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Abstract
We consider a model from electro-magneto-hydrodynamics describing a plasma in bounded
multi connected domains. A nontrivial solution exists for magnetic fields as the equilibrium
of this model. Nonlinear stability of the nontrivial solution is proved based on time weighted
maximal L p-regularity.
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1 Introduction

Let Ω be a bounded multi connected domain in R
3 and its boundary Σ = ∂Ω be class C2.

We consider the following electro-magneto-hydrodynamicsmodel which describes a plasma,
namely completely ionized gas.

�1(∂t + v1 · ∇)v1 − μ1Δv1 + ∇π1 = en1 j1 + α(v2 − v1) in Ω,

�2(∂t + v2 · ∇)v2 − μ2Δv2 + ∇π2 = −zen2 j2 − α(v2 − v1) in Ω,

ε0∂t E = rot H − e(n1v1 − zn2v2) − σ E in Ω,

μ0∂t H = −rot E, jk = E + μ0vk × H in Ω,
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div v1 = div v2 = div E = div H = 0 in Ω,

v1 = v2 = 0, E × ν = 0, H · ν = 0 on Σ,

v1(0) = v01, v2(0) = v02, E(0) = E0, H(0) = H0 in Ω. (1)

Here v1 denotes the velocity of electrons, v2 that of ions, E and H the electric and the
magnetic fields, respectively. The numbers� j , n j , μ j > 0, j = 1, 2 denote densities, number
densities, viscosities. The numbers e, z, ε0, μ0, α, σ > 0 are physical constantswhich denote
elementary charge, charge number, dielectricity and permeability of vacuum, as well as
friction and conductivity. In this model we adopt Ohm’s law, namely intense of electricity
is proportional to the electric field with the electric conductivity constant σ . Therefore we
call the problem (1) a Navier–Stokes–Ohm problem. For more background, we refer to Van
Kampen–Felderhof [18] and Miyamoto [11].

The energy functional E is given by

E =
∫

Ω

(�1

2
|v1|2 + �2

2
|v2|2 + ε0

2
|E |2 + μ0

2
|H |2)dx .

Energy dissipation reads

∂tE = −
∫

Ω

(
μ1|∇v1|2 + μ2|∇v2|2 + α|v2 − v1|2 + σ |E |2)dx,

since ∫
Ω

(rot E · H − E · rot H)dx = −
∫

Σ

(E × ν) · HdΣ = 0

by the boundary condition E × ν = 0.
We identify the equilibria of the system and show that the energy is even a strict Lyapunov

functional. We assume that ∂tE(t) = 0 for t ∈ (t1, t2). Then by the energy identity it holds
that

∇v1 = ∇v2 = E = 0, (t, x) ∈ (t1, t2) × Ω,

hence by the Poincaré inequality, v1 = v2 = E = 0 on (t1, t2)×Ω . This implies further that
the pressures π j are constant, and

rot H = 0, div H = 0 in Ω, H · ν = 0 on Σ. (2)

If Ω is a bounded simply connected domain, then by Proposition 1 below there exists a
potential ϕ satisfying

Δϕ = 0 in Ω,
∂ϕ

∂ν
= 0 on Σ.

Therefore, ϕ is constant in Ω , and H = ∇ϕ ≡ 0. These arguments show that the only
equilibrium is the trivial solution v1 = v2 = E = H = 0, and that the energy E is even a
strict Lyapunov functional. On the other hand, ifΩ is a boundedmulti connected domain, the
set of H satisfying the conditions (2) has a nontrivial solution whose dimension is coincide
with genus of Ω , in other words the second Betti number of Ω , which was proved by Foias–
Temam [3] for L2(Ω). Kozono–Yanagisawa [8], [9] and Amrouche–Seoula [1] extended the
result for Lr (Ω). We set the function space

Xhar (Ω) := {h ∈ L2(Ω); rot h = 0, div h = 0 in Ω, h · ν = 0 on Σ} (3)

which was used in Kozono–Yanagisawa [8], [9].
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Prüss–Shimizu [13] proved nonlinear stability of the trivial solution which is the equilib-
rium of (1) in a bounded simply connected domain. In this paper, for the case of a bounded
multi connected domain, we prove nonlinear stability of the non-trivial solution which is the
equilibrium of (1). Especially we construct a concrete example of the non-trivial solution in
Xhar (Ω). In order to prove nonlinear stability of the non-trivial equilibrium, we first set the
problem (1) abstract formulation by using the linear operator A. Next we see that the kernel
of A is the set of non-trivial equilibrium. Then we prove local well-posedness of the problem
in time weighted L p space by maximal regularity of the linear operator as the same way in
[13]. Based on the linear stability, non-trivial solution of the problem is exponentially stable.

Navier–Stokes–Ohm problems have been studied by Yoshida and Giga [19], Giga and
Yoshida [6] concerning strong local well-posedness, Strhömer [15], [16] considered weak
solutions. Giga–Ibrahim–Shen–Yoneda [5] proved existence of global weak solutions. More
results are also references given therein.

The Navier–Stokes–Ohm problem (1) consists of a Navier–Stokes system and a Maxwell
systemwhich are coupled in a semi-linearway.We regard it as a systemof evolution equations.
Maximal regularity with time weights enables us to obtain well-posedness for initial values
in the scale critical space: v ∈ H1/2

2 (Ω)6 and (E0, H0) ∈ L2(Ω)6, which was found by
Fujita–Kato [4] for the Navier–Stokes equations (cf. Corollary 1, below). There are many
other such nonlinear, weakly coupled hybrid systems, in other words nonlinear parabolic-
hyperbolic systems, in the literature. We think that it would be worthwhile to study such
systems also from the abstract point of view in the framework of evolution equations.

This paper is organized as follows. In Sect. 2, we see characters of Xhar (Ω) and construct
a concrete example of the non-trivial solution in Xhar (Ω). We formulate the Navier–Stokes–
Ohm problem (1) as an abstract evolution equation in Sect. 3 in the same way as in [13], and
state results of a linear problem in Sect. 4. In Sect. 5, we prove local well-posedness of the
abstract form of (1). Sect. 6 is devoted to show nonlinear stability of the non-trivial solution.

