relation p̂H0 = (n̂AH0 + n̂BH0)T̂H0 = const. Therefore, a flow

is induced along the boundary [the second term on the R.H.S. of Eq. (3.33)]. This

flow, caused by the nonuniformity of the concentration along the boundary, is called

the diffusion slip15–18 and is peculiar to gas mixtures. In summary, the boundary

condition (3.33) contains the following three factors that cause the flow of O(ε):

I. the motion of the boundary

II. the thermal creep

III. the diffusion slip

If the condensed phases are at rest and if T̂w and p̂Aw are uniform on the surface of

each condensed phase, the boundary condition (3.33) causes no flow.

Various factors causing the ε-order flow are also contained in the momentum

equation, Eq. (3.16) with Eq. (3.19). That is, in addition to the Navier–Stokes stress

[the first and second terms of the R.H.S. of Eq. (3.19)], the stress p̂ijH2 contains

the terms consisting of the product or the derivative of the temperature gradient

∂T̂H0/∂xj , the product or the derivative of the concentration gradient ∂XA
H0/∂xj ,

and the product of the temperature and the concentration gradients. The diver-

gences of these terms appear in the momentum equation and can be the cause of the

motion of the mixture. The sum of the terms containing Υ̂1 and Υ̂2 in Eq. (3.19)

is called the thermal stress and that of the terms containing Υ̂3 and Υ̂5 the concen-

tration stress. The fact that the thermal stress can cause a gas motion was pointed

out in Ref. 10 for a single-component gas (the nonlinear thermal stress flow; see also

Refs. 11 and 1). In the case of a mixture, the concentration stress can also induce a

flow,14,11 even if the temperature of the mixture T̂H0 is uniform. In addition to the

thermal and concentration stresses, there is a stress term due to the cross effect of

the temperature and concentration gradients [the term containing Υ̂4 in Eq. (3.19)].

To summarize, the momentum equation contains the following three factors causing

the flow of O(ε):



IV. the thermal stress

V. the concentration stress

VI. the stress by the cross effect of the temperature and concentration gradients

In the case of a mixture, however, there is another important cause for the

ε-order flow, that is,

VII. the diffusion

represented by Eq. (3.18). If the concentration XA
H0 is not uniform, the difference

uAiH1 − uBiH1 between the flow velocities of the A and B–components is not zero,

and therefore a flow of the mixture uiH1 appears generally. The flow caused by the

concentration stress mentioned above cannot, in general, be separated from that

caused by the diffusion. In one-dimensional problems, such as the mixture between

two plane condensed phases19,20 and that between two coaxial cylindrical condensed

phases, the flow uiH1 is determined by Eqs. (3.15), (3.17), (3.18), and (3.20)–(3.22)

and the boundary conditions (3.25) and (3.32) [Eq. (3.33) reduces to uiH1ti = 0 (on

the boundary) in this case, which is automatically satisfied because of the symmetry

of the problem]. That is, the flow is determined only by the diffusion. In this case,

Eqs. (3.16) and (3.19) play a secondary role of determining p̂H2 from the known uiH1,

T̂H0, n̂
A
H0, etc. The nonuniformity of the temperature also causes the diffusion, which

is known as the thermal diffusion [the second term on the R.H.S. of Eq. (3.18)].

4.2 Behavior in the Continuum Limit

Let us now investigate the behavior of the mixture in the continuum limit,

i.e., the limit where ε (or Kn) tends to zero. If we take the limit recalling that

the velocities uαi and thus ui are of O(ε) [i.e., uαi = (uαiH1 + uαiK1)ε + · · · ], we

have (n̂α, p̂α, T̂α, n̂, p̂, T̂ ) → (n̂αH0, p̂
α
H0, T̂

α
H0, n̂H0, p̂H0, T̂H0) and (uαi , ui) →

(0, 0). The flow vanishes in this limit. That is, no evaporation or condensation

takes place, and each component is at rest. However, it should be noted that the

limiting macroscopic variables n̂αH0, T̂H0, etc. are determined simultaneously with



uαiH1 and uiH1 by the fluid-dynamic type system and that uαiH1 and uiH1, which

are the expansion coefficients in Eq. (3.3), are independent of ε. This means the

following. In spite of the fact that the flow itself vanishes in the continuum limit,

it still affects other macroscopic quantities in this limit. Therefore, the treatment

in which only the continuum limit is considered from the beginning (i.e., classical

fluid dynamics) cannot describe the behavior in the continuum limit correctly. This

effect is no other than the ghost effect that was found in Ref. 1 and has extensively

been investigated in Refs. 3–5,19, and 20.

