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Abstract

The half-space problem of evaporation and condensation of a binary mixture of va-
pors is investigated on the basis of the kinetic theory of gases. Assuming the Mach
number of the normal component of the flow is small, a solution of the Boltzmann
equation that varies slowly in the scale of the molecular mean-free-path (slowly vary-
ing solution) is introduced. Then a fluid-dynamic system that describes the behavior
of the slowly varying solution is derived by a systematic asymptotic analysis. The
analytical expression of the conditions allowing steady evaporation or condensation
is derived from that system. We analyze the qualitative difference between the con-
ditions in the evaporation and condensation cases: four conditions are needed in the
former case while only one condition is required in the latter case. The present paper
extends a earlier contribution of the first author for the BGK-type model equation
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to the Boltzmann equation. The extension is achieved by considering the linear sta-
bility of the far field in the case of evaporation and the H theorem, the monotonic

decrease of the flux of Boltzmann’s H function, in the case of condensation.
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1 Introduction

Consider a vapor occupying a half-space bounded by a planar surface of its
condensed phase. The vapor is supposed to be in a uniform equilibrium state
at a far distance with flowing from (evaporation) or onto (condensation) the
surface. Investigation of the steady behavior of the vapor, which we call the
half-space problem of evaporation and condensation, is one of the most fun-
damental boundary-value problems of the Boltzmann equation and has been
intensively studied (see, for example, [1-5] and the references therein). The
problem has a practical importance because it provides the basic equation in
the continuum gas dynamics (the Euler set of equations) with the boundary
conditions at the surface of the condensed phase. [6] In a half-space, evap-
oration or condensation can take place only when certain relations among
parameters are satisfied, i.e., the problem is solvable conditionally. It is these

relations that are used as the boundary conditions for the Euler set.
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One of the interesting features of the problem is that the solution has a qualita-
tively different structure between evaporation and condensation. The mecha-
nism of the difference was clarified by Sone in [7], where the problem is studied
by weakly nonlinear analysis by assuming a flow of small Mach number. In the
half-space problem, studied is a transition region from the surface to the region
in a uniform equilibrium state (the outer Euler region). The transition region
typically has a thickness of a few mean free paths of a molecule and may be
considered as the so-called Knudsen layer. However, it is often observed that
this region becomes much thicker than the mean free path when condensing
with a small Mach number. In [7], assuming the Mach number of the flow is
small, it is clarified that (i) in the case of condensation, the transition region
is subdivided into the Knudsen layer adjacent to the surface and a region de-
scribed by the Navier—Stokes set that connects the Knudsen layer with the
outer Euler region; (ii) in the case of evaporation, there is no subdivision and
the Knudsen layer directly connects the surface with the outer Euler region.
Corresponding to the structural difference, the relations among parameters
when evaporating are qualitatively different from those when condensing. In-
cidentally, the structure of the transition region in the case of condensation is
closely related to the so-called suction boundary layer in the conventional gas
dynamics (e.g., [8]). Although the feature described here was clarified by as-
suming a single-species vapor, it is natural to expect that it would essentially

remain unchanged when the vapor is composed of multiple species.

In the present paper, we will study the half-space problem of evaporation and
condensation for a binary mixture of vapors when the Mach number of the
normal component of the flow is small. Our aim is to show that essentially the

same structural difference of the transition region between evaporation and



condensation arises and to provide the conditions that allow the evaporation
and condensation explicitly. As will be clear later, following Sone [7], we intro-
duce a solution of the Boltzmann equation, which we call the slowly varying
solution [1], with the length scale of variation of the mean free path divided
by the Mach number, derive the fluid-dynamic system describing its behavior,
and discuss the properties of the solution of the system. The difference of the
properties between evaporation and condensation cases induces the structural

difference of the transition region.

Preceding the present work, the first author studied the same problem by
the use of the BGK-type model Boltzmann equation [9-11] in the case where
there is no flow in the direction tangential to the surface [12]. In this case
the fluid-dynamic system can be (formally) directly solved to show the mono-
tonic behavior of the macroscopic quantities. Such monotonic property is also
true in the case of a single-species vapor for the Boltzmann equation for gen-
eral molecular models; and it was fully used in Refs. [12,7,1] in deriving the
conclusion. However, the macroscopic quantities do not monotonically vary
in general in the case of mixtures. It is the objective of the present paper to
generalize the previous work [12] to the case of the Boltzmann equation for
general intermolecular potentials. This objective is achieved by taking some-
what indirect way: the linear stability analysis in the case of evaporation and
the use of the H theorem, the monotonic decrease of the flux of Boltzmann’s

H function, in the case of condensation.



2 Problem

We consider a binary mixture of vapors, say species A and B, in a half-space in
contact with their condensed phase. The condensed phase is kept at a uniform
temperature T,,, and its interface with the vapors is located at X; = 0, where
X, is the rectangular coordinate system. The mixture of vapors occupies the
region of X; > 0 and is uniform at a far distance from the interface with pres-
sure poo, temperature T, partial pressure p2 of species A, and flow velocity
Voo = (V100 V200, 0). The flow speed in the X;-direction at a far distance, v,
is supposed to be small compared to the sound speed. We will investigate the
steady behavior of the vapors on the basis of the kinetic theory of gases. In
the analysis, we assume that (i) the behavior of the vapors is described by
the Boltzmann equation for gaseous mixtures and that (ii) the velocity distri-
bution of the molecules of species a (v = A, B) incoming from the interface
is the half-Maxwellian at rest which is characterized by the temperature Ty,
and a pressure pS. Here p$ is the partial pressure of species o in the mixture
saturated in contact with the condensed phase at temperature 75,. Physically,
P& depends not only on the temperature but also on the constituents and the
constituent ratio of the condensed phases. In the present paper, we specify
not these two quantities but instead p¢ and 7}, independently one another as
certain constants. Therefore, we implicitly assume that the change of the com-
position of the condensed phase in the process of evaporation/condensation
is so small that it can be neglected. Hereinafter, just for brevity, we call p$
the “saturation pressure” of species « at the interface and p,, = p2 + pB the
total “saturation pressure” at the interface, respectively. Incidentally, the as-

sumption (ii) implies the perfect accommodation of the molecules coming to



the interface from the gas phase.

3 Formulation of the problem

3.1 Basic equation and boundary condition

Let us denote by & (or &;) the molecular velocity and by F*(X, &) the velocity
distribution function of the molecules of species a (a = A, B). In the sequel

the Greek letters a, 3, and « are symbolically used to represent the species of

vapors, i.e., {a, 3,7} = {A,B}.

The steady and spatially one-dimensional Boltzmann equation for a binary

gaseous mixture is written as

g, = 3 IR )
with
JP(F,G) = / (F/G' — F,G)B*(le - V|V, V) dQ(e) dé.., 2)
where
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and e is a unit vector, dQ2(e) is the solid-angle element in the direction of e,
d¢, = dé. dé,od,s, m® is the mass of a molecule of species a, and B?* is
a nonnegative function of its arguments whose functional form is determined

by the intermolecular potential between a molecule of species § and that of



species «. The integration in (2) is carried out over the whole space of &, and

over the unit sphere.

The boundary conditions for species « at the interface (X; = 0) and at infinity

(X7 — o0) are written as

o pa/kTy m®|€J?

Fe = kT jme )77 exp (— oW for & > 0 at X; =0, (3a)
a P/ kT m® € — voo|*

Fe = (27TkToo/ma)3/2 exp (—Mo as Xl — 00, (3b)

where k is the Boltzmann constant and p2 = p,, — pA. Equations (1)-(3) is

the boundary-value problem to be studied in the present paper.

