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ABSTRACT
In this paper, we present novel cylindrical cavity resonators accommodating spatially and temporally zero Poynting vector Beltrami standing
waves with the parallel electric and magnetic fields (E ∥ H). We introduce the special boundary conditions, i.e., longitudinal electromagnetic
conductor (LEMC) on which zero longitudinal electromagnetic components are enforced and circumferential electromagnetic conductor
(CEMC) on which zero circumference electromagnetic components are enforced in an axisymmetric waveguide system, and show that the
zero Poynting vector E ∥ H Beltrami standing wave is generated as a superposition of dual degenerated axisymmetric TM and TE standing
waves in a cylindrical resonator using the LEMC and CEMC boundary conditions. We present physical implementation methods of the LEMC
and CEMC boundary conditions composed of the circumferentially arranged corrugations and the concentrically aligned cylindrical thin fins,
respectively. In addition, we numerically demonstrate the Beltrami standing field generation and reveal its peculiar electromagnetic properties:
the spatially and temporally E ∥ H with zero Poynting vector distribution, identical electric and magnetic energy density distributions, and
zero local reactive energy flow.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0100710

I. INTRODUCTION

Propagation modes in a waveguide are determined by bound-
ary conditions. For instance, the circular waveguide used in high-
frequency circuits/systems supports TM and TE modes with the
boundary condition Eϕ = Ez = 0 on the sidewall.1 Let us consider
a singular axisymmetric waveguide with the special anisotropic
boundary condition of zero longitudinal electric and magnetic com-
ponents, Ez = 0 and Hz = 0, on the sidewall, i.e., strictly speaking,
a lateral equidistance surface from the axis. What kind of propa-
gation modes can exist in the waveguide? Although the boundary
condition is apparently impractical, it is artificially achievable with
a structured surface discussed in the following. In the following, we
refer to the boundary condition as a longitudinal electromagnetic
conductor (LEMC).

Applying the LEMC boundary condition on ρ = a to Maxwell’s
equations, we obtain a set of orthogonal axisymmetric TM and TE
solutions in the cylindrical coordinate system as follows:

TM mode:

E = E0[−i
β
kc

J1(kcρ)eρ + J0(kcρ)ez]ei(βz−ωt), (1)

H = −i
E0

η0

k0

kc
J1(kcρ)eϕei(βz−ωt); (2)

TE mode:

E = E0
k0

kc
J1(kcρ)eϕei(βz−ωt), (3)

H = −i
E0

η0
[−i

β
kc

J1(kcρ)eρ + J0(kcρ)ez]ei(βz−ωt), (4)

where Jn is the nth Bessel function of the first kind, k0 is the
wavenumber in free space, β is the propagation constant, kc is the
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FIG. 1. Beltrami field distribution on five cross sections within a half wavelength. (a) General view. (b) On the cross section including the z axis. (c) On the five cross sections
with z = mπ/(4β), where m = 0, 1, 2, 3, and 4. The red and blue arrows correspond to the E and H fields, respectively. The electric and magnetic fields are parallel to each
other. Note that the arrows are perfectly axisymmetric though they seem to be asymmetric in (a) due to the matter of a perspective.

cut-off wavenumber, η0 =
√

μ0/ε0 is the intrinsic impedance of free
space, and i is the imaginary unit. It is noted that E and H are inter-
changeable between the TM and TE modes, i.e., Eqs. (1) and (2) are
in the same form with Eqs. (3) and (4), respectively. It is also noted
that these TM and TE modes degenerate with the identical cut-off
wavenumber p01/a, where p01 is the first zero of J0.

Let us consider a superposition of the standing waves of these
TM and TE modes with the phase shift of ±π/2 in both the time
and longitudinal position. The total electromagnetic field in the
waveguide is represented by

E = e−iωtE0[
β
kc

J1(kcρ) sin(βz)eρ

± k0

kc
J1(kcρ) cos(βz)eϕ + J0(kcρ) cos(βz)ez], (5)

H = −ie−iωt E0

η0
[ β

kc
J1(kcρ) sin(βz)eρ

± k0

kc
J1(kcρ) cos(βz)eϕ + J0(kcρ) cos(βz)ez]. (6)

Equations (5) and (6) suggest that the electric and magnetic fields
are parallel to each other, E ∥ H, and thus, the Poynting vector
vanishes everywhere. The electromagnetic standing wave is clas-
sified as a new type of Beltrami fields.2–16 Figure 1 shows a typ-
ical electromagnetic field distribution of the Beltrami field. It is
clearly seen that the electric and magnetic fields are parallel to each
other everywhere despite the fact that they are neither TM, TE,

nor TEM and have a complicated distribution with longitudinal
components.