2 Solutions in Xhar(Ä)

2.1 Properties of solutions in Xhar(Ä)

In this subsection, we see properties of solutions in Xhar (Ω) defined by (3) based on Temam
[17, Appendix 1].

Case 1:Ω is simply connected. In order tomake the differences between a simply connected
domain and a multiply connected domain, we state well-known results.

Proposition 1 Let Ω be simply connected. For h ∈ Xhar (Ω), there exists a scalar function
ϕ such that h = ∇ϕ and satisfy

Δϕ = 0 in Ω,

∂ϕ

∂ν
= 0 on Σ.

Theorem 1

Xhar (Ω) = {0}.
Proof For every scalar functions φ and ψ , by the Green formula we have∫

Ω

(φΔψ + (∇φ)(∇ψ)) dV =
∫

Σ

φ
∂ψ

∂ν
dS.
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Plugging ϕ in Proposition 1 in both φ and ψ , we obtain∫
Ω

|h|2 dV =
∫

Ω

|∇ϕ|2 dV =
∫

Σ

ϕ
∂ϕ

∂ν
dS.

We know that h = 0 because h ∈ Xhar (Ω). This shows that Xhar (Ω) = {0}. ��
Case 2: Ω is n-th multiply connected. We make Ω with a finite number of smooth cuts.
More precisely,Γ1, . . . Γn−1 aremanifolds of dimension 2 and classC2 such thatΓi ∩Γ j = ∅
for i 	= j , and the open set Ω̇ = Ω\∩n−1

i−1 Γi is simply connected.HereΓi (i = 1, 2, . . . , n−1)
are not tangent to Σ . We denote Γ +

i and Γ −
i the two sides of Γi and νi the unit normal on

Γi oriented from Γ +
i towards Γ −

i and set

[θ ]i = θ
∣∣
Γ +
i

− θ
∣∣
Γ −
i

.

Lemma 1 (Appendix1, Lem.1.1 in [17]) For h ∈ Xhar (Ω), there exists a scalar function ϕ

such that h = ∇ϕ and

Δϕ = 0 in Ω̇,

∂ϕ

∂ν
= 0 on Σ,

[ϕ]i = const. i = 1, 2, . . . , n − 1,[ ∂ϕ

∂νi

]
i
= 0 i = 1, 2, . . . , n − 1.

Lemma 2 (Appendix1, Lem.1.2 in [17])There exist functionsϕi (i = 1, 2, . . . , n−1) unique
up to an additional constant such that

Δϕi = 0 in Ω̇, (4)

∂ϕi

∂ν
= 0 on Σ, (5)

[ϕi ] j = 0 (i 	= j), = 1 (i = j), (6)[ ∂ϕi

∂ν j

]
j
= 0, j = 1, 2, . . . , n − 1. (7)

Lemma 3 (Appendix1, Lem.1.3 in [17]) Xhar (Ω) is the space spanned by ∇ϕ1, . . . ,∇ϕn−1

and its dimension is n − 1. h ∈ Xhar (Ω) is given by

h = ∇ϕ = [ϕ]1∇ϕ1 + [ϕ]2∇ϕ2 + · · · + [ϕ]n−1∇ϕn−1.

2.2 A concrete vector field of Xhar(Ä)

In this subsection, we construct a concrete vector field of Xhar (Ω) in the case when Ω is
a solid torus. Let 0 < r < R1. In the xz-plane, we make a circle with radius r with center
(R, 0). Turning it around z-axis, we obtain the solid torus Ω (cf. Fig. 11). For the solid torus,
the number of smooth cut is equal to 1.

1 The figure depends on Yu Yoshimi (Graduate School of Human and Environmental Studies, Kyoto Univer-
sity).
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Fig. 1 The solid torus

By using parameters 0 ≤ u, v < 2π , Ω is represented by

x = (R + r cos v) cos u,

y = (R + r cos v) sin u,

z = r sin v.

Inversely r , u, v are expressed by x, y, z

r2 = (

√
x2 + y2 − R)2 + z2,

cos v =
√
x2 + y2 − R√

(
√
x2 + y2 − R)2 + z2

,

tan u = y

x
.

Toroid ∂Ω is given by

x = (R + R1 cos v) cos u,

y = (R + R1 cos v) sin u,

z = R1 sin v

for 0 ≤ u, v ≤ 2π . The unit outward normal ν to ∂Ω is given by

ν =
⎛
⎝ cos v cos u

cos v sin u
sin v

⎞
⎠ .

We define a potential ϕ as

ϕ = − 1

2π
tan−1 y

x
+ 1 = − 1

2π
u + 1. (8)
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A vector field h = ∇ϕ is expressed by
(

y

2π(x2 + y2)
,

−x

2π(x2 + y2)
, 0

)
=

(
sin u

2π(R + r cos v)
,

− cos u

2π(R + r cos v)
, 0

)
. (9)

Since the solid torus Ω is biconnected domain, we check that ϕ in (8) satisfies the conditions
in Lemma 2 as i = 1.We denote Γ := Γ1. First we check the condition (4). Laplace operator
in the sold torus is the following.

Δ = ∂2

∂r2
+ cos u cos v

R + r cos v

∂

∂u
(sin u

∂

∂r
) − sin u cos v

R + r cos v

∂

∂u
(cos u

∂

∂r
)

+ sin u

(R + r cos v)2

∂

∂u
(sin u

∂

∂u
) + cos u

(R + r cos v)2

∂

∂u
(cos u

∂

∂u
)

+ sin u sin v

(R + r cos v)r

∂

∂u
(cos u

∂

∂v
) − cos u sin v

(R + r cos v)r

∂

∂u
(sin u

∂

∂v
)

− sin v

r

∂

∂v
(cos v

∂

∂r
) + cos v

r

∂

∂v
(sin v

∂

∂r
)

+ sin v

r2
∂

∂v
(sin v

∂

∂v
) + cos v

r2
∂

∂v
(cos v

∂

∂v
).

