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Abstract　　Designing a deep neural network model that integrates clinical images with other electronic med-
ical records entails various preprocessing operations. Preprocessing of clinical images often requires trimming 
of parts of the lesions shown in the images, whereas preprocessing of other electronic medical records requires 
vectorization of these records; for example, patient age is often converted into a categorical vector of 10-year 
intervals. Although these preprocessing operations are critical to the performance of the classi�cation model, 
there is no guarantee that the preprocessing step chosen is appropriate for model training. The ability to inte-
grate these preprocessing operations into a deep neural network model and to train the model, including the pre-
processing operations, can help design a multi-modal medical classi�cation model. This study proposes inte-
gration layers of preprocessing, both for clinical images and electronic medical records, in deep neural network 
models. Preprocessing of clinical images is realized by a vision transformer layer that selectively adopts the 
parts of the images requiring attention. The preprocessing of other medical electrical records is performed by 
adopting full-connection layers and normalizing these layers. These proposed preprocessing-integrated layers 
were veri�ed using a posttreatment visual acuity prediction task in ophthalmology as a case study. This predic-
tion task requires clinical images as well as patient pro�le data corresponding to each patient’s posttreatment 
logMAR visual acuity. The performance of a heuristically designed prediction model was compared with the 
performance of the prediction model that includes the proposed preprocessing integration layers. The mean 
square errors between predicted and correct results were 0.051 for the heuristic model and 0.054 for the pro-
posed model. Experimental results showed that the proposed model utilizing preprocessing integration layers 
achieved nearly the same performance as the heuristically designed model.
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1.　  Introduction

Recent studies have attempted the development of deep 
learning models for medical diagnoses and lesion detec-

tion; for example, the diagnosis of cervical dysplasia 
from images and medical test results [1] and detection of 
COVID-19 from X-ray, ultrasound, and CT scan imag-
es [2]. These studies utilized multiple modalities such as 
clinical images and electronic medical records (EMR) to 
develop medical diagnosis models.

Various preprocessing operations are required to de-
sign deep neural network models based on clinical imag-
es and other EMRs. These include resizing and cropping 
of clinical data, and normalization and conversion of 
EMRs to categorical vectors for 10-year intervals. Al-
though preprocessing of the input data is critical to the 
performance of the classi�cation model, this preprocess-
ing may or may not be appropriate for training of the 
model.

Deep learning models have been proposed to be able 
to learn the features of the model regardless of the pre-
processing content of the input data. For example, use of 
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a convolutional neural network (CNN) [3] has led to a 
proposed model that utilizes magnetic resonance images 
to predict the probability of developing Alzheimer’s dis-
ease in patients with mild cognitive impairment [4]. The 
CNN used in that model can extract both the local and 
overall features of the images by changing the �lter size 
of the convolution layer and inserting a pooling layer. 
These features can therefore be learned from only the 
critical part of the input image. In partial image recogni-
tion models that apply CNN, such as Faster R-CNN [5], 
classi�cation may be possible after cutting out a speci�c 
position, thus identifying lesion sites [6, 7]. Based on in-
formation about insulin administration and other factors, 
a sequence-to-sequence model was able to predict rapid 
increases or decreases in a patient’s blood glucose con-
centration [8]. The sequence-to-sequence model can be 
trained with data obtained during patient examination 
and primary data as time-series and interrelated data [9]. 
In these models, however, input data are preprocessed 
manually, and it is unclear whether this preprocessing is 
appropriate for training the model.

To address these problems, we have designed and 
integrated preprocessing layers for both clinical images 
and EMRs into multi-media deep neural network mod-
els. Preprocessing of clinical images is realized by a vi-
sion transformer layer that selectively evaluates the areas 
of interest in the images, while preprocessing of other 
EMRs is performed by full-connection layers, before 
and after normalization.