Before proceeding further, here we introduce macroscopic quantities for the
later convenience. The molecular number density n®, the mass density p®, the
flow velocity v® = (v{,v5,0), the partial pressure p®, and temperature 7% of

species « are defined as

n® = /Fo‘ d¢, p®=mn®, (4a)
1
v = */&F“df (i=1,2), (4b)
na
1
P = KT = / € — 0O PmOF A€, (4c)

and their counterparts of the mixture, i.e., the molecular number density n,
the mass density p, the flow velocity v = (v, v,0) based on the momentum

flow, the pressure p, and the temperature T, are defined as

n=n*+n" p=p4p° (5a)
1
v = ;(pAU? +p%07) (i=1,2), (5b)
1
p=nkT = ) <p°‘+p°‘|'v°‘—v|2). (5¢)
a=AB 3

Note that Dalton’s law does not hold in general in our definition. Also note



that the X3 component of the flow velocity is assumed to vanish from the
beginning, because one can seek the solution of (1)-(3) as an even function
of &3. Because of the same reason, the X5X3 component of the stress tensor
and the X3 component of the heat-flow vector may be assumed to vanish. The

other components of the stress tensor py; and the heat flow ¢i* of species v are

defined as
Py = [(&— e —vmoFT g (i = 1.2), (63)
Py = [ Gmerede, (6b)
i = 5 [(6—vle — v PmeE g (1=12) (60

and the counterparts of the mixture, p;; and ¢;, are as

piy= Y [pf +p"(vf —vi)(vf —vy)] (0,5 =1.2), (7a)
a=A,B

D33 :pgAg + p?g; (7b>

qi = Z
a=A,B

3 af, o 1 af, o @ 2 .
+ P =)+ op (v — )|t —off (= 1,2). (7c)

g; + P (7 — 1) + (v — v2)

Finally, we introduce two additional macroscopic quantities: the concentration
X“ of species a and the flow velocity w = (wy, ws,0) of the mixture based on

the particle flow. They are defined as

X =mn/n, (8)

wi = x 0t X (1= 1,2). (9)

Note that the relation x* + x® = 1 holds by definition.



3.2 Dimensionless description

In this section, we reformulate the basic equation and its boundary condition in

dimensionless form and clarify the parameters that characterize the problem.

Let us introduce the following dimensionless variables:
i = 2/NVT) X/, G=Gfew, [ = (e /ng)F?,
m® =m®/m*, K = Bg*/By*,

where

Co = (QkTW/mA)I/Q, nfv = pf;/k;Tw,

B = [ M(&)M(€)B™ (le- VI/V.V) d2e) dé. de,

an (8KTy /mmA)1/?
JAA — B

and My is the Maxwellian defined by

arer 1 m®|€|*
My (&) = G ey P ( T kT, >

The quantity %4 is the reference mean free path of the molecules based on the

interaction between molecules of species A. ! Then the Boltzmann equation (1)

1s rewritten as

8fa _ Z Kﬁajﬁa(fﬁ’fOz)’

1
223} B=AB

¢
with

F(f.9) = [(fig = L) (e - VI/V, V) dSd(e) dq..

(10)

(11)

I For hard sphere gases, I** = (v21(d*)?n2)~!, where d? is the diameter of a

molecule of species A.



where

f;:f(xlvc;% g/:g<xluc/)7 f*:f(xlvc*)v 929(961,C),

(= "o Vye C=¢- e Ve

g 2mOf
~ et

V=¢-¢ V=|V| b = B/ BY”.

The boundary conditions (3a) and (3b) for F* are transformed into those for

f* as
o Pw - a
f - (W/ma)3/2 eXp(—m |C|2)7 Cl > 07 I = 07 (128’)
o Do me|¢ — voo|?
P eyt Xp<_ i, ) wnTe 0
where
~ pa ~ pa I Too ~ N N Voo
a:la o = 007 TOO: ) co = 00 0070 = - 13
Py pé P P@ Tw v (Ul V2 ) Cor ( )

From (10)—(13), the problem is seen to be characterized by the following pa-

rameters:

B A B B
Pw P P Too V1o V200 m

w Foo LHoo T e KBB KBA — KAB )
Py Pe Pw Tl okTyfmAT 2T, fmAT Mt ’ ( )

The relation KB4 = K*B comes from the symmetry property of B°® with

respect to the superscripts.

Dimensionless macroscopic quantities will also be used in the following sec-

tions. They are denoted by the notation of the corresponding dimensional ones

10



with ~. That is

(A%, 7) = (n®, n)/n2,  p=p/mind, (9% 0, W)= (v, v,w)/cy,
(ﬁO{’p) = (pa7p)/p$v7 (TQ7T) = (Ta7T)/TW7

(B, Dij) = (05, pi) /P, (2 d) = (4, q:) /Py

The expressions of these quantities in terms of the moment of f¢ can be easily

obtained from (3)—(9) and thus are omitted here.

Before closing this section, we remark that the quantity Bg “ is not necessarily
finite if the intermolecular potential extends to infinity. In the case, Bg “ should
be replaced by an appropriate quantity. The choice of such a quantity is a
matter of taste. For instance, using Bg “ calculated by the same intermolecular
potential with a radial or angular cutoff is a possible candidate. The reader is
referred to the Appendix A.2 in [13] for another possible choice, which would

be practically more preferable.

4 Asymptotic analysis

In this section, we carry out a systematic asymptotic analysis of the boundary-
value problem for f* [Egs. (10) and (12)] in the situation where evaporation

or condensation takes place only weakly:
[0100] = € € 1. (14)

There is no geometrical characteristic length in the problem, and apparently
the solution has the length scale of variation of the order of the mean free path
A%, Nevertheless, we will consider a solution having another length scale of

variation, i.e., a slowly varying solution with the length scale of [*4 /e. The idea

11



of the slowly varying solution was first introduced by Sone [7] in the study of
the corresponding problem for a single-component vapor. Physically, the idea
comes from the fact that a boundary layer, what is called the suction boundary
layer, with the thickness of the order of the kinematic viscosity divided by the
suction speed (~ [** /¢) appears near a body surface with suction. The reader
is referred to [8] for the description of the layer in the classical macroscopic

framework and to [1] for that in the framework of kinetic theory.

4.1 Slowly varying solution

We consider a slowly varying solution [0f®/0x1 = O(f%¢)] of the Boltzmann
equation (10). We rescale the equation, by introducing a new space coordinate

= x1€, as

Gy ke g, (15)
dy € 3—A.B

and seek the solution in a power series of e:
fo=To + et (16)
Correspondingly, we expand the macroscopic quantities as
h* = higy + hiye+-++,  h=hey+hmet -,

where h = n, p, T, 01, U, etc. and assume that 0y) = @10‘(0) = wy(p) = 0, taking
account of the physical situation (14) under consideration. The component
functions h(y and hgy) are expressed in terms of the moments of f&) with
n < m. A part of their explicit forms are given in Appendix A. Substituting

(16) into (15) gives a series of integral equations for the component functions

12



fey (n=10,1,2,...):

S KR JR(f 1) =0, (17a)
B=AB
R . ofe
S KPP i) + TP () 1)) = G a“”, (17b)
/=AB )
S KPS ) TP (foys fo)]
B=AB
af(m 1)

SN KR o) (m=23.). (70)

n=1 B=AB

The solution of (17a) is a local equilibrium distribution at rest, which reads

foy = @ <ma> " exp (_ma (e - @2(0))2 + Gl ) (18)

3/2
Ty \ ™ To

Note that, for this distribution, the temperature is common to species, i.e.,
%) = T,
and the following relations hold:
Do) = Pl0)%ijs  Pijo) = D)0, oy = Gico) = 0,
where 6;; is Kronecker’s delta.

Equation (17b) is an inhomogeneous linear integral equation for f@)- Hence
in order that the solution exists, the solvability condition must be satisfied,

which reads

/g 0 q¢ = 0, (19a)
e ofg,
2O g¢ =0, 19b
/3G 5,0 (19D)
m(¢]?

13



Equation (19) is no other than the conservation laws of the mass, momentum,
and energy at O(e"). Substitution of (18) results in five degenerate equations
and one equation for p:

dp(o)
dy

—0. (20)

Under this condition, equation (17b) is solved to yield

D 2m* T, o 5
o = oo 2+ 2o o+ s Ca) + 22 (el - 3)
Po) \/T T
" :
1 dT|
( (1e) 2 oo - o
y T(O) dy

1 d@Q(g) )]
o 21

where C = (¢ — ﬁ(o))/\/T(o) with 9y = (0, Uy, 0). The derivation is given in
Appendix B with the definition of the functions A*, B, and D* [see (B.4)-
(B.6)].