In Sec. 4.1, we discussed the factors causing the ε-order flow. Since the ghost

effect is caused by the vanishing ε-order flow in the continuum limit, all these factors

are also the sources of the effect. The factors I, II, and IV in Sec. 4.1 have already

been clarified in the case of a single-component gas in Ref. 1.44 The other factors

are peculiar to gas mixtures. The factor VII has been studied in Refs. 19 and 20,

where the planar two-surface problem for a mixture of vapor(s) and noncondensable

gas(es) is considered. The III, V, and VI are the factors for the ghost effect first

clarified in the present paper.

We here give some comments on the conventional treatment45,46 of the prob-

lem in the continuum limit on the basis of the classical fluid dynamics. The basic

equations are the Navier–Stokes equations for a binary mixture with the flow of O(ε)

being taken into account, namely, the equations corresponding to Eq. (3.13)–(3.22)

with Υ̂1 = Υ̂2 = Υ̂3 = Υ̂4 = Υ̂5 = 0 in Eq. (3.19). The associated boundary condi-

tions are those corresponding to Eqs. (3.25), (3.32), and (3.33) with Ui = b7 = b9 = 0

(nonslip condition). In the framework of classical fluid dynamics, these boundary

conditions are derived from experience. On the other hand, in the same framework,

the flow of O(ε) is generally neglected as an effect of gas rarefaction. But, if the flow

is neglected, i.e., uαiH1 are put to be zero, the Navier–Stokes equations are not solv-

able under the boundary conditions (3.25), (3.32), and uiH1ti = 0. For the purpose

of avoiding this difficulty, the flow of O(ε) is retained in the Navier–Stokes system

in the conventional treatment, although it is inconsistent with the framework. In

this way, the problem is somewhat made to be solvable. However, the system does

not contain the factors I–VI for the ghost effect and is incomplete. Therefore, it



cannot describe the behavior in the continuum limit correctly. It happens to give

the correct behavior in some special cases where the factors I–III are absent and

IV–VI do not affect the (ε-order) velocity field. Such an example is given by the

planar two-surface problem studied in Refs. 19 and 20.

5 MIXTURE OF MECHANICALLY IDENTICAL MOLECULES

We now consider a special case where the molecules of the A–component are

mechanically identical with those of the B–component, i.e., mA = mB and dA = dB.

In this case, the functions Aα, Bα, and D(β)α occurring in Eq. (A1) are reduced as

follows:

AA = AB = A(ζ), BA = BB = B(ζ),

D(A)B = D(B)A = −(XA
H0/X

B
H0)D

(A)A = −(XB
H0/X

A
H0)D

(B)B = −C(ζ),
(5.1)

where A(ζ), B(ζ), and C(ζ) are the functions of ζ only and are defined in Appendix

B of Ref. 20 [The A(ζ) and B(ζ) appear in connection with the thermal conductivity

and viscosity for a single-component gas; see the references cited in Ref. 20]. As is

readily seen from Eq. (A5), all the coefficients in Eqs. (3.18)–(3.20) become inde-

pendent of XA
H0, and moreover, kT , D̂T , Υ̂3, Υ̂4, and Υ̂5 vanish. More specifically,

the coefficients become as follows:

µ̂ = γ1, λ̂ = λ̂′ = 5
4γ2, D̂AB = γc, kT = D̂T = 0,

Υ̂1 = 1
2γ7, Υ̂2 = 1

2γ3, Υ̂3 = Υ̂4 = Υ̂5 = 0,
(5.2a)

with

γ1 = 1.270042, γ2 = 1.922284, γ3 = 1.947906,

γ7 = 0.188106, γc = 0.764215.
(5.2b)

Here, the values of γ1, γ2, γ3, and γ7 are taken from Ref. 1, and the value of γc from

Ref. 20 (see also the references cited in these papers). As for the boundary condition

(3.33), the coefficient b7 reduces to the slip coefficient for the thermal creep for a

single-component gas,8 and b9 vanishes, i.e.,

b7 = K1, b9 = 0, (5.3a)



with

K1 = −0.6463. (5.3b)

This special mixture is useful because it simplifies the structure of the Boltz-

mann equation and often retains the important features of the general mixture. In

the present problem, however, the vanishing of six coefficients [see Eqs. (5.2a) and

(5.3a)] simplifies the fluid-dynamic type system too much, so that all the new factors

for the ghost effect, i.e., the factors III, V, and VI, disappear. In this sense, the

mixture under consideration is a very special one and does not represent the general

mixture in the present problem.