The potential ϕ = ϕ(u) in (8) is the function of u, it holds that

Δϕ(u) = sin u

(R + r cos v)2

∂

∂u
(sin u

∂

∂u
)ϕ(u) + cos u

(R + r cos v)2

∂

∂u
(cos u

∂

∂u
)ϕ(u)

= sin u cos u

(R + r cos v)2

(
− 1

2π

)
− sin u cos u

(R + r cos v)2

(
− 1

2π

)
= 0

in Ω̇ . The condition (5) is verified by

ν · ∇ϕ =
⎛
⎝ cos v cos u

cos v sin u
sin v

⎞
⎠ ·

⎛
⎝

sin u
2π(R+r cos v)

− cos u
2π(R+r cos v)

0

⎞
⎠ = 0.

(6) holds as follows

[ϕ]Γ = lim
u→+0

ϕ − lim
u→−0

ϕ = ϕ(0) − ϕ(2π) = 1.

Finally we check the condition (7). Since the normal direction to Γ is angle u, it holds that
[∂ϕ

∂u

]
Γ

= lim
u→+0

∂ϕ

∂u
− lim

u→−0

∂ϕ

∂u
= − 1

2π
+ 1

2π
= 0,

which shows that ϕ satisfies (7).

3 Abstract formulation

Abstract formulation of (1) is essentially the same as the simply connected domain case
in [13]. We first recall some well-known results for the Stokes operator as well as for the
Maxwell operator. For this we will need the projections of Helmholtz and Weyl. For given
v ∈ Lq(Ω)3, 1 < q < ∞, we consider the weak Neumann problem

(∇ϕ|∇ψ)2 = (v|∇ψ)2, ψ ∈ H1
q ′(Ω).
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It is well-known that there is a solution ϕ ∈ H1
q (Ω) which is unique up to a constant. Then

we define the Helmholtz projection in Lq(Ω)3 by means of

PHv := v − ∇ϕ.

This projection is bounded, and it is orthogonal in case q = 2. In a similar way we define
the Weyl projection. For given v ∈ Lq(Ω)3, 1 < q < ∞, solve the weak Dirichlet problem

(∇φ|∇ψ)2 = (v|∇ψ)2, ψ ∈ 0H
1
q ′(Ω).

Here 0H1
q ′(Ω) denotes the closure of the test function D(Ω) in H1

q ′(Ω). It is well-known

that there is a unique solution φ ∈ 0H1
q(Ω). Then we define the Weyl projection in Lq(Ω)3

by means of

PW v := v − ∇φ.

This projection is also bounded and it is orthogonal in case q = 2.
Consider the Stokes problem

∂tv − Δv + ∇π = 0 in Ω,

div v = 0 in Ω,

v = 0 on Σ,

v(0) = v0 in Ω. (10)

To define the Stokes operator, we set XS
0 := PH L2(Ω)3,

XS
1 = D(AS) = {v ∈ H2

q (Ω)3 ∩ XS
0 : v = 0 on Σ},

and AS := −PHΔ. It is well-known that −AS generates a compact analytic C0-semigroup
in XS

0 , which is exponentially stable for bounded domains, and moreover that AS is positive
definite in case q = 2.

Consider the Maxwell equations

ε0∂t E − rot H = 0 in Ω,

μ0∂t H + rot E = 0 in Ω,

div H = div E = 0 in Ω,

ν × E = ν · H = 0 on Σ,

E(0) = E0, H(0) = H0 in Ω.

Let XM
0 = PW L2(Ω)3 × PH L2(Ω)3,

XM
1 = D(AM ) := {w = (E, H)T ∈ H1

2 (Ω)6 ∩ XM
0 : ν × E = 0 on Σ},

and define the Maxwell operator by means of

AM :=
[

0 − 1
ε0
rot

1
μ0

rot 0

]
.

Here (E, H)T denotes the transposed of (E, H).

Proposition 2 (Prop.2.1 in [13]) This operator AM is skew-adjoint in the Hilbert space XM
0 ,

endowed with the inner product

〈w|w̃〉 := ε0(w1|w̃1)2 + μ0(w2|w̃2)2.
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Hence −AM generates a unitary C0-group e−AM t in XM
0 .

Then we consider the Maxwell equations with conductivity

ε0∂t E − rot H + σ E = 0 in Ω,

μ0∂t H + rot E = 0 in Ω,

div H = div E = 0 in Ω,

ν × E = ν · H = 0 on Σ,

E(0) = E0, H(0) = H0 in Ω.

In XM
0 we define the Maxwell operator with conductivity by means of

AMC :=
[

σ
ε0

− 1
ε0
rot

1
μ0

rot 0

]
, D(AMC ) := D(AM ) = XM

1 .

This operator is a bounded accretive perturbation of AM and therefore is also m-accretive in
the Hilbert space XM

0 , hence it is the negative generator of a C0-semigroup of contractions
in XM

0 with compact resolvent. However, AMC is not strongly accretive.
Exponential stability can be proved by means of the Gearhart–Prüss theorem (e.g. Prüss

[12]).

Proposition 3 (Prop.2.3 in [13]) C0-semigroup e−AMC t is exponentially stable on R(AMC ).
We have XM

0 = N (AMC ) ⊕ R(AMC ), and there are constants M ≥ 1, ω ≥ 0 such that
∥∥e−AMC t − PMC

0

∥∥B(XM
0 )

≤ Me−ωt , t ≥ 0,

where PMC
0 denotes the projection onto N (AMC ) along R(AMC ).

The problem (1) is written the following form.