Equation (17¢) can be solved in the same way. It is an inhomogeneous linear
integral equation for fg, (m = 2,3,...) and is to be solved successively

in increasing order of m, provided that the following solvability condition is

satisfied:
O )
/Clay d¢ =0, (22a)
meg; afe
/ e g” D q¢ =0, (22b)
a=A,B R 5 Y
m®|[¢|

Here the first line of (22b) with ¢ = 3 always degenerates because f® is even

in (3. Equation (22) is the conservation laws of the mass, momentum, and
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energy at O(¢™™1). For m = 2, it yields

4o %) _ (23a)
dy ’
I
by _ g (23b)
dy
d /1
dy<21512(1) + ﬁ(o)@(l)%(e)) =0, (23c)
d /. 5. o o
o (ql(n + 5Py 1) + Praqydao) + P(o>vl<1>vg<o>> =0, (23d)
with
A ~1/2 ~
A _on _ D Ty (dxiyy | ke dTg o4
Uiy T T T A B 5 w tE o ) (24)
XX ™Mo N 4y Ty Y

2 dig()

~ ~ il
Doy = —iTg) Tdy (25)

~ g dTO R R . 5 R ) R
qi(1) = —)\T(lo/)Q d;) + kT P(o) (UlA(l) — 'Ullg(l)) + §p(0) (wl(l) — Ul(l))7 (26)
where
A 4 00
Dan = - xiby Xl / CYD*E* —DPEP)dC(> 0), (27a)
0
A 4 ()
Dr =Sy [ CHANES — APEP)dC
0
am A B a o0 Al ~ a2 5 o o
= 3 XoX0 2 X(o)/ ¢ (m " = )D E~dC, (27b)
3 a=AB 0 2
Dy [ CHAMEN — APEP)dC
kT -7 = oo 4 A A B B ) (27C)
Dag  Joo CHDAEA —DBEB)AC
8 oo
=t Y NG [ CUBEAC(> 0), (27)
15 a=AB 0
«  Am o 5 L2 f)AB
A= — “/ C4<A“02—)AaEadC’— & >0). (27
3 a:ZA,B X 0 m 2 X?O)X](SO)( ). (27e)

The quantities ﬁAB, DT, kr, ft, and )\ are functions of Xf})) and T(O) as well as
the parameters m?/m#, KAB, and KPB. The positivity of D AB, U, and \is due
to the symmetry property of the collision operator. The different expressions
for Dy are also due to this property. (See Appendix B.2.) Incidentally, these

coefficients are related to the mutual-diffusion coefficient Dyg, the viscosity

15



1, the thermal conductivity A, and the thermal-diffusion coefficient D in the

following way,

\/QkT /mA \/QkT/mA L

DAB(n T X ) BAA D (T7 XA)7 (28a’>
mA \/QkT JmA
u(T,x*Y) TBM V2ET/mA fi (T, x™) (28D)

k./2kTw mA -
A = AA/,/zk;T/mAA(T,XA), (28c¢)

\/szw JmA \/QkT/mAD &

AA 7L, X
B} n

Dr(n,T, XA) A, (28d)

and kr is the thermo-diffusion ratio in Chapman—Cowling [14]. Approximate
expressions for these coefficients are available in the literature [14-16]. In the
case of hard sphere gases, ﬁAB, i, ;\, and Dy (or kr) are all independent of

T, and their highly accurate data are also available [17].

~

Equations (20) and (23) with (24)-(26) form a closed system for pg), X?o)v T(0)
D1(1), U2(0), and p(y. Continuation of the above process results in the systems
for macroscopic quantities at higher orders. We will not present these here
because they are required only in the discussion of the evaporation case under

a certain simplified situation (Sec. 5.2.2).

4.2 Boundary condition at the interface

Equations (20) and (23) with (24)—(26) derived in Sec. 4.1 form a fluid-
dynamic set of equations for the component functions p(g), Xf})y T(O), U1(1), U2(0),
and p(;)y that describes the overall behavior of the mixture. In its derivation,
however, the kinetic boundary condition (12a) was not taken into account.
We will study the compatibility of the slowly varying solution with the kinetic

boundary condition and derive the boundary condition at the interface for the

16



fluid-dynamic set.

Fortunately, at the leading order, the slowly varying solution f(%) can be

matched with (12a) by setting

~A

By = L Bloy = Pu» 020) =0, Ty =1, aty=0. (29)
This is the boundary condition for the macroscopic quantities of O(e?).

Next, we proceed to the first order to obtain the boundary condition for the
macroscopic quantities of O(e!). Obviously, the slowly varying solution cannot
be matched with the condition (12a) at this order, because there is a flow of
O(e) in the situation under consideration [see (14)]. Hence, we introduce a
correction in the vicinity of the interface whose scale of variation is the mean
free path of a molecule. Let us express the solution in this layer in the form
1§+ f&, where f§ denotes the slowly varying solution (f“ in Sec. 4.1) and fg
the correction to it. The latter is supposed to be appreciable only in the layer
and vanish rapidly as a function of the original dimensionless coordinate x;.
Since the slowly varying solution matches the kinetic boundary condition at
the leading order, the correction is required from the first order. Hence, f¥ is

expanded in a power series of € as

f& = Raye+ R+ (30)

Correspondingly, we denote a macroscopic quantity A in the correction layer
by hs + hk, where hg represents the slowly varying solution, and expand hk
in the same way: hg = hgye + hi@)€e* + - - -. Substituting f* = f¢& + fg into
(10) and taking into account the expansions (16) with f* = f§ and (30) yield

a series of boundary-value problems for ffé(m) (m=1,2,...). For the present

17



purpose, the analysis of the problem for ffg(l) is sufficient. This problem reads

Afka) _

s 0x ﬁ—zA:B Kﬁa[jﬁa(fsﬁ(oy ff?(l)) + jﬁa(fﬁu)a f&o))], (31)
fl%(l) = —fsaa)a for (; >0, atxz; =0, (32)
fkay — 0, asxy — oo, (33)

where the quantities with subscript S in (31) and (32) represent their values

at 1 = 0. Taking into account (29), this problem is transformed into

LA N YT ) (34a)
0z 5SAB
p A~ A T ~a 5
P = [ (a) + 2m* (0101 C1+U2(1)Cz)+T1 (m ¢I* - >
o T<o> a
|C\ + GAM([C)—~ + GGB (|CD
for (1 >0, at z=0, (34b)
®* — 0, asz — oo, (34c¢)

where @ = f2) /[P E*(IC))], 2 = nwrr, Xa = p5/pul= 05/(1 + p3)], and
LP is L% with a = 1 [see (B.3) for the definition of £7%]. The functions A?,
B, and D are those for T(O) = 1 and x{) = xy [see (B.4)-(B.6)]. In the

meantime, it is proved in [18] that the half-space problem

0P
Gt = > KDL (9f, 0%), (35a)
0z BAB
DY = af + 2Mm%axle + M as|C)* +¢%(¢), ¢ >0, atz=0, (35b)
®* — 0, asz— oo, (35¢)

with ¢g“ being a given function and a§, as, and a4 being undetermined con-

stants, has a solution if and only if the constants af, as, and a4 take special
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values and the solution is unique.? Because of the symmetry property of £,
we can seek the solution as an even function of (; when ¢g“ is even in (, and
as an odd function of (, when g is odd in (5. Therefore we may suppose that
ay = 0 for g even in ¢, and af = a4 = 0 for g® odd in (,. Keeping these in
mind, let us denote ay by a| for g* = (1(2B%, and denote ag + ga4 and a4 by
ay and cy for g% = —2m°(y, by ag and cy for g* = (1A%, and by af and ¢,
for g* = (1D°, respectively. Then, because (34) is linear, we can express ]5‘(3‘1),

a(1y, and T(l) at the interface (z = 0) as follows:

Ry .. W 1 dTe 1 dx
1 dig)
e 4200 37
Go(n) = A (37)
) ) 1 dT, 1 dx(
_T(l) = CyV1(1) + cr= © © (38)

c .
Ny dy *fy dy

0 = + = =
1(1) 1(1) aA dy T(O) dy

0 + PR,

which is readily derived from (24) and the definitions of 01y and ;1) (see

Appendix A.2), we rewrite (36) and (38) as

N ~ A
p(l) a -~ < B mB —1 oc> 1 dX(O)
— = D
pa 11) T | ayDAB—— - +a, e dy
~ P -1 1 dTjp
*D e 39
+ (g De™ 2 e ) - S, (39)

2 Strictly, the theorem was proved only for hard-sphere gases in the case of mixture.
The proof for the other molecular models is still an open problem. Incidentally, in
the case of single-species gas, the proof is given for more general molecular models

(see the references in [18]).
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~ B A
. . ~om- —1 1 dx
_T(l) = CvWi(1) + (CVDAB N + CX> ©

W Ny dy
 mB -1 1 d7
+ <CVDTm - + CT) - (0); (40)
w Ny dy

where

A A ~B. B

Note that ay, ay;, af, af, ¢y, cr, and ¢, are constants depending on x4 and
that DAB and ﬁT are evaluated with X?o) = Xé and 7, (0) = 1. Summation of
(39) multiplied by p¢ with respect to a (o = A, B) gives the relation among

P1), Wia), and the gradients of Xé)) and T(O) at the interface, i.e.,

5 5 i A P —1 d7,
Pa) = —avpwWia) — (avDT - + aT)(O)
My dy
Sy dxfy)
B (av A ax)dy’ at y =0, (41)

where

ar = apxh +afxS (I=V,T, ).

Equations (29) and (41) are the boundary conditions for the fluid-dynamic

equations (20) and (23) at the interface.

