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Abstract

The half-space problem of evaporation and condensation of a binary mixture of va-

pors is investigated on the basis of the kinetic theory of gases. Assuming the Mach

number of the normal component of the flow is small, a solution of the Boltzmann

equation that varies slowly in the scale of the molecular mean-free-path (slowly vary-

ing solution) is introduced. Then a fluid-dynamic system that describes the behavior

of the slowly varying solution is derived by a systematic asymptotic analysis. The

analytical expression of the conditions allowing steady evaporation or condensation

is derived from that system. We analyze the qualitative difference between the con-

ditions in the evaporation and condensation cases: four conditions are needed in the

former case while only one condition is required in the latter case. The present paper

extends a earlier contribution of the first author for the BGK-type model equation
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to the Boltzmann equation. The extension is achieved by considering the linear sta-

bility of the far field in the case of evaporation and the H theorem, the monotonic

decrease of the flux of Boltzmann’s H function, in the case of condensation.
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kinetic theory of gases, half-space, slowly varying solution, boundary with suction,

H theorem
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1 Introduction

Consider a vapor occupying a half-space bounded by a planar surface of its

condensed phase. The vapor is supposed to be in a uniform equilibrium state

at a far distance with flowing from (evaporation) or onto (condensation) the

surface. Investigation of the steady behavior of the vapor, which we call the

half-space problem of evaporation and condensation, is one of the most fun-

damental boundary-value problems of the Boltzmann equation and has been

intensively studied (see, for example, [1–5] and the references therein). The

problem has a practical importance because it provides the basic equation in

the continuum gas dynamics (the Euler set of equations) with the boundary

conditions at the surface of the condensed phase. [6] In a half-space, evap-

oration or condensation can take place only when certain relations among

parameters are satisfied, i.e., the problem is solvable conditionally. It is these

relations that are used as the boundary conditions for the Euler set.

∗ Corresponding author.
Email address: takata@aero.mbox.media.kyoto-u.ac.jp (Shigeru Takata).
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One of the interesting features of the problem is that the solution has a qualita-

tively different structure between evaporation and condensation. The mecha-

nism of the difference was clarified by Sone in [7], where the problem is studied

by weakly nonlinear analysis by assuming a flow of small Mach number. In the

half-space problem, studied is a transition region from the surface to the region

in a uniform equilibrium state (the outer Euler region). The transition region

typically has a thickness of a few mean free paths of a molecule and may be

considered as the so-called Knudsen layer. However, it is often observed that

this region becomes much thicker than the mean free path when condensing

with a small Mach number. In [7], assuming the Mach number of the flow is

small, it is clarified that (i) in the case of condensation, the transition region

is subdivided into the Knudsen layer adjacent to the surface and a region de-

scribed by the Navier–Stokes set that connects the Knudsen layer with the

outer Euler region; (ii) in the case of evaporation, there is no subdivision and

the Knudsen layer directly connects the surface with the outer Euler region.

Corresponding to the structural difference, the relations among parameters

when evaporating are qualitatively different from those when condensing. In-

cidentally, the structure of the transition region in the case of condensation is

closely related to the so-called suction boundary layer in the conventional gas

dynamics (e.g., [8]). Although the feature described here was clarified by as-

suming a single-species vapor, it is natural to expect that it would essentially

remain unchanged when the vapor is composed of multiple species.

In the present paper, we will study the half-space problem of evaporation and

condensation for a binary mixture of vapors when the Mach number of the

normal component of the flow is small. Our aim is to show that essentially the

same structural difference of the transition region between evaporation and
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condensation arises and to provide the conditions that allow the evaporation

and condensation explicitly. As will be clear later, following Sone [7], we intro-

duce a solution of the Boltzmann equation, which we call the slowly varying

solution [1], with the length scale of variation of the mean free path divided

by the Mach number, derive the fluid-dynamic system describing its behavior,

and discuss the properties of the solution of the system. The difference of the

properties between evaporation and condensation cases induces the structural

difference of the transition region.

Preceding the present work, the first author studied the same problem by

the use of the BGK-type model Boltzmann equation [9–11] in the case where

there is no flow in the direction tangential to the surface [12]. In this case

the fluid-dynamic system can be (formally) directly solved to show the mono-

tonic behavior of the macroscopic quantities. Such monotonic property is also

true in the case of a single-species vapor for the Boltzmann equation for gen-

eral molecular models; and it was fully used in Refs. [12,7,1] in deriving the

conclusion. However, the macroscopic quantities do not monotonically vary

in general in the case of mixtures. It is the objective of the present paper to

generalize the previous work [12] to the case of the Boltzmann equation for

general intermolecular potentials. This objective is achieved by taking some-

what indirect way: the linear stability analysis in the case of evaporation and

the use of the H theorem, the monotonic decrease of the flux of Boltzmann’s

H function, in the case of condensation.
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2 Problem

We consider a binary mixture of vapors, say species A and B, in a half-space in

contact with their condensed phase. The condensed phase is kept at a uniform

temperature Tw, and its interface with the vapors is located at X1 = 0, where

Xi is the rectangular coordinate system. The mixture of vapors occupies the

region of X1 > 0 and is uniform at a far distance from the interface with pres-

sure p∞, temperature T∞, partial pressure pA
∞ of species A, and flow velocity

v∞ = (v1∞, v2∞, 0). The flow speed in the X1-direction at a far distance, |v1∞|,

is supposed to be small compared to the sound speed. We will investigate the

steady behavior of the vapors on the basis of the kinetic theory of gases. In

the analysis, we assume that (i) the behavior of the vapors is described by

the Boltzmann equation for gaseous mixtures and that (ii) the velocity distri-

bution of the molecules of species α (α = A, B) incoming from the interface

is the half-Maxwellian at rest which is characterized by the temperature Tw

and a pressure pα
w. Here pα

w is the partial pressure of species α in the mixture

saturated in contact with the condensed phase at temperature Tw. Physically,

pα
w depends not only on the temperature but also on the constituents and the

constituent ratio of the condensed phases. In the present paper, we specify

not these two quantities but instead pα
w and Tw independently one another as

certain constants. Therefore, we implicitly assume that the change of the com-

position of the condensed phase in the process of evaporation/condensation

is so small that it can be neglected. Hereinafter, just for brevity, we call pα
w

the “saturation pressure” of species α at the interface and pw ≡ pA
w + pB

w the

total “saturation pressure” at the interface, respectively. Incidentally, the as-

sumption (ii) implies the perfect accommodation of the molecules coming to
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the interface from the gas phase.

3 Formulation of the problem

3.1 Basic equation and boundary condition

Let us denote by ξ (or ξi) the molecular velocity and by Fα(X1, ξ) the velocity

distribution function of the molecules of species α (α = A, B). In the sequel

the Greek letters α, β, and γ are symbolically used to represent the species of

vapors, i.e., {α, β, γ} = {A, B}.

The steady and spatially one-dimensional Boltzmann equation for a binary

gaseous mixture is written as

ξ1
∂F α

∂X1

=
∑

β=A,B

Jβα(F β, F α), (1)

with

Jβα(F,G) =
∫

(F ′
∗G

′ − F∗G)Bβα(|e · V |/V, V ) dΩ(e) dξ∗, (2)

where

F ′
∗ = F (X1, ξ

′
∗), G′ = G(X1, ξ

′), F∗ = F (X1, ξ∗), G = G(X1, ξ),

ξ′ = ξ +
µβα

mα
(e · V ) e, ξ′

∗ = ξ∗ −
µβα

mβ
(e · V ) e,

µβα =
2mαmβ

mα + mβ
, V = ξ∗ − ξ, V = |V |,

and e is a unit vector, dΩ(e) is the solid-angle element in the direction of e,

dξ∗ = dξ∗1 dξ∗2 dξ∗3, mα is the mass of a molecule of species α, and Bβα is

a nonnegative function of its arguments whose functional form is determined

by the intermolecular potential between a molecule of species β and that of
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species α. The integration in (2) is carried out over the whole space of ξ∗ and

over the unit sphere.

The boundary conditions for species α at the interface (X1 = 0) and at infinity

(X1 → ∞) are written as

Fα =
pα

w/kTw

(2πkTw/mα)3/2
exp

(
−mα|ξ|2

2kTw

)
for ξ1 > 0 at X1 = 0, (3a)

Fα =
pα
∞/kT∞

(2πkT∞/mα)3/2
exp

(
−mα|ξ − v∞|2

2kT∞

)
as X1 → ∞, (3b)

where k is the Boltzmann constant and pB
∞ = p∞ − pA

∞. Equations (1)–(3) is

the boundary-value problem to be studied in the present paper.

Before proceeding further, here we introduce macroscopic quantities for the

later convenience. The molecular number density nα, the mass density ρα, the

flow velocity vα = (vα
1 , vα

2 , 0), the partial pressure pα, and temperature Tα of

species α are defined as

nα =
∫

Fα dξ, ρα = mαnα, (4a)

vα
i =

1

nα

∫
ξiF

α dξ (i = 1, 2), (4b)

pα = nαkTα =
1

3

∫
|ξ − vα|2mαFα dξ, (4c)

and their counterparts of the mixture, i.e., the molecular number density n,

the mass density ρ, the flow velocity v = (v1, v2, 0) based on the momentum

flow, the pressure p, and the temperature T , are defined as

n = nA + nB, ρ = ρA + ρB, (5a)

vi =
1

ρ
(ρAvA

i + ρBvB
i ) (i = 1, 2), (5b)

p = nkT =
∑

α=A,B

(
pα +

1

3
ρα|vα − v|2

)
. (5c)

Note that Dalton’s law does not hold in general in our definition. Also note
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that the X3 component of the flow velocity is assumed to vanish from the

beginning, because one can seek the solution of (1)–(3) as an even function

of ξ3. Because of the same reason, the X2X3 component of the stress tensor

and the X3 component of the heat-flow vector may be assumed to vanish. The

other components of the stress tensor pα
ij and the heat flow qα

i of species α are

defined as

pα
ij =

∫
(ξi − vα

i )(ξj − vα
j )mαFα dξ (i, j = 1, 2), (6a)

pα
33 =

∫
ξ2
3m

αFα dξ, (6b)

qα
i =

1

2

∫
(ξi − vα

i )|ξ − vα|2mαFα dξ (i = 1, 2), (6c)

and the counterparts of the mixture, pij and qi, are as

pij =
∑

α=A,B

[pα
ij + ρα(vα

i − vi)(v
α
j − vj)] (i, j = 1, 2), (7a)

p33 =pA
33 + pB

33, (7b)

qi =
∑

α=A,B

[
qα
i + pα

i1(v
α
1 − v1) + pα

i2(v
α
2 − v2)

+
3

2
pα(vα

i − vi) +
1

2
ρα(vα

i − vi)|vα − v|2
]

(i = 1, 2). (7c)

Finally, we introduce two additional macroscopic quantities: the concentration

χα of species α and the flow velocity w = (w1, w2, 0) of the mixture based on

the particle flow. They are defined as

χα = nα/n, (8)

wi = χAvA
i + χBvB

i (i = 1, 2). (9)

Note that the relation χA + χB = 1 holds by definition.

8



3.2 Dimensionless description

In this section, we reformulate the basic equation and its boundary condition in

dimensionless form and clarify the parameters that characterize the problem.