�1∂tv1 − μ1PHΔv1 = en1PH E + α(v2 − v1) + Gv
1 in Ω,

�2∂tv2 − μ2PHΔv2 = −zen2PH E − α(v2 − v1) + Gv
2 in Ω,

ε0∂t E − rot H + σ E = −e(n1v1 − zn2v2), in Ω,

μ0∂t H + rot E = 0 in Ω,

div v1 = div v2 = div E = div H = 0 in Ω,

v1 = v2 = 0, E × ν = 0, H · ν = 0, on Σ,

v1(0) = v01, v2(0) = v02, E(0) = E0, H(0) = H0, in Ω,

where

Gv
1 = PH [en1μ0v1 × H − �1v1 · ∇v1],

Gv
2 = −PH [zen2μ0v2 × H + �2v2 · ∇v2].

For convenience we set Gv = [Gv
1,G

v
2]T , and G = [Gv

1,G
v
2, 0, 0]T . So the structure of

the problem is a system of the Stokes equations coupled with the Maxwell system with
conduction. The coupling consists of a linear and bounded one, and an unbounded quadratic
coupling which fortunately only acts on the velocities.

To formulate this problem abstractly, we define the space X0 = XS
0 × XS

0 × XM
0 , whose

elements are

u = (v,w)T = (v1, v2, w1, w2)
T = (v1, v2, E, H)T ∈ X0.
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Then the regularity space is X1 = XS
1 × XS

1 × XM
1 , and the principal linear part A0 is given

by

A0 := diag(
μ1

�1
AS,

μ2

�2
AS, AMC ), D(A0) = X1.

Furthermore, the bounded linear perturbation B0 + B is given by

Bu =
(en1

�1
PH E, − zen2

�2
PH E,

−e
ε0

(n1v1 − zn2v2), 0
)T

,

B0u = (
Bv
0 , 0, 0

)T
, Bv

0 =
( α

�1
(v2 − v1), − α

�2
(v2 − v1)

)T
.

Then the problem becomes

u̇ + A0u = B0u + Bu + G(u), t > 0, u(0) = u0, (11)

which is a semilinear evolution equation in the base space X0. In a more detailed form, the
abstract problem (11) reads

v̇ + Av
0v = Bv

0v + Bvw + Gv(v,w), t > 0, v(0) = v0,

ẇ + Aw
0 w = Bwv, t > 0, w(0) = w0.

4 The linear operator

The base space X0 = XS
0 × XS

0 × XM
0 is endowed with the inner product

〈u|ũ〉 = 〈v|ṽ〉 + 〈w|w̃〉,
〈v|ṽ〉 = �1(v1|ṽ1)2 + �2(v2|ṽ2)2, 〈w|w̃〉 = ε0(w1|w̃1)2 + μ0(w2|w̃2)2.

The fully linearized problem is given by

u̇ + Au = F, t > 0, u(0) = u0,

where the operator A in X0 is given by

A =
[

Av −Bv

−Bw Aw

]
, D(A) = X1. (12)

Here we have set

Av = Av
0 − Bv

0 , Aw = Aw
0 = AMC .

Since B0 = [Bv
0 , 0]T is bounded and 〈Bv

0v|v〉 = −α|v2 − v1|2 ≤ 0, Av is strongly m-
accretive, hence the semigroup e−Avt is also analytic, exponentially stable and has maximal
L p-regularity in the base space Xv

0 = XS
0 × XS

0 .
Further, the perturbations Bv, Bw are also bounded and 〈Bu|u〉 is purely imaginary. There-

fore A is also m-accretive, but not strongly accretive.

Lemma 4 (Thm.3.1 in [13]) The operator A is m-accretive in X0, hence−A is the generator
of the C0-semigroup e−At of contractions in X0.

We also know that the only eigenvalue of A on iR is possibly 0, all other eigenvalues have
strictly positive real parts. By the theorem of Arendt–Batty–Lubich–Phong (cf. [2]) we have
the following stability result.

123
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Lemma 5 (Prop. 3.2 in [13]) It holds that

lim
t→∞ e−Atu0 = PAu0 for each u0 ∈ X0,

where PA denotes the projection on to the kernel N (A) of A along the range R(A). The
semigroup e−At is strongly stable in R(A).

We consider the kernel N (A) of A. If u = (v,w)T ∈ N (A), then v and w satisfy

Av
0v − Bv

0v − Bvw = 0,

Aw
0 w − Bwv = 0. (13)

Taking the inner product in X0 with u yields

〈A0u|u〉 − 〈Bv
0v|v〉 − 〈Bu|u〉 = 0.

Taking real parts, we have

0 = Re 〈A0u|u〉 + α|v2 − v1|22 ≥
∫

Ω

(
μ1|∇v1|2 + μ2|∇v2|2 + σ |w1|2

)
dx .

This shows that ∇v1 = ∇v2 = 0 and w1 = 0. By the Poincaré inequality, it holds that
v1 = v2 = 0. Plugging in v1 = v2 = w1 = 0 in (13) we obtain rotw2 = 0. Now u ∈ X0,
which implies that w2 also satisfies divw2 = 0 and w2 · ν = 0. Therefore it holds that

Lemma 6 The kernel of operator A is

N (A) = {(0, 0, 0, w2)
T ∈ X0 | w2 ∈ Xhar (Ω)}. (14)

We see the formulation of e−At more precisely. Considering the resolvent problem λu +
Au = F = ( f , g)T for λ belongs to {Re λ ≥ 0} \ {0}, we have

λv + Avv = Bvw + f , λw + Aww = Bwv + g. (15)

As λ + Aw is invertible for {Re λ ≥ 0} \ {0}, this yields
w = (λ + Aw)−1(g + Bwv).

Inserting this into the first equation and setting

K̂ (λ) = Bv(λ + Aw)−1Bw(λ + Av)−1,

which reads as

(I − K̂ (λ))(λ + Av)v = f + Bv(λ + Aw)−1g.

This shows that I − K̂ (λ) is invertible for {Re λ ≥ 0} \ {0}, and
v = (λ + Av)−1(I − K̂ (λ))−1( f + Bv(λ + Aw)−1g).