The coefficients a, ay, cy, etc. occurring in (36)—(38) are the so-called slip
and jump coefficients. Their approximate expressions are available in the lit-
erature (e.g. [19-21]). In the case of hard sphere gases, accurate data of those
coefficients have been obtained recently as a consequence of accurate finite-

difference analyses of the system (35) [22-24].3

% The correspondence of notations would be in order. aj is —b in [22], af and cy
are, respectively, —y* and —¢ in [23], and a3, af, cr, and ¢, are, respectively, —7¢,

—42, —0r, and —4, in [24]. X§* in [22-24] is x4 in this paper.
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4.8  Summary

In Sec. 4, we have obtained the fluid-dynamic equations [(20) and (23) with

(24)—(26)] and their boundary conditions [(29) and (41)]. This fluid-dynamic

system describes the behavior of the leading-order macroscopic quantities X?o):

U2(0) T(O), and py and that of the first-order quantities 91(;) and p(;). Note

that the other quantities arising in the equations can be expressed in terms of

these quantities. The system can be transformed into the following, which is

convenient for the later discussions:

dpe) _ 0
dy
Aoy dp(o)0
divgytingy _ (Or waun:o’)
dy dy
d [ A1/2<dXE%) ke dT(o))] ot
— | DaApT, + = = Nyw )
dyl AB4 () dy T, dy (0)W1(1) dy
1 d ~ A1/2 dQA}Q(O) ~ ~ d@Q(Q)
I Yy o =
2 dy (M (0) dy P)V1(1) dy )
d Q A1/2 dT(()) 5 ~ N dT(()) d N ~A ~B
dy(AT(O) dy = {"MOwi) dy +CTy/lpr(O)(vl(l)_”1(1))
d/. . 1/2. g
+dy(p(0)U1(1)U2(0) ~ i) 200 dy >
A ~1/2 S
oA B Das L) (de?n N kr dT(O))
1(1 (1) — ~ a )
WO A o \ dy T, dy

with the boundary conditions at y = 0

~

p((]) :ﬁw = 1+ﬁ\]?77

X(0) = X
@2(0) =Y,
T(O) — 1,
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and

dp)
dy

=0,

with the boundary condition at y = 0

A B A
h 5 a7 A om” —1 dT
Pay = —avpwWi(l) — <avDT . + aT)(O)

w dy
- omP—1 dx (o)
- (aVDAB ™ + x) dy

(44)

(45)

The solution must approach the uniform state at infinity as y — oo. If we also

expand the state at infinity in a power series of €, the conditions at infinity

are written as

~ A _ ~A ~B
P(0) = Doo(0) = Poo(0) T Poo(0)>

X?o) - X?o(o) with Xvo(o) = ﬁéo(o)/ﬁoow)’
T(O) - TOO(O)7
@2(0) - ?7200(0)7
wl(l) — :*:1, (Or f}l(l) — :I:l,)
and
D) = Poo(1) = Paogry T Do)
where
Poo = ﬁoo(O) +ﬁoo(1)6 e, TOO = AOO(O) + Too(l)e e
Dl = Ploo) T Poome T s Xoo(= Pae/Poc) = Xo(0) + Xooye +

0200 = U200(0) + V2oo(1)€ + **

(46a)
(46b)
(46¢)
(46d)

(46e)

(47)

and the + sign is taken for the evaporation and — sign for the condensation

in (46e).

Finally, it should be noted that, besides the results listed above, we derived
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the boundary conditions for v5(), ]5?‘1) and T(l) at y = 0[(37), (39) with o = A,
and (40)]. These will be used in the discussion about the evaporation condition

in Sec. 5.2.2.

5 Condensation and evaporation conditions

In this section, we will discuss the evaporation and condensation solutions
on the basis of the fluid-dynamic system obtained in the preceding section
and derive the relations among the parameters that allow steady evaporation
and condensation. We will discuss the evaporation and condensation cases
separately, because each case requires a different method. Before starting the

detailed discussion, we remark that

Do) = const(= py), (48)
fz?o)@‘f‘(l)(: ﬁ(o)X?o)@(f@)) = const, 7gyWi(1) = const, P01y = const, (49)

because of (42a) with (43a), (23a), and (42b). Equation (48) leads to, with
(162),

Poo(0) = Pw> 1€, Poo — Dw = O(€), (50)
which means that the pressure of the mixture at infinity can not be chosen
freely from the saturation pressure of the mixture at the interface, irrespective

of whether evaporation or condensation takes place.

In the later discussions, instead of (42c)—(42e) themselves, we will use their

integrated form:

e AXGy  kr dTj
DABT1/2< © 4 ”) = Aoy i (D) — Xs), (51a)
O\ Tay Ty dy ©@11)(X(0)
1 a1y digey . . .
20y =g, = POl (B0 — v, (51b)
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0 9. . A o .
A d;) = 5”(0>wl<1>(T<o> — To) + krpoy(071) — 1))
do
A ~ ~ 1/2 ~ 2(0
+(0)01(1) (O30) — V3) — ,uT(O/) Ua(0) dgj a (51c)

where T, v,, and Y, are arbitrary constants.

5.1 Condensation

We start with considering the flux of Boltzmann’s H function for the slowly

varying solution.

5.1.1 Fluz of Boltzmann’s H function and its monotonicity

For the slowly varying solution f¢, we consider the flux of Boltzmann’s H

function:

Hpx = l—d
fl aAB‘/le n ¢,

where ¢ = (m®/7)%2. If we expand Hp,y in a power series of € as Hpy =

Hgux(0) + Haux(1)€ + - - -, the component functions Hauxm) (m = 0,1,2,...) are

written as
Hino = 32 [ Gy T ¢ -0, (52)
Husiy = 3 [ Gffy (1410 "6 ac. (53)
sy = 3 | Al (1+mi®) 4 %] ac, (54)

and so on. Here Hyyy (o) = 0 because f(o(‘)) is even in (;. We will first show that

Hpyx(1) decreases monotonically in y.
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Consider the derivative of Hpy(1). With the aid of (17b) and (17c), we have

dHgux(1)
dy

_ /glf(1)<1+1 f@)dg

_ Z /(1+IHJZE)>C8 M q¢ 4 /f f“”dc

a=A,B

-y (i) 5 Kﬂa[ﬁa(f{fn,fa))+Jﬁa<fé>7f€a>>+fﬁ"‘<fﬁ>7fﬁ>>1d¢

B=A,B

B[S KRG )+ TR fa)

a=A,B (0) 6=A,B

= S ST KPLTRLG 8 + TG Fi)) A

a=AB f(o) B=A.B

Here, in the last equality, it is taken into account that 1 + In(f{,/c®) is a

collision invariant and that J% has the following symmetry property:

JU© 7 (1.9 ¢+ [ 6(¢)J* g, )¢
(' + 6L — v = d.)(fig' — f.g)b* (e V/V,V)dQ(e) d(. A,

with f, g, ¢, and 9 being arbitrary functions. The proof of this symmetry
property is classical and is omitted here. Since the last form can be rewritten

in terms of £ as
o)

f af 78« e 78a e
> [ 30 KRSy fi) + TG )¢
a=aB’ J(0) p=AB

sitoTi 2 [t X KLy (00 ) B(ehac

B=A,B

where ¢ = f§,/f), the symmetry property (B.10) of L%Q) leads to the
0
inequality:

dHﬂux(l) <0

o (55)

Here the equality holds if and only if ¢“ is the collision invariant. Because of
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(21), the equality condition is equivalent to

A

dx@y _ dTio) _ din
dy dy dy

= 0. (56)

Equation (55) with the condition for equality (56) can be regarded as Boltz-

mann’s H theorem at the first order of e.

Next making use of (55), we will find a monotonic decreasing function of
y that is expressed in terms of the quantities occurring in the system (51).
Substitution of (18) and (21) into (53) yields the following expression for

Hﬂux(l):

1 (caapdle A B )
- AT — k — .
+ T, ( 0 gy Do)kt (01(1) — O11))

The right-hand side can be simplified by substituting (51b) and (51c) with 7

being positive:

. R )
Hﬂux(l) =H+ n(o)wl(l)(l + lnp(o) — 5 In T*>, (57)
where
5, T, T(o) . () —wi)?
H = =50t ( +1n ) ERACL I
2 Ty 1 Tho)
+ > R0y 071y I x(p)- (58)
a=AB

Because of (42a) and (42b), the second term of the right-hand side of (57) is

a constant, so that H satisfies the following inequality because of (55):

dH
3y <0 (59)

Here the equality holds if and only if (56) is satisfied. As will be shown in

Sec. 5.1.2, 'H is not only monotonic but also of definite sign. We will make use
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of both properties in studying the condensation solution in Sec. 5.1.2.