6 MIXTURE AROUND SOLID BODIES

Let us consider a binary gas mixture around ordinary solid bodies on the

surfaces of which neither evaporation nor condensation takes place, i.e., the case

where the A–component is also noncondensable. This is a natural extension of the

problem of Ref. 1 to a binary mixture. Let us assume the diffuse reflection condition

also for the A–component. Then, σAw in Eq. (2.5) is given by Eqs. (2.6b) with the

superscript B being replaced by A. The analysis of the Hilbert solution in Sec. 3.1,

which was carried out irrespective of the boundary condition, is not affected by

the change of the boundary condition. We should only note that, as Eq. (3.11),

uAiH0 = uBiH0 = uiH0 ≡ 0 is assumed in the present case. As for the analysis of the

Knudsen-layer correction in Sec. 3.2, a slight modification is necessary. We have to

discard the relation (3.25a). Equation (3.29) for fαK1 remains unchanged, but κAw

in Eq. (3.31a) is given by Eq. (3.31b) with the superscript B being replaced by A.

Then, in the same way as we derived Eq. (3.32), we have

uAiH1ni = 0, (6.1)

on the boundary. This gives a boundary condition in place of Eq. (3.25a). The

change of κAw does not affect the slip boundary condition (3.33). To summarize, the

fluid-dynamic type system in the present case consists of Eqs. (3.13)–(3.22) and the

boundary conditions (3.25b), (3.32), (3.33), and (6.1).47



The fluid-dynamic type system, therefore, retains all the terms that are the

cause of the ε-order flow and thus that of the ghost effect in the continuum limit.

However, the effect of the factors III and V–VII in Sec. 4.1, which are peculiar to a

gas mixture, is generally weak for the reason described bellow. Let us consider the

mixture in a closed domain or in an infinite domain with a uniform concentration and

a uniform pressure at infinity. According to Refs. 23 and 34, the magnitude of the

coefficient kT in Eqs. (3.18) and (3.20) is, in most cases, considerably smaller than

unity. Therefore, the terms including kT may be neglected as the first approximation.

Then, it can be shown that the solution with a uniform concentration is a compatible

solution. In this situation, all the factors associated with the nonuniformity of the

concentration, i.e., the factors III and V–VII, vanish, and the behavior of the mixture

is essentially the same as that of a single-component gas investigated in Ref. 1. From

this, it is expected that the term including kT causes small nonuniformity of the

concentration of O(kT ) and that all the above factors have only weak effects.

Finally, it is noted that, when the condensed phases and the ordinary solid

bodies coexist, the boundary conditions (3.25), (3.32), and (3.33) are to be used

on the former and the conditions (3.25b), (3.32), (3.33), and (6.1) on the latter for

Eqs. (3.13)–(3.22).

7 SOME GENERALIZATIONS

So far, we have considered the case of a binary mixture. The generalization

of the analysis to a multicomponent mixture of vapors and noncondensable gases is

rather straightforward. The resulting fluid-dynamic type system is summarized in

APPENDIX C.

Here, we discussed the generalization of the boundary condition. In our

analysis, we have assumed the complete condensation condition for the vapor [cf.,

Eqs. (2.5) and (2.6a)]. In this condition, all the vapor molecules impinging on the

surfaces of the condensed phases are assumed to be absorbed. When the case where

part of the impinging molecules are reflected on the surfaces is considered, the bound-

ary condition that is the linear combination of the complete condensation and the



diffuse reflection [cf. the last sentence in the paragraph containing Eq. (2.5)] is often

used (see, e.g., Ref. 30). This generalized condition is also expressed by Eq. (2.5),

but with the following σAw in place of Eq. (2.6a):

σAw = αcp̂
A
w/T̂w − 2(1− αc)

(
πm̂A

T̂w

)1/2 ∫
ζini<0

ζinif
Adζ, (7.1)

where αc (0 < αc ≤ 1) is called the condensation factor, and αc = 1 corresponds

to the complete condensation. It can easily be shown that this generalization of

the kinetic boundary condition for the A–component does not change the fluid-

dynamic type equations (3.13)–(3.22) and their boundary conditions (3.25), (3.32),

and (3.33).