Let us introduce the following dimensionless variables:

xi = (2/
√

π)(Xi/l
AA), ζi = ξi/cw, fα = (c3

w/nA
w)Fα,

m̂α = mα/mA, Kβα = Bβα
0 /BAA

0 ,

where

cw = (2kTw/mA)1/2, nA
w = pA

w/kTw,

Bβα
0 =

∫
Mβ

w(ξ∗)M
α
w(ξ)Bβα(|e · V |/V, V ) dΩ(e) dξ∗ dξ,

lAA =
(8kTw/πmA)1/2

nA
wBAA

0

,

and Mα
w is the Maxwellian defined by

Mα
w(ξ) =

1

(2πkTw/mα)3/2
exp

(
− mα|ξ|2

2kTw

)
.

The quantity lAA is the reference mean free path of the molecules based on the

interaction between molecules of species A. 1 Then the Boltzmann equation (1)

is rewritten as

ζ1
∂fα

∂x1

=
∑

β=A,B

KβαĴβα(fβ, fα), (10)

with

Ĵβα(f, g) =
∫

(f ′
∗g

′ − f∗g)bβα(|e · V̂ |/V̂ , V̂ ) dΩ(e) dζ∗, (11)

1 For hard sphere gases, lAA = (
√

2π(dA)2nA
w)−1, where dA is the diameter of a

molecule of species A.
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where

f ′
∗ = f(x1, ζ

′
∗), g′ = g(x1, ζ

′), f∗ = f(x1, ζ∗), g = g(x1, ζ),

ζ ′ = ζ +
µ̂βα

m̂α
(e · V̂ ) e, ζ ′

∗ = ζ∗ −
µ̂βα

m̂β
(e · V̂ ) e,

V̂ = ζ∗ − ζ, V̂ = |V̂ |, µ̂βα =
2m̂αm̂β

m̂α + m̂β
, bβα = Bβα/Bβα

0 .

The boundary conditions (3a) and (3b) for Fα are transformed into those for

fα as

fα =
p̂α

w

(π/m̂α)3/2
exp(−m̂α|ζ|2), ζ1 > 0, x1 = 0, (12a)

fα =
p̂α
∞

(π/m̂α)3/2T̂
5/2
∞

exp

(
−m̂α|ζ − v̂∞|2

T̂∞

)
, as x1 → ∞, (12b)

where

p̂α
w =

pα
w

pA
w

, p̂α
∞ =

pα
∞

pA
w

, T̂∞ =
T∞

Tw

, v̂∞ = (v̂1∞, v̂2∞, 0) =
v∞

cw

. (13)

From (10)–(13), the problem is seen to be characterized by the following pa-

rameters:

pB
w

pA
w

,
pA
∞

pA
w

,
pB
∞

pA
w

,
T∞

Tw

,
v1∞√

2kTw/mA
,

v2∞√
2kTw/mA

,
mB

mA
, KBB, KBA(= KAB).

The relation KBA = KAB comes from the symmetry property of Bβα with

respect to the superscripts.

Dimensionless macroscopic quantities will also be used in the following sec-

tions. They are denoted by the notation of the corresponding dimensional ones
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with ˆ. That is

(n̂α, n̂) = (nα, n)/nA
w, ρ̂ = ρ/mAnA

w, (v̂α, v̂, ŵ) = (vα,v,w)/cw,

(p̂α, p̂) = (pα, p)/pA
w, (T̂α, T̂ ) = (Tα, T )/Tw,

(p̂α
ij, p̂ij) = (pα

ij, pij)/p
A
w, (q̂α

i , q̂i) = (qα
i , qi)/p

A
wcw.

The expressions of these quantities in terms of the moment of fα can be easily

obtained from (3)–(9) and thus are omitted here.

Before closing this section, we remark that the quantity Bβα
0 is not necessarily

finite if the intermolecular potential extends to infinity. In the case, Bβα
0 should

be replaced by an appropriate quantity. The choice of such a quantity is a

matter of taste. For instance, using Bβα
0 calculated by the same intermolecular

potential with a radial or angular cutoff is a possible candidate. The reader is

referred to the Appendix A.2 in [13] for another possible choice, which would

be practically more preferable.

4 Asymptotic analysis

In this section, we carry out a systematic asymptotic analysis of the boundary-

value problem for fα [Eqs. (10) and (12)] in the situation where evaporation

or condensation takes place only weakly:

|v̂1∞| = ϵ ≪ 1. (14)

There is no geometrical characteristic length in the problem, and apparently

the solution has the length scale of variation of the order of the mean free path

lAA. Nevertheless, we will consider a solution having another length scale of

variation, i.e., a slowly varying solution with the length scale of lAA/ϵ. The idea
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of the slowly varying solution was first introduced by Sone [7] in the study of

the corresponding problem for a single-component vapor. Physically, the idea

comes from the fact that a boundary layer, what is called the suction boundary

layer, with the thickness of the order of the kinematic viscosity divided by the

suction speed (∼ lAA/ϵ) appears near a body surface with suction. The reader

is referred to [8] for the description of the layer in the classical macroscopic

framework and to [1] for that in the framework of kinetic theory.

4.1 Slowly varying solution

We consider a slowly varying solution [∂fα/∂x1 = O(fαϵ)] of the Boltzmann

equation (10). We rescale the equation, by introducing a new space coordinate

y = x1ϵ, as

ζ1
∂fα

∂y
=

1

ϵ

∑
β=A,B

KβαĴβα(fβ, fα), (15)

and seek the solution in a power series of ϵ:

fα = fα
(0) + fα

(1)ϵ + · · · . (16)

Correspondingly, we expand the macroscopic quantities as

hα = hα
(0) + hα

(1)ϵ + · · · , h = h(0) + h(1)ϵ + · · · ,

where h = n̂, p̂, T̂ , v̂1, v̂2, etc. and assume that v̂1(0) = v̂α
1(0) = ŵ1(0) = 0, taking

account of the physical situation (14) under consideration. The component

functions hα
(m) and h(m) are expressed in terms of the moments of fα

(n) with

n ≤ m. A part of their explicit forms are given in Appendix A. Substituting

(16) into (15) gives a series of integral equations for the component functions
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fα
(n) (n = 0, 1, 2, . . . ):

∑
β=A,B

KβαĴβα(fβ
(0), f

α
(0)) = 0, (17a)

∑
β=A,B

Kβα[Ĵβα(fβ
(1), f

α
(0)) + Ĵβα(fβ

(0), f
α
(1))] = ζ1

∂fα
(0)

∂y
, (17b)

∑
β=A,B

Kβα[Ĵβα(fβ
(m), f

α
(0)) + Ĵβα(fβ

(0), f
α
(m))]

= ζ1

∂fα
(m−1)

∂y
−

m−1∑
n=1

∑
β=A,B

KβαĴβα(fβ
(n), f

α
(m−n)), (m = 2, 3, . . . ). (17c)

The solution of (17a) is a local equilibrium distribution at rest, which reads

fα
(0) =

n̂α
(0)

T̂
3/2
(0)

(
m̂α

π

)3/2

exp

(
−

m̂α[ζ2
1 + (ζ2 − v̂2(0))

2 + ζ2
3 ]

T̂(0)

)
. (18)

Note that, for this distribution, the temperature is common to species, i.e.,

T̂α
(0) = T̂(0),

and the following relations hold:

p̂α
ij(0) = p̂α

(0)δij, p̂ij(0) = p̂(0)δij, q̂α
i(0) = q̂i(0) = 0,

where δij is Kronecker’s delta.

Equation (17b) is an inhomogeneous linear integral equation for fα
(1). Hence

in order that the solution exists, the solvability condition must be satisfied,

which reads

∫
ζ1

∂fα
(0)

∂y
dζ = 0, (19a)

∫ ∑
α=A,B

ζ1


m̂αζi

m̂α|ζ|2


∂fα

(0)

∂y
dζ = 0. (19b)
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Equation (19) is no other than the conservation laws of the mass, momentum,

and energy at O(ϵ0). Substitution of (18) results in five degenerate equations

and one equation for p̂(0):

dp̂(0)

dy
= 0. (20)

Under this condition, equation (17b) is solved to yield

fα
(1) = fα

(0)

[ p̂α
(1)

p̂α
(0)

+
2m̂α√
T̂(0)

(v̂1(1)C1 + v̂2(1)C2) +
T̂(1)

T̂(0)

(
m̂α|C|2 − 5

2

)

− 1

n̂(0)

(
C1Dα(|C|)

dχA
(0)

dy
+ C1Aα(|C|) 1

T̂(0)

dT̂(0)

dy

+ C1C2Bα(|C|) 1

T̂
1/2
(0)

dv̂2(0)

dy

)]
, (21)

where C = (ζ − v̂(0))/
√

T̂(0) with v̂(0) = (0, v̂2(0), 0). The derivation is given in

Appendix B with the definition of the functions Aα, Bα, and Dα [see (B.4)–

(B.6)].

Equation (17c) can be solved in the same way. It is an inhomogeneous linear

integral equation for fα
Hm (m = 2, 3, . . . ) and is to be solved successively

in increasing order of m, provided that the following solvability condition is

satisfied:

∫
ζ1

∂fα
(m−1)

∂y
dζ = 0, (22a)

∫ ∑
α=A,B

ζ1


m̂αζi

m̂α|ζ|2


∂fα

(m−1)

∂y
dζ = 0. (22b)

Here the first line of (22b) with i = 3 always degenerates because fα is even

in ζ3. Equation (22) is the conservation laws of the mass, momentum, and
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energy at O(ϵm−1). For m = 2, it yields

dn̂α
(0)v̂

α
1(1)

dy
= 0, (23a)

dp̂(1)

dy
= 0, (23b)

d

dy

(
1

2
p̂12(1) + ρ̂(0)v̂1(1)v̂2(0)

)
= 0, (23c)

d

dy

(
q̂1(1) +

5

2
p̂(0)v̂1(1) + p̂12(1)v̂2(0) + ρ̂(0)v̂1(1)v̂

2
2(0)

)
= 0, (23d)

with

v̂A
1(1) − v̂B

1(1) = − D̂AB

χA
(0)χ

B
(0)

T̂
1/2
(0)

n̂(0)

( dχA
(0)

dy
+

kT

T̂(0)

dT̂(0)

dy

)
, (24)

p̂12(1) = −µ̂T̂
1/2
(0)

dv̂2(0)

dy
, (25)

q̂1(1) = −λ̂T̂
1/2
(0)

dT̂(0)

dy
+ kT p̂(0)(v̂

A
1(1) − v̂B

1(1)) +
5

2
p̂(0)(ŵ1(1) − v̂1(1)), (26)

where

D̂AB =
4π

3
χA

(0)χ
B
(0)

∫ ∞

0
C4(DAEA −DBEB) dC(> 0), (27a)

D̂T =
4π

3
χA

(0)χ
B
(0)

∫ ∞

0
C4(AAEA −ABEB) dC

=
4π

3
χA

(0)χ
B
(0)

∑
α=A,B

χα
(0)

∫ ∞

0
C4

(
m̂αC2 − 5

2

)
DαEα dC, (27b)

kT =
D̂T

D̂AB

=

∫ ∞
0 C4(AAEA −ABEB) dC∫ ∞
0 C4(DAEA −DBEB) dC

, (27c)

µ̂ =
8π

15

∑
α=A,B

m̂αχα
(0)

∫ ∞

0
C6BαEα dC(> 0), (27d)

λ̂ =
4π

3

∑
α=A,B

χα
(0)

∫ ∞

0
C4

(
m̂αC2 − 5

2

)
AαEα dC − k2

TD̂AB

χA
(0)χ

B
(0)

(> 0). (27e)

The quantities D̂AB, D̂T, kT, µ̂, and λ̂ are functions of χA
(0) and T̂(0) as well as

the parameters mB/mA, KAB, and KBB. The positivity of D̂AB, µ̂, and λ̂ is due

to the symmetry property of the collision operator. The different expressions

for D̂T are also due to this property. (See Appendix B.2.) Incidentally, these

coefficients are related to the mutual-diffusion coefficient DAB, the viscosity
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µ, the thermal conductivity λ, and the thermal-diffusion coefficient DT in the

following way,

DAB(n, T, χA) =

√
2kTw/mA

BAA
0

√
2kT/mA

n
D̂AB(T̂ , χA), (28a)

µ(T, χA) =
mA

2

√
2kTw/mA

BAA
0

√
2kT/mAµ̂(T̂ , χA), (28b)

λ(T, χA) =
k
√

2kTw/mA

BAA
0

√
2kT/mAλ̂(T̂ , χA), (28c)

DT(n, T, χA) =

√
2kTw/mA

BAA
0

√
2kT/mA

n
D̂T(T̂ , χA), (28d)

and kT is the thermo-diffusion ratio in Chapman–Cowling [14]. Approximate

expressions for these coefficients are available in the literature [14–16]. In the

case of hard sphere gases, D̂AB, µ̂, λ̂, and D̂T (or kT) are all independent of

T̂ , and their highly accurate data are also available [17].