Define K (t) = Bve−Awt ∗ Bwe−Avt for t > 0. By the operator-valued Paley-Wiener lemma
(see e.g. [12]), there is R ∈ L1,loc(R+;B(X0)) such that

(I − K̂ (λ))−1 = I + K̂ (λ)(I − K̂ (λ))−1 = I + R̂(λ), {Re λ ≥ 0} \ {0}.
Summarizing the above, we have(

v

w

)
= (λ + A)−1

(
f
g

)
,
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where

(λ + A)−1 =
(

(λ + Av)−1 0
0 (λ + Aw)−1

)

+
(

0 (λ + Av)−1Bv(λ + Aw)−1

(λ + Aw)−1Bw(λ + Av)−1 0

)

+
(

(λ + Av)−1 0
0 (λ + Aw)−1

)

×
(

R̂(λ) R̂(λ)Bv(λ + Aw)−1

Bw(λ + Av)−1 R̂(λ) Bw(λ + Av)−1(I + R̂(λ))Bv(λ + Aw)−1

)
.

By using the relation between C0-semigroup and the resolvent via the Laplace transform

L[e−At ](λ) =
∫ ∞

0
e−λt e−t A dt = (λ + A)−1, λ ∈ {Re λ ≥ 0} \ {0},

we obtain the proposition.

Proposition 4 C0-semigroup e−At on X0 has the following expression:

e−At =
(
Sv(t)
Sw(t)

)
=

(
Svv(t) Svw(t)
Swv(t) Sww(t)

)

=
(

e−Avt ∗ (δ0 + R)

e−Awt ∗ Bwe−Avt ∗ (δ0 + R)

e−Avt ∗ (δ0 + R) ∗ Bve−Awt

e−Awt ∗ (
δ0 + Bwe−Avt ∗ (δ0 + R) ∗ Bve−Awt

)
)

for u(t) = (v(t), w(t))T ∈ X0 and t ≥ 0.

Finally in this section, we state the exponential stability result for e−At .

Theorem 2 (Thm3.5 in [13]) e−At is exponentially stable on R(A). There exist constants
ω1 > 0 and M1 ≥ 1 such that

‖e−At‖B(R(A)) ≤ M1e
−ω1t , t ≥ 0,

which is equivalent to

‖e−Atu0 − PAu0‖X0 ≤ M1e
−ω1t‖u0‖X0 , t ≥ 0.

5 Local Well-posedness

In order to obtain local well-posedness, time-weighted maximal L p-regularity for Av which
gives parabolic regularization plays an essential role. For 1 < p < ∞ and 1/p < μ ≤ 1 and
some 0 < a ≤ ∞, we define

v ∈ L p,μ(0, a; Xv
0) ⇔ t1−μv ∈ L p(0, a; Xv

0).

H1
p,μ is defined in the similar way. We introduce the base space

E0,μ(a) := E
v
0,μ(a) × E

w
0 (a),
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E
v
0,μ(a) := L p,μ(0, a; Xv

0), E
w
0 (a) = C([0, a]; Xw

0 ),

where

Xv
0 := XS

0 × XS
0 , XS

0 = PH L2(Ω)3,

Xv
1 := XS

1 × XS
1 , XS

1 = {v ∈ H2
p(Ω)3 ∩ XS

0 : v = 0 on Σ},
Xw
0 := XM

0 = PW L2(Ω)3 × PH L2(Ω)3,

Xw
1 := XM

1 = {w = (E, H) ∈ H1
2 (Ω)6 ∩ XM

0 : ν × E = 0 on Σ}.
We introduce the solution space

E
v
1,μ(a) := H1

p,μ(0, a; Xv
0) ∩ L p,μ(0, a; Xv

1),

E1,μ(a) := E
v
1,μ(a) × C([0, a]; Xw

0 ).

Time trace space of E1,μ(a) is given by

Xγ,μ = (
B2μ−2/p
2,p (Ω)6 ∩ Xv

0

) × Xw
0 .

The case μ = 1

Xγ := Xγ,1, Xγ = (
B2−2/p
2,p (Ω)6 ∩ Xv

0

) × Xw
0 .

is the natural state space for the problem. Also we set

E1(a) := E1,1(a), E
v
1(a) := E

v
1,1(a).

We state the time weighted maximal L p-regularity result of the Stokes system (10) by
Prüss–Simonett [14, Sect. 7] in the context of our problem setting.

Proposition 5 Let 1 < p < ∞ and 1/p < μ ≤ 1. For v0 ∈ B2μ−2/p
2,p (Ω)3 ∩ XS

0 , (10) admits
a unique solution

v ∈ H1
p,μ(R+; XS

0 ) ∩ L p,μ(R+; XS
1 ), π ∈ L p,μ(R+; H1

2 (Ω)).

The following result is local well-posedness of (11).

Theorem 3 (Thm.4.1 in [13]) Let 4/3 ≤ p < ∞ and 1/4 + 1/p ≤ μ ≤ 1. Then for each
initial value

u0 ∈ Xγ,μ = (
B2μ−2/p
2,p (Ω)6 ∩ Xv

0

) × Xw
0 ,

there exists a = a(u0) > 0 and a unique solution u ∈ E1,μ(a) of the problem (11) satisfies

v ∈ H1
p(t0, a; Xv

0) ∩ L p(t0, a; Xv
1), w ∈ C([0, a]; Xw

0 )

for any t0 ∈ (0, a). The solution depends continuously on the data.
Moreover, the solution exists on a maximal time interval [0, t+(u0)), and belongs to

u ∈ C([0, t+(u0)); Xγ,μ) ∩ C((0, t+(u0)); Xγ ).