8 CONCLUDING REMARKS

In the present study, we have tried to clarify the steady behavior of a binary

mixture of a vapor and a noncondensable gas around condensed phases of the vapor

(of arbitrary shapes) in the continuum limit in the situations (i)–(iii) described at

the beginning of Sec. 2. For this purpose, we have carried out a systematic asymp-

totic analysis of the Boltzmann equation for small Knudsen numbers. As the result,

we have shown that the solution in which the flow of the mixture appears at the first

order of the Knudsen number [O(Kn)] is a consistent solution, and we have derived

the set of fluid-dynamic type equations and their appropriate boundary conditions

that describes the overall flow of O(Kn) as well as the number densities and tem-

perature of O(1). On the basis of the system, we have shown that the ghost effect,

which was discovered in Ref. 1 for a single-component gas, appears naturally in the

present problem. That is, in spite of the fact that the flow vanishes in the continuum

limit, the distributions of other macroscopic variables, such as the number densities

and temperature, in this limit are still affected by the vanishing (or nonexisting)

flow. We have examined the factors causing the ghost effect and shown that there

are several new factors which are peculiar to gas mixtures in addition to the factors

already known for a single-component gas1,3 and to the factor corresponding to the

diffusion for a mixture.19,20 These new factors correspond to the diffusion slip and



the flows due to the concentration stress and to the stress by the cross effect of

the temperature and concentration gradients. They are relevant to the nonunifor-

mity of the concentration distribution of the mixture. We have also considered the

corresponding problem for a mixture of noncondensable gases. Further, we have

discussed the generalization of the result to a multicomponent mixture of the vapors

and noncondensable gases as well as to a more general boundary condition.

In this paper, the formal part of the asymptotic analysis has been completed.

The next step is to add the quantitative information, such as the numerical values of

the coefficients included in the fluid-dynamic type equations and those of the coeffi-

cients in the slip boundary condition. These will be the subjects of our forthcoming

papers, where some numerical examples demonstrating the ghost effect caused by

the new factors will also be given.
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APPENDIX A EXPRESSION OF fαH1, RELATED INTEGRALS,
AND TRANSPORT COEFFICIENTS

In addition to α and β, the letters γ and κ are also used to represent the

labels A and B of the components in this appendix. Let us introduce the notations

ζ̃i = ζiT̂
−1/2
H0 and ζ̃ = (ζ̃2j )1/2. Then the solution fαH1 of Eq. (3.5) with m = 1 is



given by

fαH1 = fαH0

[
p̂αH1/p̂

α
H0 + 2m̂αζ̃iuiH1T̂

−1/2
H0 + (m̂αζ̃2 − 5

2
)T̂H1T̂

−1
H0

−ζ̃iAα(ζ̃)
1

p̂H0

∂T̂H0

∂xi
− ζ̃i

∑
β=A,B

D(β)α(ζ̃)
1

n̂H0

∂Xβ
H0

∂xi

]
, (A1)

where Aα(ζ) and D(β)α(ζ) are the solutions of the following integral equations:23,24∑
β=A,B

KβαXβ
H0L̃

βα(ζiA
β, ζiA

α) = −ζi(m̂αζ2 − 5

2
),

subsidiary condition:
∑

β=A,B

m̂βXβ
H0I

β
4 (Aβ) = 0,

(A2)

∑
β=A,B

KβαXα
H0X

β
H0L̃

βα(ζiD
(γ)β, ζiD

(γ)α) = −ζi
(
δαγ −

m̂αXα
H0∑

β=A,B m̂
βXβ

H0

)
,

subsidiary condition:
∑

β=A,B

m̂βXβ
H0I

β
4 (D(α)β) = 0.

(A3)

Here, L̃βα(f, g) and Iαn (F ) are defined by

L̃βα(f, g) = [Ĵβα(fEβ, Eα) + Ĵβα(Eβ, gEα)](Eα)−1,

Iαn (F ) =
8π

15

∫ ∞
0

ζnF (ζ)Eα(ζ)dζ,

Eα(ζ) =

(
m̂α

π

)3/2

exp(−m̂αζ2).