This study used fundus photographs (FP) and optical 
coherence tomography (OCT) images as clinical image 
data, and EMR including gender, age, affected side, and 
pretreatment decimal visual acuity (VA). Because input 
data differ markedly in size and range, these properties 
were accommodated by designing a proposed model that 
1, input imaging and EMR data; 2, preprocessed and ex-
tracted features from imaging data; 3, preprocessed and 
extracted features from EMR data; 4, combined the ex-
tracted features; and 5, output the predicted VA as a nu-
merical value.

This model does not require preprocessing of the in-
put data, and predicts post-treatment VA with greater ac-
curacy than a manual preprocessing model. Thus, this 
model may eliminate the need to consider and apply 
manual preprocessing on a task basis, and prevent loss of 
information from the input data during preprocessing.

2.　  Methods

Many deep learning models that receive medical data as 
input require preprocessing of the input data. Imaging 
data are frequently preprocessed by resizing and crop-
ping. Resizing refers to the transformation of images to a 
prede�ned uniform vertical and horizontal size and is 

designed to transform images to a size that the network 
can receive and align the input data conditions. Cropping 
refers to cutting out the part of the image evaluated at the 
time of diagnosis or cutting out the area of the lesion 
from the image. Cropping is performed to reduce noise 
in the input data and allow the model focus only on what 
is needed for evaluation. Standard preprocessing of 
EMRs includes normalization and categorization. Data 
are normalized to match the range of input data, whereas 
categorization assists the model in determining the rela-
tionship between one data point and the entirety of the 
data, as well as the order of the data; for example, by 
converting into a vector with clusters every 10 years [10].

These preprocessing processes are usually per-
formed manually, but they have a signi�cant impact on 
the accuracy of the model. Rather than manually prepro-
cessing multiple medical modalities, we have proposed 
preprocessing integration layers in the neural network. 
Figure 1 illustrates the processes of manual preprocess-
ing and how our proposed integration layers replace 
them. Clinical images were separated into same size 
patches, and features were extracted using attention and 
fully connected (FC) layers. Normalization and FC lay-
ers were used to preprocess EMRs and to extract fea-
tures. By training the model incorporating preprocess-
ing, it is assumed that the data can be transformed 
according to the structure of the input data and the task.

2.1　  Clinical image feature extraction replacing pre-
processing

Figure 1a shows the method by which the proposed in-
tegration layers extract features from clinical images 
while illustrating the role of preprocessing. Clinical im-
ages were preprocessed by a vision transformer (ViT), 
one of the deep learning models for image recogni-
tion [11]. The ViT is a model for image classi�cation that 
employs a transformer-like architecture rather than a 
CNN [12].

CNNs have several advantages such as avoiding the 
need for hand designed visual features; rather, they learn 
to perform tasks directly from the data. Although CNNs 
avoid hand crafted feature extraction, the architecture it-
self is designed for a certain image size. ViT uses trans-
former architecture originally designed for text-based 
tasks. An input image is represented as a sequence of 
image patches, similar to the sequence of word embed-
dings used when applying transformers to text, with the 
ViT directly predicting class labels for the image. These 
features enhance independence from image size, as well 
as increase the ability of the multi-head attention mecha-
nism to learn the parts of the image to focus on.

Adoption of ViT may allow the development of clin-
ical image feature extraction layers as well as replacing 
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image preprocessing such as resizing and cropping.

2.2　  EMR Feature Extraction, replacing Preprocess-
ing

The scalar and discrete values in patient EMRs are es-
sentially multi-dimensional. Manual preprocessing of 
EMRs include sorting into categorical multi-dimensional 
vectors based on clinical knowledge, such as whether the 
interpretation of blood test data does or does not differ in 
elderly and non-elderly patients.

Figure 1b illustrates the mechanism by which the 
proposed integration layers extract features of EMRs. 
Scalar values such as gender and age are input to the lay-
ers, which output the feature vectors of EMRs.

EMR preprocessing and feature extraction were per-
formed using a batch normalization (BN) layer and an 
FC layer. The BN layer transforms the data so that the 
mean output is close to 0 and its standard deviation close 
to 1. After normalization, the FC layer extracts and lin-
early transforms the feature of interest from EMRs. Use 
of the BN and FC layers results in a structure responsible 
for preprocessing normalization and feature extraction.