5.1.2  Condition for condensation

Now we will study the condensation solution by the following main three steps

[(1)—(iii)] and supplemental two steps [(iv) and (v)]:

(i)

(iii)

The monotonic function H is positive. This can be shown as follows.
Since the flow velocity is common to species at infinity, 0y, 071, and
W1y commonly approach —1 as y — oo [see (46e)]. Hence the quantities
R(o)Wi(1), P(0)01(1), and Ny 0%y, all of which are constants from (49), are
negative. On the other hand, because 1/z+Inz > 1 forz > 0andlnz <0
for 0 <z <1, ln(T(O) JT.) + T. /T(O) is positive while In x{ is negative,
as far as T(O) >0and 0 < x(p) <1 [note that T, > 0 was assumed just
before (57)]. Consequently, H is positive in the case of condensation.
Suppose that T(o) > 0and 0 < X(o) < 1 are assured. Since H is positive,
starting from a certain finite value at y = 0, H monotonically decreases,
at most, down to zero as y — oo. This means that dH/dy — 0 as
Yy — 00, o that dxﬁ)) / dy, dT(o) / dy, and dvy)/ dy all approach zero as
y — oo because of (56), the condition for equality in (59). As a result,
X?o)a T(o), and 0y(g) approach, respectively, x., T\, and v, as y — oo. This
is observed by setting the derivatives to zero in (51) and noting that both
@{*(1) and 17]13(1) approach —1 as y — oo. Thus, ., T, and v, are identical
with Xéo(o), Too(0)7 and 0g0(0), respectively.

In order that H is positive, it is required that T(O) >0and 0 < Xy < 1.
The former is assured because of (43a) and p, > 0 from the physical

requirement. Satisfying the latter condition is guaranteed if both y2 and
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X« (or X?o(o)) are in the interval of (0,1). It can be shown as follows.
Suppose that X?o) happens to be zero (or 1) at some point, and 0 <
Xa‘)) < 1 holds up to just before this point in increasing y (remember that
0 < x& < 1). Then the second term in the parentheses of the left-hand
side of (51a) vanishes at the point because kr is zero when X?o) =0 (or
1).*Since nywiay < 0 and 0 < x, < 1, the right-hand side of (5la) is
strictly positive (or negative), and so is dX )/ dy because Dag is positive.
Hence Xf})) must be below zero (or above 1) at the left neighboring, which
contradicts the assumption.

(iv) If xo = 0 (or 1) and 0 < x2 < 1, the problem is reduced to that studied
recently in [25], in which a condensing vapor flow in the presence of a
noncondensable gas is considered. The correspondence comes from the
fact that, when x. = 0 (or 1), the conservative quantity ﬁf}))ﬁﬁl) (or
Mty D1(1)) 15 zero [see (43b) and (49)], so that 07y, = 0 at y = 0 for the
species A (or B) to exist there. In the case, X?O) varies in the interval of
[0, 1]. The function H can be defined in this interval, and the conclusion
of step (ii) remains valid. Further, by the discussion similar to step (iii),
the condition 0 < X?o) < 1 is seen to be assured.

(v) Ifx2 =0 (or 1), x 0 (or x(p) = 0) at y = 0, and thus the conservative

quantity ?) {*(1) (or fz(o)f)]f(l)) is again zero. In the case of a condensing

4 The definition of D% in (B.6) would not be suitable when X?o)

adopted such a function simply because it is conventional. In the case of X?o) =0

= 0or 1. We
or 1, X%)X?@)AA and Xa‘))xl(go)AB vanish while X&)X](B())DA and X?O)Xl(go)DB remain
finite. Consequently Dap > 0 and Dy = 0, and kp = 0 is obtained [see (27a)—
(27¢)]. Incidentally, the thermal-diffusion factor app defined by axp = kr/ Xf})) X](30)
is often used in the literature [14,15] in place of kr. This factor does not vanish in

general when X?o) =0or 1.

28



flow, 7)1y, which is the sum of iy, 03}y and i, oy,), is strictly neg-

ative. As a result, y, cannot be chosen freely but instead must be equal
to x&. Then, from (51a), Xé)) is shown to be a constant, and the problem
is reduced to that of the condensing flow in a one-species system. As in
the case of (iv), step (ii) remains valid and the condition 0 < X?o) <l1lis

assured by the discussion similar to step (iii).

In this way, the properties of H, originating from the flux of Boltzmann’s H
function, assures that Xé))’ T(O), and () approach, respectively, Xéo((])’ Too(o),
and 0400y as y — 00, as far as 0 < X@ <1,0< X?o(O) <1, and Too(()) > (0 are
satisfied. The parameters at infinity can be chosen freely relative to those at
the surface (y = 0), except for the case 2 = 0 or 1. For these singular cases,
the problem is reduced to that of a one-species system. In conclusion, as far
as 0 < x& < 1 is concerned, there is no restriction on the concentration, the

tangential flow velocity, and the temperature in order that steady condensation

flow takes place.

We have, however, a restriction on the pressure of the mixture (50):
ﬁoo - ﬁw = O(€>

To see this restriction closely, we consider the equation and the boundary
condition for p¢;y. Because of (23b), p(1) is a constant. Thus from the boundary

conditions (47) and (41) we have

A~ B A
5 N AP -1 a7,
L Py = { — ayPwWi(1) — (avDT _ + GT> ﬁ

. mB—1 dx it
- (CLVDAB oy + ax> dg(/O)} K (60)
w y=

(ﬁoo - ﬁw)e
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Here the expansion of p, is supposed to terminate at O(e!), i.e., poo = Poo(0) +

Poo(1)€- In the meantime, (51a) and (51c) evaluated at y = 0 and y — oo yield

dT ) (o) Wi(1) {5 : krly=o P01
— 2 == N S (T — 1) — 52 (A 0y — X0 + 2202 ol
dy ly=o Aly=o yToe =1 = 5 (eeio) — ) Ay
dXﬁ)) :7?(0)1131(1) {5 le?AB (7 0 —1)+ le?AB P(0)01(1) 52
dy ly=0  Daply=0l2 X ly=0 A ly=0no)Wi() 2o0(0)
1 k}Dap ) A A ]
- + -~ 00 - W .
( XaxE X ly=o (x © =X )
Substituting these into (60) yields
R N 1 . 51 R
(Do — Pw)€ =Dy = [— ay + 5;(% — kray)(To) — 1)
mB —1 a kﬁT 1
+ <av — + =* - ~(ar — kra ))(Xﬁ’o —X%)
My Dap XaXH A * ©
P0)01(1) .9 ]A .
+ =(ap — kray) ——=05.0) | 2 (0)W1(1),
)\( T — kT X)n(o)wm) 200(0) | TUO)W1(1)

where kr, 5\, and Dap denote their values at y = 0. Finally, expressing the

resulting in terms of dimensional quantities, we finally arrive at the relation®

Doo o1 Ty
piw = 1—’- |:—GV+25\(GT—]€TGX)<R—1>
mB —1 Qy k'T 1
+ (aV iy D XQXV% )\(aT Tax) (Xoo Xw)
1 T. U2 T (%1
<(ar — kray) o= =22 }W =. (61
Tl = kel o T e, (Y

In the last expression, X?o([)ﬁ U200(0), and T %(0) are identified with XA Do,
and T, respectively, and m., denotes the average mass of a molecule at a far
distance, i.e., mo = m*x2 + mB(1 — x2). Note that kr, A, and Dap denote

their values at y = 0. Equation (61) is the condition for steady condensation.

5 As has been shown in step (v), the relation (61) holds for 0 < 2 < 1. In the
case of x4 = 0 or 1, x2& must be equal to x2, and the second line of the equation

vanishes; the problem is reduced to that of a one-species system.
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5.2 Evaporation

Our investigation of the condition for the condensation (Sec. 5.1) essentially
relies on the H theorem, the monotonic decrease of the flux of Boltzmann’s H
function. The theorem holds also for the evaporation case. However it will not
give us the benefit in this case, because the function H < 0, so that it is not
clear whether H approaches some constant or grows (negatively) infinitely as
y — oo. Fortunately, we can study the evaporation case more simply by the

linear stability analysis of the uniform state at a far distance.