(A4)

In Eqs. (A2) and (A3), the restriction
∑

β=A,BX
β
H0 = 1 for the concentrations is

not used. In other words, Aα and D(β)α are defined for arbitrary positive Xγ
H0

(γ = A,B). Therefore, Aα and D(β)α are the functions of Xγ
H0 and ζ, depending on

m̂γ and d̂γ (γ = A,B).

Next we introduce the following functionsBα(ζ), D
(β,γ)α
1 (ζ), D

(β,γ)α
2 (ζ), Aα1 (ζ),

Aα2 (ζ), D
(β)α
A1 (ζ) and D

(β)α
A2 (ζ):

∑
β=A,B

KβαXβ
H0L̃

βα((ζiζj −
1

3
ζ2δij)B

β, (ζiζj −
1

3
ζ2δij)B

α) = −2m̂α(ζiζj −
1

3
ζ2δij),

∑
β=A,B

KβαXβ
H0J̃

βα(ζiD
(γ)β, ζjD

(κ)α) = ζiζjD
(γ,κ)α
1 +D

(γ,κ)α
2 δij ,

∑
β=A,B

KβαXβ
H0J̃

βα(ζiA
β, ζjA

α) = ζiζjA
α
1 +Aα2 δij ,



∑
β=A,B

KβαXβ
H0[J̃

βα(ζiA
β, ζjD

(γ)α) + J̃βα(ζiD
(γ)β, ζjA

α)] = ζiζjD
(γ)α
A1 +D

(γ)α
A2 δij ,

where the operator J̃βα is defined as

J̃βα(f, g) = Ĵβα(fEβ, gEα)/Eα.

The comments below Eq. (A4) also apply to the above definitions. That is, Bα(ζ),

D
(β,γ)α
1 (ζ), D

(β,γ)α
2 (ζ), Aα1 (ζ), Aα2 (ζ), D

(β)α
A1 (ζ) and D

(β)α
A2 (ζ) are the functions of

Xκ
H0 and ζ, depending on m̂κ and d̂κ (κ = A,B).

By the use ofAα(ζ), D(β)α(ζ), and these functions, the coefficients in Eqs. (3.18)–

(3.20) are defined as:

D̂AB = XA
H0X

B
H0(∆̂AA + ∆̂BB − ∆̂AB − ∆̂BA),

D̂T = XA
H0X

B
H0(D̂TA − D̂TB), µ̂ =

∑
β=A,B

m̂βXβ
H0I

β
6 (Bβ),

λ̂′ =
5

2

∑
β=A,B

Xβ
H0I

β
4 ([m̂βζ2 − 5

2
]Aβ),

kT =
D̂T

D̂AB

, λ̂ = λ̂′ − kT
D̂T

XA
H0X

B
H0

,

Υ̂1 =
1

2

∑
β=A,B

Xβ
H0I

β
6 (Bβ[Aβ1 + (m̂βζ2 − 3)Aβ − 1

2
ζ
∂Aβ

∂ζ
]),

Υ̂2 =
1

2

∑
β=A,B

Xβ
H0I

β
6 (AβBβ),

Υ̂3 = Υ̂
(A,A)
3 + Υ̂

(B,B)
3 − Υ̂

(A,B)
3 − Υ̂

(B,A)
3 ,

Υ̂4 = Υ̂
(A)
4 − Υ̂

(B)
4 , Υ̂5 = Υ̂

(A)
5 − Υ̂

(B)
5 ,

(A5a)

where

∆̂αβ =
5

2
Iα4 (D(β)α), D̂Tα =

5

2
Iα4 (Aα),

Υ̂
(α,γ)
3 =

1

2

∑
β=A,B

Xβ
H0I

β
6 (BβD

(α,γ)β
1 −D(α)β ∂Bβ

∂Xγ
H0

),

Υ̂
(α)
4 =

1

2

∑
β=A,B

Xβ
H0I

β
6 (Bβ[D

(α)β
A1 + (m̂βζ2 − 2)D(α)β − ζ

2

∂D(α)β

∂ζ
]−Aβ ∂Bβ

∂Xα
H0

),

Υ̂
(α)
5 =

1

2

∑
β=A,B

Xβ
H0I

β
6 (BβD(α)β).