If blow up occurs, i.e. if t+(u0) < ∞, then u([0, t+)) is not relatively compact in Xγ,μ. The
solutions generate a local semiflow in the state spaces Xγ,μ.
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Proof First we see that if the solution u = (v,w)T belongs to E1,μ(a) = E
v
1,μ(a) × E

w
0 (a),

then it belongs to E1 = E
v
1 × E

w
0 instantaneously. Indeed, for every t0 ∈ (0, a),

‖v‖L p(t0,a;Xv
1)

=
( ∫ a

t0
‖v(t)‖p

Xv
1
dt

) 1
p

≤ tμ−1
0 sup

t0≤t≤a

( ∫ a

t0
t (1−μ)p‖v(t)‖p

Xv
1
dt

) 1
p ≤ tμ−1

0 ‖v‖L p,μ(0,a;Xv
1)

,

and the same estimate holds for ∂tv.
The proof on this theorem is essentially the same as in [13, Thm.4.1]. The solution of

(11) is expressed by the integral equation for some a > 0 determined later

u(t) = e−Atu0 +
∫ t

0
e−A(t−τ)G(u(τ )) dτ, t ∈ [0, a], (16)

which is decomposed as

v(t) = Sv(t)u0 +
∫ t

0
Svv(t − τ)Gv(u(τ )) dτ,

w(t) = Sw(t)u0 +
∫ t

0
Swv(t − τ)Gv(u(τ )) dτ.

By Theorem 2, it holds that the first term of right hand side of (16) satisfies ‖e−Atu0‖R(A) ≤
M1‖u0‖X0 for t ≥ 0. So our task is to estimate the second term of right hand side of (16).
We set

u∗ = (v∗(t), w∗(t))T , v∗(t) = Sv(t)u0, w∗(t) = Sw(t)u0,

ũ = (ṽ, w̃)T = (v − v∗, w − w∗)T .

Now we estimate the nonlinear term which is the second term of the right hand side of (16).
We define the space

D([Av]α) = {v ∈ H2α
2 (Ω)3 ∩ XS

0 ; v = 0 on Σ}.
For the convection term v j · ∇v j , by the Hölder inequality, the boundedness of PH , and the
Sobolev embedding theorem we have

‖PH (v j · ∇v j )‖2 ≤ ‖v j‖12‖∇v j‖12/5 ≤ C‖v‖2
H

5
4
2

≤ C‖v‖2D([Av]5/8),

which yields

‖PH (v j · ∇v j )‖Ev
0,μ(a) ≤ C‖v‖2L2p,(1+μ)/2(0,a;D([Av]5/8). (17)

Let 0E1,μ(a) denote the space of functions in E1,μ(a) with times trace 0 at t = 0, and
consider a ball Br in this space with center origin. We set ϕ(a) := ‖u∗‖E1,μ(a) and observe
that ϕ(a) → 0 as a → 0 uniformly for initial values u0 belonging to a compact subset of
Xγ,μ. By the assumption 1/4 + 1/p ≤ μ, using the embedding relation

0H
1
p,μ(0, a; Xv

0) ∩ L p,μ(0, a; Xv
1) ↪→ L2p,(1+μ)/2(0, a;D([Av]5/8)

(cf. [14, Sect. 4.5.5], [10, Thm.2.1]), we obtain

‖PH (v j · ∇v j )‖Ev
0,μ(a) ≤ C(ϕ(a) + r)2, ṽ ∈ Br ,
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and the Lipschitz estimate

‖PH (v j · ∇v j ) − PH (v̄ j · ∇v̄ j )‖Ev
0,μ(a) ≤ C(ϕ(a) + r)‖ṽ − ˜̄v‖Ev

1,μ(a), ṽ, ˜̄v ∈ Br

in a similar way.
For the nonlinear term v j × w2, the Hölder inequality yields

‖v j × w2‖Ev
0,μ(a) ≤ C‖w‖Cb([0,a];Xw

0 )‖v j‖L p,μ(0,a;L∞(Ω)). (18)

If we take β as 3
4 < β < 1, then the embedding relation D([Av]β) ↪→ L∞ holds. Choosing

κ as μ < μ + 1 − β = κ ≤ 1, we have the embedding

0H
1
p,μ(0, a; Xv

0) ∩ L p,μ(0, a; Xv
1) ↪→ L p,κ (0, a;D([Av]β)

(cf. [14, Sect. 4.5.5]) and

‖v j‖p
L p,μ(0,a;L∞(Ω))

≤C ‖v j‖p
L p,μ(0,a;)D([Av]β )

=C
∫ a

0
(tκ−μt1−κ‖v j‖D([Av]β ))

p dt

≤C ap(1−β)‖v j‖p
L p,κ (0,a;D([Av]β )

.

We set ψ(a) := ‖v∗‖L p,μ(0,a;L∞(Ω)). The above embedding implies the estimate

‖v j × w2‖Ev
0,μ(a) ≤ C‖w‖Cb([0,a];Xw

0 )(ψ(a) + a1−βr), ˜̄u ∈ Br ,

as well as the Lipschitz estimate

‖v j × w2 − ṽ j × w̃2‖Ev
0,μ(a)

≤ C
{
‖w2‖Cb([0,a];Xw

0 )a
1−β‖ṽ j − ˜̄v j‖L p,κ (0,a;D([Av]β )

+ (ψ(a) + a1−βr)‖w̃2 − ˜̄w2‖Cb([0,a];Xw
0 )

}

≤ C
(
ψ(a) + 2a1−βr + a1−β‖w∗‖Cb([0,a];Xw

0 )

)
‖ũ − ˜̄u‖E1,μ(a), ũ, ˜̄u ∈ Br .