5.2.1 Linear stability of the uniform state at infinity

We start with (51) and consider the perturbation of X?o)a Ua(0), and T(O) from

the constants x., v., and T,:
X = X?o) — X ¥ = T(O) — T, Z = Uy0) — Vs,

and investigate the linear stability of the uniform state solution Xﬁ)) = X+

Ug(0) = Vs, and T, (0) = T%. To do this, we linearize the equations around this

state:
dX  kp. dY
Dap.TY? e = Ryt 1) X
ABx (dy + T, dy T(0)W1(1) <X 5
1 dz
— 0, TY? == = hovoynZ
5 * dy P)V1(1) 4,
A dy ke Dap. dX  kp. dT.
A2 S = 2 iy )y — DB Tf/2<+ - )
dy 2 X+ (1 — x4) dy T, dy
A . dz
+ 2001002 — i T gy
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where the quantities with subscript * are evaluated with XE%) = Y and T(O) =

T,. The linear equations above can be transformed into

dX
— X
dy
_ o)W
y *
dz ;
| dy | L
where
1 < k’?[‘* lA)AB*) ) kT* 0
M = b T 51 0 (63)
(1= XA, 2.
9 Bd
0 0 il Ap(o)?i1(1)
Hx T(0)W1(1)

Noting that Dag., fis, and A, are positive [(27a), (27d), and (27¢)], it is easy to
see that the real part of all the eigenvalues of this matrix is positive. Therefore,
however small the deviation from the uniform state might be, it never vanishes
as y grows, since nwi) > 0. In other words, it is impossible to reach the
uniform state above as y — oo starting from any state other than that uniform
state. The uniform state can be reached only when the field (at the leading
order) is entirely uniform over the half-space, i.e., X?o) = x4, D20y = 0, and

Ty = 1 [see (43b)—(43d)]. Therefore, in addition to the restriction on the
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pressure
ﬁoo - ﬁw = O(‘E)a

we have, from (46b)—(46d), the restrictions on the concentration, the tangen-

tial flow velocity, and the temperature:

Xvo(O) - X\évu i'e‘u Xvo - XVAV - 0(6)7
@200(0) = O, i.e., @200 = 0(6),

Tooy =1, ie, To—1=0(e).

Incidentally, if the same analysis is applied to the condensation, as is obvious
from the discussion above, the uniform state is found to be stable for small
perturbations. However, this is not enough to reach the same conclusion as

that in Sec. 5.1.2.

5.2.2  Condition for evaporation

Now we will derive the condition for the evaporation explicitly. For the pressure
of the mixture, the discussion parallel to that on the condensation case leads

to
(ﬁoo - ﬁw)e_l = _aVﬁww1(1)|y:0a (64)

because T(O) and X?o) are constants [see (60)]. As to the concentration, the
tangential flow velocity, and the temperature, we need the equations for Xé),
Ua(1), and T(l). They are obtained by first solving (17¢) with m = 2 for [
and then substituting it into (22) with m = 3. Since all the quantities at O(°)
are constants, 0(1) and (1) are also constants [see (49)] and no additional

complexity arises in the calculation. The derivation is given in Appendix C.

33



The resulting equations are

I ey
;(i/ (/ﬁﬂ(lo/)2 df;j”) = P(0)01(1) dZQy(l),
;y <XTA(10/)2 d(f;” - ’ffﬁ(m(@ﬁm - @]13@)))
= ;ﬁ(o)wl(l) di(j) + (EJ (2/3(0)@1(1)@2(0)@2(1) _ ﬂjv(l()/)Qﬁz(O)Cl?ng)’

which are linear equations for Xﬁ), Ua(1), and T(l). Note that except them the
quantities in the equations are constants. The stability analysis of this linear

system is parallel to that in the preceding section and concludes

~

T(l) = const, X?l) = const, ?72(1) = const,

and thus
ﬁé) - Xﬁl)f’(l) + Xﬁ)ﬁ(o) = const. (65)

Therefore, from (37), (39) with o = A, and (40), we obtain

Booo(1) = Daoo€ " = Do) = Da(1)|y=0 = 0, (66)
Pagy = (05 — Vet =Py = —ayidi(wly=o, (67)
Tty = (Too — 1)e™" = Ty = —eyibipyly=o- (68)

Here the expansions of p2 | ¥y, and T, are supposed to terminate at O(el).
Finally, expressing (64) and (66)—(68) in terms of dimensional quantities, we

arrive at the relations:

=1 —qu—=2 69
A
P V1o
A =1- a{A,—W, (70)
Too V1co
=1 -y 71
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V2o — 0. (72)

The last equation means that evaporation always takes place perpendicularly
to the surface. Equations (69)—(72) are the set of conditions for steady evap-

oration.

5.8  Summary

In Sec. 5, we derived the conditions in order that evaporation or condensation
takes place. The result shows that there is a qualitative difference between the
evaporation and condensation cases. For the former, there are four conditions
(69)—(72), whereas there is only one condition (61) for the latter. This is a
natural extension of the existing result for a single-species vapor to a mixture
of vapors in the sense that the single condition for the condensation has a
dependence on the concentration and that one additional condition on the
concentration is required besides the conditions for the pressure, the tangential

flow velocity, and the temperature in the case of evaporation.

6 Concluding remarks

In the present paper, we have considered the half-space problem of evapora-
tion and condensation of a binary mixture of vapors. Assuming that the Mach
number of the perpendicular component of the flow is small, we considered
the solution that varies slowly in the scale of the mean free path and derived
the fluid-dynamic system that describes the behavior of the solution by a for-

mal but systematic asymptotic analysis. Based on that system, we studied the
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behavior of the slowly varying solution in a rather indirect way and derived
the conditions that must be satisfied in order that steady evaporation or con-
densation takes place. The conditions relate the parameters characterizing the
state of the condensed phase to those characterizing the state of the mixture

at a far distance.

Our discussion relies on the H theorem, the monotonic decrease of the flux of
Boltzmann’s H function, in the case of condensation and on the linear stability
analysis in the case of evaporation. The resulting conditions are qualitatively
different between the evaporation and the condensation cases: there is a sin-
gle condition for the condensation, while there are four conditions for the
evaporation. This is a natural extension of the existing result [7,1] for a single-
species vapor to a mixture of vapors in the sense that the single condition
for the condensation has a dependence on the concentration and that one ad-
ditional condition on the concentration is required besides the conditions for
the pressure, the tangential flow velocity, and the temperature in the case of
the evaporation. The present result supports the assumption that was made
in performing the numerical computation of evaporating flow in the literature

(e.g. [26,27]) in the regime of small Mach number.

In the present paper, we did not specify the model of intermolecular potential
but rather kept it arbitrary as long as the collision frequency and the transport
coefficients can be defined properly [see the end of Sec. 3.2 and (28)]. In this
sense, the present work may be considered as the generalization of [12] that
was limited to the BGK-type model Boltzmann system, such as the models
proposed in [9-11]. In [12], only the case of v5., = 0 was investigated, and,
thanks to the monotonic behavior of the concentration and the temperature

themselves for those models, a more direct solution approach was taken to
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arrive at the conditions (61) and (69)—(71) with vye = 0. Incidentally, the
direct approach in [12] can be extended to the case of vas, # 0, as far as the
BGK-type models are concerned. For this case, although the temperature is no
longer monotonic, the concentration and the tangential flow velocity remain
monotonic, so that the explicit parametric expression for the temperature in
terms of the tangential flow velocity can be obtained. The reader is referred
to [25] for the example of this type of analysis though a similar but different
physical problem is studied for hard sphere gases there. That parametric ex-
pression enables us to directly arrive at the same conclusion as the present

paper, i.e., the conditions (61) and (69)—(72).

As is mentioned in Sec. 1, the objective of the present work is to generalize the
previous contribution [12] of the first author by overcoming the difficulty aris-
ing from the generally non-monotonic behavior of the fluid-dynamic quantities
of the slowly varying solution in the case of the Boltzmann equation for mix-
tures, when trying to reach the conditions (61) and (69)—(72). The reader who
is interested in the quantitative performance of the simplified kinetic models is
referred to Fig. 7 in 28], where numerical simulations of the two-surface prob-
lem are carried out by using both the Garzé-Santos-Brey BGK-type model [9]
and the hard-sphere Boltzmann equation and they agree well with each other.
However, this example does not cover the case where the fluid-dynamic quanti-
ties are non-monotonic. More detailed examination would be required to draw
a rather general conclusion on the quantitative performance. It should also
be noted that the conditions (61) and (69)—(72) are quantitatively affected by
the choice of the molecular model. For instance, the comparison between the
results in [23] and [21] shows that ay and cy could be different, respectively,

by 3 ~ 7 and 8% between the hard-sphere and Maxwell molecular models.
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Finally, we briefly mention the influence of the generalization of the kinetic
boundary condition. In the present work, the conditions (61) and (69)—(72)
for the condensation and evaporation are derived on the basis of the kinetic
boundary condition (3a) [or (12a)] assuming the perfect accommodation of the
molecules coming to the interface from the gas phase (see the end of Sec. 2).
If the accommodation is only partial, (29) still holds but linear functionals of
fRay (or %) and f§ also appear on the right-hand sides of (32), (34b), and
(35b), as far as the accommodation rate is not too small (> €). However, this
difference does not affect the structure of the relations (36)-(38) and merely
changes the values of the coefficients a{;, cy, etc. when the boundary is locally
isotropic. The reader is referred to Sec. 3.4 in [1] for the detailed discussion on
this issue. Therefore, the conditions (61) and (69)—(72) remains unchanged for
more general kinetic boundary conditions discussed in [3,1,2], including that
the evaporation takes place only perpendicularly. The mathematical proof on
the problem (35) with a linear functional of ® on the right-hand side of (35b)
is required to make this statement rigorous. In the case of a single-species

vapor, a mathematical proof for such generalization is given in [29].
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A Component functions of macroscopic quantities

Here we summarize the expressions of the component functions of n®, p<,
T<, 0f, etc. in terms of the component functions of f¢. In the derivation,
the assumption ﬁ?(o) = D19y = wWy0) = 0 was used. Einstein’s summation

convention is suppressed in this appendix.