(A5b)



Here the subsidiary coefficients ∆̂αβ and D̂Tα have the following properties:

∆̂αβ = ∆̂βα,
∑

β=A,B

m̂βXβ
H0∆̂αβ = 0,

∑
β=A,B

m̂βXβ
H0D̂Tβ = 0. (A6)

In addition, D̂Tα can also be expressed in terms of D(α)β as

D̂Tα =
5

2

∑
β=A,B

Xβ
H0I

β
4 ([m̂βζ2 − 5

2
]D(α)β). (A7)

To be consistent with Eqs. (3.18) and (3.19), the restriction
∑

β=A,BX
β
H0 = 1 have

been imposed in Eq. (A5). Therefore, all the coefficients defined by Eq. (A5) are

the functions of XA
H0.

The coefficients µ̂, λ̂, D̂AB, D̂T , and kT are directly related to the conventional

transport coefficients of a binary mixture; that is, if we follow the definition in

Ref. 23, the viscosity µ, the thermal conductivity λ, the mutual diffusion coefficient

DAB, the thermal diffusion coefficient DT , and the thermal-diffusion ratio kT are

expressed as

µ = (
√
π/2) µ̂ p(2kT/mA)−1/2`, λ =

√
π λ̂ p(2kT/mA)−1/2(k/mA)`,

DAB = (
√
π/2)D̂AB (2kT/mA)1/2`, DT = (

√
π/2)D̂T (2kT/mA)1/2`,

kT = DT /DAB,

(A8)

with ` = [
√

2π(dA)2n]−1. Here we have identified the macroscopic variables with

the corresponding leading-order terms of the Hilbert solution, i.e., p = p0p̂H0, T =

T0T̂H0, and n = n0n̂H0.

APPENDIX B THE KNUDSEN-LAYER PROBLEM FOR A
MIXTURE

Let us consider the boundary-value problem (3.29)–(3.31) for the Knudsen-

layer correction fαK1. We put

fαK1(η, s1, s2, ζi) = [n̂αH0]wT̂
−3/2
w Eα(ζ̄)Ψα(η̄, s1, s2, ζ̄i), (B1)

where

η̄ = [n̂H0]wη, (B2)



and Eα is defined by Eq. (A4). Then, if we change the notation as

ζ̄i → ζi, (ζ̄ → ζ), η̄ → η, (B3)

Eqs. (3.29)–(3.31) are rewritten as

ζini
∂Ψα

∂η
=
∑

β=A,B

Kβα[Xβ
H0]wL̃

βα(Ψβ,Ψα), (B4)

Ψα = καw + 2m̂αζi(Ui − uiH1)T̂
−1/2
w − (m̂αζ2 − 5

2
)T̂H1/T̂w

+ ζiA
α(ζ)

1

p̂H0

∂T̂H0

∂xi
+
∑

β=A,B

ζiD
(β)α(ζ)

1

n̂H0

∂Xβ
H0

∂xi
,

ζini > 0, at η = 0, (B5a)

Ψα → 0, η →∞, (B5b)

where κAw is given by Eq. (3.31a), κBw by Eq. (3.31b) with the last term in R.H.S.

being replaced by

−2(πm̂B)1/2
∫
ζini<0

ζiniΨ
BEBdζ, (B6)

and L̃βα is the linearized collision operator defined in Eq. (A4).

Now let us consider the following boundary-value problem in a half space

(x1 > 0) of the linearized Boltzmann equation for a binary mixture:

ζ1
∂φα

∂x1
=
∑

β=A,B

KβαCβL̃βα(φβ, φα), (α = A,B), (B7a)

φα = cα + m̂αc2ζ2 + m̂αc3ζ3 + m̂αc4ζ
2
i + gα(ζi), ζ1 > 0, x1 = 0,

φα → 0, as x1 →∞,
(B7b)

where cα, c2, c3, and c4 are constants and gα(ζi) are given functions. The Cα are

given constants corresponding to the concentration of the α–component at x1 = 0

and satisfying the relation ∑
β=A,B

Cβ = 1.

We assume that the following statement holds: The solution φα(x1, ζi) of the prob-

lem exists if and only if the constants cα, c2, c3, and c4 take a special set of values,



and the solution and the constants are unique. This is a conjecture based on the cor-

responding theorem for a single-component gas first proposed by Grad48 and proved

by Bardos et al.49 for hard-sphere molecules (the theorem has been generalized to

other molecular models50,51).