Here ψ(a) → 0 as a → 0 locally uniformly in Xγ,μ. Now we set the map

(ṽ, w̃)T = T (ṽ, w̃)T

= (Svv ∗ Gv(v∗ + ṽ, w∗ + w̃), Swv ∗ Gv(v∗ + ṽ, w∗ + w̃))T ,

where Svv and Swv are defined in Proposition 4. Svv has maximal regularity

‖Svv ∗ f ‖Ev
1,μ(a) ≤ Mv‖ f ‖Ev

0,μ(a) (19)

with maximal regularity constant Mv. Swv holds the estimate

‖Swv ∗ f ‖Cb([0,a];Xw
0 ) ≤ Mw‖ f ‖L1(0,a;Xv

0)
≤ Mw(p′(μ − 1/p))

− 1
p′ aμ−1/p‖ f ‖Ev

0,μ(a),

where the constants Mv, Mw do not depend on a. Choosing first r > 0 and then a > 0
small enough, we know that T : Br → Br is a self-map and strictly contraction uniformly
for initial values u0 ∈ K ⊂ Xγ,μ compact. Therefore the contraction mapping principle
yields that there is a unique solution u(t) of (11) on [0, a], where a is uniform on K. The
characterization of the maximal time of existence is standard argument (cf. [7]). ��
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If we take 2μ − 2/p = 1/2, then it is corresponding result of Fujita-Kato [4], in which
obtains well-posedness of the Navier–Stokes equations for initial values in the scale critical
space.

Corollary 1 Let 4/3 ≤ p < ∞. Then for each initial value

u0 ∈
(
B1/2
2,p (Ω)6 ∩ Xv

0

)
× Xw

0 ,

there exists a = a(u0) > 0 and a unique solution u ∈ E1,μ(a) of the problem (11) satisfies

v ∈ H1
p(t0, a; Xv

0) ∩ L p(t0, a; Xv
1), w ∈ C([0, a]; Xw

0 )

for any t0 ∈ (0, a). The solution depends continuously on the data.
The solution exists on a maximal time interval [0, t+(u0)), and belongs to

u ∈ C([0, t+(u0)); Xγ,μ) ∩ C((0, t+(u0)); Xγ ).

Remark 1 B1/2
2,p (Ω) has the same scale as H1/2

2 (Ω) and the embedding relations Xv
0 ↪→

L2(Ω)3 and Xw
0 ↪→ L2(Ω)3 hold. Therefore it shows local well-posedness (also global

well-posedness as proved in Theorem 4 below) for initial values in the scale critical space:
v = (v1, v2)

T ∈ H1/2
2 (Ω)6 and (w1, w2)

T = (E0, H0)
T ∈ L2(Ω)6.

Proof Taking μ = 1/4 + 1/p in Theorem 3, we obtain the result. ��

6 Nonlinear stability of equilibria

By Lemma 6, we know that the equilibria of (1) is

PAu0 = (0, wE )T for u0 ∈ X ,

where wE = (0, wE2)
T ∈ Xw

0 , wE2 ∈ Xhar (Ω).
The following nonlinear stability of the problem (1) is the main result in this paper.

Theorem 4 Let 4/3 ≤ p < ∞ and 1/4 + 1/p ≤ μ ≤ 1. The equilibria of the problem (1)
are exponentially stable in the state space Xγ .

1) For each small ε > 0, there exist constants t0 > 0, β > 0 and M ≥ 1 such that the
solution u satisfies

‖u(t) − PAu0‖Xγ = ‖v(t)‖Xv
γ

+ ‖w(t) − wE‖Xw
0

≤ Me−βt , t ≥ t0, (20)

provided ‖u0‖Xγ,μ ≤ δ.
2) For each small ε > 0, there exists δ > 0 such that the solution u satisfies

‖u(t) − PAu0‖Xγ ≤ ε, t ≥ 0, (21)

provided ‖u0‖Xγ ≤ δ.

Proof 1) Let u0 ∈ Xγ,μ be small. We note that PAu0 = (0, wE )T ∈ Xγ . By Theorem 3, we
know there exists a unique solution u ∈ E1,μ on the maximal interval [0, t+(u0)), and

u ∈ C([0, t+(u0)); Xγ,μ) ∩ C((0, t+(u0)); Xγ ).

More precisely, for a ∈ (0, t+(u0)), for every t0 ∈ (0, a), the solution u belongs to E1,μ(t0)
and this u = (v,w)T belongs to

v ∈ H1
p(t0, a; Xv

0) ∩ L p(t0, a; Xv
1) =: E1(t0, a), w ∈ C([0, a]; Xw

0 ).
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Therefore, the state space of u is Xγ for t ≥ t0. Since the solution of (11) is given by (16),
we have

u(t) − PAu0 = e−Atu0 − PAu0 +
∫ t

0
e−A(t−τ)G(u(τ )) dτ, t ∈ [0, a].

We set

u∗(t) = e−Atu0, ũ(t) =
∫ t

0
e−A(t−τ)G(u(τ )) dτ,

and also

v(t) = Sv(t)u0 + Svv ∗ Gv(t) =: v∗(t) + ṽ(t),

w(t) = (Sw(t)u0 − wE ) + Swv ∗ Gv(t) =: (w∗(t) − wE ) + w̃(t).

By Theorem 2, if we take 0 < ω < ω1, then the operator A− ω is also exponentially stable.
It holds that

‖u∗(t) − PAu0‖Xγ = ‖e−Atu0 − PAu0‖Xγ ≤ Me−ωt‖u0‖Xγ for t ≥ t0.

By the embedding relations

0H
1
p(R+; Xv

0) ∩ L p(R+; Xv
1) ↪→ L2p(R+;D([Av]5/8),

0H
1
p(R+; Xv

0) ∩ L p(R+; Xv
1) ↪→ L p(R+; L∞(Ω))

(cf. [14, Sect. 4.5.5], [10, Thm.2.1]), for fixed ε > 0 there exists δ = δ(ε) > 0 such that
‖u0‖Xγ,μ ≤ δ implies that

‖eωtv∗‖L2p(t0,∞;D([Av]5/8), ‖eωtv∗‖L p(t0,∞;L∞(Ω)), ‖eωtw∗‖Cb(t0,∞;Xw
0 ) ≤ ε (22)

for all t0 ∈ (0, t+(u0)). For the nonlinear part ũ(t) = (ṽ(t), w̃(t))T , we set φ(a) =
‖eωt ũ‖E1(t0,a). From (19) and