2.3　  Feature combination and regression layer
The features extracted from clinical images and EMRs 
are concatenated and passed into the fully connected lay-
ers for classi�cation or regression tasks. To avoid biases, 
the dimension size of concatenated feature vectors for 

each medical modality should be identical.

3.　  Experiments

Experiments were performed to assess the effectiveness 
of the preprocessing-integration layers. The experiment 
consisted of two tasks: evaluating the accuracy of the 
proposed model and visualizing the results following 
conversion of the data. Experiments were performed un-
der four conditions, and the differences between predict-
ed and actual outcomes were compared by determining 
the mean square error (MSE).

3.1　  Case study and design of a model including the 
proposed integration layers

The performance of the proposed integration layers was 
assessed using a visual acuity prediction task. Speci�cal-
ly, a deep neural network model was developed to predict 
posttreatment VA in patients with age-related macular 
degeneration based on medical imaging and patient 
EMRs.

Figure 2 shows the outline of the proposed model. 
This model had three layers: (1) a layer that preprocesses 
and extracts features from imaging data, (2) a layer that 
preprocesses and extracts features from EMR data, and 
(3) a layer that combines the features of the �rst two lay-
ers and predicts VA.

Fig. 1　ViT is used for image data and BN layer and FC layer for EMR to preprocess data and to extract features.

Advanced Biomedical Engineering. Vol. 11, 2022.(18)



3.2　  Datasets
Figure 2i shows examples of input imaging data, includ-
ing FP and OCT images. OCT images have vertical and 
horizontal cross-sections, called OCT-v and OCT-h, re-
spectively. The patient pro�le data included gender, age, 
affected side (right or left), and pretreatment decimal 
VA [13]. To analyze VA as a continuous variable, deci-
mal VA was converted to logarithm of the minimal angle 
resolution (logMAR) [14]. Both pretreatment and post-
treatment decimal VA were converted to logMAR.

This study was approved by the Ethics Committee of 
Kyoto University Graduate School and Faculty of Medi-
cine (R2366) and adhered to The Ethical Guidelines for 
Medical and Health Research Involving Human Subjects 
in Japan as well as the tenets of the Declaration of Hel-
sinki. Informed consent was obtained from each partici-
pant using an opt-out method, as permitted by the Ethics 
Committee.

Data were obtained from 315 patients who (1) visit-
ed the macular clinic at Kyoto University Hospital, (2) 
were diagnosed with wet age-related macular degenera-
tion (AMD), and (3) completed a �xed regimen of intra-
vitreal injection of a�ibercept (IVA) for one year. They 
were separated into a training set of 252 patients and a 
validation set of 63 patients for �ve-fold cross-validation.

Manual preprocessing of the imaging data included 
resizing and cropping, whereas manual preprocessing of 
the EMRs included normalization and categorization. FP 
images were resized to 480 ×   480 pixels and split into 
three RGB channels. The central square regions of 
OCT-v and OCT-h were cropped and resized to 480 ×   
480 pixels. Figure 2e shows the input EMR data. Gender 
and affected side were categorized (0 or 1). Age was sub-
jected to min-max normalization, as shown in Eq. 1. and 
normalized age was multiplied by ten to convert to inte-
gers. Floating logMAR was converted to an integer by: 
(1) multiplying decimal VA by ten; and (2) adding the 
minimum logMAR and multiplying by ten.

converted age =
age − agemin

agemax − agemin
 (Eq. 1)

3.3　  Experimental conditions
The predictive accuracy of the manually designed net-
work was compared with that of the network obtained 
using the proposed preprocessing integration layers. Ta-
ble 1a shows the structures of these models. The model 
incorporating preprocessing was found to preprocess the 
data and extract features by the ViT and BN layers, as 
described in Fig. 2. In the manually preprocessed model 
(“Baseline” model), image features were extracted by a 