Equations (20) and (23) with (24)–(26) form a closed system for p̂(0), χA
(0), T̂(0),

v̂1(1), v̂2(0), and p̂(1). Continuation of the above process results in the systems

for macroscopic quantities at higher orders. We will not present these here

because they are required only in the discussion of the evaporation case under

a certain simplified situation (Sec. 5.2.2).

4.2 Boundary condition at the interface

Equations (20) and (23) with (24)–(26) derived in Sec. 4.1 form a fluid-

dynamic set of equations for the component functions p̂(0), χA
(0), T̂(0), v̂1(1), v̂2(0),

and p̂(1) that describes the overall behavior of the mixture. In its derivation,

however, the kinetic boundary condition (12a) was not taken into account.

We will study the compatibility of the slowly varying solution with the kinetic

boundary condition and derive the boundary condition at the interface for the
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fluid-dynamic set.

Fortunately, at the leading order, the slowly varying solution fα
(0) can be

matched with (12a) by setting

p̂A
(0) = 1, p̂B

(0) = p̂B
w, v̂2(0) = 0, T̂(0) = 1, at y = 0. (29)

This is the boundary condition for the macroscopic quantities of O(ϵ0).

Next, we proceed to the first order to obtain the boundary condition for the

macroscopic quantities of O(ϵ1). Obviously, the slowly varying solution cannot

be matched with the condition (12a) at this order, because there is a flow of

O(ϵ) in the situation under consideration [see (14)]. Hence, we introduce a

correction in the vicinity of the interface whose scale of variation is the mean

free path of a molecule. Let us express the solution in this layer in the form

fα
S + fα

K, where fα
S denotes the slowly varying solution (fα in Sec. 4.1) and fα

K

the correction to it. The latter is supposed to be appreciable only in the layer

and vanish rapidly as a function of the original dimensionless coordinate x1.

Since the slowly varying solution matches the kinetic boundary condition at

the leading order, the correction is required from the first order. Hence, fα
K is

expanded in a power series of ϵ as

fα
K = fα

K(1)ϵ + fα
K(2)ϵ

2 + · · · . (30)

Correspondingly, we denote a macroscopic quantity h in the correction layer

by hS + hK, where hS represents the slowly varying solution, and expand hK

in the same way: hK = hK(1)ϵ + hK(2)ϵ
2 + · · · . Substituting fα = fα

S + fα
K into

(10) and taking into account the expansions (16) with fα = fα
S and (30) yield

a series of boundary-value problems for fα
K(m) (m = 1, 2, . . . ). For the present

17



purpose, the analysis of the problem for fα
K(1) is sufficient. This problem reads

ζ1

∂fα
K(1)

∂x1

=
∑

β=A,B

Kβα[Ĵβα(fβ
S(0), f

α
K(1)) + Ĵβα(fβ

K(1), f
α
S(0))], (31)

fα
K(1) = −fα

S(1), for ζ1 > 0, at x1 = 0, (32)

fα
K(1) → 0, as x1 → ∞, (33)

where the quantities with subscript S in (31) and (32) represent their values

at x1 = 0. Taking into account (29), this problem is transformed into

ζ1
∂Φα

∂z
=

∑
β=A,B

Kβαχβ
wLβα(Φβ, Φα), (34a)

Φα = −
[ p̂α

(1)

p̂α
w

+ 2m̂α(v̂1(1)ζ1 + v̂2(1)ζ2) + T̂(1)

(
m̂α|ζ|2 − 5

2

)

− 1

n̂w

(
ζ1Dα(|ζ|)

dχA
(0)

dy
+ ζ1Aα(|ζ|)

dT̂(0)

dy
+ ζ1ζ2Bα(|ζ|)

dv̂2(0)

dy

)]
,

for ζ1 > 0, at z = 0, (34b)

Φα → 0, as z → ∞, (34c)

where Φα = fα
K(1)/[p̂

α
wEα(|ζ|)], z = n̂wx1, χα

w = pα
w/pw[= p̂α

w/(1 + p̂B
w)], and

Lβα is Lβα
a with a = 1 [see (B.3) for the definition of Lβα

a ]. The functions Aα,

Bα, and Dα are those for T̂(0) = 1 and χα
(0) = χα

w [see (B.4)–(B.6)]. In the

meantime, it is proved in [18] that the half-space problem

ζ1
∂Φα

∂z
=

∑
β=A,B

Kβαχβ
wLβα(Φβ, Φα), (35a)

Φα = aα
0 + 2m̂αa2ζ2 + m̂αa4|ζ|2 + gα(ζ), ζ1 > 0, at z = 0, (35b)

Φα → 0, as z → ∞, (35c)

with gα being a given function and aα
0 , a2, and a4 being undetermined con-

stants, has a solution if and only if the constants aα
0 , a2, and a4 take special
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values and the solution is unique. 2 Because of the symmetry property of Lβα,

we can seek the solution as an even function of ζ2 when gα is even in ζ2 and

as an odd function of ζ2 when gα is odd in ζ2. Therefore we may suppose that

a2 = 0 for gα even in ζ2 and aα
0 = a4 = 0 for gα odd in ζ2. Keeping these in

mind, let us denote a2 by a∥ for gα = ζ1ζ2Bα, and denote aα
0 + 5

2
a4 and a4 by

aα
V and cV for gα = −2m̂αζ1, by aα

T and cT for gα = ζ1Aα, and by aα
χ and cχ

for gα = ζ1Dα, respectively. Then, because (34) is linear, we can express p̂α
(1),

v̂2(1), and T̂(1) at the interface (z = 0) as follows:

−
p̂α

(1)

p̂α
w

= aα
Vv̂1(1) + aα

T

1

n̂w

dT̂(0)

dy
+ aα

χ

1

n̂w

dχA
(0)

dy
, (36)

−v̂2(1) = a∥
1

n̂w

dv̂2(0)

dy
, (37)

−T̂(1) = cVv̂1(1) + cT
1

n̂w

dT̂(0)

dy
+ cχ

1

n̂w

dχA
(0)

dy
. (38)

For the later convenience, using the relation

v̂1(1) = ŵ1(1) +
m̂B − 1

n̂A
(0) + m̂Bn̂B

(0)

D̂ABT̂
1/2
(0)

( dχA
(0)

dy
+

kT

T̂(0)

dT̂(0)

dy

)
,

which is readily derived from (24) and the definitions of v̂1(1) and ŵ1(1) (see

Appendix A.2), we rewrite (36) and (38) as

−
p̂α

(1)

p̂α
w

= aα
Vŵ1(1) +

(
aα

VD̂AB
m̂B − 1

m̂w

+ aα
χ

)
1

n̂w

dχA
(0)

dy

+
(
aα

VD̂T
m̂B − 1

m̂w

+ aα
T

)
1

n̂w

dT̂(0)

dy
, (39)

2 Strictly, the theorem was proved only for hard-sphere gases in the case of mixture.

The proof for the other molecular models is still an open problem. Incidentally, in

the case of single-species gas, the proof is given for more general molecular models

(see the references in [18]).
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−T̂(1) = cVŵ1(1) +
(
cVD̂AB

m̂B − 1

m̂w

+ cχ

)
1

n̂w

dχA
(0)

dy

+
(
cVD̂T

m̂B − 1

m̂w

+ cT

)
1

n̂w

dT̂(0)

dy
, (40)

where

m̂w = χA
w + m̂BχB

w.

Note that a∥, aα
V, aα

T, aα
χ, cV, cT, and cχ are constants depending on χA

w and

that D̂AB and D̂T are evaluated with χA
(0) = χA

w and T̂(0) = 1. Summation of

(39) multiplied by p̂α
w with respect to α (α = A, B) gives the relation among

p̂(1), ŵ1(1), and the gradients of χA
(0) and T̂(0) at the interface, i.e.,

p̂(1) = −aVp̂wŵ1(1) −
(
aVD̂T

m̂B − 1

m̂w

+ aT

)
dT̂(0)

dy

−
(
aVD̂AB

m̂B − 1

m̂w

+ aχ

) dχA
(0)

dy
, at y = 0, (41)

where

aI = aA
I χA

w + aB
I χB

w (I = V, T, χ).

Equations (29) and (41) are the boundary conditions for the fluid-dynamic

equations (20) and (23) at the interface.

The coefficients a∥, aα
V, cV, etc. occurring in (36)–(38) are the so-called slip

and jump coefficients. Their approximate expressions are available in the lit-

erature (e.g. [19–21]). In the case of hard sphere gases, accurate data of those

coefficients have been obtained recently as a consequence of accurate finite-

difference analyses of the system (35) [22–24]. 3

3 The correspondence of notations would be in order. a∥ is −b in [22], aα
V and cV

are, respectively, −γα and −δ in [23], and aα
T, aα

χ, cT, and cχ are, respectively, −γα
T,

−γα
χ , −δT, and −δχ in [24]. XA

0 in [22–24] is χA
w in this paper.
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4.3 Summary

In Sec. 4, we have obtained the fluid-dynamic equations [(20) and (23) with

(24)–(26)] and their boundary conditions [(29) and (41)]. This fluid-dynamic

system describes the behavior of the leading-order macroscopic quantities χA
(0),

v̂2(0), T̂(0), and p̂(0) and that of the first-order quantities v̂1(1) and p̂(1). Note

that the other quantities arising in the equations can be expressed in terms of

these quantities. The system can be transformed into the following, which is

convenient for the later discussions:

dp̂(0)

dy
= 0, (42a)

dn̂(0)ŵ1(1)

dy
= 0,

or
dρ̂(0)v̂1(1)

dy
= 0,

 (42b)

d

dy

[
D̂ABT̂

1/2
(0)

(
dχA

(0)

dy
+

kT

T̂(0)

dT̂(0)

dy

)]
= n̂(0)ŵ1(1)

dχA
(0)

dy
, (42c)

1

2

d

dy

(
µ̂T̂

1/2
(0)

dv̂2(0)

dy

)
= ρ̂(0)v̂1(1)

dv̂2(0)

dy
, (42d)

d

dy

(
λ̂T̂

1/2
(0)

dT̂(0)

dy

)
=

5

2
n̂(0)ŵ1(1)

dT̂(0)

dy
+

d

dy
kTp̂(0)(v̂

A
1(1) − v̂B

1(1))