The boundary conditions providing the phase shifts of ±π/2
for the Beltrami field are given by the peculiar conditions Eϕ = 0 and
Hϕ = 0 on both ends of the waveguide. In the following, we refer to
the boundary condition as a circumferential electromagnetic con-
ductor (CEMC). The CEMC is also artificially achievable, which will
be discussed in Sec. II.

II. REALIZATION OF LEMC AND CEMC
Here, we consider realization methods of the LEMC and

CEMC. A waveguide with the LEMC boundary condition, Ez = 0
and Hz = 0, on the lateral sidewall can be implemented with the
circumferentially arranged fine corrugations compared with the
wavelength. The cross section of the waveguide is shown in Fig. 2(a).
The corrugation is characterized by the corrugation depth dLEMC and
the spacing between the adjacent corrugations sLEMC. The spacing
sLEMC is to be selected sufficiently smaller than the free-space wave-
length λ0 (sLEMC ≪ λ0). The corrugation enforces Ez = 0 at ρ = a,
which implies that the waveguide supports a TM01 mode with the
cut-off wavenumber kTM

c = p01/a. Note that the cut-off wavenumber
is dependent only on a, not on dLEMC, and operates as a circu-
lar waveguide with the radius a. The propagation constant for the
TM01 mode, βTM, is determined by (βTM)2 = k0

2 − (kTM
c )2. As for

the TE mode, the corrugated sidewall operates as a short-ended
stub with the length dLEMC. The LEMC boundary condition at ρ = a
is realized by appropriately choosing the length dLEMC = πa/(2p01)
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FIG. 2. Physical implementations of (a) the LEMC, (b) the CEMC, and (c) the E ∥ H cavity resonator. a is the inner radius, dLEMC is the corrugation depth, and sLEMC is the
interval between the adjacent corrugations in the LEMC. tCEMC is the fin thickness, and dCEMC is the fin depth in the CEMC. L is the resonator length (the length of the LEMC
region or the interval between the CEMC ends).

(see the Appendix). It is noteworthy that the LEMC boundary con-
dition is maintained regardless of the frequency with the cut-off
wavenumber kTE

c identical to that of the TM01 mode, kTM
c . The

propagation constant for the TE mode is determined by (βTE)2

= k0
2 − (kTE

c )2, which is also identical to that of the TM01 mode,
βTM, leading to the fact that the dispersion relations of the TM01
and TE modes in the waveguide agree with each other. Incidentally,
the depth dLEMC has to be slightly longer than πa/(2p01) due to the
fringing effect. The effect can be taken into account by full-wave
simulations.

The CEMC boundary condition, Eϕ = 0 and Hϕ = 0, at both
ends can also be implemented with the concentric cylindrical thin
fins shown in Fig. 2(b). The fins reflect the TE mode with the reflec-
tion coefficient of −1 on the top surface, whereas they reflect the
TM mode with the reflection coefficient of eik0dCEMC . Therefore, the
CEMC is realized by choosing the depth dCEMC = π/(2k0). It is
noted that the CEMC operation is frequency dependent. It is also
noted that the fringing effect is taken into account to determine
dCEMC.

The Beltrami cavity resonator with E ∥ H can be composed by
a combination of the LEMC and CEMC boundaries as shown in
Fig. 2(c), which will be discussed in Sec. III.