The application of the conjecture to our original Knudsen-layer problem (B4)

and (B5) can be made in the same way as in the single-component case.30 That

is, we find by comparison that καw + (5/2)(T̂H1/T̂w), 2(Ui − uiH1)T̂
−1/2
w ti, 2(Ui −

uiH1)T̂
−1/2
w t̃i, and −T̂H1/T̂w correspond to cα, c2, c3, and c4, respectively, and

−2m̂αζjnj(uiH1ni)T̂
−1/2
w plus the last two terms in R.H.S. of Eq. (B5a) corresponds

to gα(ζi). Here, ti and t̃i are two orthogonal unit vectors tangential to the bound-

ary, and the expression for κBw [Eq. (3.31b)] is put aside. As the result, καw and

T̂H1 are expressed as linear combinations of T̂
−1/2
w uiH1ni, p̂

−1
H0(∂T̂H0/∂xi)ni, and

n̂−1H0(∂X
A
H0/∂xi)ni; and T̂

−1/2
w (Ui − uiH1)ti is expressed as a linear combination of

p̂−1H0(∂T̂H0/∂xi)ti, and n̂−1H0(∂X
A
H0/∂xi)ti. The latter relation gives the slip bound-

ary condition (3.33). At the same time, the solution Ψα is expressed as the linear

combination of T̂
−1/2
w uiH1ni, p̂

−1
H0(∂T̂H0/∂xi)ni, etc. If we insert the solution ΨB in

Eq. (3.31b) with the last term replaced by Eq. (B6), we have another expression of

κBw in terms of the linear combination of T̂
−1/2
w uiH1ni, p̂

−1
H0(∂T̂H0/∂xi)ni, etc. Elim-

inating κBw from the two expressions, we obtain a certain relation, which reduces to

Eq. (3.32).

APPENDIX C EXTENSION TO A MULTICOMPONENT
MIXTURE

The formal extension of the analysis and results shown in the previous sections

to a multicomponent mixture is rather straightforward. Suppose that there are N

components in the mixture, where the 1st to N1-th components are vapors and

the (N1 + 1)-th to N -th components are noncondensable gases (i.e., the condensed

phases are composed of N1 different substances, and their N1 vapors are contained

in the gaseous mixture). Then, all the equations shown in the previous sections can

be extended to this case with slight modification, which is listed below.



i). Regard the dimensional molecular mass mA and diameter dA in Sec. 2 as those

of the first component.

ii). Regard the superscripts α, β, γ, and κ as running from 1 to N .

iii). Replace the summation
∑

β=A,B (or
∑

α=A,B) by
∑

β=1,...,N (or
∑

α=1,...,N ).

iv). Replace Eqs. (3.18)–(3.20) by the following equations:

uαiH1 = uiH1 −
T̂
1/2
H0

n̂H0

(
N∑
β=1

∆̂αβ
∂Xβ

H0

∂xi
+ D̂Tα

∂ ln T̂H0

∂xi

)
, (C1a)

p̂ijH2 = p̂H2δij − µ̂T̂
1/2
H0

∂uiH1

∂xj
+

Υ̂1

p̂H0

∂T̂H0

∂xi

∂T̂H0

∂xj
+

1

n̂H0

∂

∂xi

(
Υ̂2

∂T̂H0

∂xj

)

+
T̂H0

n̂H0

N∑
β,γ=1

Υ̂
(β,γ)
3

∂Xβ
H0

∂xi

∂Xγ
H0

∂xj
+

1

n̂H0

N∑
β=1

Υ̂
(β)
4

∂Xβ
H0

∂xi

∂T̂H0

∂xj

+
T̂H0

n̂H0

∂

∂xi

(
N∑
β=1

Υ̂
(β)
5

∂Xβ
H0

∂xj

)
, (C1b)

q̂iH1 = −T̂ 3/2
H0

(
N∑
β=1

D̂Tβ
∂Xβ

H0

∂xi
+ λ̂′

∂ ln T̂H0

∂xi

)
+

5

2

N∑
β=1

p̂βH0(u
β
iH1 − uiH1)