Fig. 2　  Our proposed model for case study had three layers. The model receives images and EMR to predict postoperative visu-
al acuity.
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model called VGG16 [15], which is generally used for 
image classi�cation, and features were extracted from 
EMR by an FC layer. Meanwhile, for the proposed mod-
el with integrated preprocessing layers (“Proposed” 
model), input image was not trimmed and the one- 
dimensional EMR data was divided into each item. For 
the “Baseline” model, input images and �ve-dimensional 
EMR were pre-processed as described in Section 3.2. 
Because the model incorporating pretreatment was ex-
pected to perform pretreatment more effectively for pre-
diction, we hypothesized that MSE would be lower in the 
model that included preprocessing layers than in the 
model that included manual preprocessing.

To determine whether the preprocessing layer was 
more effective for imaging or EMR data, the accuracy of 
the models was compared in Table 1b. When the prepro-
cessing layer was applied only to the image, ViT was 
applied to the image and the FC layer was applied to the 
EMR data. The latter was not divided into items but were 
input in a �ve-dimensional state. When the preprocess-
ing layer was applied only to EMR, VGG16 was applied 
to the image and the BN layer was applied to EMR. 
Thus, EMR, which could only be converted at regular 
intervals by manual operations, would likely form a clus-
ter more suitable for the prediction task. Therefore, we 
hypothesized that MSE would be higher when the pre-
processing layer was applied only to the image than 
when it was applied only to EMR.

Finally, we visualized how the EMR was trans-
formed by the preprocessing layer and compared it with 
the diagnosis by an ophthalmologist. In this experiment, 
after training the proposed model, validation data were 
input, and the features before integrating the features in 
the EMR preprocessing layer were output. Principal 
component analysis was applied to this feature, with the 
results presented as a hierarchical clustering image. The 
cluster was expected to be divided into two parts, with 
thresholds for age, pretreatment decimal VA, and pre-
treatment logMAR. We hypothesized that these thresh-
olds would be consistent with those determined by an 
ophthalmologist.

3.4　  Results
Table 2 shows the MSE between predicted and actual 
logMAR. The effect of the preprocessing layer was de-
termined by comparing the MSE of the Baseline model 
and Proposed model. The MSE of the Proposed model 
with the preprocessing layers was nearly the same as the 
Baseline model. A comparison of the MSEs of the Only 
image preprocessing model and Only EMR prepro-
cessing model showed that the MSE was larger when the 
preprocessing layer was applied only to the imaging 
data.

Figure 3 shows the hierarchical clustering image of 
the pretreatment patient age output from the preprocess-
ing layer, which was subjected to principal component 

Table 1　Conditions of compared models.

model name
layer for  
images

layer for  
EMR

a Baseline VGG16 FC

Proposed ViT BN and FC

b Baseline VGG16 FC

Only image preprocessing ViT FC

Only EMR preprocessing VGG16 BN and FC

Table 2　MSE results.

model name
MSE for  
training

MSE for  
validation

a Baseline 0.049 0.051

Proposed 0.039 0.054

b Baseline 0.049 0.051

Only image preprocessing 0.050 0.118

Only EMR preprocessing 0.068 0.061

Fig. 3　  As a result of clustering, patient pretreatment age was divided into two clusters. The cluster threshold was aged 75 years.
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analysis (PCA) to make it two-dimensional. When hier-
archical clustering [16] was performed after applying 
PCA, two clusters appeared, as indicated by the color of 
the dots in the scatter plot. One cluster contained data 
from patients aged <  75 years before treatment, and the 
other cluster contained data from patients aged ≥   75 
years. This age cutoff is essential for predicting pretreat-
ment logMAR.

4.　  Discussion

This section discusses the signi�cance, performance, 
limitations, and applicability of the proposed preprocess-
ing layer based on experimental results.

4.1　  Performance of the proposed preprocessing lay-
ers

In this study, when images were preprocessed by ViT, 
and EMR data were preprocessed by the BN and FC lay-
ers, the MSE between predicted and actual results was 
0.054. A logMAR difference of <  0.20 has been reported 
to indicate the effectiveness of a particular treatment [17, 
18]. Because the expected postoperative logMAR error 
was <  0.20, the model had suf�cient prediction accuracy 
for practical clinical use.