III. BELTRAMI CAVITY RESONATOR

A. Design
We demonstrate the E ∥ H Beltrami resonator operation with

the presented LEMC and CEMC implementations. Suppose that the
lateral LEMC boundary is implemented with 100ϕ-segments of cor-
rugation with the duty ratio of 0.1, and we let the resonator length
L be 30 mm. Now, we determine the radius a and the corrugation
depth dLEMC consistently so that the TM and TE dispersion relations
coincide with each other by using a commercial full-wave simu-
lator Ansys HFSS (High Frequency Structure Simulator). Figure 3
shows a unit circumferential sector for the calculations. Applying
the periodic boundary conditions to the ρ–z planes, we calculate the
dispersion characteristics for both the TM01 and TE modes. Here,
we assume the conductivity of the resonator material is 5.8 × 108

S/m (corresponding to copper). We optimize a and dLEMC so that
the cut-off frequencies for the TM01 and TE modes coincide with
each other by considering the fact that the cut-off frequency of the
TM01 mode is determined by a, whereas that of the TE mode is deter-
mined by dLEMC. The optimized parameters are a = 13.26 mm and
dLEMC = 8.851 mm, which leads to the cut-off frequency of 8.57 GHz.
According to the dispersion characteristics, the resonant frequency
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FIG. 3. A circumferential sector of
the LEMC waveguide for the TM and
TE mode dispersion relation calcula-
tions. The periodic boundary condition is
applied to the ρ–z planes of the sector.

FIG. 4. The simulated field profiles of the designed resonator. (a) The field intensities of E and H at the center transverse section of z = L/2. The intensities are normalized
by the maximum value on the axis ρ = 0. (b) The z-dependencies of the normalized intensities of E and H. The red solid and blue dashed lines correspond to E and H,
respectively. The dotted line corresponds to the theoretical curve derived from Eqs. (5) and (6). The time series snapshots of the field distributions of E and H at the center
transverse sections of (c) z = L/2 and (d) z = L/4. The red and blue arrows correspond to E and H, respectively. The dashed circle depicts the periphery of the waveguide
region, ρ = a.
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FIG. 5. The z-dependency of the angle θ between E and H. The red solid, blue
dashed, and green dotted lines correspond to θ on the transverse cross sections
of z = L/2, L/4, and L/8, respectively.

of the first mode with βTML = βTEL = π is 9.91 GHz. As for the
CEMC boundary, suppose that the CEMC is composed of 15 equally
spaced cylindrical fins with the thickness tCEMC = 0.1 mm(0.0017λg)
as shown in Fig. 2(b). The corrugation depth dCEMC is numerically
determined as 7.605 mm by taking into account the fringing effect at
the resonant frequency of 9.91 GHz.

B. Fields, energy distributions, and Poynting vectors
Figures 4(a) and 4(b) show the simulated electromagnetic field

intensities on the central transverse section at z = L/2 and those
along the radial direction with the theoretical prediction, respec-
tively. The field intensities are normalized by their maximum values
at ρ = 0. It is noted that both the simulated electric and magnetic
field distributions exhibit the identical Besselian distribution as the
theoretical prediction except in the vicinity of the periphery of the
waveguide. Figures 4(c) and 4(d) show the time series snapshots of
the simulated electromagnetic fields on the two transverse sections
at z = L/2 and L/4, respectively. It is seen from these figures that the
electric and magnetic fields are parallel to each other regardless of
the z-position at any time, leading to temporally zero Poynting vec-
tor. Incidentally, the non-parallel electric and magnetic fields in the
vicinity of the LEMC boundary are due to the fringing effect.

FIG. 7. The z-dependency of the reactive energy flow normalized by the stored
energy. The solid and dashed lines correspond to those in the proposed resonator
and in a convention TM011 resonator, respectively.

Figure 5 shows the simulated angle distributions between elec-
tric and magnetic fields, θ (except E = 0 or H = 0), as a function of
the position ρ. It is quantitatively confirmed from the figure that
the electric and magnetic fields are parallel except in the periphery
of the waveguide. It is noted that the electric and magnetic fields
are completely parallel at the center z = L/2 due to the geometrical
symmetry.

Now, we consider the time-averaged electric and magnetic
energy density on the transverse cross section, ue and um, given by

ue(z) =
ε0

4 ∫
2π

0
∫

a

0
E ⋅ E∗ρdρdϕ, (7)

um(z) =
μ0

4 ∫
2π

0
∫

a

0
H ⋅ H∗ρdρdϕ. (8)

Figure 6(a) shows the simulated z-dependencies of ue and um in the
designed resonator. For comparison, Fig. 6(b) shows the theoreti-
cal z-dependencies of ue and um for a conventional short-circuited
TM011 resonator with the same radius a and length L. It is noted from
these figures that the proposed resonator exhibits peculiar ue and

FIG. 6. The z-dependencies of the sur-
face integrals of the electric and mag-
netic energy densities over the trans-
verse section, ue and um, normalized
by the maximum magnetic energy den-
sity value. (a) In the proposed resonator.
The red solid and blue dashed lines
correspond to ue and um, respectively.
The black dotted line corresponds to
the theoretical curve. (b) In a conven-
tional TM011 cylindrical cavity. The red
and blue lines correspond to ue and um,
respectively.
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um distributions with the same z-dependency except in the vicin-
ity of each end as opposed to the fact that the conventional TM011
resonator has different ue and um distributions with their peaks in
the different positions. Incidentally, the integrals of ue and um are
identical.