+
d

dy

(
ρ̂(0)v̂1(1)v̂

2
2(0) − µ̂T̂

1/2
(0) v̂2(0)

dv̂2(0)

dy

)
, (42e)

v̂A
1(1) − v̂B

1(1) = − D̂AB

χA
(0)χ

B
(0)

T̂
1/2
(0)

n̂(0)

( dχA
(0)

dy
+

kT

T̂(0)

dT̂(0)

dy

)
, (42f)

with the boundary conditions at y = 0

p̂(0) = p̂w ≡ 1 + p̂B
w, (43a)

χA
(0) = χA

w, (43b)

v̂2(0) = 0, (43c)

T̂(0) = 1, (43d)
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and

dp̂(1)

dy
= 0, (44)

with the boundary condition at y = 0

p̂(1) = −aVp̂wŵ1(1) −
(
aVD̂T

m̂B − 1

m̂w

+ aT

)
dT̂(0)

dy

−
(
aVD̂AB

m̂B − 1

m̂w

+ aχ

) dχA
(0)

dy
. (45)

The solution must approach the uniform state at infinity as y → ∞. If we also

expand the state at infinity in a power series of ϵ, the conditions at infinity

are written as

p̂(0) → p̂∞(0) ≡ p̂A
∞(0) + p̂B

∞(0), (46a)

χA
(0) → χA

∞(0) with χA
∞(0) = p̂A

∞(0)/p̂∞(0), (46b)

T̂(0) → T̂∞(0), (46c)

v̂2(0) → v̂2∞(0), (46d)

ŵ1(1) → ±1, (or v̂1(1) → ±1, ) (46e)

and

p̂(1) → p̂∞(1) ≡ p̂A
∞(1) + p̂B

∞(1), (47)

where

p̂∞ = p̂∞(0) + p̂∞(1)ϵ + · · · , T̂∞ = T̂∞(0) + T̂∞(1)ϵ + · · · ,

p̂α
∞ = p̂α

∞(0) + p̂α
∞(1)ϵ + · · · , χA

∞(= pA
∞/p∞) = χA

∞(0) + χA
∞(1)ϵ + · · · ,

v̂2∞ = v̂2∞(0) + v̂2∞(1)ϵ + · · · ,

and the + sign is taken for the evaporation and − sign for the condensation

in (46e).

Finally, it should be noted that, besides the results listed above, we derived
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the boundary conditions for v̂2(1), p̂A
(1) and T̂(1) at y = 0 [(37), (39) with α = A,

and (40)]. These will be used in the discussion about the evaporation condition

in Sec. 5.2.2.

5 Condensation and evaporation conditions

In this section, we will discuss the evaporation and condensation solutions

on the basis of the fluid-dynamic system obtained in the preceding section

and derive the relations among the parameters that allow steady evaporation

and condensation. We will discuss the evaporation and condensation cases

separately, because each case requires a different method. Before starting the

detailed discussion, we remark that

p̂(0) = const(= p̂w), (48)

n̂α
(0)v̂

α
1(1)(= n̂(0)χ

α
(0)v̂

α
1(1)) = const, n̂(0)ŵ1(1) = const, ρ̂(0)v̂1(1) = const, (49)

because of (42a) with (43a), (23a), and (42b). Equation (48) leads to, with

(46a),

p̂∞(0) = p̂w, i.e., p̂∞ − p̂w = O(ϵ), (50)

which means that the pressure of the mixture at infinity can not be chosen

freely from the saturation pressure of the mixture at the interface, irrespective

of whether evaporation or condensation takes place.

In the later discussions, instead of (42c)–(42e) themselves, we will use their

integrated form:

D̂ABT̂
1/2
(0)

(
dχA

(0)

dy
+

kT

T̂(0)

dT̂(0)

dy

)
= n̂(0)ŵ1(1)(χ

A
(0) − χ∗), (51a)

1

2
µ̂T̂

1/2
(0)

dv̂2(0)

dy
= ρ̂(0)v̂1(1)(v̂2(0) − v∗), (51b)
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λ̂T̂
1/2
(0)

dT̂(0)

dy
=

5

2
n̂(0)ŵ1(1)(T̂(0) − T∗) + kTp̂(0)(v̂

A
1(1) − v̂B

1(1))

+ρ̂(0)v̂1(1)(v̂
2
2(0) − v2

∗) − µ̂T̂
1/2
(0) v̂2(0)

dv̂2(0)

dy
, (51c)

where T∗, v∗, and χ∗ are arbitrary constants.

5.1 Condensation

We start with considering the flux of Boltzmann’s H function for the slowly

varying solution.

5.1.1 Flux of Boltzmann’s H function and its monotonicity

For the slowly varying solution fα, we consider the flux of Boltzmann’s H

function:

Hflux =
∑

α=A,B

∫
ζ1f

α ln
fα

cα
dζ,

where cα = (m̂α/π)3/2. If we expand Hflux in a power series of ϵ as Hflux =

Hflux(0) +Hflux(1)ϵ+ · · · , the component functions Hflux(m) (m = 0, 1, 2, . . . ) are

written as

Hflux(0) =
∑

α=A,B

∫
ζ1f

α
(0) ln

fα
(0)

cα
dζ = 0, (52)

Hflux(1) =
∑

α=A,B

∫
ζ1f

α
(1)

(
1 + ln

fα
(0)

cα

)
dζ, (53)

Hflux(2) =
∑

α=A,B

∫
ζ1

[
fα

(2)

(
1 + ln

fα
(0)

cα

)
+

(fα
(1))

2

2fα
(0)

]
dζ, (54)

and so on. Here Hflux(0) = 0 because fα
(0) is even in ζ1. We will first show that

Hflux(1) decreases monotonically in y.
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Consider the derivative of Hflux(1). With the aid of (17b) and (17c), we have

dHflux(1)

dy

=
∑

α=A,B

d

dy

∫
ζ1f

α
(1)

(
1 + ln

fα
(0)

cα

)
dζ

=
∑

α=A,B

∫ (
1 + ln

fα
(0)

cα

)
ζ1

∂fα
(1)

∂y
dζ +

∑
α=A,B

∫ fα
(1)

fα
(0)

ζ1

∂fα
(0)

∂y
dζ

=
∑

α=A,B

∫ (
1 + ln

fα
(0)

cα

) ∑
β=A,B

Kβα[Ĵβα(fβ
(0), f

α
(2)) + Ĵβα(fβ

(2), f
α
(0)) + Ĵβα(fβ

(1), f
α
(1))] dζ

+
∑

α=A,B

∫ fα
(1)

fα
(0)

∑
β=A,B

Kβα[Ĵβα(fβ
(0), f

α
(1)) + Ĵβα(fβ

(1), f
α
(0))] dζ

=
∑

α=A,B

∫ fα
(1)

fα
(0)

∑
β=A,B

Kβα[Ĵβα(fβ
(0), f

α
(1)) + Ĵβα(fβ

(1), f
α
(0))] dζ.

Here, in the last equality, it is taken into account that 1 + ln(fα
(0)/c

α) is a

collision invariant and that Ĵβα has the following symmetry property:

∫
ψ(ζ)Ĵβα(f, g) dζ +

∫
ϕ(ζ)Ĵαβ(g, f) dζ

= − 1

2

∫
(ψ′ + ϕ′

∗ − ψ − ϕ∗)(f
′
∗g

′ − f∗g)bβα(e · V̂ /V̂ , V̂ ) dΩ(e) dζ∗ dζ,

with f , g, ϕ, and ψ being arbitrary functions. The proof of this symmetry

property is classical and is omitted here. Since the last form can be rewritten

in terms of Lβα

T̂(0)
as

∑
α=A,B

∫ fα
(1)

fα
(0)

∑
β=A,B

Kβα[Ĵβα(fβ
(0), f

α
(1)) + Ĵβα(fβ

(1), f
α
(0))] dζ

=n̂2
(0)T̂

1/2
(0)

∑
α=A,B

∫
ϕαχα

(0)

( ∑
β=A,B

Kβαχβ
(0)L

βα

T̂(0)
(ϕβ, ϕα)

)
Eα(|C|) dC,

where ϕα = fα
(1)/f

α
(0), the symmetry property (B.10) of Lβα

T̂(0)
leads to the

inequality:

dHflux(1)

dy
≤ 0. (55)

Here the equality holds if and only if ϕα is the collision invariant. Because of
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(21), the equality condition is equivalent to

dχA
(0)

dy
=

dT̂(0)

dy
=

dv̂2(0)

dy
= 0. (56)

Equation (55) with the condition for equality (56) can be regarded as Boltz-

mann’s H theorem at the first order of ϵ.

Next making use of (55), we will find a monotonic decreasing function of

y that is expressed in terms of the quantities occurring in the system (51).

Substitution of (18) and (21) into (53) yields the following expression for

Hflux(1):

Hflux(1) =n̂(0)ŵ1(1)

(
− 3

2
+ ln p̂(0) −

5

2
ln T̂(0)

)
+

∑
α=A,B

n̂α
(0)v̂

α
1(1) ln χα

(0)

+
1

T̂(0)

(
λ̂T̂

1/2
(0)

dT̂(0)

dy
− p̂(0)kT(v̂A

1(1) − v̂B
1(1))

)
.

The right-hand side can be simplified by substituting (51b) and (51c) with T∗

being positive:

Hflux(1) = H + n̂(0)ŵ1(1)(1 + ln p̂(0) −
5

2
ln T∗), (57)

where

H = −5

2
n̂(0)ŵ1(1)

(
T∗

T̂(0)

+ ln
T̂(0)

T∗

)
− ρ̂(0)v̂1(1)

(v̂2(0) − v∗)
2

T̂(0)

+
∑

α=A,B

n̂α
(0)v̂

α
1(1) ln χα

(0). (58)

Because of (42a) and (42b), the second term of the right-hand side of (57) is

a constant, so that H satisfies the following inequality because of (55):

dH
dy

≤ 0. (59)

Here the equality holds if and only if (56) is satisfied. As will be shown in

Sec. 5.1.2, H is not only monotonic but also of definite sign. We will make use
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of both properties in studying the condensation solution in Sec. 5.1.2.

5.1.2 Condition for condensation

Now we will study the condensation solution by the following main three steps

[(i)–(iii)] and supplemental two steps [(iv) and (v)]:

(i) The monotonic function H is positive. This can be shown as follows.

Since the flow velocity is common to species at infinity, v̂1(1), v̂α
1(1), and

ŵ1(1) commonly approach −1 as y → ∞ [see (46e)]. Hence the quantities

n̂(0)ŵ1(1), ρ̂(0)v̂1(1), and n̂α
(0)v̂

α
1(1), all of which are constants from (49), are

negative. On the other hand, because 1/x+ln x ≥ 1 for x > 0 and ln x ≤ 0

for 0 < x ≤ 1, ln(T̂(0)/T∗) + T∗/T̂(0) is positive while ln χα
(0) is negative,

as far as T̂(0) > 0 and 0 < χα
(0) < 1 [note that T∗ > 0 was assumed just

before (57)]. Consequently, H is positive in the case of condensation.

(ii) Suppose that T̂(0) > 0 and 0 < χα
(0) < 1 are assured. Since H is positive,

starting from a certain finite value at y = 0, H monotonically decreases,

at most, down to zero as y → ∞. This means that dH/ dy → 0 as

y → ∞, so that dχA
(0)/ dy, dT̂(0)/ dy, and dv̂2(0)/ dy all approach zero as

y → ∞ because of (56), the condition for equality in (59). As a result,

χA
(0), T̂(0), and v̂2(0) approach, respectively, χ∗, T∗, and v∗ as y → ∞. This

is observed by setting the derivatives to zero in (51) and noting that both

v̂A
1(1) and v̂B

1(1) approach −1 as y → ∞. Thus, χ∗, T∗, and v∗ are identical

with χA
∞(0), T̂∞(0), and v̂2∞(0), respectively.