A.1  Component functions of O(€®)-quantities

~ O (07 ~O AN A 1 o
o) = / foy 4G, ploy =m0y, Uy0) = - / G2 /(o) 46,
©
o a2 0 (240 ra
Py = oy Lioy) = 3 / ¢ — 0y [P £ d¢,
Py =2 [ G [y dC (i =1,3),
By =2 [ (G2 = 0P [y A
2531(0) = ﬁ%(o) = 2/@(@ - @g(o))maf(%) dg,
@ = [ GIC = ofy i £ ac.
and
A B 1 ~A

Aoy = ey + Moy, Aoy = Py + Ploy:  D2(0) = %(P(mf’?@ + Aoy 02(0)):

A ~ T N 2 ~o «a
po) = ol = Y (pm) + 39(0)(‘/2@))2),
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Z pzz (Z - 17 3)7 ﬁ22(0) - Z

pu
a=A,B A

Poro) = Pr20) = > P10
a=A,B a=AB

X?o) = ﬁ?o)/ (0)

(Oaﬁg(o)’ 0) and Vzo(lo) = @2(1(0) — Ua(g)-

A.2  Component functions of O(e')-quantities

e O = e /clfmdc

o 1 o fo o
= n(/@f@) d¢ — ”(1)”2(0))7
Ne Ao o ~a o 2 ~a (2.5 a pa
ply = ntyTio) + 1l Th) = 3 / € = Vo) I"m? [ ¢,
pzz _Q/C (i:173)7
b =2 [ (G — i) f5) A€,

]531( p12 = 2/(1 02(0
iy = /C1|C - ’0(0)|2 n® f) d¢ — p(O)Ul( 1)~

Aaf dc,

P11 1(1) — Pra) U301)s

and
1

) :ﬁﬁ) + ﬁl(gl)a Py = ﬁé) + ,5](31)7 Uy1) = o)

(P(o)v1( 1T P(O)U1(1))

@2(1):%)@?) 201y + Aoy P2 + A0y Vago) + A0y Vaio))s

~ ~ T ~ T ~o 2Aa @ 4Aa @

pay =y Loy + Ty = Y (P<1)+3/)(1>(V()) + 3500 Valo Vst )
a=A,B

a=A,B
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(2532( )+ 200 (Vite))? + 400, ‘/2(?0)‘/20([10,

(ﬁm( 1y +200Via Vf(“o));

Pa2(1) = Z

a=A,B

Porr) =Pr2) = Y

a=A,B
Gy = >, (Aa( ) + Doy Va(o) + Pl Vily) + Pla) Vs

+ Vit (Viin)?).

0 = Xoynm)/ne, Wiy = X i + XU

A A~

where Vi) = 07() — 01(1) and Vy) = 034y — D2(1).

A.3  Component functions of O(e?)-quantities

ity = [ Sy G, iy =iy, i = 2
A 1 (0% A O A N
Ua(2) o (/@f d¢ —n DNV21) — N 2)“2(0))=
(0)
a 2

R . ca P 2 X .
By =) Tis) + 1y T + 7y T = 3 / € = Oty [ i3 A¢ — P(o| ol

Pl 2/C1Zmaf(z d¢ — 20 (051)?,

D922 —2/ B50)) " [y A€ — 250 (051))%,

1333(2) :2/C§maf(0§) dg,
1531(2) :ﬁ% = 2/(1 G2 —@3(0) f d¢ — 20(0 )Uz(l):

A A

47?(2) —/C1|C Aa |2 Aaf d¢ — 1)“?(1) 229(0)”?(2)

— P05y — Plaay21) — 15?1(0)’0?(2) — Dla0)02(2)
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and

i) =iy + ), o) = P +

. 1 4. B . .
01(2) :%(Pﬁnvﬁm + oyt + Ay Vity + Ay Vity):

v22) :%(%)“5\(% Pyt + A Vatyy + A Valyy + Ay Valo) T P Vo))

Pra@) =Pue) = (ﬁfz(z) + 2000 Vit Vatoy + 2000 (Vi1 Va(r) + ‘/1%2)‘/2?0)))7

a=A,B
Qi) = D (Cf?(z) + P11y Vit + Prio) Vile)
a=A,B
A~ (6% A~ « A « 3 A~ (0% 3 A (6%
+ Do) Va(o) + Piay Va(1y + Plao) Vage) + §P(1)V1(1) + 3P0 V1(2)

+ 3y Vit (Vi + ity Vit (Vi + 2Vt Vit Vi) )

~ A ~A ~ A ~A ~
Wiz =X(0)01(2) T X(0) 12 T X101 + X101y,

where f’ﬁ) = (771&(1)7 Z73(1)a 0), Vf(yz) = @?(2) — 1(2), and V26(y2) = @3(2) — U2(2)-

B Component function fj, and some properties of the functions

A%, B*, and D*

In this appendix, we solve (17b) and derive some important properties of the

functions related to the transport coefficients.
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B.1  Component function f{,

Substituting (18) into the right-hand side of (17b) and taking account of (20)

yield

> KISy £y + 77 oy )

B=AB
ST Ay 2m(Co — D) db
Y f(o)[ L X (G2 — (o)) £
Xy Y To) y
me|¢ — o> 5\ 1 dT,
+_( |CA ] __) ] (m}’ (B.1)
Tio) 2/ Ty dy

where ¥(g) = (0, 9(0), 0). With the following notations
ma

- 3/2
C=(¢-v0)\Tw. C=ICl E(C)= (") exp(-m"C?),

equation (B.1) is transformed into

> KRxGLr (67,67

B=AB
_ O { 1 dX?O) + 2m*Cy dﬁ?(o) + (m“|C|2—5> 1 dT(O)} (B 2)
o WXy dy TP dy 2/ Ty dy I

where ¢%(y, C) = f§,/ [, and
£§a<fv 9) = /(fi — [t g — g)Efbaﬁa(e + Cret/Cret, Cret) d2(e) AC,  (B.3)

where

fl=f(C), ¢ =9, f.=FfC.,), g=g(C), E’=E"(C.),
17 1%
(e : Crel) €, Ci = C* - 7(6 : Crel) €,

C' =C+ 3

ma

Crel - C* - C; C(rel - |Cre1|7

bga(e : Crel/creb C’rel> = bﬁa(e : Crel/Crela \/aCrel)/\/a-
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The solution ¢* of (B.2) can be expressed as

1 dxip)
D (|IC
o (aPien =

6 = ¢+ (e ©) + (eI CP - 2) -

1 dT, 0, 1 dis)
+ CA(IC) O | o8 () - )
Ty dy (10/)2 dy

where ¢§, ¢, and ¢, are undetermined constants. Here the functions A%(|C/),

B*(|C]), and D*(|C|) are the solutions of the following integral equations:

(63 (o4 (e o 5
S K L (CAY, CAT) = - ~<m cP? - 2), (B.4a)
B=AB
subsidiary condition: ) m*x{, / C*A*(C)E*(C)dC =0, (B.4b)
a=AB
> K% xG /:ﬁa (CUB Ci;B%) = —2mCy, (B.5)
3=A,B
Ba., B Ba 153 o 5Ao¢ - 5Bo¢
Z K X(O)'C’f(O) (Czp 7CZD ): —TOZ, (B6a)
B=A.B (0)
subsidiary condition: Z m* X(o) /OO C*DY(C)E*(C)dC =0, (B.6b)
B=A,B 0

where Cij = OZOJ—%|C|5ZJ, 5AA = (5]3]3 = 1, and 5AB = 5BA = 0. The functions
are orthogonal to the collision invariants. The undetermined constants cf, c,
and ¢4 can be expressed by the first few moments of f(), and the following

expression is finally obtained:

~

eye’

foy = ;3/2 (‘CD = 1)C1 + 09(1)Ca) + 7;(1) (ma’CP _ 5)
) ﬁ Too) 2
i (o D)) X;0>+c A“(ICI)T(O) dcify +C,CyB(|C)) Ai)/f d?y(())ﬂ'
(B.7)

In the derivation, it is clarified that the temperature is common to species also
at O(el):

o an
Ty = Thy = T-
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B.2  Symmetry property of L% and related results

Thanks to the symmetry property of £°¢, the following equality holds:

[ U(C)Li (£, 9 EX(C) AC + [ $(O)L: (9. HEP(IC) dC
= 5 [@ =68 —0)(fl  fo+ g — g) BB

X bfa(e - Cre1/Crel, Cra1) d2(e) dC,. AC, (B.8)
where

fi:f(cj)v g,:g(C/)’ f*:f(C*)v g:g(C),

¢, =¢(CL), ' =v¢(C'), ¢.=0¢(C.), ©=v(C), EI=E"(C.)),

u"‘“ uﬂ“

(e Crel) Ci = C (6 Crel)

Crel - C* - C’ C(rel = |Cre1|‘

The proof is classical and is omitted here. From this equality one can derive

the following:

(1) for arbitrary functions f® and g and for arbitrary constants C’® such
that CP* = CP,

> X o [ gL e (C) de

a=AB f=A,B

= > X o[ e g E(chac.  (BY)

a=A,B 5=A,B

(2) for an arbitrary function f¢ and for arbitrary constants C”® such that

CBa — C“'B,

> % [ oLt e (e dc <o, (B.10)

a=AB f=A,B
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The equality in (B.10) holds if and only if f* is the collision invariant:
fe=ct +m%c-C)+m,|C|,

where cfj, ¢, and ¢4 are arbitrary constants.

Equations (B.9) and (B.10) are used in obtaining important properties of the

moments of A%, B, and D listed below:

(1) Putting g® = C;D* and f* = C; A% in (B.9) with P = Kﬁax(ﬁo)x?o) and

a = T(O) yields
@ o 4 ~ a2 b o mle'
> iy | t(mect - 2 )poEtac
a=A,B 0 2
:/Oo CHAAES — APEB)dC. (B.11)
0

(2) Putting f* = Ci(k1A® + kD) in (B.10) with CP* = Kﬁax(ﬁo)xﬁg) and

a= T(O) yields

—B Y ot (ieer =) aremac

a=A,B
— ks / T CHAMEN — APEP)dC
0

ye /OO CYDAEA — DPEPYAC < 0. (B.12)
0

This leads to

(a) with k; =0 and kg =1,
/Oo CYDAE* — DPEP)AC > 0, (B.13)
0

(b) with k; =1 and ky = — [° C*H(AAED — ABEB)AC/ [5° CHDAE® —
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DBEB)dC,

> iy [ (e - 2)acpmac
a=A,B

2
( [ CHANEN — ABEB) dc)

- o e " (B.14)

Here, in (B.13) and (B.14), the equality drops because kA% + kyD® is a
non-zero function orthogonal to the collision invariants.

(3) Putting f* = C1CoB* in (B.10) with CP* = Kfox(f x&) and a = T,
yields

S G, / T CSBYEdC > 0. (B.15)
0

a=AB

Here, the equality drops because B* is a non-zero function orthogonal to

the collision invariants.

Equation (B.12) leads to the different expressions for Dy in (27b). Equa-
tions (B.13)-(B.15) lead to the positivity of Dag, A, and ji [see (27a), (27e),

and (27d)].

C Derivation of the equations for Xé)» Ua(1), and T(l) in the case of

evaporation

In this appendix, we will derive the equations for Xé), Ua(1), and T(l) under

the assumption that f(%) is uniform with respect to y. This assumption is true

in the case of evaporation.

Consider the Maxwellian M* with the number density p®, temperature T, and
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flow velocity © = (01, 02,0) that are the same as those of f*:

M = Aﬁa <W>3/2 exp ( — 7ma|cA_ @|2)
732\ ™ T

If we expand it in a power series of e:

M = My Mt

the component functions of the expansion satisfy the integral equations

S KPP (MG, M) =0, (C.1)
B=A,B
So KPP (MG, M) + TP (M), M) =0, (C.2)
B=AB

ﬂ;;B KP[J0 (M), M) + J7* (M, M) + 5 (M), M) =0, (C.3)

and so on because
S KPP (MP M) = 0.
B=AB

On the other hand, if /@) is uniform with respect to y, f* is a local equilibrium

distribution up to the order of € [see (B.7)], i.e

(0% (6% O (6%
fo) = M) = Az(%/QE (Ic),

(0)

o o 0) o Py | 2m° e 5

ity = Mg, = (1o [E2 4 22 (5,110, + ) ) + 22 cP -

73/ p T
(0) (0) Tio) (0)

Consequently, in addition to T(O{) =1, (1), the following relations hold

~AQy A

Uf(1) = V11) = Wi(r),  Vg(p) = V(1) = Wa(1),

Py = P(ydigs - Pis) = P)Ois  diyy = diay = 0-

Now keeping in mind the properties summarized above, we consider the inte-
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gral equation for f@,:

. . ofe i
> KPP fo) + T (foy Sp)l = G a;) — 3 KPTR(S f)-
B=A,B B=AB

Subtraction of (C.3) yields

) ofa
BRI - M )+ TSy < M) = 69

leading to

> KRN (1, 6)

B5=A.B

Ci[ 1 dxgy | 2m°Cy do 1/ 5\ d7,

_“ [ ) T TR <ma|c|g_> <1>}
where ¢ = (f&) — M)/ [)- Here pay = const and (1) = const, which are
from (44) and (49), are used. Note that the quantities with subscript (0) are

all constants. Hence, in the same way as in Appendix B.1, we obtain

Ao e 3
f3 = Mg, + "o ) g(IC))|ed + (c-C)+C4<m |C|2—>

/\3/
Tio) A 2
o Xu o dTy a 1 d’f&(l)ﬂ
D
(P T oA (|C|>T() 3 HOCE IOzt ) |

where cfj, ¢, and c4 are again undetermined constants. They are determined by

the first few moments of f(oﬁ), and finally the following expression is obtained:

e o o o dXA
foy = M) - A3/2E (|C|)<Cﬂ? (jch)—2
il d

1 dT(l) 1 doyy
+ A C)) W | o oBe(|C)) - ) (C.4)
Tey dy T dy
This result leads to
(1) i
A B Dss Ty (dX() | ke dTy
Y20 ~ Y12 T TA B # ;
X{o)X(o) 7o)\ dy Ty dy



or, equivalently,

~1/2 «
DABT g <dX(1) n ke dT(1)>

~A N
Vi2) = U)l(g) - = (C5>
® X(oy oy \ dy - Ty dy
(2)
Z /mo‘Cngf(2) d¢ = p12 )+ P 011y D201) + (P0yD1c2) + P1)P1(1))V2(0)
a=A,B
and
R ~1/2 dig()
D122 — T, 7,
@ = o =g,
(3)
> [l s ¢
a=AB
< 10 dT 5
1/2 AL (1) . A o
= =T T 5 Payi) + Py ) + ko) (O — 01(2)

+ Praga)Va(0) + 20(0)011)2(0) D21y + (P0)D12) + P1)D1(1)) B3 0)

~

where wy(2) = X( )01(2) + X(o)'U1 because 07,y = v1(1) = Wi(1)-

With these expressions, it is easy to derive the equations for Xéy Ua(1), and

T(l). First, (22a) with m = 3 is equivalent to

d o d
3y oW T i) = 0. {or - (Poie +hm i) =0,

Substitution of (C.5) into the first equation and using the second equation

yields
d { Al/z(dx?n ke dTj, o dx(y
— | DagT, + = )] = Nyw .
dy Oy T T, dy Oy
Next, the first line of (22b) with ¢ = 2 and m = 3 yields
1d<A ~1/2 d@2(1)) P dig ()
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Finally, the second line of (22b) with m = 3 yields

d<A ~1/2 dT(l)
dy

>‘T(0) dy - k’Tﬁ(O)(ﬁﬁm - 17]13(2))>

5. dTwy  d/o. a1a. diaqy
= 5nOWm g, +Cw<2f)<o>vl<1>vz<o>vz<1>—MT«n 0207, )

These are the desired equations.
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