Moreover, the MSE of the Baseline model was 
0.051 (<   0.20), and the proposed integration layer had 
nearly the same performance as the Baseline model. 
Thus, the proposed layer preprocessed data to predict 
postoperative VA with the same performance as manual 
preprocessing.

A comparison of each integration layer showed that 
preprocessing of EMR alone had a smaller MSE than 
preprocessing of images alone. This �nding indicated 
that optimizing EMR data was more important than opti-
mizing imaging data in predicting VA. Moreover, this 
�nding is consistent with results showing that determina-
tion of preoperative VA by an ophthalmologist had the 
greatest effect on prediction accuracy.

Although the validation MSEs of Only image pre-
processing and Only EMR preprocessing were higher 
than that of Baseline, the total validation MSEs of Base-
line and our proposed method were almost the same. 
This fact indicates that the EMR features and image fea-
tures extracted by our proposed method had coordinated 
impact compared with the Baseline method.

4.2　  Integration of image preprocessing
The main advantage of integrating preprocessing opera-
tions into a deep learning model is to reduce the burden 
for optimizations. Manual preprocessing for image resiz-
ing and cropping requires medical knowledge of the le-
sion site, as well as manual operations for each image. 
The vision transformer, which has a multi-head attention 

mechanism, can automatically detect essential parts of 
clinical images, resulting in a lower load for designing 
the model.

In addition, the proposed layer will be accepted re-
gardless of the size or shape of the image. Because a 
complete image can be input with ViT, one advantage 
may be the lack of potential information loss, such as 
cropped images during manual preprocessing.

4.3　  Integration of EMR preprocessing
Optimization is enhanced by integrating preprocessing 
of EMR data. For example, manual optimization of age 
requires determination of whether age should be dichot-
omized or processed as a categorical vector of 10-year 
intervals. Optimal conversion requires determination of 
the critical age threshold for diagnosis.

The proposed layer dichotomized patients by age 
into those aged <  75 and ≥  75 years, resulting in a pre-
dictive accuracy greater than that obtained from manual 
conversion of age to 10-year intervals. The advantage of 
the proposed layer for EMR is that appropriate prepro-
cessing can be performed without special knowledge of 
the disease.

4.4　  Limitations
This report describes the construction of a layer that per-
forms two types of image preprocessing; resizing and 
cropping. Although these two are the most commonly 
used preprocessing steps, other adjustments may include 
adjustments of rotation, brightness, and color tone. To 
learn these preprocessing steps, it is necessary to im-
prove the structure of the model. Preprocessing of EMR 
data frequently consists of quantitation that replaces 
EMR data with an array of zeros and ones. Improve-
ments of the model are required to achieve explicit quan-
titation.

5.　  Conclusion

This study proposed the integration of preprocessing lay-
ers for both clinical images and EMRs in deep neural 
network models. In the proposed model, ViT and BN 
layers were utilized for preprocessing of and feature ex-
traction from medical images and EMR data, respective-
ly.

To verify the effectiveness of the preprocessing lay-
er, the ability of the model to predict VA was evaluated 
by comparing the MSE between actual and predicted 
logMAR in models with and without the preprocessing 
layers. The MSE was 0.054 with and 0.051 without the 
preprocessing layers. The experimental results revealed 
that the regression model with proposed preprocessing 
layers achieved an accuracy nearly the same as manual 
pre-processing.
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The proposed preprocessing integration layers have 
several main advantages. By learning preprocessing, the 
input data could be converted into more ef�cient feature 
vectors for the prediction/regression task, and the accu-
racy of the output result may also be improved. In addi-
tion, there is no need to manually preprocess the input 
data, thus reducing the time and effort required to create 
training data. Because the proposed layer can handle in-
put data regardless of its shape, it can likely be applied to 
various clinical decision support systems with multiple 
modalities, such as clinical images and EMRs.
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