(iii) In order that H is positive, it is required that T̂(0) > 0 and 0 < χα
(0) < 1.

The former is assured because of (43a) and p̂w > 0 from the physical

requirement. Satisfying the latter condition is guaranteed if both χA
w and
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χ∗ (or χA
∞(0)) are in the interval of (0, 1). It can be shown as follows.

Suppose that χA
(0) happens to be zero (or 1) at some point, and 0 <

χA
(0) < 1 holds up to just before this point in increasing y (remember that

0 < χA
w < 1). Then the second term in the parentheses of the left-hand

side of (51a) vanishes at the point because kT is zero when χA
(0) = 0 (or

1). 4 Since n̂(0)ŵ1(1) < 0 and 0 < χ∗ < 1, the right-hand side of (51a) is

strictly positive (or negative), and so is dχA
(0)/ dy because D̂AB is positive.

Hence χA
(0) must be below zero (or above 1) at the left neighboring, which

contradicts the assumption.

(iv) If χ∗ = 0 (or 1) and 0 < χA
w < 1, the problem is reduced to that studied

recently in [25], in which a condensing vapor flow in the presence of a

noncondensable gas is considered. The correspondence comes from the

fact that, when χ∗ = 0 (or 1), the conservative quantity n̂A
(0)v̂

A
1(1) (or

n̂B
(0)v̂

B
1(1)) is zero [see (43b) and (49)], so that v̂A

1(1) = 0 at y = 0 for the

species A (or B) to exist there. In the case, χA
(0) varies in the interval of

[0, 1]. The function H can be defined in this interval, and the conclusion

of step (ii) remains valid. Further, by the discussion similar to step (iii),

the condition 0 ≤ χA
(0) ≤ 1 is seen to be assured.

(v) If χA
w = 0 (or 1), χA

(0) = 0 (or χB
(0) = 0) at y = 0, and thus the conservative

quantity n̂A
(0)v̂

A
1(1) (or n̂B

(0)v̂
B
1(1)) is again zero. In the case of a condensing

4 The definition of Dα in (B.6) would not be suitable when χA
(0) = 0 or 1. We

adopted such a function simply because it is conventional. In the case of χA
(0) = 0

or 1, χA
(0)χ

B
(0)A

A and χA
(0)χ

B
(0)A

B vanish while χA
(0)χ

B
(0)D

A and χA
(0)χ

B
(0)D

B remain

finite. Consequently D̂AB > 0 and D̂T = 0, and kT = 0 is obtained [see (27a)–

(27c)]. Incidentally, the thermal-diffusion factor αAB defined by αAB = kT/χA
(0)χ

B
(0)

is often used in the literature [14,15] in place of kT. This factor does not vanish in

general when χA
(0) = 0 or 1.

28



flow, n̂(0)ŵ1(1), which is the sum of n̂A
(0)v̂

A
1(1) and n̂B

(0)v̂
B
1(1), is strictly neg-

ative. As a result, χ∗ cannot be chosen freely but instead must be equal

to χA
w. Then, from (51a), χA

(0) is shown to be a constant, and the problem

is reduced to that of the condensing flow in a one-species system. As in

the case of (iv), step (ii) remains valid and the condition 0 ≤ χA
(0) ≤ 1 is

assured by the discussion similar to step (iii).

In this way, the properties of H, originating from the flux of Boltzmann’s H

function, assures that χA
(0), T̂(0), and v̂2(0) approach, respectively, χA

∞(0), T̂∞(0),

and v̂2∞(0) as y → ∞, as far as 0 ≤ χA
w ≤ 1, 0 ≤ χA

∞(0) ≤ 1, and T̂∞(0) > 0 are

satisfied. The parameters at infinity can be chosen freely relative to those at

the surface (y = 0), except for the case χA
w = 0 or 1. For these singular cases,

the problem is reduced to that of a one-species system. In conclusion, as far

as 0 < χA
w < 1 is concerned, there is no restriction on the concentration, the

tangential flow velocity, and the temperature in order that steady condensation

flow takes place.

We have, however, a restriction on the pressure of the mixture (50):

p̂∞ − p̂w = O(ϵ).

To see this restriction closely, we consider the equation and the boundary

condition for p̂(1). Because of (23b), p̂(1) is a constant. Thus from the boundary

conditions (47) and (41) we have

(p̂∞ − p̂w)ϵ−1 = p̂(1) =
[
− aVp̂wŵ1(1) −

(
aVD̂T

m̂B − 1

m̂w

+ aT

)
dT̂(0)

dy

−
(
aVD̂AB

m̂B − 1

m̂w

+ aχ

) dχA
(0)

dy

]
y=0

. (60)
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Here the expansion of p̂∞ is supposed to terminate at O(ϵ1), i.e., p̂∞ = p̂∞(0) +

p̂∞(1)ϵ. In the meantime, (51a) and (51c) evaluated at y = 0 and y → ∞ yield

dT̂(0)

dy

∣∣∣∣
y=0

= −
n̂(0)ŵ1(1)

λ̂|y=0

[
5

2
(T̂∞(0) − 1) − kT|y=0

χA
wχB

w

(χA
∞(0) − χA

w) +
ρ̂(0)v̂1(1)

n̂(0)ŵ1(1)

v̂2
2∞(0)

]
,

dχA
(0)

dy

∣∣∣∣
y=0

=
n̂(0)ŵ1(1)

D̂AB|y=0

[
5

2

kTD̂AB

λ̂

∣∣∣∣
y=0

(T̂∞(0) − 1) +
kTD̂AB

λ̂

∣∣∣∣
y=0

ρ̂(0)v̂1(1)

n̂(0)ŵ1(1)

v̂2
2∞(0)

−
(
1 +

1

χA
wχB

w

k2
TD̂AB

λ̂

∣∣∣∣
y=0

)
(χA

∞(0) − χA
w)

]
.

Substituting these into (60) yields

(p̂∞ − p̂w)ϵ−1 = p̂(1) =
[
− aV +

5

2

1

λ̂
(aT − kTaχ)(T̂∞(0) − 1)

+
(
aV

m̂B − 1

m̂w

+
aχ

D̂AB

− kT

χA
wχB

w

1

λ̂
(aT − kTaχ)

)
(χA

∞(0) − χA
w)

+
1

λ̂
(aT − kTaχ)

ρ̂(0)v̂1(1)

n̂(0)ŵ1(1)

v̂2
2∞(0)

]
n̂(0)ŵ1(1),

where kT, λ̂, and D̂AB denote their values at y = 0. Finally, expressing the

resulting in terms of dimensional quantities, we finally arrive at the relation 5

p∞
pw

= 1 +
[
− aV +

5

2

1

λ̂
(aT − kTaχ)

(
T∞

Tw

− 1
)

+
(
aV

m̂B − 1

m̂w

+
aχ

D̂AB

− kT

χA
wχB

w

1

λ̂
(aT − kTaχ)

)
(χA

∞ − χA
w)

+
1

λ̂
(aT − kTaχ)

T∞

Tw

v2
2∞

2kT∞/m∞

]
Tw

T∞

v1∞

cw

. (61)

In the last expression, χA
∞(0), v̂2∞(0), and T̂∞(0) are identified with χA

∞, v̂2∞,

and T̂∞, respectively, and m∞ denotes the average mass of a molecule at a far

distance, i.e., m∞ = mAχA
∞ + mB(1 − χA

∞). Note that kT, λ̂, and D̂AB denote

their values at y = 0. Equation (61) is the condition for steady condensation.

5 As has been shown in step (v), the relation (61) holds for 0 < χA
w < 1. In the

case of χA
w = 0 or 1, χA

∞ must be equal to χA
w, and the second line of the equation

vanishes; the problem is reduced to that of a one-species system.
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5.2 Evaporation

Our investigation of the condition for the condensation (Sec. 5.1) essentially

relies on the H theorem, the monotonic decrease of the flux of Boltzmann’s H

function. The theorem holds also for the evaporation case. However it will not

give us the benefit in this case, because the function H < 0, so that it is not

clear whether H approaches some constant or grows (negatively) infinitely as

y → ∞. Fortunately, we can study the evaporation case more simply by the

linear stability analysis of the uniform state at a far distance.

5.2.1 Linear stability of the uniform state at infinity

We start with (51) and consider the perturbation of χA
(0), v̂2(0), and T̂(0) from

the constants χ∗, v∗, and T∗:

X = χA
(0) − χ∗, Y = T̂(0) − T∗, Z = v̂2(0) − v∗,

and investigate the linear stability of the uniform state solution χA
(0) = χ∗,

v̂2(0) = v∗, and T̂(0) = T∗. To do this, we linearize the equations around this

state:

D̂AB∗T
1/2
∗

(
dX

dy
+

kT∗

T∗

dY

dy

)
= n̂(0)ŵ1(1)X,

1

2
µ̂∗T

1/2
∗

dZ

dy
= ρ̂(0)v̂1(1)Z,

λ̂∗T
1/2
∗

dY

dy
=

5

2
n̂(0)ŵ1(1)Y − kT∗D̂AB∗

χ∗(1 − χ∗)
T 3/2
∗

(
dX

dy
+

kT∗

T∗

dT∗

dy

)
+ 2ρ̂(0)v̂1(1)v∗Z − µ̂∗T

1/2
∗ v∗

dZ

dy
,
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where the quantities with subscript ∗ are evaluated with χA
(0) = χ∗ and T̂(0) =

T∗. The linear equations above can be transformed into



dX

dy

dY

dy

dZ

dy



=
n̂(0)ŵ1(1)

T
1/2
∗

M



X

Y

Z



, (62)

where

M =



1

D̂AB∗

(
1 +

k2
T∗

χ∗(1 − χ∗)

D̂AB∗

λ̂∗

)
−5

2

kT∗

T∗λ̂∗
0

− kT∗T∗

χ∗(1 − χ∗)λ̂∗

5

2

1

λ̂∗
0

0 0
2

µ̂∗

ρ̂(0)v̂1(1)

n̂(0)ŵ1(1)



. (63)

Noting that D̂AB∗, µ̂∗, and λ̂∗ are positive [(27a), (27d), and (27e)], it is easy to

see that the real part of all the eigenvalues of this matrix is positive. Therefore,

however small the deviation from the uniform state might be, it never vanishes

as y grows, since n̂(0)ŵ1(1) > 0. In other words, it is impossible to reach the

uniform state above as y → ∞ starting from any state other than that uniform

state. The uniform state can be reached only when the field (at the leading

order) is entirely uniform over the half-space, i.e., χA
(0) ≡ χA

w, v̂2(0) = 0, and

T̂(0) ≡ 1 [see (43b)–(43d)]. Therefore, in addition to the restriction on the
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pressure

p̂∞ − p̂w = O(ϵ),

we have, from (46b)–(46d), the restrictions on the concentration, the tangen-

tial flow velocity, and the temperature:

χA
∞(0) = χA

w, i.e., χA
∞ − χA

w = O(ϵ),

v̂2∞(0) = 0, i.e., v̂2∞ = O(ϵ),

T̂∞(0) = 1, i.e., T̂∞ − 1 = O(ϵ).

Incidentally, if the same analysis is applied to the condensation, as is obvious

from the discussion above, the uniform state is found to be stable for small

perturbations. However, this is not enough to reach the same conclusion as

that in Sec. 5.1.2.