Figure 7 shows the z-dependency of the reactive energy flow
passing through the cross section in a quarter of the period, π/2ω,
normalized by the total stored energy, i.e.,

ν(z) =
1
ω Im{∫ 2π

0 ∫
a

0
1
2(E ×H∗) ⋅ ezρdρdϕ}

∫ L
0 (ue + um)dz

. (9)

In the proposed resonator, ν becomes zero almost everywhere due
to the parallel electromagnetic field nature as opposed to the fact
that ν becomes non-zero in the conventional resonator due to the
non-local energy exchange between electric and magnetic fields.

IV. CONCLUSIONS
In this paper, we have presented the zero Poynting vector

E ∥ H Beltrami field cylindrical cavity resonators. We have shown
that a cylindrical waveguide with the LEMC boundary condition
supports dual degenerated axisymmetric TM and TE propagation
modes and that a superposition of the standing waves of the TM and
TE modes leads to an E ∥ H Beltrami field with a certain TM and TE
phase shift of ±π/2 in both the time and longitudinal position. We
have also shown that the phase shift can be realized by the CEMC. In
addition, we have proposed concrete feasible structures of the LEMC
and CEMC, i.e., the circumferentially arranged corrugation and the
concentrically aligned cylindrical thin fins, respectively. Moreover,
we have numerically demonstrated an E ∥ H resonator operation
at 9.91 GHz by designing the LEMC with 100 corrugations and
the CEMC with 15 fins and confirmed its unusual electromagnetic
properties of (1) the parallel electric and magnetic fields with
temporally zero Poynting vector distribution, (2) the agreement
of the electric and magnetic energy density distributions, and (3)
zero local reactive energy flow. A potential application exploiting
the peculiar E ∥ H Beltrami field is a novel closed microwave
cavity resonator for Lorentz-force-free plasma heating and
acceleration.
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APPENDIX: PROOF OF THE LEMC BOUNDARY
CONDITION REALIZATION WITH dLEMC = πa/(2p01)

Consider propagating waves in the corrugation region, a ≤ ρ
≤ a + dLEMC. Their electromagnetic fields are represented by

Eϕ =
k0

kρ
Ecor sin(kρ(ρ − a − dLEMC))ei(kzz−ωt),

Hρ = −
kz

kρ

Ecor

η0
sin(kρ(ρ − a − dLEMC))ei(kzz−ωt),

Hz = −i
Ecor

η0
cos(kρ(ρ − a − dLEMC))ei(kzz−ωt),

(A1)

where Ecor is a coefficient, and kρ and kz are the ρ- and z-components
of the wavevector, respectively. On the other hand, the electromag-
netic fields outside the corrugation region, ρ ≤ a, are represented
by

Eϕ =
k0

kTE
c

E0J1(kTE
c ρ)ei(βz−ωt),

Hρ = −
β

kTE
c

E0

η0
J1(kTE

c ρ)ei(βz−ωt),

Hz = −i
E0

η0
J0(kTE

c ρ)ei(βz−ωt),

(A2)

where E0 is a coefficient, and βTE and kTE
c are the phase constant and

cut-off wavenumber of the TE mode of Eqs. (3) and (4), respectively.
The field continuity on the interface, ρ = a, requires the transcen-
dental equation cos(kTE

c dLEMC)J1(kTE
c a) + sin(kTE

c dLEMC)J0(kTE
c a)

= 0. By solving the equation with dLEMC = πa/(2p01), we obtain
kTE

c = p01/a as the lowest order solution, and therefore, kTE
c dLEMC

= π/2. By substituting kTE
c dLEMC = π/2 at ρ = a into (A1), we readily

obtain Hz = 0 at ρ = a. With Ez = 0, the LEMC boundary condition
is realized at ρ = a.
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