‖Swv ∗ f ‖C([t0,a];Xw
0 ) ≤ Mw‖ f ‖L1(t0,a;Xv

0)
≤ Mw‖ f ‖L p(t0,a;Xv

0)
,

we obtain

φ(a) ≤ M
(‖eωt Svv ∗ Gv‖Ev

1(t0,a) + ‖eωt Swv ∗ Gv‖C([t0,a];Xw
0 )

)
≤ M‖eωt Gv‖L p(t0,a;Xv

0)
. (23)

(17), (18) and (22) show that

‖eωt Gv‖L p(t0,a;Xv
0)

≤ C
(‖eωtv∗‖L2p(t0,a;D([Av]5/8) + ‖eωt ṽ‖Ev

1(t0,a)

)2
+ (‖eωtv∗‖L p(t0,a;L∞(Ω)) + ‖eωt ṽ‖Ev

1(t0,a)

)
× (‖eωtw∗‖C([t0,a];Xw

0 ) + ‖eωt w̃‖C([t0,a];Xw
0 )

)
≤ C(ε + φ(a))2.

Multiplying (23) by MC and combining the above inequality, we have

MCφ(a)(1 − 2MCε − MCφ(a)) ≤ (MC)2ε2.
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Since x(1 − 2MCε − x) = −(x − 1−2MCε
2 )2 + (1−2MCε)2

4 , if we choose ε > 0 satisfying

(MC)2ε2 ≤ (1−2MCε)2

4 , namely ε ≤ 1/(4MC), then it holds that

MCφ(a) ≤ 1 − 2MCε

2
, a ∈ [t0, t+(u0)),

and also

φ(a) ≤ 2MC

1 − 2MCε
ε2, a ∈ [t0, t+(u0)).

The right-hand side is independent of a, this shows that it is able to extend t+(u0) = ∞.
Therefore we conclude that

sup
t≥t0

‖eωt ũ(t)‖Xγ ≤ 4MCε2

and (20) under ‖u0‖Xγ,μ ≤ δ.
2) Let u0 ∈ Xγ be small. Then the proof in 1) for t ∈ [t0, t+(u0)) is valid for t ∈ [0, t+(u0))
and (21) holds. This completes the proof of the theorem. ��
Acknowledgements The authors express their thanks to the referee for his/her careful reading of amanuscript,
which helps to improve this article.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Amrouche, C., Seoula, H.: L p-theory for vector potentials and Sobolevs inequalities for vector fields.
Math. Models Meth. Appl. Sci. 23, 37–92 (2013)

2. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy
problems, Monographs in Mathematics 96, second edition, Birkhäuser Verlag (2011)

3. Foias, C., Temam, R.: Remarques sur les équations de Navier-Stokes stationaires et les phénomènes
successifs de bifurcation. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 5, 28–63 (1978)

4. Fujita, H., Kato, T.: On the non-stationary Navier–Stokes system, Rend. Sem. Mat. Univ. Padova 32,
243–260 (1962)

5. Giga, Y., Ibrahim, S., Shen, S., Yoneda, T.: Global well posedness for a two-fluid model. Differ. Integr.
Equ. 31, 187–214 (2018)

6. Giga, Y., Yoshida, Z.: On the equations of the two-component theory in magnetohydrodynamics. Comm.
PDE. 9, 503–522 (1984)

7. Köhne, M., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted L p-spaces. J.
Evol. Equ. 10, 443–463 (2010)

8. Kozono, H., Yanagisawa, T.: Lr -variational inequality for vector fields and the Helmholtz-Weyl decom-
position in bounded domains. Indiana Univ. Math. J. 58, 1853–1920 (2009)

123

http://creativecommons.org/licenses/by/4.0/


75 Page 18 of 18 Partial Differential Equations and Applications (2021) 2 :75

9. Kozono, H., Yanagisawa, T.: Lr-Helmholtz decomposition and its application to the Navier-Stokes equa-
tions. Lectures on the analysis of nonlinear partial differential equations. Part 3, 237–290, Morningside
Lect. Math., 3, Int. Press, Somerville, MA, (2013)

10. Kurokiba,M., Ogawa, T.: Singular limit problem for the Keller-Segel system and drift-diffusion in scaling
critical spaces. J. Evol. Equ. 20, 421–457 (2020)

11. Miyamoto, K.: Plasma Physics for Nuclear Fusion. MIT, Cambridge (1981)
12. Prüss, J.: On the spectrum of C0-semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)
13. Prüss, J., Shimizu, S.: On a Navier–Stokes–Ohm problem from plasma physics. J. Evol. Eq. 18, 351–371

(2018)
14. Prüss, J., Simonett, G.: Moving Interfaces and Quasilinear Parabolic Evolution Problems, Monographs

in Mathematics 105. Birkhäuser Verlag (2016)
15. Ströhmer, G.: About an initial-boundary value problem from magneto-hydrodynamics. Math. Z. 209,

345–362 (1992)
16. Ströhmer, G.: An existence result for partially regular weak solutions of certain abstract evolution equa-

tions, with an application to magneto-hydrodynamics. Math. Z. 213, 373–385 (1993)
17. Temam, R.: Navier–Stokes Equations. Theory and numerical Analysis. American Mathematical Society,

Providence (1984)
18. Van Kampen, N.G., Felderhof, B.U.: TheoreticalMethods in Plasma Physics. North-Holland, Amsterdam

(1967)
19. Yoshida, Z., Giga, Y.: On the Ohm-Navier-Stokes system in magnetohydrodynamics. J. Math. Phys. 24,

2860–2864 (1983)

123


	On a Navier–Stokes–Ohm problem from plasma physics in multi connected domains
	Abstract
	1 Introduction
	2 Solutions in Xhar(Ω)
	2.1 Properties of solutions in Xhar(Ω)
	2.2 A concrete vector field of Xhar(Ω)

	3 Abstract formulation
	4 The linear operator
	5 Local Well-posedness
	6 Nonlinear stability of equilibria
	Acknowledgements
	References