5.2.2 Condition for evaporation

Now we will derive the condition for the evaporation explicitly. For the pressure

of the mixture, the discussion parallel to that on the condensation case leads

to

(p̂∞ − p̂w)ϵ−1 = −aVp̂wŵ1(1)|y=0, (64)

because T̂(0) and χA
(0) are constants [see (60)]. As to the concentration, the

tangential flow velocity, and the temperature, we need the equations for χA
(1),

v̂2(1), and T̂(1). They are obtained by first solving (17c) with m = 2 for fα
(2)

and then substituting it into (22) with m = 3. Since all the quantities at O(ϵ0)

are constants, v̂1(1) and ŵ1(1) are also constants [see (49)] and no additional

complexity arises in the calculation. The derivation is given in Appendix C.
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The resulting equations are

d

dy

[
D̂ABT̂

1/2
(0)

( dχA
(1)

dy
+

kT

T̂(0)

dT̂(1)

dy

)]
= n̂(0)ŵ1(1)

dχA
(1)

dy
,

1

2

d

dy

(
µ̂T̂

1/2
(0)

dv̂2(1)

dy

)
= ρ̂(0)v̂1(1)

dv̂2(1)

dy
,

d

dy

(
λ̂T̂

1/2
(0)

dT̂(1)

dy
− kTp̂(0)(v̂

A
1(2) − v̂B

1(2))
)

=
5

2
n̂(0)ŵ1(1)

dT̂(1)

dy
+

d

dy

(
2ρ̂(0)v̂1(1)v̂2(0)v̂2(1) − µ̂T̂

1/2
(0) v̂2(0)

dv̂2(1)

dy

)
,

which are linear equations for χA
(1), v̂2(1), and T̂(1). Note that except them the

quantities in the equations are constants. The stability analysis of this linear

system is parallel to that in the preceding section and concludes

T̂(1) = const, χA
(1) = const, v̂2(1) = const,

and thus

p̂A
(1) = χA

(0)p̂(1) + χA
(1)p̂(0) = const. (65)

Therefore, from (37), (39) with α = A, and (40), we obtain

v̂2∞(1) = v̂2∞ϵ−1 = v̂2(1) = v̂2(1)|y=0 = 0, (66)

p̂A
∞(1) = (p̂A

∞ − 1)ϵ−1 = p̂A
(1) = −aA

Vŵ1(1)|y=0, (67)

T̂∞(1) = (T̂∞ − 1)ϵ−1 = T̂(1) = −cVŵ1(1)|y=0. (68)

Here the expansions of p̂A
∞, v̂2∞, and T̂∞ are supposed to terminate at O(ϵ1).

Finally, expressing (64) and (66)–(68) in terms of dimensional quantities, we

arrive at the relations:

p∞
pw

= 1 − aV
v1∞

cw

, (69)

pA
∞

pA
w

= 1 − aA
V

v1∞

cw

, (70)

T∞

Tw

= 1 − cV
v1∞

cw

, (71)
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v2∞ = 0. (72)

The last equation means that evaporation always takes place perpendicularly

to the surface. Equations (69)–(72) are the set of conditions for steady evap-

oration.

5.3 Summary

In Sec. 5, we derived the conditions in order that evaporation or condensation

takes place. The result shows that there is a qualitative difference between the

evaporation and condensation cases. For the former, there are four conditions

(69)–(72), whereas there is only one condition (61) for the latter. This is a

natural extension of the existing result for a single-species vapor to a mixture

of vapors in the sense that the single condition for the condensation has a

dependence on the concentration and that one additional condition on the

concentration is required besides the conditions for the pressure, the tangential

flow velocity, and the temperature in the case of evaporation.

6 Concluding remarks

In the present paper, we have considered the half-space problem of evapora-

tion and condensation of a binary mixture of vapors. Assuming that the Mach

number of the perpendicular component of the flow is small, we considered

the solution that varies slowly in the scale of the mean free path and derived

the fluid-dynamic system that describes the behavior of the solution by a for-

mal but systematic asymptotic analysis. Based on that system, we studied the
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behavior of the slowly varying solution in a rather indirect way and derived

the conditions that must be satisfied in order that steady evaporation or con-

densation takes place. The conditions relate the parameters characterizing the

state of the condensed phase to those characterizing the state of the mixture

at a far distance.

Our discussion relies on the H theorem, the monotonic decrease of the flux of

Boltzmann’s H function, in the case of condensation and on the linear stability

analysis in the case of evaporation. The resulting conditions are qualitatively

different between the evaporation and the condensation cases: there is a sin-

gle condition for the condensation, while there are four conditions for the

evaporation. This is a natural extension of the existing result [7,1] for a single-

species vapor to a mixture of vapors in the sense that the single condition

for the condensation has a dependence on the concentration and that one ad-

ditional condition on the concentration is required besides the conditions for

the pressure, the tangential flow velocity, and the temperature in the case of

the evaporation. The present result supports the assumption that was made

in performing the numerical computation of evaporating flow in the literature

(e.g. [26,27]) in the regime of small Mach number.

In the present paper, we did not specify the model of intermolecular potential

but rather kept it arbitrary as long as the collision frequency and the transport

coefficients can be defined properly [see the end of Sec. 3.2 and (28)]. In this

sense, the present work may be considered as the generalization of [12] that

was limited to the BGK-type model Boltzmann system, such as the models

proposed in [9–11]. In [12], only the case of v2∞ = 0 was investigated, and,

thanks to the monotonic behavior of the concentration and the temperature

themselves for those models, a more direct solution approach was taken to
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arrive at the conditions (61) and (69)–(71) with v2∞ = 0. Incidentally, the

direct approach in [12] can be extended to the case of v2∞ ̸= 0, as far as the

BGK-type models are concerned. For this case, although the temperature is no

longer monotonic, the concentration and the tangential flow velocity remain

monotonic, so that the explicit parametric expression for the temperature in

terms of the tangential flow velocity can be obtained. The reader is referred

to [25] for the example of this type of analysis though a similar but different

physical problem is studied for hard sphere gases there. That parametric ex-

pression enables us to directly arrive at the same conclusion as the present

paper, i.e., the conditions (61) and (69)–(72).

As is mentioned in Sec. 1, the objective of the present work is to generalize the

previous contribution [12] of the first author by overcoming the difficulty aris-

ing from the generally non-monotonic behavior of the fluid-dynamic quantities

of the slowly varying solution in the case of the Boltzmann equation for mix-

tures, when trying to reach the conditions (61) and (69)–(72). The reader who

is interested in the quantitative performance of the simplified kinetic models is

referred to Fig. 7 in [28], where numerical simulations of the two-surface prob-

lem are carried out by using both the Garzó-Santos-Brey BGK-type model [9]

and the hard-sphere Boltzmann equation and they agree well with each other.

However, this example does not cover the case where the fluid-dynamic quanti-

ties are non-monotonic. More detailed examination would be required to draw

a rather general conclusion on the quantitative performance. It should also

be noted that the conditions (61) and (69)–(72) are quantitatively affected by

the choice of the molecular model. For instance, the comparison between the

results in [23] and [21] shows that aV and cV could be different, respectively,

by 3 ∼ 7 and 8% between the hard-sphere and Maxwell molecular models.
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Finally, we briefly mention the influence of the generalization of the kinetic

boundary condition. In the present work, the conditions (61) and (69)–(72)

for the condensation and evaporation are derived on the basis of the kinetic

boundary condition (3a) [or (12a)] assuming the perfect accommodation of the

molecules coming to the interface from the gas phase (see the end of Sec. 2).

If the accommodation is only partial, (29) still holds but linear functionals of

fα
K(1) (or Φα) and fα

S(0) also appear on the right-hand sides of (32), (34b), and

(35b), as far as the accommodation rate is not too small (≫ ϵ). However, this

difference does not affect the structure of the relations (36)–(38) and merely

changes the values of the coefficients aα
V, cV , etc. when the boundary is locally

isotropic. The reader is referred to Sec. 3.4 in [1] for the detailed discussion on

this issue. Therefore, the conditions (61) and (69)–(72) remains unchanged for

more general kinetic boundary conditions discussed in [3,1,2], including that

the evaporation takes place only perpendicularly. The mathematical proof on

the problem (35) with a linear functional of Φα on the right-hand side of (35b)

is required to make this statement rigorous. In the case of a single-species

vapor, a mathematical proof for such generalization is given in [29].
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A Component functions of macroscopic quantities

Here we summarize the expressions of the component functions of n̂α, p̂α,

T̂α, v̂α
1 , etc. in terms of the component functions of fα. In the derivation,

the assumption v̂α
1(0) = v̂1(0) = ŵ1(0) = 0 was used. Einstein’s summation

convention is suppressed in this appendix.

A.1 Component functions of O(ϵ0)-quantities

n̂α
(0) =

∫
fα

(0) dζ, ρ̂α
(0) = m̂αn̂α

(0), v̂α
2(0) =

1

n̂α
(0)

∫
ζ2f

α
(0) dζ,

p̂α
(0) = n̂α

(0)T̂
α
(0) =

2

3

∫
|ζ − v̂α

(0)|2m̂αfα
(0) dζ,

p̂α
ii(0) = 2

∫
ζ2
i m̂

αfα
(0) dζ (i = 1, 3),

p̂α
22(0) = 2

∫
(ζ2 − v̂α

2(0))
2m̂αfα

(0) dζ,

p̂α
21(0) = p̂α

12(0) = 2
∫

ζ1(ζ2 − v̂α
2(0))m̂

αfα
(0) dζ,

q̂α
1(0) =

∫
ζ1|ζ − v̂α

(0)|2m̂αfα
(0) dζ,

and

n̂(0) = n̂A
(0) + n̂B

(0), ρ̂(0) = ρ̂A
(0) + ρ̂B

(0), v̂2(0) =
1

ρ̂(0)

(ρ̂A
(0)v̂

A
2(0) + ρ̂B

(0)v̂
B
2(0)),

p̂(0) = n̂(0)T̂(0) =
∑

α=A,B

(
p̂α

(0) +
2

3
ρ̂α

(0)(V
α
2(0))

2
)
,
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p̂ii(0) =
∑

α=A,B

p̂α
ii(0) (i = 1, 3), p̂22(0) =

∑
α=A,B

(
p̂α

22(0) + 2ρ̂α
(0)(V

α
2(0))

2
)
,

p̂21(0) = p̂12(0) =
∑

α=A,B

p̂α
21(0), q̂1(0) =

∑
α=A,B

(
q̂α
1(0) + p̂α

12(0)V
α
2(0)

)
,

χα
(0) = n̂α

(0)/n̂(0),

where v̂α
(0) = (0, v̂α

2(0), 0) and V α
2(0) = v̂α

2(0) − v̂2(0).