= −λ̂T̂ 1/2
H0

∂T̂H0

∂xi
+

N∑
β=1

(kTβ p̂H0 +
5

2
p̂βH0)(u

β
iH1 − uiH1), (C1c)

where kTα and λ̂ are defined by

D̂Tα =

N∑
β=1

kTβ∆̂αβ with

N∑
β=1

kTβ = 0,

λ̂ = λ̂′ −
N∑
β=1

kTβD̂Tβ,

and the other coefficients ∆̂αβ, D̂Tα, λ̂′, µ̂, Υ̂1, Υ̂2, Υ̂
(α,β)
3 , Υ̂

(α)
4 , and Υ̂

(α)
5 are

defined by Eq. (A5) with the extended superscripts (see also APPENDIX A in

Ref. 20). They are functions of N−1 concentrations out of Xγ
H0 (γ = 1, . . . , N)

[see the note below Eq. (A7)]. When the molecules of all the components are



mechanically identical, Eq. (5.2) holds for µ̂, λ̂, λ̂′, Υ̂1, and Υ̂2, and the other

coefficients are

kTα = D̂Tα = 0, ∆̂αβ = −γc(1− δαβ/Xα
H0), Υ̂

(α,β)
3 = Υ̂

(α)
4 = Υ̂

(α)
5 = 0.

v). Regard the superscript A as running from 1 to N1 and B as running from

N1 +1 to N in Eqs. (2.6), (3.11), (3.12), (3.25), (3.31), (3.32), (6.1), (7.1), and

(B6).

vi). Replace Eq. (3.33) by

(uiH1 − Ui)ti = −T̂ 1/2
H0

(
b7

1

p̂H0

∂T̂H0

∂xi
ti +

1

n̂H0

N∑
β=1

b
(β)
9

∂Xβ
H0

∂xi
ti

)
, (C2)

where b7 and b
(α)
9 depend on N − 1 concentrations out of Xβ

H0 (β = 1, . . . , N)

on the boundary. For a mixture of mechanically identical molecules, Eq. (5.3)

holds for b7 and b
(α)
9 = 0.

We note here that in the physical situation under consideration, the parameter

p0p̂
α
w should be a hypothetical pressure of the α-th vapor prescribed by (modified)

Raoult’s law, not the saturation pressure of the vapor at temperature T0T̂w (see

Ref. 20 for the detail). However, it is seen from the above extension that there is no

essential difference between the behavior of the multicomponent mixture and that of

the binary mixture. Therefore, the classification of the source factors for the ghost

effect in Sec. 4 is also valid for the multicomponent mixture.
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ERRATUM

THE GHOST EFFECT IN THE
CONTINUUM LIMIT FOR A VAPOR–GAS

MIXTURE AROUND CONDENSED
PHASES: ASYMPTOTIC ANALYSIS OF

THE BOLTZMANN EQUATION

Shigeru Takata and Kazuo Aoki

Department of Aeronautics and Astronautics,
Graduate School of Engineering, Kyoto University,

Kyoto 606–8501, Japan

The above article was previously printed in Transport Theory and
Statistical Physics, 30(2&3), pp. 205–237, with errors. The corrected
text is listed below.

In the third line from the bottom on page 206, “Knudsen number)
[2]” should read “Knudsen number [2])”.

In Eq. (2.2) on page 209, the dζ∗ should read dζ∗.

The second equation of Eq. (2.3b) on page 209 should read dζ∗ =
dζ∗1dζ∗2dζ∗3.

The dζ in Eqs. (2.6b), (2.7), (2.8), (3.9a), (3.9b), (3.10a)–(3.10c),
(3.31b), (7.1), and (B6), in the fourth line on page 210, in the tenth line
on page 218, and in the twenty-fourth line on page 235 should read dζ.

In the first line on page 214, the second “Section 2” should read
“Section 3.2”.

In the seventh line from the bottom on page 218, “(15–18)” should
read “[15–18]”.

In the thirteenth line on page 223, “(8)” should read “[8]”.

In the fifteenth line on page 225, “the fluid-dynamic type Eqs” should
read “the fluid-dynamic type equations”.

Eq. (B7b) on page 230 should read as follows.

φα = cα + m̂αc2ζ2 + m̂αc3ζ3 + m̂αc4ζ
2
i + gα(ζi), ζ1 > 0, x1 = 0,

φα → 0, as x1 → ∞, (B7b)
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In the last line on page 230, “Eq. (B6a)” should read “Eq. (B6)”.

All these errors, as well as many other minor errors that are not
listed above, were a result of mistakes in the printing process and not
the fault of the authors.
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