A.2 Component functions of O(ϵ1)-quantities

n̂α
(1) =

∫
fα

(1) dζ, ρ̂α
(1) = m̂αn̂α

(1), v̂α
1(1) =

1

n̂α
(0)

∫
ζ1f

α
(1) dζ,

v̂α
2(1) =

1

n̂α
(0)

( ∫
ζ2f

α
(1) dζ − n̂α

(1)v̂
α
2(0)

)
,

p̂α
(1) = n̂α

(1)T̂
α
(0) + n̂α

(0)T̂
α
(1) =

2

3

∫
|ζ − v̂α

(0)|2m̂αfα
(1) dζ,

p̂α
ii(1) = 2

∫
ζ2
i m̂

αfα
(1) dζ (i = 1, 3),

p̂α
22(1) = 2

∫
(ζ2 − v̂α

2(0))
2m̂αfα

(1) dζ,

p̂α
21(1) = p̂α

12(1) = 2
∫

ζ1(ζ2 − v̂α
2(0))m̂

αfα
(1) dζ,

q̂α
1(1) =

∫
ζ1|ζ − v̂α

(0)|2m̂αfα
(1) dζ − 3

2
p̂α

(0)v̂
α
1(1) − p̂α

11(0)v̂
α
1(1) − p̂α

12(0)v̂
α
2(1),

and

n̂(1) =n̂A
(1) + n̂B

(1), ρ̂(1) = ρ̂A
(1) + ρ̂B

(1), v̂1(1) =
1

ρ̂(0)

(ρ̂A
(0)v̂

A
1(1) + ρ̂B

(0)v̂
B
1(1)),

v̂2(1) =
1

ρ̂(0)

(ρ̂A
(0)v̂

A
2(1) + ρ̂B

(0)v̂
B
2(1) + ρ̂A

(1)V
A
2(0) + ρ̂B

(1)V
B
2(0)),

p̂(1) =n̂(1)T̂(0) + n̂(0)T̂(1) =
∑

α=A,B

(
p̂α

(1) +
2

3
ρ̂α

(1)(V
α
2(0))

2 +
4

3
ρ̂α

(0)V
α
2(0)V

α
2(1)

)
,

p̂ii(1) =
∑

α=A,B

p̂α
ii(1) (i = 1, 3),
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p̂22(1) =
∑

α=A,B

(
p̂α

22(1) + 2ρ̂α
(1)(V

α
2(0))

2 + 4ρ̂α
(0)V

α
2(0)V

α
2(1)

)
,

p̂21(1) =p̂12(1) =
∑

α=A,B

(
p̂α

21(1) + 2ρ̂α
(0)V

α
1(1)V

α
2(0)

)
,

q̂1(1) =
∑

α=A,B

(
q̂α
1(1) + p̂α

12(1)V
α
2(0) + p̂α

11(0)V
α
1(1) + p̂α

12(0)V
α
2(1)

+
3

2
p̂α

(0)V
α
1(1) + ρ̂α

(0)V
α
1(1)(V

α
2(0))

2
)
,

χα
(1) = (nα

(1) − χα
(0)n(1))/n(0), w1(1) = χA

(0)v
A
1(1) + χB

(0)v
B
1(1),

where V α
1(1) = v̂α

1(1) − v̂1(1) and V α
2(1) = v̂α

2(1) − v̂2(1).

A.3 Component functions of O(ϵ2)-quantities

n̂α
(2) =

∫
fα

(2) dζ, ρ̂α
(2) = m̂αn̂α

(2), v̂α
1(2) =

1

n̂α
(0)

( ∫
ζ1f

α dζ − n̂α
(1)v̂

α
1(1)

)
,

v̂α
2(2) =

1

n̂α
(0)

( ∫
ζ2f

α dζ − n̂α
(1)v̂

α
2(1) − n̂α

(2)v̂
α
2(0)

)
,

p̂α
(2) =n̂α

(0)T̂
α
(2) + n̂α

(1)T̂
α
(1) + n̂α

(2)T̂
α
(0) =

2

3

∫
|ζ − v̂α

(0)|2m̂αfα
(2) dζ − 2

3
ρ̂α

(0)|v̂α
(1)|2,

p̂α
11(2) =2

∫
ζ2
1m̂

αfα
(2) dζ − 2ρ̂α

(0)(v̂
α
1(1))

2,

p̂α
22(2) =2

∫
(ζ2 − v̂α

2(0))
2m̂αfα

(2) dζ − 2ρ̂α
(0)(v̂

α
2(1))

2,

p̂α
33(2) =2

∫
ζ2
3m̂

αfα
(2) dζ,

p̂α
21(2) =p̂α

12(2) = 2
∫

ζ1(ζ2 − v̂α
2(0))m̂

αfα
(2) dζ − 2ρ̂α

(0)v̂
α
1(1)v̂

α
2(1),

q̂α
1(2) =

∫
ζ1|ζ − v̂α

(0)|2m̂αfα
(2) dζ − 3

2
p̂α

(1)v̂
α
1(1) −

3

2
p̂α

(0)v̂
α
1(2)

− p̂α
11(1)v̂

α
1(1) − p̂α

12(1)v̂
α
2(1) − p̂α

11(0)v̂
α
1(2) − p̂α

12(0)v̂
α
2(2)

41



and

n̂(2) =n̂A
(2) + n̂B

(2), ρ̂(2) = ρ̂A
(2) + ρ̂B

(2),

v̂1(2) =
1

ρ̂(0)

(ρ̂A
(0)v̂

A
1(2) + ρ̂B

(0)v̂
B
1(2) + ρ̂A

(1)V
A
1(1) + ρ̂B

(1)V
B
1(1)),

v̂2(2) =
1

ρ̂(0)

(ρ̂A
(0)v̂

A
2(2) + ρ̂B

(0)v̂
B
2(2) + ρ̂A

(1)V
A
2(1) + ρ̂B

(1)V
B
2(1) + ρ̂A

(2)V
A
2(0) + ρ̂B

(2)V
B
2(0)),

p̂12(2) =p̂21(2) =
∑

α=A,B

(
p̂α

12(2) + 2ρ̂α
(1)V

α
1(1)V

α
2(0) + 2ρ̂α

(0)(V
α
1(1)V

α
2(1) + V α

1(2)V
α
2(0))

)
,

q̂1(2) =
∑

α=A,B

(
q̂α
1(2) + p̂α

11(1)V
α
1(1) + p̂α

11(0)V
α
1(2)

+ p̂α
12(2)V

α
2(0) + p̂α

12(1)V
α
2(1) + p̂α

12(0)V
α
2(2) +

3

2
p̂α

(1)V
α
1(1) +

3

2
p̂α

(0)V
α
1(2)

+ ρ̂α
(1)V

α
1(1)(V

α
2(0))

2 + ρ̂α
(0)(V

α
1(2)(V

α
2(0))

2 + 2V α
1(1)V

α
2(0)V

α
2(1))

)
,

ŵ1(2) =χA
(0)v̂

A
1(2) + χB

(0)v̂
B
1(2) + χA

(1)v̂
A
1(1) + χB

(1)v̂
B
1(1),

where v̂α
(1) = (v̂α

1(1), v̂
α
2(1), 0), V α

1(2) = v̂α
1(2) − v̂1(2), and V α

2(2) = v̂α
2(2) − v̂2(2).

B Component function fα
(1) and some properties of the functions

Aα, Bα, and Dα

In this appendix, we solve (17b) and derive some important properties of the

functions related to the transport coefficients.
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B.1 Component function fα
(1)

Substituting (18) into the right-hand side of (17b) and taking account of (20)

yield

∑
β=A,B

Kβα[Ĵβα(fβ
(1), f

α
(0)) + Ĵβα(fβ

(0), f
α
(1))]

= ζ1f
α
(0)

[
1

χα
(0)

dχα
(0)

dy
+

2m̂α(ζ2 − v̂2(0))

T̂(0)

dv̂2(0)

dy

+
(

m̂α|ζ − v̂(0)|2

T̂(0)

− 5

2

)
1

T̂(0)

dT̂(0)

dy

]
, (B.1)

where v̂(0) = (0, v̂2(0), 0). With the following notations

C = (ζ − v̂(0))/
√

T̂(0), C = |C|, Eα(C) =
(

mα

π

)3/2

exp(−m̂αC2),

equation (B.1) is transformed into

∑
β=A,B

Kβαχβ
(0)L

βα

T̂(0)
(ϕβ, ϕα)

=
C1

n̂(0)

[
1

χα
(0)

dχα
(0)

dy
+

2m̂αC2

T̂
1/2
(0)

dv̂2(0)

dy
+

(
m̂α|C|2 − 5

2

)
1

T̂(0)

dT̂(0)

dy

]
, (B.2)

where ϕα(y, C) = fα
(1)/f

α
(0) and

Lβα
a (f, g) =

∫
(f ′

∗ − f∗ + g′ − g)Eβ
∗ bβα

a (e · Crel/Crel, Crel) dΩ(e) dC∗, (B.3)

where

f ′
∗ = f(C ′

∗), g′ = g(C ′), f∗ = f(C∗), g = g(C), Eβ
∗ = Eβ(|C∗|),

C ′ = C +
µ̂βα

m̂α
(e · Crel) e, C ′

∗ = C∗ −
µ̂βα

m̂β
(e · Crel) e,

Crel = C∗ − C, Crel = |Crel|,

bβα
a (e · Crel/Crel, Crel) = bβα(e · Crel/Crel,

√
aCrel)/

√
a.
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The solution ϕα of (B.2) can be expressed as

ϕα = cα
0 + m̂α(c · C) + c4

(
m̂α|C|2 − 3

2

)
− 1

n̂(0)

(
C1Dα(|C|)

dχA
(0)

dy

+ C1Aα(|C|) 1

T̂(0)

dT̂(0)

dy
+ C1C2Bα(|C|) 1

T̂
1/2
(0)

dv̂2(0)

dy

)
.

where cα
0 , c, and c4 are undetermined constants. Here the functions Aα(|C|),

Bα(|C|), and Dα(|C|) are the solutions of the following integral equations:

∑
β=A,B

Kβαχβ
(0)L

βα

T̂(0)
(CiAβ, CiAα) = −Ci

(
m̂α|C|2 − 5

2

)
, (B.4a)

subsidiary condition:
∑

α=A,B

m̂αχα
(0)

∫ ∞

0
C4Aα(C)Eα(C) dC = 0, (B.4b)

∑
β=A,B

Kβαχβ
(0)L

βα

T̂(0)
(CijBβ, CijBα) = −2m̂αCij, (B.5)

∑
β=A,B

Kβαχβ
(0)L

βα

T̂(0)
(CiDβ, CiDα) = −δAα − δBα

χα
(0)

Ci, (B.6a)

subsidiary condition:
∑

β=A,B

m̂αχα
(0)

∫ ∞

0
C4Dα(C)Eα(C) dC = 0, (B.6b)

where Cij = CiCj− 1
3
|C|δij, δAA = δBB = 1, and δAB = δBA = 0. The functions

are orthogonal to the collision invariants. The undetermined constants cα
0 , c,

and c4 can be expressed by the first few moments of fα
(1), and the following

expression is finally obtained:

fα
(1) =

n̂α
(0)

T̂
3/2
(0)

Eα(|C|)
[ p̂α

(1)

p̂α
(0)

+
2m̂α√
T̂(0)

(v̂1(1)C1 + v̂2(1)C2) +
T̂(1)

T̂(0)

(
m̂α|C|2 − 5

2

)

− 1

n̂(0)

(
C1Dα(|C|)

dχA
(0)

dy
+C1Aα(|C|) 1

T̂(0)

dT̂(0)

dy
+C1C2Bα(|C|) 1

T̂
1/2
(0)

dv̂2(0)

dy

)]
.

(B.7)

In the derivation, it is clarified that the temperature is common to species also

at O(ϵ1):

T̂A
(1) = T̂B

(1) = T̂(1).
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B.2 Symmetry property of Lβα
a and related results

Thanks to the symmetry property of Lβα
a , the following equality holds:

∫
ψ(C)Lβα

a (f, g)Eα(|C|) dC +
∫

ϕ(C)Lαβ
a (g, f)Eβ(|C|) dC

= −1

2

∫
(ϕ′

∗ − ϕ∗ + ψ′ − ψ)(f ′
∗ − f∗ + g′ − g)EαEβ

∗

× bβα
a (e · Crel/Crel, Crel) dΩ(e) dC∗ dC, (B.8)

where

f ′
∗ = f(C ′

∗), g′ = g(C ′), f∗ = f(C∗), g = g(C),

ϕ′
∗ = ϕ(C ′

∗), ψ′ = ψ(C ′), ϕ∗ = ϕ(C∗), ψ = ψ(C), Eβ
∗ = Eβ(|C∗|),

C ′ = C +
µ̂βα

m̂α
(e · Crel) e, C ′

∗ = C∗ −
µ̂βα

m̂β
(e · Crel) e,

Crel = C∗ − C, Crel = |Crel|.

The proof is classical and is omitted here. From this equality one can derive

the following:

(1) for arbitrary functions fα and gα and for arbitrary constants Cβα such

that Cβα = Cαβ,

∑
α=A,B

∑
β=A,B

Cβα
∫

gα(C)Lβα
a (fβ, fα)Eα(|C|) dC

=
∑

α=A,B

∑
β=A,B

Cβα
∫

fα(C)Lβα
a (gβ, gα)Eα(|C|) dC. (B.9)

(2) for an arbitrary function fα and for arbitrary constants Cβα such that

Cβα = Cαβ,

∑
α=A,B

∑
β=A,B

Cβα
∫

fα(C)Lβα
a (fβ, fα)Eα(|C|) dC ≤ 0. (B.10)
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The equality in (B.10) holds if and only if fα is the collision invariant:

fα = cα
0 + m̂α(c · C) + m̂αc4 |C|2,

where cα
0 , c, and c4 are arbitrary constants.

Equations (B.9) and (B.10) are used in obtaining important properties of the

moments of Aα, Bα, and Dα listed below:

(1) Putting gα = CiDα and fα = CiAα in (B.9) with Cβα = Kβαχβ
(0)χ

α
(0) and

a = T̂(0) yields

∑
α=A,B

χα
(0)

∫ ∞

0
C4

(
m̂αC2 − 5

2

)
DαEα dC

=
∫ ∞

0
C4(AAEA −ABEB) dC. (B.11)

(2) Putting fα = Ci(k1Aα + k2Dα) in (B.10) with Cβα = Kβαχβ
(0)χ

α
(0) and

a = T̂(0) yields

− k2
1

∑
α=A,B

χα
(0)

∫ ∞

0
C4

(
m̂αC2 − 5

2

)
AαEα dC

− 2k1k2

∫ ∞

0
C4(AAEA −ABEB) dC

− k2
2

∫ ∞

0
C4(DAEA −DBEB) dC ≤ 0. (B.12)

This leads to

(a) with k1 = 0 and k2 = 1,

∫ ∞

0
C4(DAEA −DBEB) dC > 0, (B.13)

(b) with k1 = 1 and k2 = −
∫ ∞
0 C4(AAEA −ABEB) dC/

∫ ∞
0 C4(DAEA −
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DBEB) dC,

∑
α=A,B

χα
(0)

∫ ∞

0
C4

(
m̂αC2 − 5

2

)
AαEα dC

−

( ∫ ∞
0 C4(AAEA −ABEB) dC

)2

∫ ∞
0 C4(DAEA −DBEB) dC

> 0. (B.14)

Here, in (B.13) and (B.14), the equality drops because k1Aα + k2Dα is a

non-zero function orthogonal to the collision invariants.

(3) Putting fα = C1C2Bα in (B.10) with Cβα = Kβαχβ
(0)χ

α
(0) and a = T̂(0)

yields

∑
α=A,B

m̂αχα
(0)

∫ ∞

0
C6BαEα dC > 0. (B.15)

Here, the equality drops because Bα is a non-zero function orthogonal to

the collision invariants.

Equation (B.12) leads to the different expressions for D̂T in (27b). Equa-

tions (B.13)–(B.15) lead to the positivity of D̂AB, λ̂, and µ̂ [see (27a), (27e),

and (27d)].

C Derivation of the equations for χA
(1), v̂2(1), and T̂(1) in the case of

evaporation

In this appendix, we will derive the equations for χA
(1), v̂2(1), and T̂(1) under

the assumption that fα
(0) is uniform with respect to y. This assumption is true

in the case of evaporation.

Consider the Maxwellian Mα with the number density p̂α, temperature T̂ , and
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flow velocity v̂ = (v̂1, v̂2, 0) that are the same as those of fα:

Mα =
n̂α

T̂ 3/2

(
m̂α

π

)3/2

exp
(
− m̂α|ζ − v̂|2

T̂

)
.

If we expand it in a power series of ϵ:

Mα = Mα
(0) + Mα

(1)ϵ + · · · ,

the component functions of the expansion satisfy the integral equations

∑
β=A,B

KβαĴβα(Mβ
(0),M

α
(0)) = 0, (C.1)

∑
β=A,B

Kβα[Ĵβα(Mβ
(1),M

α
(0)) + Ĵβα(Mβ

(0),M
α
(1))] = 0, (C.2)

∑
β=A,B

Kβα[Ĵβα(Mβ
(2),M

α
(0)) + Ĵβα(Mβ

(0),M
α
(2)) + Ĵβα(Mβ

(1),M
α
(1))] = 0, (C.3)

and so on because ∑
β=A,B

KβαĴβα(Mβ,Mα) = 0.

On the other hand, if fα
(0) is uniform with respect to y, fα is a local equilibrium

distribution up to the order of ϵ [see (B.7)], i.e.,

fα
(0) = Mα

(0) =
n̂α

(0)

T̂
3/2
(0)

Eα(|C|),

fα
(1) = Mα

(1) =
n̂α

(0)

T̂
3/2
(0)

Eα(|C|)
[ p̂α

(1)

p̂α
(0)

+
2m̂α√
T̂(0)

(v̂1(1)C1 + v̂2(1)C2) +
T̂(1)

T̂(0)

(
m̂α|C|2 − 5

2

)]
.

Consequently, in addition to T̂α
(1) = T̂(1), the following relations hold

v̂α
1(1) = v̂1(1) = ŵ1(1), v̂α

2(1) = v̂2(1) = ŵ2(1),

p̂α
ij(1) = p̂α

(1)δij, p̂ij(1) = p̂(1)δij, q̂α
i(1) = q̂i(1) = 0.

Now keeping in mind the properties summarized above, we consider the inte-
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gral equation for fα
(2):

∑
β=A,B

Kβα[Ĵβα(fβ
(2), f

α
(0)) + Ĵβα(fβ

(0), f
α
(2))] = ζ1

∂fα
(1)

∂y
−

∑
β=A,B

KβαĴβα(fβ
(1), f

α
(1)).

Subtraction of (C.3) yields

∑
β=A,B

Kβα[Ĵβα(fβ
(2) − Mβ

(2), f
α
(0)) + Ĵβα(fβ

(0), f
α
(2) − Mα

(2))] = ζ1

∂fα
(1)

∂y
,

leading to

∑
β=A,B

Kβαχβ
(0)L

βα

T̂(0)
(ψβ, ψα)

=
C1

n̂(0)

[
1

χα
(0)

dχα
(1)

dy
+

2m̂αC2

T̂
1/2
(0)

dv̂2(1)

dy
+

1

T̂(0)

(
m̂α|C|2 − 5

2

)
dT̂(1)

dy

]
,

where ψα = (fα
(2) − Mα

(2))/f
α
(0). Here p̂(1) = const and v̂1(1) = const, which are

from (44) and (49), are used. Note that the quantities with subscript (0) are

all constants. Hence, in the same way as in Appendix B.1, we obtain

fα
(2) = Mα

(2) +
n̂α

(0)

T̂
3/2
(0)

Eα(|C|)
[
cα
0 + m̂α(c · C) + c4

(
m̂α|C|2 − 3

2

)

− 1

n̂(0)

(
C1Dα(|C|)

dχA
(1)

dy
+C1Aα(|C|) 1

T̂(0)

dT̂(1)

dy
+C1C2Bα(|C|) 1

T̂
1/2
(0)

dv̂2(1)

dy

)]
,

where cα
0 , c, and c4 are again undetermined constants. They are determined by

the first few moments of fα
(2), and finally the following expression is obtained:

fα
(2) = Mα

(2) −
χα

(0)

T̂
3/2
(0)

Eα(|C|)
(
C1Dα(|C|)

dχA
(1)

dy

+ C1Aα(|C|) 1

T̂(0)

dT̂(1)

dy
+ C1C2Bα(|C|) 1

T̂
1/2
(0)

dv̂2(1)

dy

)
. (C.4)

This result leads to

(1)

v̂A
1(2) − v̂B

1(2) = − D̂AB

χA
(0)χ

B
(0)

T̂
1/2
(0)

n̂(0)

( dχA
(1)

dy
+

kT

T̂(0)

dT̂(1)

dy

)
,
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or, equivalently,

v̂A
1(2) = ŵ1(2) −

D̂AB

χA
(0)

T̂
1/2
(0)

n̂(0)

( dχA
(1)

dy
+

kT

T̂(0)

dT̂(1)

dy

)
, (C.5)

(2)

∑
α=A,B

∫
m̂αζ1ζ2f

α
(2) dζ =

1

2
p̂12(2) + ρ̂(0)v̂1(1)v̂2(1) + (ρ̂(0)v̂1(2) + ρ̂(1)v̂1(1))v̂2(0),

and

p̂12(2) = −µ̂T̂
1/2
(0)

dv̂2(1)

dy
,

(3)

∑
α=A,B

∫
m̂α|ζ|2ζ1f

α
(2) dζ

= −λ̂T̂
1/2
(0)

dT̂(1)

dy
+

5

2
(p̂(1)ŵ1(1) + p̂(0)ŵ1(2)) + kTp̂(0)(v̂

A
1(2) − v̂B

1(2))

+ p̂12(2)v̂2(0) + 2ρ̂(0)v̂1(1)v̂2(0)v̂2(1) + (ρ̂(0)v̂1(2) + ρ̂(1)v̂1(1))v̂
2
2(0),

where ŵ1(2) = χA
(0)v̂

A
1(2) + χB

(0)v̂
B
1(2) because v̂α

1(1) = v̂1(1) = ŵ1(1).

With these expressions, it is easy to derive the equations for χA
(1), v̂2(1), and

T̂(1). First, (22a) with m = 3 is equivalent to

d

dy
(n̂A

(0)v̂
A
1(2) + n̂A

(1)v̂1(1)) = 0,

d

dy
(n̂(0)ŵ1(2) + n̂(1)ŵ1(1)) = 0.

or
d

dy
(ρ̂(0)v̂1(2) + ρ̂(1)v̂1(1)) = 0.


Substitution of (C.5) into the first equation and using the second equation

yields

d

dy

[
D̂ABT̂

1/2
(0)

( dχA
(1)

dy
+

kT

T̂(0)

dT̂(1)

dy

)]
= n̂(0)ŵ1(1)

dχA
(1)

dy
.

Next, the first line of (22b) with i = 2 and m = 3 yields

1

2

d

dy

(
µ̂T̂

1/2
(0)

dv̂2(1)

dy

)
= ρ̂(0)v̂1(1)

dv̂2(1)

dy
.
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Finally, the second line of (22b) with m = 3 yields

d

dy

(
λ̂T̂

1/2
(0)

dT̂(1)

dy
− kTp̂(0)(v̂

A
1(2) − v̂B

1(2))
)

=
5

2
n̂(0)ŵ1(1)

dT̂(1)

dy
+

d

dy

(
2ρ̂(0)v̂1(1)v̂2(0)v̂2(1) − µ̂T̂

1/2
(0) v̂2(0)

dv̂2(1)

dy

)
.

These are the desired equations.
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